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Abstract. Extensive monitoring of particulate matter (PM)
smaller than 2.5 µm, i.e., PM2.5, is critical for understanding
changes in local air quality due to policy measures. With the
emergence of low-cost air quality sensor networks, high spa-
tiotemporal measurements of air quality are now possible.
However, the sensitivity, noise, and accuracy of field data
from such networks are not fully understood. In this study,
we use spectral analysis of a 2-year data record of PM2.5
from both the Environmental Protection Agency (EPA) and
PurpleAir (PA), a low-cost sensor network, to identify the
contributions of individual periodic sources to local air qual-
ity in Chicago. We find that sources with time periods of
4, 8, 12, and 24 h have significant but varying relative con-
tributions to the data for both networks. Further analysis
reveals that the 8 and 12 h sources are traffic-related and
photochemistry-driven, respectively, and that the contribu-
tions of both these sources are significantly lower in the PA
data than in the EPA data. The presence of distinct peaks
in the power spectrum analysis highlights recurring patterns
in the air quality data; however, the underlying factors con-
tributing to these peaks require further investigation and val-
idation. We also use a correction model that accounts for the
contribution of relative humidity and temperature, and we
observe that the PA temporal components can be made to
match those of the EPA over the medium and long term but
not over the short term. Thus, standard approaches to im-
prove the accuracy of low-cost sensor network data will not

result in unbiased measurements. The strong source depen-
dence of low-cost sensor network measurements demands
exceptional care in the analysis of ambient data from these
networks, particularly when used to evaluate and drive air
quality policies.

1 Introduction

Air pollution is one of the world’s leading risk factors for dis-
ease and premature death. An estimated 16 % of total global
deaths in 2015 can be attributed to diseases caused by air pol-
lution (Landrigan et al., 2018). Of particular concern is the
mass concentration of particulate matter (PM) smaller than
2.5 µm, i.e., PM2.5, or fine particles. Exposure to PM2.5 has
been directly correlated with diseases such as respiratory dis-
eases and even mortality (Li et al., 2018; Xing et al., 2016;
Samoli et al., 2005; Ostro et al., 2006; Lewis et al., 2005).
The high health impact of PM2.5 is because of its ability to
penetrate deep into the lungs and because its composition is
often carcinogenic (Li et al., 2014). The European Study of
Cohorts for Air Pollution Effects (ESCAPE) shows that ex-
posure to high PM2.5 concentrations is linked to a risk of de-
veloping lung cancer (Raaschou-Nielsen et al., 2013). In ad-
dition to chronic diseases, exposure to PM2.5 might also im-
pact our response to acute diseases such as COVID-19 (Wu
et al., 2020; Zhou et al., 2021; Mondal et al., 2022; Chaip-
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itakporn et al., 2022). Accurate knowledge of PM2.5 expo-
sure and efforts to mitigate it are critical to protecting public
health.

In the United States, the Environmental Protection Agency
(EPA) monitors air quality by measuring regulated or crite-
ria pollutants, including ambient PM2.5 concentrations us-
ing Air Quality Monitoring Stations (AQMSs). The PM2.5
measurements are made using a range of instruments classi-
fied as federal reference methods (FRMs) or federal equiv-
alent methods (FEMs) (Noble et al., 2001). FRMs refer to
the specific monitoring methods that have been designated
by the EPA as the reference standard for measuring air pol-
lutants, while FEMs refer to alternative monitoring methods
that have been deemed equivalent to the FRM methods by
the EPA. The two methods may utilize different instruments
or measurement techniques but have demonstrated compa-
rability in accuracy and reliability. The strict maintenance
and calibration routines followed in these stations ensure
high-quality data and comparability between different loca-
tions (Castell et al., 2017). Even in the US, with over 5000
AQMSs, the geographic coverage of these monitoring sites
is inadequate. The siting of AQMSs is often biased towards
populated areas, disadvantaging smaller cities and underde-
veloped regions (Ardon-Dryer et al., 2020). Even in popu-
lated areas, the limited number of sites does not capture the
high spatial variation in PM2.5 concentrations that are likely,
resulting in an incorrect estimate of exposure and the resul-
tant health effects (Wang et al., 2015).

For accurate exposure assessment, an air quality monitor-
ing network providing measurements at high spatiotemporal
resolution is required. To address this need, researchers, com-
munities, organizations, and individuals have been deploying
low-cost air quality sensors that provide air quality data at
a granular level not possible with the EPA AQMSs (Com-
modore et al., 2017; Woodall et al., 2017). One of these net-
works is composed of sensors from PurpleAir (PA). The PA
sensing platform incorporates a pair of Plantower PMS5003
low-cost sensors, which use laser light-scattering techniques
to determine ambient aerosol concentrations. A PMS5003
reports a variety of particle concentration metrics, includ-
ing PM1, PM2.5, and PM10 (Sayahi et al., 2019; Ouimette
et al., 2022; He et al., 2020). The PA provides two PM2.5
values labeled cf_1 (higher correction factor) or cf_atm (at-
mosphere). The two values have different correction factors
that convert the sensor light-scattering measurements to PM.
For a relative humidity (RH) of less than 70 %, both values
yield similar results for a PM2.5 of less than 25 µg m−3. Out-
side this range, cf_atm and cf_1 start to disagree (Barkjohn
et al., 2021). It is important to note that the specific algorithm
employed by PA to convert Plantower data into mass concen-
tration, whether using cf_1 or cf_atm correction factors, has
not been publicly disclosed (Ouimette et al., 2022). PA sen-
sors also have two channels, namely A and B, that measure
the exact same PM measurements. These two channels allow
for the robustness of data collection by minimizing any data

noise, loss of data due to sensor failure, or measurement er-
ror due to sensor electronic issues (PurpleAir, 2020). While
the low-cost sensors have the advantage of deployment ease,
their accuracy and precision are variable (Kuula et al., 2017).

PA provides two PM2.5 values, labeled cf_1 (higher
correction factor) or cf_atm (atmosphere). The two val-
ues have different correction factors that convert the sen-
sor light-scattering measurements to PM. For RH less than
70 %, both values yield similar results for PM2.5 less than
25 µg m−3. Outside this range, cf_atm and cf_1 start to dis-
agree (Barkjohn et al., 2021). It is important to note that the
specific algorithm employed by PA to convert Plantower data
into mass concentration, whether using cf_1 or cf_atm cor-
rection factors, has not been publicly disclosed (Ouimette
et al., 2022).

The various PM sensors used in low-cost monitors are all
subject to biases and calibration dependencies, with some
factors accounted for with moderate success (e.g., meteorol-
ogy, age of sensor) and others poorly (e.g., aerosol source,
composition, refractive index) (Giordano et al., 2021). The
PA sensor measurements are often calibrated or corrected
by co-location with a reference monitor at a regulatory site
(Wallace et al., 2021; Stavroulas et al., 2020; Kelly et al.,
2017). Additionally, researchers have developed correction
models to account for the impact of environmental conditions
on sensor performance (Barkjohn et al., 2021; Ardon-Dryer
et al., 2020). The deployment of PA sensors has resulted
in expanding the availability of PM2.5 data and enabling
a range of studies, including validation of high-resolution,
large-scale regional modeling efforts (Bi et al., 2020) and
understanding of the impact of wildfire smoke on local and
regional air quality (Gupta et al., 2018).

Co-locating low-cost sensors with reference monitors pro-
vides a fast way for their calibration. Typically, this is done
by co-locating the sensors for a period of time and then de-
termining a scaling factor or equation based on a regression
analysis. The time period for co-location is generally chosen
to be around days to weeks, and this allows for the calibra-
tion to be independent of data noise. The selection of the
calibration time period can, however, bias the sensor data to
be most sensitive to sources primarily responsible for pol-
lutant concentration variability in that time period. Sources
with shorter time periods, relative to the calibration period,
are averaged out and inadequately accounted for in the cali-
bration. Thus, longer timescale events are completely lost in
the calibration process.

Published studies on low-cost sensors have observed some
of the abovementioned problems. The response characteris-
tics of low-cost sensors are seen to be different from those ad-
vertised by their manufacturers, possibly because the aerosol
size distributions and compositions differ with location (Ku-
ula et al., 2020; Tryner et al., 2020). As an example, low-
cost sensor data are seen to be in better agreement with refer-
ence monitors at locations with low traffic than those at high-
traffic locations (Castell et al., 2017). To improve the quality
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of the reported data from low-cost sensor networks, we need
to establish ideal field calibration principles for these units.
For this, frequency-based methods that have been previously
used in air quality to find prominent temporal components
can be used (Hies et al., 2000; Marr and Harley, 2002; Choi
et al., 2008; Tchepel and Borrego, 2010). Time series decom-
position using low-pass filters can identify pollution sources
that account for most of the measurement variation (Zhang
et al., 2018; Bai et al., 2022). Here, using frequency-based
analysis, the dependence of low-cost sensor PM2.5 measure-
ment accuracy on the calibration period will be established.

For this work, we chose our study area to be Cook County,
IL, which includes the city of Chicago and has a total pop-
ulation of nearly 10 million. Cook County is a major trans-
portation hub lying at the crossroads of the country’s rail,
road, and air traffic, and it is an important industrial center;
thus, there are a number of emission sources within the area.
Despite a baseline long-term trend of improving air qual-
ity in Chicago, recent years show a worsening trend. PM2.5
concentrations have nearly doubled since 2017, rising from
6.7 µg m−3 in 2017 to 12.8 µg m−3 in 2019, exceeding the
U.S. EPA air quality standards (12 µg m−3) (IQAIR, 2020).
The likely reason for the increase in PM2.5 levels is the as-
sociated increase in emissions from mobile sources in recent
years (Milando et al., 2016). The changing air pollution lev-
els have increased public interest in air quality monitoring,
particularly using low-cost sensor networks. For the time pe-
riod starting in May 2018, the PurpleAir network in Chicago
and its surrounding neighborhoods has increased from a few
sensors to more than 30 sensors now.

In this study, we used PM2.5 data from EPA sites and
PA sensors located in Cook County, IL, to understand dif-
ferences in their data as a function of sensor location and
time. Using spectral theory, we extracted temporal signatures
of the EPA and PA data and analyzed their differences as a
function of the time period to determine the effectiveness and
limitations of the current approach to correct low-cost sensor
data to match the EPA data. The results of this analysis will
help us understand biases in the data from low-cost sensors
such as PA networks and provide guidance in devising new
approaches to field-calibrate data from these sensors.

2 Materials and methods

2.1 Data collection and preprocessing

Cook County, IL, has 14 EPA air quality monitoring sites
providing data on criteria pollutants, including ambient
PM2.5 concentrations (EPA, 2021). Hourly PM2.5 measure-
ments from the EPA are available at 7 out of 14 monitoring
sites in Cook County, IL. The PA network in Cook County
consists of more than 30 PA low-cost sensors that currently
provide PM2.5 data (PA, 2021). Our analysis was conducted
using data from a time period of October 2019 to Septem-

ber 2021. For this time period, hourly PM2.5 data were only
available at 10 out of 30 PA sensors. Further, after elimi-
nating sites with more than 20 % missing data, our analysis
could only use data from five EPA sites and nine PA sensors,
as shown in Fig. 1 and Table S1 in the Supplement.

It was observed that PA data included some outliers with
very large PM2.5 concentrations, which are likely erroneous
data. To eliminate these outliers from our analysis, we chose
a data range of [0,70] µg m−3 as valid data (Ardon-Dryer
et al., 2020). In Fig. 1a the sampling locations of EPA and
PA are plotted on the map with the population density around
the sampling locations in Fig. 1b. The population density in
census blocks, as defined by the U.S. Census Bureau (Bu-
reau, 2021), was calculated using ArcGIS Pro 2.8. From a
simple analysis of the siting of sensors, it is clear that more
than 60 % of the PA sensors are located in urban areas where
the average population density is more than 5000, exceeding
that of the EPA sites except for EPA site E2.

2.2 Standard correction model

It has been established that low-cost sensors are sensitive
to meteorological parameters, especially relative humidity
(Barkjohn et al., 2021; Ardon-Dryer et al., 2020). This is be-
cause PA measurements are based on light scattering, with
factory calibration to convert measurements to PM2.5 val-
ues. As the composition and size distribution of particles in
Chicago are likely different from those used in the sensor cal-
ibration, the reported values will need some correction. Ad-
ditionally, temperature and relative humidity can alter parti-
cle physical and optical properties that PA measurements are
sensitive to. While EPA measurements will also be affected
by these air properties, the impact is lower because of thermal
and humidity conditioning of samples prior to measurements
(Zheng et al., 2018; Kelly et al., 2017; Magi et al., 2020). Re-
cently a US-wide correction model for PA sensors that takes
into account the contribution of ambient conditions to sen-
sor performance was introduced (Barkjohn et al., 2021). The
model was built using data from 53 PA sensors, with data
spanning the time period of September 2017 to January 2020
at 39 distinct sites spread throughout 16 states. From an eval-
uation of several models using temperature and relative hu-
midity, they suggested a final model considering only the ef-
fect of RH on PA sensor data. This model, herewith called
the standard correction model, is

PM2.5Std_Corr= 0.524 PAcf_1 PM2.5− 0.0862 RH

+ 5.75, (1)

where cf_1 is the higher correction factor and RH is the rel-
ative humidity in percent. In our study, the corrections were
made to the PA data using the RH reported by the nine PA
sensors themselves.
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Figure 1. (a) EPA and PA sampling locations. (b) Population density (population per square mile) in the block defined by the U.S. Census
Bureau in Cook County, IL. Basemap used from ESRI (ESRI, 2021).

2.3 Monitoring data summary

This study uses 2 years of PM2.5 data from five EPA sites and
nine PA sensors from October 2019 to October 2021. The
sample time series trend in PM2.5 from a set of EPA and PA
sites (EPA site E2 and PA sensor P6) that are in close prox-
imity (within 2 km) to each other is shown in Fig. 2a. The
gap in the total time series of PM2.5 data around April 2020
in E2 and September–October 2021 in P6 is due to missing
observations in the time series in Fig. 2a. The major causes
of missing air pollutant data in the reference monitor include
monitor malfunctions and errors, power outages, computer
system crashes, pollutant levels lower than detection limits,
and filter changes (Imtiaz and Shah, 2008; Hirabayashi and
Kroll, 2017). For low-cost sensors, approximately 40 % of
the data generated are missing, most likely because of ex-
treme weather events, battery failure, and disruption in Inter-
net accessibility at sensor locations (Kim et al., 2021; Rivera-
Muñoz et al., 2021).

The data from both networks show high temporal varia-
tions along with some seasonal trends over longer timescales.
A direct comparison of the two data sets (Fig. 2b) for the
combination of the E2 and P6 sites shows that, on average,
the raw PA data overestimate the EPA data by roughly 40 %,
consistent with previous findings. Use of the standard correc-
tion results in a decrease in the reported PA values. The re-
sultant best-fit linear model suggests that the corrected data
slightly underestimate the actual PM2.5 by roughly 30 %.

The overall distribution of the PM2.5 data at each of the
EPA and PA sites over the entire time period of our analysis
is shown in Fig. 3 and Table S2. The median values of PM2.5
reported by the PA sites are always higher and more vari-
able than those from the EPA sites in the region. The median
PM2.5 value from the average from the five EPA sites in the
region is 8.4 µg m−3, while the PA data report a median value
of 10 µg m−3. With the standard correction it is seen that the

variability is reduced and that the median is 6.9 µg m−3, 20 %
lower than the EPA value.

While the accuracy of the correction model can be im-
proved with some local tuning, it is clear that the model
did not improve the quality of the fit. This suggests that
the correction model does not account for all of the causes
of discrepancy between the two data sets. In particular, a
regression-based model will not be able to account for the
sensitivity of the sensors to particle compositions and hence
to different emission sources. A preliminary validation of
model dependence on composition can be obtained from the
evaluation of model performance for the prediction of PM2.5
concentrations during weekdays and weekends. The differing
strengths of some emission sources between weekdays and
weekends are expected to result in slightly different aerosol
populations during these two time periods. Here, we sepa-
rated the data into weekday and weekend and applied the
correction model to get corrected PA data for each of the
data sets. A two-sample t test between the EPA and cor-
rected PA data (Fig. 4) shows a statistically significant differ-
ence between the two data sets (p value< 0.05 and the exact
p value= 0.000007) on weekdays but not on weekends (p
value= 0.13), providing some initial validation that the cor-
rection model does not account equally for the contributions
of all the sources.

To better understand the causes of model under-
performance and to determine the primary drivers of this
discrepancy, a frequency-based analysis is helpful. Such an
analysis can help extract the contribution of any periodic
emission sources that might exist and establish whether the
standard correction model provides a bias-free correction for
all of these components.
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Figure 2. (a) Hourly PM2.5 measurements from EPA site E2 and PA sensor P6. (b) Hourly PM2.5 measurements from EPA site E2 vs. PA
sensors P6 raw and P6 corrected.

Figure 3. (a) Hourly PM2.5 measurements from each EPA site and PA sensor located in Cook County, IL. (b) All EPA-, PA-, and PA-
corrected data together. The box plots represent the overall distribution with quartile (25th percentile Q1, median 50th percentile Q2, and
75th percentile Q3) values of PM2.5 data. The values in black dots over Q3 are outliers.

3 Spectral analysis

In meteorology and air quality studies, spectral analysis has
been used to extract and examine different temporal com-
ponents in the obtained data (Hies et al., 2000; Marr and
Harley, 2002; Choi et al., 2008; Tchepel and Borrego, 2010).
Here, using spectral analysis, we determine the effectiveness
of the correction model in improving the correlation of PA
data with EPA data over the entire range of emission sources
that contribute to Cook County’s PM2.5 population.

To ensure the stationarity of the time series data, i.e., that
their statistical properties such as mean, variance, and auto-
covariance remain constant, we use the augmented Dickey–
Fuller (ADF) test method (Wang et al., 2021; Lian and Ma,
2013).

The discrete Fourier transform,X(k), of hourly time series
Xt can be calculated using the fast Fourier transform (FFT)
algorithm. The power spectral density (PSD) for a finite time

series can then be calculated as the squared magnitude of
X(k):

8(vk)= |X(k)|
2
=

∣∣∣∣ 1
√
N

N−1∑
t=0

Xte
−2πivk t

∣∣∣∣2, (2)

where k = 0,1, . . ., (N−1). N is the number of observations
and vk = k

N
.

For a measurement resolution of 1 h, a wave with a pe-
riod of 2 h or more is required (Nyquist theorem). For spec-
tral analysis using FFT, successive equal-length sequences
are required without any missing observations (Dilmaghani,
2007). Here we replace the missing data points from the EPA
and PA data sets using the Autoregressive Integrated Moving
Average (ARIMA) model with a Kalman filter (Hadeed et al.,
2020; Afrifa-Yamoah et al., 2020; Wijesekara and Liyanage,
2020; Saputra et al., 2021). The PSD of each EPA and PA
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Figure 4. Corrected PA sensor PM2.5 measurements during weekdays and weekends compared with the nearby EPA sites E2 and P6. The
t-test statistics are provided to determine whether there is a statistically significant difference between the two data sets (EPA and PA).

Figure 5. Mean PSD of PM2.5 data from all the EPA sites, all the
PA sensors, and PA standard corrected data.

hourly time series of the PM2.5 data was then calculated us-
ing the stats package in R.

3.1 Spectral analysis: results and discussion

We determined the PSD of PM2.5 data for three data sets –
EPA-, PA-, and PA-corrected data – for all of the locations
available. Then, the average PSDs for each of the data sets
were determined by averaging the individual PSDs of the
different locations in each network. By averaging over the
different locations, the PSDs in Fig. 5 represent the power
spectrum of air quality over the entire Cook County area. The
PSD shows that, for both networks (EPA and PA), power is
higher in long time periods than in short time periods. Thus,
the predominant variation in PM2.5 data reported by both net-
works over the studied duration is driven by their long-term
trend. The PA data are seen to have lower power compared to
the EPA in smaller time periods. Calculating the root mean
squared error (RMSE) between the EPA PSD values and the
two PA data sets, it is seen that the PSD of the corrected PA
data has a 58 % lower RMSE than the uncorrected PA. Thus,
applying the US-wide EPA correction model (Eq. 1) to the
PA data reduces the PA PSD error relative to the EPA over
the entire range of frequencies.

At small time periods, both networks show distinct peaks
at 4, 8, 12, and 24 h, as seen in Fig. 6. These peaks likely
represent the contribution of periodic aerosol sources, such
as traffic and photochemistry, and diurnal weather patterns

Figure 6. Mean PSD of PM2.5 data from all the EPA sites, all the
PA sensors, and PA standard corrected data at 4 to 40 h peaks of
both networks after removing their baselines.

to the local air quality. For ease of direct comparison, we re-
moved the baseline trend in each of the data sets, and details
about the baseline removal are provided in Sect. S2 in the
Supplement. The PSD peak heights at the four time periods
are observed to be higher for the EPA data than the PA stan-
dard corrected data. The PSD peaks at the four specific time
periods were then obtained for each of the five different EPA
sites and nine different PA sites and are shown in Fig. 7a.
The EPA data peaks are seen to be consistently higher than
the PA-corrected data for all four time periods (4, 8, 12, and
24 h) and higher than the PA raw data for all the time periods
except 12 h. For the different time periods, the ratio of the
median of the PSD peaks of the five EPA sites to the corre-
sponding values for the nine PA sites is shown in Fig. 7b. For
the raw PA data, the PSD values for the four time periods,
relative to the corresponding EPA values, range from 0.66 to
2.5. After correction, the PA peaks are seen to reduce to be-
low 0.4 for all the time periods, suggesting that the correction
model suppresses these peaks.

We speculate that the 4 and 8 h peaks correspond to traffic
sources and that the 12 h peak represents the contribution of
secondary aerosols formed due to photochemistry and possi-
ble diurnal changes in winds and humidity (Jia et al., 2017;
Hollaway et al., 2019; Tchepel and Borrego, 2010). The 8 h
peak in the raw data is seen to be similar to the EPA data,
but the correction results in reducing the peak substantially.
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Figure 7. (a) Distribution of PM2.5 PSD peaks at 4, 8, 12, and 24 h for all the EPA sites and PA locations before and after correction. (b) Ratio
of PA to EPA PSD peaks for both raw data (labeled “Ratio”) and corrected data (labeled “Ratio_corrected”).

The 12 h peak is highly over-represented in the raw data, but
the correction model, like for the 8 h peak, decreases the 12 h
contribution. The mean sizes of particles formed due to pho-
tochemistry are likely larger than the traffic aerosol, resulting
in their relatively higher efficiency of detection in low-cost
PM sensors (He et al., 2020). The over-correction of the 12 h
peak that results in its significant suppression suggests that
these particles are likely less hygroscopic than the average
particles. The 24 h peak likely represents harmonics of the 8
and 12 h signals and hence represents a combination of both
sources.

To confirm that the 8 h peak is traffic-related and that the
12 h peak is likely to be driven by photochemistry, we ana-
lyzed changes in these peaks for weekend/weekday and win-
ter/summer. The EPA weekday data were considered to be
Monday 00:00 Central Standard Time to Friday 23:59 and
weekends to be Saturday 00:00 to Sunday 23:59. The winter
data were generated as Dec/Jan/Feb and the summer data as
Jun/Jul/Aug. The PSD peaks for the two time periods were
then calculated, and the relative changes are shown in Fig. 8.
The weekend 8 h PSD peak is seen to be nearly 60 % lower
than on weekdays, which is consistent with the changes in
traffic patterns expected between the two time periods (Blan-
chard et al., 2008) and confirms that this peak is indeed
traffic-related. Seasonally, the 8 h peak does not change sig-
nificantly, which again is largely consistent with the expecta-
tion that traffic patterns will not be overly dependent on sea-
sons. The 12 h peak also changes on weekends vs. weekdays
but has a greater change seasonally than that observed with
the 8 h peak. The seasonal change points to the likely con-
tribution of photochemistry to the 12 h peak, but the slight
change in this peak between weekends and weekdays also
points to contributions from other sources, including possi-
ble traffic. In addition, the 4 and 6 h peaks are also likely
related to traffic patterns (Sun, 2014).

From the 8 h PSD peak ratios, it can be concluded that
the corrected PA data are significantly under-represented in

Figure 8. Ratio of EPA PSD peaks at 8 and 12 h for the weekend
to weekdays (labeled “week”) and winter to summer (labeled “sea-
son”).

traffic-related particles, with the PSD value for the corrected
PA data being only around 17 % of that of the EPA PSD value
for this time period (Fig. 7b). This finding is consistent with
general observations in previous studies that low-cost sensor
measurements more closely match reference monitors at lo-
cations with low traffic than at high-traffic locations (Castell
et al., 2017).

4 Local correction model

Some of the imperfections of the correction model could be
attributed to the fact that the model was based on data from
a wide range of locations with different emission character-
istics and meteorology. Consequently, it could be hypothe-
sized that a local correction model tuned to local conditions
will result in a better correction of PA data. Additionally, as
the standard correction model is built based on daily data,
it could be hypothesized that the sub-24 h components may
not be accounted for well. To determine whether the sub-
24 h components in the PA data could be better matched with
EPA data, we built an hourly local correction model using
the same approach used in building the standard correction
model (Barkjohn et al., 2021). The model was built using PA
data from various selected locations and data from the near-
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est EPA site, with relative humidity and temperature included
as predictors. Typically in multiple linear regression (MLR)
models, we would only consider independent variables, and
it could be argued that temperature and relative humidity are
not entirely independent. However, from a particulate matter
perspective, the differing impacts of these parameters make
them independent of each other. Relative humidity directly
affects particle size and hence measurements by low-cost
sensors such as PA. Temperature, however, has a more com-
plex connection to particle properties. Temperature directly
affects particle size and composition by modulating conden-
sation and evaporation, which can affect PM measurements
by both EPA and low-cost sensors. Temperature also indi-
rectly affects PM properties at a location through its relation
to local meteorology, especially wind direction, and hence
the distribution of sources at the measurement location. To
establish the independence of these parameters, we calcu-
lated the variance inflation factors (VIFs) for temperature and
relative humidity, and these were found to be below 5. These
small VIF values indicate a low level of multicollinearity for
the two parameters (James et al., 2013) and permit their in-
clusion in the MLR model. A stepwise forward-selection al-
gorithm was used to build MLR models. A 10-fold cross-
validation technique was employed by repeating the process
a total of five times. This method of cross-validation involves
dividing the data into 10 equally sized folds and training the
model on 9 of the folds while using the remaining fold as a
hold-out test set. This process is repeated 10 times, with each
fold serving as the test set once. By repeating the process five
times, the robustness of the developed model is increased by
training and testing it on different subsets of the data.

The obtained equation for the local correction model is

PM2.5Loc_Corr= 0.44 PAcf_1 PM2.5− 0.026 RH

+ 0.023 temperature+ 19.76, (3)

where PAcf_1 represents the PA data with the higher correc-
tion factor cf_1 reported at a specific sensor, and RH and
temperature are obtained from the PA network.

After obtaining the model, its performance was evaluated
using several metrics: R2, RMSE, and mean absolute error
(MAE) (see the Supplement for details about these metrics).
The model performances of the standard correction and local
correction models are summarized in Table S3. The effec-
tiveness of the local correction model in improving the ac-
curacy of the PA data and addressing the problem of under-
accounting of high-frequency sources such as traffic must be
ascertained.

5 Time series decomposition

For a full model evaluation, its performance will be deter-
mined for three time period components: less than 12 h (short
term), 12 h to a month (medium term), and more than a
month (long term). The short-term component represents the

changes in PM2.5 data due to high-frequency sources such
as traffic and short-term weather events. The medium-term
component accounts for variations within time periods be-
tween 12 h and a month. The long-term component primar-
ily captures low-frequency emissions such as those related to
seasonal changes in weather and meteorology and changes
in emission rates over time (Rao and Zurbenko, 1994; Rao
et al., 1997; Wise and Comrie, 2005).

To separate the time series data into the three components
of short-term, medium-term, and long-term time periods, we
use the Kolmogorov–Zurbenko (KZ) filter technique (Rao
and Zurbenko, 1994), as was done in several recent PM2.5
studies (Bai et al., 2022; Fang et al., 2022; Zhang et al.,
2018; Sá et al., 2015). The KZ filter is a low-pass filter pro-
duced through repeated iterations of the moving average with
the parameters moving window (m) and iterations (p), also
known as KZm,p:

Yt =
1
m

k∑
j=−k

Xt+j , (4)

where Yt is a filtered time sequence, Xt is the input time se-
ries, k is the number of values included on each side of the
targeted value,m= 2k+1 is the window length, t is the time
index, and j is the time point of sliding.

The output of the first pass then becomes the input for the
next pass. Adjusting the window length and the number of
iterations makes it possible to control the filtering of differ-
ent scales of motion (Eskridge et al., 1997; Milanchus et al.,
1998). To filter a period of fewer than N days, the following
criterion is applied to determine the filter’s effective width
(Wise and Comrie, 2005):

m×p1/2
≤N. (5)

Also, the filter can be used to remove frequencies below a
desired cutoff frequency w0 (Rao et al., 1997):

w0 ≈

√
6
π

√
1− (1/2)1/2p

m2− (1/2)1/2p
. (6)

The cutoff period can be obtained by 1
w0

. For our study, we
have used the following equations to get long-term, medium-
term, and short-term components of the time series of PM2.5
data as defined by Hogrefe et al. (2000) and Kang et al.
(2008).

The long-term PM2.5 (PM2.5,B ) component is obtained as

PM2.5,B(t)= KZ900,5PM2.5(t). (7)

The medium-term PM2.5 (PM2.5,M ) component is obtained
as

PM2.5,M(t)= KZ3,3PM2.5(t)−KZ13,5PM2.5(t). (8)

The short-term PM2.5 (PM2.5,S) component is obtained as

PM2.5,S(t)= PM2.5(t)−KZ3,3PM2.5(t). (9)
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5.1 Time series decomposition: results and discussion

We separated the time series of PM2.5 data from EPA, PA,
and standard and local corrected PA data (Eqs. 7–9) into the
three time periods of long term, medium term, and short term
in Fig. 9. A comparison of the long-term component signals
shows that the 2-year trends of the PA raw data are different
from those of the EPA data (Fig. 9a). Both correction models
lower the mean of the PA data. The standard correction is,
however, seen to over-correct for the mean and does not cap-
ture the signal density accurately. Using the local model re-
sults in largely replicating the long-term PM2.5 distribution,
except at the lowest values. This might suggest that long-term
changes might be driven by more than humidity, and includ-
ing the effect of temperature on sensor performance could be
important. In addition to air properties, long-term changes
may also be driven by a drift in sensor performance, which
could be captured with a local model but not with a standard
model. In the medium term, the standard correction model
shifts the mean PM2.5 values, in contrast to the long-term
component, to align reasonably with the EPA data, as illus-
trated by the density plot in Fig. 9b. The performance of the
local correction model is seen to match the standard correc-
tion model, suggesting that, over this medium term, relative
humidity is probably the primary driver of aerosol changes.
In the short term, the density plot shows that both the stan-
dard and local correction models fail to capture the PM2.5
distribution accurately. In fact, the use of the correction mod-
els then dampens any contribution of short-term sources to
the total signal and increases the difference between the EPA
and PA data sets (Fig. 9c). This suggests that the primary
drivers of short-term fluctuations are particles that are poorly
sensed by the PA sensors, and regression-based correction
models, including both the standard correction model and the
local correction model, cannot capture the contributions of
those particles.

6 Applicability of the method

Air monitoring data, such as PM2.5, exhibit source depen-
dence. Data from low-cost sensors with high spatiotempo-
ral resolution require careful analysis. This method provides
a framework where, instead of solely relying on time series
data comparison, frequency-based or spectral analysis can be
incorporated to identify periodicities in the data. It also offers
a means to assess the accuracy of models through not just
performance metrics like RMSE, but also by incorporating
PSD and time series decomposition to evaluate data accu-
racy in short-, medium-, and long-term components. Based
on long-, medium-, and short-term component assessment,
further improvements can be made to sensor technology and
the correction models. This method is applicable to air pollu-
tion and weather data sets where periodic patterns and source
dependencies are evident.

7 Study limitations

This study has a few limitations. Firstly, the study is limited
to one city, and the low-cost air quality sensor network used
in the study is not perfectly co-located with the EPA monitor-
ing sites. This can introduce uncertainties in the analysis due
to differences in local air properties and pollution sources
for the two data sets. Secondly, the placement of the low-
cost sensors relative to locally built structures could affect its
measurement performance and increase data uncertainty, but
this information is not available to us. Thirdly, we did not
have access to local traffic-related information or industrial
activity, restricting our ability to strongly relate frequency
components to specific emission sources. The likely variabil-
ity of the local emission sources at the different PurpleAir
and EPA sites adds uncertainty in quantifying the differences
in the short-term responses of the two networks.

8 Conclusions

The use of low-cost sensors for air quality monitoring is be-
coming more widespread, and their use has resulted in a bet-
ter understanding of air quality at a hyper-local level. Several
studies have shown that data from low-cost sensors such as
from the PurpleAir (PA) network are less accurate than the
gold-standard EPA data. Other studies have reported that, us-
ing correction models, PA data can become comparable to
EPA data in accuracy (Mei et al., 2020; Ardon-Dryer et al.,
2020; Barkjohn et al., 2021). Understanding the quality of
the data reported by low-cost air sensor networks is critical
to determining the extent and limitations of the use of these
data in policy-making and health studies.

Here, using long-term PM2.5 measurements from the EPA
and PA networks in the Cook County, IL, area, we evaluated
the accuracy of the reported raw data and recommended cor-
rection models. Our initial analysis showed that the corrected
PA data were, on average, under-predicting PM2.5 by 30 %
in the study area. To determine the cause of the discrepancy
between the PA and EPA data sets, we used a spectral anal-
ysis approach to identify the presence of periodic sources,
i.e., at 4, 8, 12, and 24 h in both data sets, and then deter-
mined their relative responses to these sources. Our anal-
ysis clearly demonstrates the PA network’s very different
sensitivity to different sources. The use of the standard cor-
rection model, i.e., the US-wide correction model discussed
in Eq. (1), results in correction of the PA data but signifi-
cant under-presentation of high-frequency sources, particu-
larly traffic. The reason why low-cost sensors may be miss-
ing high-frequency components from sources such as traffic
can be attributed to several factors. One factor is the mini-
mum detection size limit of the sensors, which is ∼ 300 nm.
Sources such as traffic with PM emissions predominantly in
the sub-300 nm size range will, thus, be under-detected in
low-cost sensors. EPA measurements do not have this lim-
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Figure 9. Time series and density plot of EPA data, PA data, corrected PA data using the standard correction model, and corrected PA data
using a local correction model for a (a) long-term component, (b) medium-term component, and (c) short-term component.

itation. Additionally, the low-cost sensor response depends
on the composition and shape of particles, resulting in PM
measurement accuracy varying with emission sources. The
implication of these limitations is that the measurements pro-
vided by low-cost sensors, such as those in PurpleAir, will be
underestimated with respect to certain pollutants, including
those associated with traffic emissions, and overestimated
relative to others. Consequently, relying solely on low-cost
sensor measurements without considering the limitations in
particle detection and composition could result in an incom-
plete understanding of air quality, especially in relation to
specific pollutant sources or components.

Also, the standard correction model over-corrects for some
sources, such as the 12 h time period source that we identified
in this study. Using a local correction model based on tem-
perature and relative humidity, we showed that the long-term
and medium-term trends in PA data can be matched with EPA
data. In the short term, both the local and standard correc-
tion models perform poorly. The use of both these models
actually results in suppression of the contribution of high-
frequency sources. Also note that, while this study identified
several significant peaks, i.e., 4, 8, 12, and 24 h, in the power
spectrum analysis of air quality data, their precise sources
require further analysis and validation.

Our study also demonstrates that, while regression-based
correction models may seem to improve the accuracy of low-
cost sensor network performance by accounting for the con-
tribution of meteorology, they do not uniformly improve the
network response to all emission sources. Any field calibra-
tion of these sensors using simple regression models cannot
correct for this non-uniform contribution. As best practice,
it is recommended that calibration models from field data

should report, at a minimum, the distribution of different PM
emission sources at that location and ideally also the parti-
cle size distributions. Given the periodic signatures of many
sources, a frequency-based scaling approach should be ex-
plored towards the development of more robust calibration
models that account for the wide range of emission sources
common in urban environments. The accuracy of such mod-
els will scale with time periods of calibration. Considering
the source-dependent response of low-cost sensors, calibra-
tion models developed using land use data might be an ad-
vance over simple regression models.

Thus, care must be taken in using their data in studies
where a diversity of emission sources may be present and
their relative strengths are varying over time or space. Ad-
vances in sensing technologies and improvements in correc-
tion models are critical for expanding our use of data from
these emerging low-cost sensor networks.

Data availability. The data sets used for this study are available at
and can be accessed through the following GitHub repository: https:
//github.com/vijaykumar18/Airquality-Spectral-Analysis (Kumar,
2023). For the entire workflow (reading and organizing data, de-
scriptive analysis, and data analyses), we used the R software (R:
A Language and Environment for Statistical Computing) (version
4.2.0) along with the following libraries in our coding: readxl, dplyr,
tidyr, ggplot2, car, qqplotr, kza, stats, relaimpo, caret, glmnet, sam-
ple, and recipes.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-16-5415-2023-supplement.
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