

Supplement of

MIPAS ozone retrieval version 8: middle-atmosphere measurements

Manuel López-Puertas et al.

Correspondence to: Manuel López-Puertas (puertas@iaa.es)

The copyright of individual parts of the supplement might differ from the article licence.

This document serves as a reference for the definitions of the representative atmospheres used for the calculation of the middle atmosphere (MA) and upper atmosphere (UA) measurement modes ozone error budgets. The representative atmospheric conditions are listed in Tables S1 and S36. This document also collects the respective error budgets of both modes, which are listed in Tables S2–S35 for the MA data and in Tables S37–S70 for the UA data. The errors are also depicted in figures S1–S34 for the MA data and in figures S35–S68 for the UA data.

The errors are given as relative values in percentage, even if they are of additive nature, i.e., do not scale with the retrieved volume mixing ratio. They were calculated with respect to the average ozone profile calculated from the single geolocations contributing to the respective representative atmospheres.

S1 Errors budget for O₃ MA data

In this section we provide the errors for the MA data.

representative atmosphere label	month(s) used	latitude range	solar zenith angle range
Northern polar winter day	Jan. Feb	$65^{\circ}N - 90^{\circ}N$	< 90°
Northern polar winter night	Jan. Feb	$65^{\circ}N - 90^{\circ}N$	> 98°
Northern polar spring day	Apr	$65^{\circ}N - 90^{\circ}N$	< 90°
Northern polar spring night	Apr	$65^{\circ}N - 90^{\circ}N$	> 98°
Northern polar summer day	Jul. Aug	$65^{\circ}N - 90^{\circ}N$	< 90°
Northern polar summer night	Jul. Aug	$65^{\circ}N - 90^{\circ}N$	> 98°
Northern polar autumn day	Oct	$65^{\circ}N - 90^{\circ}N$	< 90°
Northern polar autumn night	Oct	$65^{\circ}N - 90^{\circ}N$	> 98°
Northern midlatitude winter day	Jan, Feb	$40^{\circ}N - 60^{\circ}N$	< 90°
Northern midlatitude winter night	Jan, Feb	$40^{\circ}N - 60^{\circ}N$	> 98°
Northern midlatitude spring day	Apr	$40^{\circ}N - 60^{\circ}N$	< 90°
Northern midlatitude spring night	Apr	$40^\circ N - 60^\circ N$	> 98°
Northern midlatitude summer day	Jul, Aug	$40^\circ N - 60^\circ N$	< 90°
Northern midlatitude summer night	Jul, Aug	$40^{\circ}N - 60^{\circ}N$	> 98°
Northern midlatitude autumn day	Oct	$40^\circ N - 60^\circ N$	< 90°
Northern midlatitude autumn night	Oct	$40^\circ N - 60^\circ N$	> 98°
Fropics day	Apr	$20^\circ S - 20^\circ N$	< 90°
Fropics night	Apr	$20^\circ S - 20^\circ N$	> 98°
Southern midlatitude winter day	Jul, Aug	$40^\circ S - 60^\circ S$	< 90°
Southern midlatitude winter night	Jul, Aug	$40^\circ S - 60^\circ S$	> 98°
Southern midlatitude spring day	Oct	$40^\circ S - 60^\circ S$	< 90°
Southern midlatitude spring night	Oct	$40^\circ S - 60^\circ S$	> 98°
Southern midlatitude summer day	Jan, Feb	$40^\circ S - 60^\circ S$	< 90°
Southern midlatitude summer night	Jan, Feb	$40^\circ S - 60^\circ S$	> 98°
Southern midlatitude autumn day	Apr	$40^\circ S - 60^\circ S$	< 90°
Southern midlatitude autumn night	Apr	$40^\circ S - 60^\circ S$	> 98°
Southern polar winter day	Jul, Aug	$65^{\circ}S - 90^{\circ}S$	< 90°
Southern polar winter night	Jul, Aug	$65^\circ S - 90^\circ S$	> 98°
Southern polar spring day	Oct	$65^\circ S - 90^\circ S$	< 90°
Southern polar spring night	Oct	$65^\circ S - 90^\circ S$	> 98°
Southern polar summer day	Jan, Feb	$65^{\circ}S - 90^{\circ}S$	< 90°
Southern polar summer night	Jan, Feb	$65^\circ S - 90^\circ S$	> 98°
Southern polar autumn day	Apr	$65^\circ S - 90^\circ S$	< 90°
Southern polar autumn night	Apr	$65^\circ S - 90^\circ S$	> 98°

Table S1. Labels and definitions of the representative atmospheric conditions which were used to calculate the error budget for MA data.

Table S2. Ozone error budget for Northern polar winter day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	3.9	<0.1	4.0	2.0	1.0	1.5	5.1	1.5	1.9	5.7	4.8
30	6.8	< 0.1	0.2	2.2	0.3	1.5	8.2	0.7	1.0	1.6	8.6
40	6.1	<0.1	< 0.1	2.3	0.4	1.2	7.4	0.7	2.0	2.4	7.8
50	3.4	0.3	< 0.1	2.1	0.7	1.8	7.2	1.4	3.4	4.2	7.5
60	0.8	1.1	< 0.1	1.0	2.2	2.1	6.9	3.3	7.6	8.8	7.1
70	0.2	2.5	< 0.1	0.9	2.0	1.5	6.6	2.2	16	17	6.9
80	0.3	6.7	< 0.1	0.9	3.7	1.9	4.2	< 0.1	17	18	5.9
90	1.2	6.0	< 0.1	1.3	7.4	1.3	3.5	0.5	24	26	5.5
96	0.7	6.6	< 0.1	1.9	11	1.2	3.8	0.6	37	39	6.1
100	1.3	8.1	<0.1	1.4	12	1.5	3.2	0.8	41	43	8.9

Figure S1. V8R_O3_561 Northern polar winter day.

Table S3. Ozone error budget for Northern polar winter night, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	3.6	<0.1	2.9	2.1	0.9	1.6	6.2	1.7	2.2	4.9	6.2
30	5.6	<0.1	0.2	2.7	0.3	1.5	9.0	0.9	1.3	2.5	9.3
40	5.0	<0.1	< 0.1	2.8	0.4	1.1	7.9	0.8	2.0	3.4	8.0
50	2.3	0.6	0.1	2.2	0.9	1.9	8.0	1.3	3.6	6.1	7.2
60	1.5	1.5	< 0.1	1.8	1.8	1.9	3.6	2.6	6.1	7.1	4.3
70	3.4	6.3	< 0.1	1.2	3.9	2.8	6.1	5.8	7.1	13	5.5
80	1.0	9.4	< 0.1	1.0	3.2	2.5	4.1	0.5	11	15	5.4
90	7.3	6.2	< 0.1	1.3	2.5	1.4	3.2	1.2	13	14	3.4
96	7.3	5.1	< 0.1	3.0	4.1	0.9	3.2	1.5	18	19	4.5
100	5.7	5.3	<0.1	4.7	7.5	1.6	3.5	1.2	29	30	6.2

Figure S2. V8R_O3_561 Northern polar winter night.

Table S4. Ozone error budget for Northern polar spring day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	4.2	<0.1	1.5	2.2	1.2	2.7	4.6	1.8	2.4	3.8	5.6
30	4.8	<0.1	0.1	2.6	0.3	1.7	7.3	0.7	1.3	2.3	7.7
40	5.9	<0.1	< 0.1	2.6	0.4	1.4	6.5	0.7	1.6	2.0	7.1
50	2.1	<0.1	0.2	2.5	0.5	0.8	5.2	0.7	2.6	2.9	5.8
60	0.7	0.5	< 0.1	1.8	1.6	1.5	5.0	1.9	4.9	5.7	5.2
70	0.2	3.2	< 0.1	0.5	2.5	1.1	4.9	1.8	11	12	5.5
80	0.1	5.4	< 0.1	0.9	2.3	1.0	3.7	0.3	15	16	6.0
90	0.6	4.6	< 0.1	2.7	6.0	0.9	3.2	1.6	22	23	6.1
96	0.3	6.7	< 0.1	4.1	10	0.8	3.8	1.9	35	37	7.2
100	0.6	6.7	<0.1	3.8	13	0.5	3.6	1.4	42	44	8.5

Figure S3. V8R_O3_561 Northern polar spring day.

Table S5. Ozone error budget for Northern polar spring night, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	4.0	<0.1	1.4	1.9	1.2	2.5	4.7	1.7	2.3	3.8	5.4
30	5.9	<0.1	0.1	2.5	0.3	1.6	7.1	0.7	1.2	1.8	7.6
40	6.4	<0.1	< 0.1	2.6	0.3	1.5	7.2	0.8	1.6	2.1	7.8
50	2.4	< 0.1	0.2	2.4	0.6	1.3	5.0	0.7	2.7	2.9	5.6
60	1.3	0.6	< 0.1	1.7	1.4	1.6	3.7	2.1	4.1	5.0	4.3
70	1.2	2.5	< 0.1	1.4	3.0	1.3	4.7	4.0	8.1	10	5.2
80	0.2	3.9	< 0.1	0.7	1.2	0.8	3.1	< 0.1	14	14	4.8
90	6.5	3.6	< 0.1	1.4	1.9	1.5	2.8	2.8	11	11	4.7
96	8.6	5.1	< 0.1	2.3	3.0	1.3	2.7	3.5	13	14	5.7
100	5.1	4.8	< 0.1	4.0	5.8	1.4	2.8	2.9	23	24	6.4

Figure S4. V8R_O3_561 Northern polar spring night.

Table S6. Ozone error budget for Northern polar summer day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.3	<0.1	1.8	1.5	1.0	2.4	4.0	1.4	2.2	3.5	4.8
30	4.6	<0.1	0.1	2.4	0.3	1.8	5.9	0.4	1.0	1.5	6.5
40	6.0	<0.1	< 0.1	1.7	0.3	1.7	5.8	0.6	1.4	1.6	6.3
50	2.4	<0.1	0.2	2.5	0.5	1.6	4.5	0.6	2.3	2.5	5.4
60	1.1	0.2	< 0.1	1.3	1.2	1.5	4.6	1.7	3.3	4.1	4.9
70	0.4	4.1	< 0.1	1.6	2.3	0.9	6.0	2.1	8.6	9.3	7.3
80	0.1	7.6	< 0.1	0.8	2.4	0.7	4.0	1.4	15	16	7.9
90	0.9	6.8	< 0.1	1.3	4.8	1.2	3.2	4.6	17	19	6.3
96	0.5	11	< 0.1	2.8	8.3	1.5	4.2	4.6	31	33	10

Figure S5. V8R_O3_561 Northern polar summer day.

Table S7. Ozone error budget for Northern polar summer night, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.4	<0.1	1.3	1.3	1.0	2.1	3.9	1.4	2.0	3.3	4.4
30	5.2	<0.1	0.1	2.4	0.3	1.7	6.6	0.5	1.0	2.2	7.0
40	6.4	<0.1	< 0.1	1.9	0.3	1.6	6.7	0.7	1.5	1.7	7.1
50	2.7	<0.1	0.1	2.4	0.5	1.5	4.9	0.6	2.6	2.8	5.6
60	1.4	0.3	< 0.1	1.3	1.5	1.5	4.2	2.1	4.0	4.8	4.5
70	1.1	3.8	< 0.1	1.9	3.1	0.9	4.4	3.4	8.8	10	6.0
80	0.1	5.1	< 0.1	1.1	1.8	0.7	3.4	1.2	15	15	6.0
90	3.7	4.4	< 0.1	1.7	2.0	1.2	2.8	3.1	12	13	5.3
96	4.0	5.2	< 0.1	2.9	5.3	1.1	3.0	2.6	22	23	6.3
100	2.0	5.4	< 0.1	4.2	8.2	1.3	3.4	2.0	32	33	7.0

Figure S6. V8R_O3_561 Northern polar summer night.

Table S8. Ozone error budget for Northern polar autumn day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.6	<0.1	3.6	2.3	1.1	2.2	4.2	1.5	2.0	4.9	4.9
30	4.7	<0.1	0.2	2.5	0.3	1.6	7.7	0.7	1.3	2.8	7.9
40	5.9	<0.1	< 0.1	2.7	0.4	1.4	7.2	0.8	1.8	2.6	7.6
50	2.4	<0.1	0.1	2.5	0.6	0.7	6.6	0.8	2.9	3.2	7.0
60	0.7	0.6	< 0.1	1.5	1.9	1.6	5.5	2.2	5.9	6.8	5.9
70	0.2	2.2	< 0.1	0.5	2.4	1.3	5.6	2.0	12	13	5.8
80	0.1	4.1	< 0.1	1.1	3.3	1.0	3.7	0.1	17	17	5.5
90	0.8	6.2	< 0.1	2.2	7.2	0.9	3.6	1.0	24	25	6.7
96	0.5	8.6	< 0.1	3.4	11	0.8	3.8	1.4	36	38	7.9

Figure S7. V8R_O3_561 Northern polar autumn day.

Table S9. Ozone error budget for Northern polar autumn night, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.6	<0.1	3.3	2.7	1.0	2.0	5.1	1.5	2.0	4.6	5.9
30	3.6	<0.1	0.3	2.7	0.3	1.6	8.3	0.7	1.4	2.3	8.7
40	4.7	<0.1	< 0.1	2.9	0.4	1.3	7.1	0.7	2.0	3.3	7.4
50	2.4	0.2	0.2	2.4	0.7	1.1	6.3	0.8	3.2	3.4	6.8
60	1.3	1.1	< 0.1	1.6	1.7	1.9	3.5	2.2	4.8	5.6	4.3
70	1.5	2.7	< 0.1	1.1	4.0	2.3	3.9	4.9	9.0	12	3.8
80	0.8	3.8	< 0.1	1.1	1.3	1.2	4.1	1.2	13	13	4.8
90	12	7.0	< 0.1	1.2	1.6	1.5	3.0	1.3	11	11	7.3
96	12	7.0	< 0.1	3.0	2.8	1.3	2.8	2.4	14	14	7.5
100	8.5	6.3	<0.1	4.5	5.6	1.2	2.8	2.3	23	24	7.5

Figure S8. V8R_O3_561 Northern polar autumn night.

										U	
syst	random	noise	T+LOS	spectro	gain	offset	ILS	interf	NLTE	mean O3 vmr	altitude
(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(ppmv)	(km)
4.4	3.9	1.7	1.2	5.3	0.6	0.7	0.6	1.2	< 0.1	3.1	20
8.1	1.6	0.9	0.7	7.6	1.5	0.3	2.7	0.2	<0.1	6.7	30
7.5	1.9	1.6	0.7	7.0	1.4	0.4	2.5	< 0.1	< 0.1	7.4	40
6.9	3.2	2.4	1.3	5.9	3.2	0.7	2.2	< 0.1	0.3	2.6	50
5.7	6.1	5.2	2.4	5.4	1.8	1.7	1.4	< 0.1	0.6	0.8	60
6.0	12	11	2.9	5.5	1.1	2.4	0.5	< 0.1	3.0	0.3	70
5.1	18	17	<0.1	3.8	1.1	3.2	1.3	< 0.1	3.6	0.1	80
5.7	24	23	0.7	3.9	0.9	6.7	2.2	< 0.1	5.0	0.9	90
6.7	37	36	1.0	4.3	1.0	11	3.2	< 0.1	6.2	0.6	96
6.5	37	36	0.9	3.6	0.9	10	2.2	< 0.1	4.8	0.8	100

Table S10. Ozone error budget for Northern midlatitude winter day, MA. All uncertainties are 1σ .

Figure S9. V8R_O3_561 Northern midlatitude winter day.

altitude	$mean \ O_3 \ vmr$	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	3.6	<0.1	1.1	0.8	0.7	1.2	5.2	1.1	1.8	3.7	4.7
30	6.8	< 0.1	0.3	3.0	0.3	1.6	8.1	0.7	1.1	1.7	8.8
40	7.4	<0.1	0.1	2.4	0.3	1.4	7.6	0.7	1.5	1.8	8.1
50	2.7	0.3	< 0.1	2.3	0.7	2.2	5.7	1.1	2.7	3.5	6.3
60	1.4	0.6	< 0.1	1.7	1.6	1.4	4.2	2.3	6.3	7.1	4.5
70	1.1	1.4	< 0.1	1.0	2.4	2.0	4.9	4.2	8.0	10	5.1
80	0.4	2.7	< 0.1	1.3	2.0	2.4	3.7	0.3	14	14	3.6
90	5.3	4.0	< 0.1	1.0	2.1	1.4	3.0	1.5	12	13	4.8
96	9.0	5.4	< 0.1	1.4	3.0	1.1	2.8	1.5	14	15	5.2
100	7.4	4.8	< 0.1	2.7	5.6	0.8	2.8	0.9	22	23	5.3

Table S11. Ozone error budget for Northern midlatitude winter night, MA. All uncertainties are 1σ .

Figure S10. V8R_O3_561 Northern midlatitude winter night.

Table S12. Ozone error budget for Northern midlatitude spring day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.9	<0.1	1.9	0.8	1.0	1.9	4.0	1.4	1.9	3.7	4.1
30	8.1	<0.1	0.2	2.4	0.3	1.7	6.7	0.6	1.1	1.7	7.3
40	6.8	<0.1	0.2	2.1	0.3	1.6	7.1	0.7	1.4	1.8	7.6
50	2.5	<0.1	0.1	2.4	0.4	0.5	5.4	0.6	2.3	2.6	5.9
60	1.0	0.2	< 0.1	2.0	1.7	1.1	5.3	2.2	6.1	6.8	5.7
70	0.2	4.1	< 0.1	0.5	1.7	1.1	5.3	2.3	11	11	6.5
80	0.2	5.9	< 0.1	0.7	2.2	0.9	3.6	0.2	15	15	6.8
90	0.7	5.6	< 0.1	2.7	6.4	1.0	3.3	1.5	23	24	6.3
96	0.3	6.1	< 0.1	3.9	10	0.7	3.2	1.9	36	37	7.3

Figure S11. V8R_O3_561 Northern midlatitude spring day.

altitude	$mean \ O_3 \ vmr$	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.9	<0.1	1.8	0.8	1.0	1.9	4.1	1.4	1.9	3.7	4.2
30	7.7	< 0.1	0.2	2.4	0.3	1.7	6.9	0.7	1.1	1.6	7.5
40	7.0	< 0.1	0.2	2.3	0.3	1.5	7.4	0.8	1.5	1.9	7.8
50	2.7	<0.1	0.1	2.4	0.5	1.0	5.1	0.6	2.5	2.7	5.7
60	1.4	0.4	< 0.1	1.7	1.6	1.4	3.9	2.2	4.8	5.6	4.4
70	1.1	2.3	< 0.1	1.6	2.8	1.6	4.2	4.1	7.8	10	4.9
80	0.2	4.6	<0.1	0.8	1.3	0.9	3.2	< 0.1	14	15	5.3
90	7.2	4.4	<0.1	1.0	2.2	1.6	2.9	3.4	11	12	5.1
96	12	6.9	<0.1	1.4	3.0	1.2	2.7	3.8	12	14	6.9

Table S13. Ozone error budget for Northern midlatitude spring night, MA. All uncertainties are 1σ .

Figure S12. V8R_O3_561 Northern midlatitude spring night.

100

7.3

6.7

< 0.1

3.1

5.4

1.2

2.8

2.7

21

22

7.1

Table S14. Ozone error budget for Northern midlatitude summer day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.2	< 0.1	1.6	0.5	0.9	1.5	4.0	1.3	1.8	3.2	4.1
30	7.2	< 0.1	0.2	2.4	0.3	1.8	6.7	0.5	1.0	1.5	7.3
40	6.6	< 0.1	0.2	1.8	0.3	1.7	6.9	0.7	1.4	1.7	7.3
50	2.6	<0.1	0.1	2.5	0.4	0.9	5.0	0.6	2.3	2.5	5.6
60	1.1	0.2	< 0.1	1.6	1.5	1.0	5.3	2.1	5.1	5.8	5.5
70	0.3	5.8	< 0.1	1.0	1.7	0.7	6.9	2.1	11	11	8.9
80	0.1	7.5	< 0.1	0.6	2.3	1.2	3.9	1.5	15	16	7.5
90	1.1	10	< 0.1	2.5	5.3	0.9	3.4	3.0	20	22	8.6
96	0.7	14	0.1	4.3	9.1	1.7	4.0	2.6	34	36	12

Figure S13. V8R_O3_561 Northern midlatitude summer day.

Table S15. Ozone error budget for Northern midlatitude summer night, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.2	<0.1	1.7	0.6	0.9	1.8	3.9	1.3	1.8	3.2	4.2
30	7.0	<0.1	0.2	2.2	0.3	1.8	6.3	0.5	1.0	1.5	6.9
40	6.5	<0.1	0.2	1.7	0.3	1.7	6.6	0.7	1.4	1.6	7.0
50	2.8	< 0.1	0.1	2.4	0.4	1.3	4.5	0.5	2.4	2.5	5.3
60	1.5	0.3	< 0.1	1.2	1.4	1.0	4.5	2.0	4.2	4.9	4.7
70	1.1	5.1	< 0.1	2.2	2.7	1.2	4.8	3.6	8.9	10	7.0
80	0.2	8.4	< 0.1	1.0	1.3	2.2	3.3	1.8	14	15	7.7
90	6.7	11	< 0.1	1.4	2.8	1.2	3.0	4.4	11	14	10
96	6.0	11	< 0.1	2.6	4.9	1.3	3.5	2.7	20	21	10
100	2.1	11	< 0.1	4.2	7.4	1.3	3.7	2.0	29	31	10

Figure S14. V8R_O3_561 Northern midlatitude summer night.

Table S16. Ozone error budget for Northern midlatitude autumn day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.2	< 0.1	1.4	1.2	1.0	1.6	3.9	1.3	1.7	3.1	4.1
30	6.7	< 0.1	0.2	2.4	0.3	1.7	7.1	0.7	1.1	1.9	7.6
40	7.2	< 0.1	0.1	2.2	0.3	1.5	7.3	0.8	1.6	1.9	7.7
50	2.6	<0.1	0.1	2.4	0.5	0.6	6.0	0.7	2.6	2.8	6.5
60	0.8	0.4	< 0.1	1.6	1.8	1.4	5.8	2.3	6.3	7.1	6.0
70	0.3	3.5	< 0.1	0.3	2.0	1.3	4.8	2.2	11	12	5.6
80	0.1	5.2	< 0.1	0.8	2.9	1.2	3.7	0.1	16	17	6.1
90	0.9	6.7	< 0.1	2.2	6.3	1.1	3.6	1.0	22	24	6.7
96	0.5	8.0	<0.1	3.1	10	0.6	3.4	1.5	35	37	8.1

Figure S15. V8R_O3_561 Northern midlatitude autumn day.

altitude	mean O ₃ vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.3	<0.1	1.5	1.1	1.0	1.6	4.3	1.3	1.7	3.4	4.2
30	6.8	< 0.1	0.2	2.4	0.3	1.7	7.4	0.7	1.1	1.8	7.9
40	7.2	<0.1	0.1	2.3	0.3	1.5	7.4	0.7	1.6	2.0	7.8
50	2.9	<0.1	0.1	2.4	0.5	0.9	6.0	0.7	2.8	3.1	6.5
60	1.4	0.4	< 0.1	1.4	1.8	1.6	4.3	2.5	5.5	6.4	4.6
70	1.0	2.3	< 0.1	1.0	3.0	1.8	4.6	4.5	9.4	11	4.8
80	0.4	4.1	< 0.1	0.6	1.4	1.6	3.6	0.5	14	15	4.9
90	11	6.3	< 0.1	0.9	2.2	1.6	2.9	1.6	11	12	6.6
96	12	7.3	< 0.1	1.7	2.7	1.1	2.7	2.2	13	14	7.6
100	8.7	7.1	< 0.1	2.9	5.1	0.9	2.7	2.1	21	22	7.3

Table S17. Ozone error budget for Northern midlatitude autumn night, MA. All uncertainties are 1σ .

Figure S16. V8R_O3_561 Northern midlatitude autumn night.

Table S18. Ozone error budget for Tropics day, MA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	1.0	<0.1	1.9	1.8	1.1	0.4	9.1	1.9	3.6	4.8	9.2
30	11	<0.1	0.1	2.3	0.3	1.8	6.8	0.7	1.0	1.4	7.4
40	6.6	<0.1	0.2	2.0	0.3	1.6	6.9	0.7	1.3	1.7	7.3
50	2.6	<0.1	0.1	2.4	0.4	0.5	5.2	0.6	2.2	2.4	5.8
60	1.1	0.2	< 0.1	1.8	1.6	0.8	5.6	2.2	6.3	7.0	5.8
70	0.2	5.1	< 0.1	0.4	1.2	0.9	6.4	2.5	12	12	8.1
80	0.2	6.1	< 0.1	0.6	2.3	1.2	3.4	0.1	16	16	6.8
90	1.0	6.7	<0.1	2.2	4.8	1.0	3.3	1.3	19	20	7.0
96	0.7	11	< 0.1	3.6	9.2	0.9	3.9	1.7	33	35	9.1
100	0.7	10	< 0.1	3.5	10	0.7	3.4	1.6	37	38	10

Figure S17. V8R_O3_561 Tropics day.

Table S19. Ozone error budget for Tropics night, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	1.0	<0.1	1.7	1.7	1.0	0.4	8.7	1.8	3.6	4.7	8.8
30	11	< 0.1	0.1	2.2	0.3	1.8	6.7	0.7	0.9	1.3	7.3
40	6.7	<0.1	0.2	2.0	0.3	1.6	7.0	0.7	1.4	1.8	7.4
50	2.8	<0.1	0.1	2.4	0.4	0.9	5.0	0.6	2.4	2.6	5.5
60	1.5	0.2	< 0.1	1.6	1.6	1.0	4.3	2.2	5.3	6.0	4.6
70	1.1	5.2	< 0.1	1.6	2.4	1.3	4.8	5.0	9.3	11	7.0
80	0.5	5.9	<0.1	0.6	1.3	2.1	3.6	< 0.1	13	14	6.8
90	8.9	7.5	<0.1	0.9	2.6	1.6	2.8	2.1	11	12	7.9
96	14	11	<0.1	0.8	2.8	1.1	2.6	2.7	12	13	11
100	11	10	< 0.1	1.9	4.3	0.7	2.8	2.2	17	18	9.3

Figure S18. V8R_O3_561 Tropics night.

Table S20. Ozone error budget for Southern midlatitude winter day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	3.2	<0.1	1.4	1.8	0.9	1.6	4.5	1.4	1.5	3.6	4.5
30	7.3	<0.1	0.2	2.0	0.3	1.8	7.4	0.7	1.0	2.2	7.7
40	7.1	<0.1	0.1	2.6	0.3	1.3	7.6	0.8	1.6	2.3	8.0
50	2.6	<0.1	0.1	2.3	0.7	1.3	5.9	0.8	3.1	3.6	6.3
60	0.9	0.9	< 0.1	1.1	1.6	2.0	5.4	2.3	5.4	6.4	5.6
70	0.3	5.5	< 0.1	0.4	2.1	1.1	5.5	2.8	13	14	7.2
80	0.1	4.6	< 0.1	1.1	3.7	1.2	3.7	0.2	18	18	5.9
90	0.7	6.0	< 0.1	2.3	7.6	1.1	3.4	1.2	26	27	6.4
96	0.5	8.5	<0.1	3.0	10	0.8	3.5	1.6	36	38	8.0

Figure S19. V8R_O3_561 Southern midlatitude winter day.

Table S21.	Ozone error budget f	for Southern midlatitude	winter night, MA.	All uncertainties are 1σ .
------------	----------------------	--------------------------	-------------------	-----------------------------------

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	3.3	<0.1	1.3	1.6	1.0	1.8	3.9	1.6	1.6	3.3	4.2
30	6.4	< 0.1	0.2	2.2	0.3	1.6	7.5	0.8	1.1	2.3	7.7
40	6.8	< 0.1	0.1	2.9	0.4	1.3	7.9	0.9	1.7	2.7	8.3
50	2.3	0.1	0.2	2.5	0.7	1.5	5.8	0.8	3.2	3.9	6.1
60	1.3	0.7	< 0.1	1.2	1.5	2.0	3.8	2.2	4.9	5.8	4.3
70	1.0	4.2	< 0.1	0.7	3.1	1.7	4.9	4.4	10	12	5.6
80	0.4	3.3	< 0.1	0.5	1.3	1.7	3.3	< 0.1	14	14	4.3
90	5.5	4.5	< 0.1	1.5	1.3	1.3	2.9	2.0	12	12	5.3
96	6.6	5.5	< 0.1	2.7	3.7	1.1	2.7	2.0	16	17	5.9
100	4.1	5.3	< 0.1	3.9	6.9	1.0	2.8	1.4	28	29	6.4

Figure S20. V8R_O3_561 Southern midlatitude winter night.

Table S22. Ozone error budget for Southern midlatitude spring day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	3.3	<0.1	1.7	2.3	1.0	2.2	4.0	1.4	1.6	3.5	4.6
30	7.9	<0.1	0.2	2.1	0.2	1.8	7.2	0.6	0.9	1.5	7.6
40	6.8	<0.1	0.1	2.3	0.3	1.5	7.1	0.7	1.5	2.3	7.4
50	2.6	<0.1	0.2	2.4	0.7	1.6	5.9	0.8	3.0	3.4	6.5
60	0.9	0.4	< 0.1	1.3	1.4	2.1	5.2	2.1	4.7	5.4	5.6
70	0.3	4.2	< 0.1	0.4	2.2	1.1	5.2	2.2	12	13	6.5
80	0.2	5.8	< 0.1	0.8	2.3	1.1	3.7	0.2	15	15	6.8
90	0.7	6.1	< 0.1	2.4	6.3	1.1	3.5	1.4	23	24	6.5
96	0.4	7.8	<0.1	3.5	10	0.8	3.6	1.8	36	38	7.5

Figure S21. V8R_O3_561 Southern midlatitude spring day.

Table S23.	Ozone error budget for Sout	ern midlatitude spring night	, MA. All uncertainties are 1σ .
------------	-----------------------------	------------------------------	---

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	3.2	<0.1	2.1	1.5	1.2	1.9	4.3	1.6	1.8	3.8	4.6
30	8.2	<0.1	0.2	2.2	0.3	1.8	7.2	0.6	0.9	1.5	7.7
40	7.4	<0.1	0.1	2.1	0.3	1.6	7.4	0.7	1.5	2.2	7.7
50	2.8	< 0.1	0.1	2.5	0.6	1.5	5.5	0.7	2.8	3.1	6.1
60	1.4	0.4	< 0.1	1.2	1.6	1.7	4.1	2.2	4.5	5.4	4.5
70	1.2	2.8	< 0.1	1.3	3.4	1.7	4.4	4.4	9.3	11	5.1
80	0.2	5.0	< 0.1	0.8	1.4	1.5	3.6	0.2	14	15	5.4
90	8.3	5.6	< 0.1	1.3	1.2	1.6	3.0	2.8	10	11	6.1
96	13	7.9	< 0.1	1.8	2.2	1.2	2.7	3.4	11	13	7.7
100	9.3	6.5	< 0.1	2.9	4.9	0.9	2.7	2.9	20	21	6.9

Figure S22. V8R_O3_561 Southern midlatitude spring night.

Table S24. Ozone erro	or budget for Southern	midlatitude summer day	y, MA. All uncertainties are 1σ .
-----------------------	------------------------	------------------------	--

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.1	<0.1	1.6	0.6	1.0	1.6	4.5	1.2	1.9	3.3	4.5
30	7.2	<0.1	0.2	2.8	0.3	1.7	6.6	0.6	1.1	1.6	7.4
40	6.2	<0.1	0.2	1.8	0.2	1.6	6.5	0.6	1.3	1.5	6.9
50	2.6	<0.1	0.1	2.4	0.4	0.9	5.1	0.6	2.1	2.5	5.7
60	1.1	0.2	< 0.1	1.6	1.5	1.2	5.5	2.1	5.1	6.0	5.6
70	0.3	5.1	< 0.1	0.8	2.5	0.9	6.8	2.2	11	12	8.3
80	0.1	6.6	< 0.1	0.6	2.3	0.8	3.6	0.9	16	16	7.3
90	1.1	7.9	< 0.1	2.3	4.8	0.9	3.3	1.7	18	19	8.2
96	0.7	11	< 0.1	3.6	9.4	0.9	3.7	1.9	34	36	10
100	0.5	12	<0.1	3.5	11	0.6	3.3	1.8	37	39	13

Figure S23. V8R_O3_561 Southern midlatitude summer day.

Fable S25. O	Zone error budget for	Southern midlatitude	summer night, MA.	All uncertainties are 1σ .
---------------------	-----------------------	----------------------	-------------------	-----------------------------------

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.1	<0.1	1.5	0.6	0.9	1.3	4.4	1.2	1.7	3.1	4.4
30	7.1	<0.1	0.2	2.7	0.3	1.8	6.7	0.5	1.0	1.6	7.3
40	6.1	<0.1	0.2	1.7	0.3	1.7	6.5	0.6	1.3	1.6	6.9
50	2.7	<0.1	0.1	2.4	0.5	1.4	4.6	0.6	2.3	2.6	5.3
60	1.4	0.2	< 0.1	1.4	1.5	1.8	4.5	2.0	4.0	5.0	4.8
70	1.2	4.2	< 0.1	2.2	3.5	1.6	3.9	4.1	8.6	10	5.9
80	0.2	6.3	< 0.1	1.0	1.5	1.3	3.3	1.1	14	15	6.8
90	3.9	7.8	< 0.1	2.3	1.5	1.5	3.3	2.8	11	13	7.2
96	7.0	9.1	< 0.1	1.7	3.0	0.9	2.9	2.0	14	15	8.9
100	4.6	8.4	<0.1	3.3	6.1	0.7	3.2	1.6	23	25	8.3

Southern midlatitude summer night MA

Figure S24. V8R_O3_561 Southern midlatitude summer night.

Table S26. Ozone error budget for Southern midlatitude autumn day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.1	<0.1	1.1	0.9	0.8	1.0	4.6	1.2	1.4	3.0	4.5
30	6.6	<0.1	0.2	2.2	0.3	1.8	7.5	0.7	1.0	1.7	7.9
40	7.0	<0.1	0.1	2.4	0.3	1.4	7.3	0.7	1.6	1.9	7.8
50	2.8	<0.1	0.1	2.4	0.6	1.3	6.3	0.8	3.1	3.3	6.8
60	0.9	0.7	< 0.1	1.1	1.7	1.7	6.0	2.5	5.7	6.6	6.2
70	0.3	2.9	< 0.1	0.3	2.4	1.4	5.1	2.3	12	13	5.8
80	0.1	4.8	< 0.1	0.9	3.1	1.1	3.6	< 0.1	17	17	5.9
90	0.9	6.4	< 0.1	2.3	6.8	1.1	3.4	1.0	24	25	6.9
96	0.4	7.4	<0.1	3.2	10	0.8	3.3	1.4	36	37	8.0

Figure S25. V8R_O3_561 Southern midlatitude autumn day.

Table S27. Ozone error budget for Southern midlatitude autumn night, MA. All u	incertainties are 1σ .
--	-------------------------------

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.1	<0.1	1.2	1.0	0.8	1.1	4.5	1.3	1.5	3.0	4.4
30	6.5	<0.1	0.2	2.2	0.3	1.7	7.1	0.7	1.0	1.6	7.6
40	7.0	<0.1	0.1	2.3	0.3	1.4	7.0	0.7	1.6	1.9	7.5
50	2.9	<0.1	0.1	2.3	0.6	1.4	5.8	0.8	3.1	3.3	6.4
60	1.4	0.4	< 0.1	1.1	1.6	1.8	4.3	2.6	5.3	6.3	4.6
70	0.9	1.8	< 0.1	0.6	3.2	1.9	5.1	4.3	10	11	5.3
80	0.2	3.4	< 0.1	0.6	1.4	0.9	3.1	0.6	15	16	4.5
90	10	6.9	< 0.1	0.9	1.1	1.6	3.0	1.8	10	11	7.0
96	11	7.7	< 0.1	2.1	2.6	1.1	2.7	2.1	14	14	7.6
100	7.4	6.5	< 0.1	3.4	5.7	0.9	2.8	1.9	23	24	6.7

Figure S26. V8R_O3_561 Southern midlatitude autumn night.

Table S28. Ozone error budget for Southern polar winter day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.4	<0.1	1.8	2.5	0.8	1.8	6.9	1.8	1.9	5.0	6.6
30	5.0	<0.1	0.1	2.7	0.4	1.6	6.9	0.8	1.4	1.9	7.5
40	4.5	<0.1	< 0.1	3.0	0.3	0.9	6.3	0.7	1.7	2.5	6.8
50	1.7	0.1	0.2	2.1	0.8	1.4	5.1	0.8	3.5	4.0	5.5
60	0.6	0.8	< 0.1	1.9	1.4	1.8	4.9	1.9	5.7	6.4	5.3
70	0.2	7.1	< 0.1	0.9	1.3	0.9	5.6	2.8	13	14	8.0
80	0.1	4.1	< 0.1	1.0	3.3	1.3	3.4	0.2	17	18	5.3
90	0.7	5.8	< 0.1	2.4	6.9	1.2	3.3	1.0	24	25	6.2
96	0.4	7.6	< 0.1	3.3	10	1.0	3.3	1.2	36	38	7.8

Figure S27. V8R_O3_561 Southern polar winter day.

Table S29. Ozone error budget for Southern polar winter night, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.5	<0.1	1.2	1.9	0.9	2.0	4.7	1.7	1.9	4.1	4.7
30	5.3	< 0.1	0.2	2.7	0.4	1.5	6.8	0.8	1.3	1.9	7.4
40	4.4	<0.1	< 0.1	3.1	0.3	0.9	6.5	0.7	1.6	2.7	7.0
50	1.8	0.2	0.2	2.2	0.8	1.9	4.8	0.8	3.5	4.0	5.4
60	1.3	0.8	< 0.1	1.9	1.4	2.3	3.6	1.8	5.3	6.0	4.5
70	1.3	4.7	< 0.1	1.1	2.4	1.7	3.7	5.9	8.8	11	5.4
80	0.6	4.9	< 0.1	0.6	1.0	1.9	3.3	1.2	12	13	5.2
90	7.2	6.0	< 0.1	1.9	1.9	1.3	2.9	1.0	11	11	6.5
96	6.3	5.6	< 0.1	3.6	3.6	1.2	2.7	1.8	15	16	6.4
100	3.6	5.4	<0.1	5.3	6.7	1.2	2.7	2.2	27	28	7.2

Figure S28. V8R_O3_561 Southern polar winter night.

Table S30. Ozone error budget for Southern polar spring day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	1.5	<0.1	1.9	3.8	1.3	2.8	6.9	1.6	2.9	7.8	5.0
30	6.8	<0.1	0.1	2.6	0.2	1.7	6.2	0.4	0.8	2.0	6.7
40	4.9	<0.1	< 0.1	2.1	0.3	1.5	5.9	0.5	1.4	2.8	6.0
50	2.6	<0.1	0.2	2.2	0.7	1.8	5.3	0.8	3.0	3.4	5.9
60	0.9	0.3	< 0.1	1.6	1.2	2.5	5.1	1.9	4.7	5.4	5.8
70	0.3	5.0	< 0.1	0.6	1.8	1.1	5.4	2.1	11	11	7.2
80	0.1	6.2	< 0.1	0.7	2.0	1.2	3.6	0.5	15	16	6.8
90	0.9	6.5	< 0.1	2.2	4.6	1.2	3.1	1.7	18	19	7.0
96	0.6	11	< 0.1	3.5	8.8	0.8	3.4	2.1	33	35	9.2
100	0.7	12	<0.1	3.1	10	0.5	3.0	2.2	38	39	13

Figure S29. V8R_O3_561 Southern polar spring day.

Table S31. Ozone error budget for Southern polar spring night, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.0	<0.1	1.7	2.5	1.4	2.4	5.9	1.6	2.3	6.1	4.7
30	7.3	<0.1	0.1	2.8	0.2	1.8	6.8	0.5	0.8	2.0	7.4
40	5.4	<0.1	< 0.1	2.0	0.3	1.6	6.4	0.6	1.5	2.6	6.5
50	2.7	<0.1	0.2	2.4	0.7	1.9	5.2	0.8	3.0	3.4	5.9
60	1.3	0.3	< 0.1	1.5	1.4	2.3	3.9	2.1	4.7	5.4	4.7
70	1.2	4.1	< 0.1	1.7	2.8	1.6	4.0	4.6	9.3	11	5.8
80	0.2	4.8	< 0.1	0.7	1.2	1.5	3.0	0.2	14	14	5.6
90	7.1	5.8	< 0.1	1.2	1.8	1.6	2.9	3.2	10	11	5.8
96	9.5	6.7	< 0.1	1.6	2.8	1.1	2.8	3.7	12	13	6.6
100	5.2	6.4	<0.1	3.3	5.7	0.9	2.9	3.3	23	24	6.7

Figure S30. V8R_O3_561 Southern polar spring night.

Table S32. Ozone error budget for Southern polar summer day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.9	<0.1	1.2	1.7	0.9	2.1	4.0	1.3	1.6	2.9	4.7
30	4.4	<0.1	0.1	2.3	0.2	1.8	6.0	0.4	0.9	1.7	6.5
40	5.3	<0.1	< 0.1	1.8	0.3	1.7	5.5	0.5	1.2	1.5	6.0
50	2.3	<0.1	0.2	2.3	0.6	2.1	4.5	0.7	2.5	2.8	5.4
60	1.0	0.2	< 0.1	1.7	1.1	3.0	4.1	1.6	3.5	4.2	5.3
70	0.3	3.3	< 0.1	1.4	2.6	1.3	5.7	2.0	9.2	10	6.6
80	0.1	7.5	< 0.1	0.7	2.5	0.6	4.4	1.1	16	16	8.1
90	0.8	6.0	< 0.1	1.9	4.6	1.4	3.0	3.6	16	18	5.9
96	0.4	9.0	< 0.1	3.6	8.3	1.1	3.6	3.4	31	33	8.4

Figure S31. V8R_O3_561 Southern polar summer day.

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.7	<0.1	1.1	1.9	0.9	1.8	4.1	1.2	1.5	3.0	4.5
30	5.3	<0.1	0.2	2.3	0.3	1.7	6.4	0.5	1.0	1.5	6.9
40	5.8	< 0.1	< 0.1	2.0	0.3	1.6	6.3	0.6	1.4	1.6	6.8
50	2.6	< 0.1	0.2	2.4	0.7	2.0	4.9	0.7	2.8	3.1	5.7
60	1.4	0.2	< 0.1	1.5	1.3	2.2	4.0	1.9	4.2	4.9	4.7
70	1.1	3.4	< 0.1	1.5	3.0	1.6	3.9	3.8	8.4	10	5.4
80	0.1	5.7	< 0.1	1.0	1.7	1.1	3.3	1.1	15	15	6.5
90	3.7	7.1	< 0.1	2.1	1.9	1.3	3.3	2.7	12	13	6.6
96	5.6	7.8	< 0.1	2.2	4.2	1.0	3.0	2.1	17	18	7.7
100	2.7	7.5	< 0.1	3.8	7.6	1.1	3.3	1.5	29	30	7.7

Figure S32. V8R_O3_561 Southern polar summer night.

Table S34. Ozone error budget for Southern polar autumn day, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.9	<0.1	1.8	2.8	0.8	1.6	5.1	1.3	1.5	3.4	5.7
30	4.3	<0.1	0.2	2.5	0.3	1.7	8.1	0.7	1.3	2.6	8.4
40	5.6	<0.1	< 0.1	3.0	0.4	1.2	7.3	0.8	1.8	2.8	7.8
50	2.3	0.2	0.2	2.3	0.8	1.2	6.8	1.0	3.6	3.9	7.3
60	0.7	0.8	< 0.1	1.9	1.4	1.9	4.9	2.1	6.3	6.9	5.5
70	0.2	2.4	< 0.1	0.9	1.3	1.2	6.2	2.2	14	14	6.5
80	0.1	3.5	< 0.1	1.0	3.5	1.1	3.6	< 0.1	18	18	5.0
90	1.0	6.6	< 0.1	1.9	6.3	1.2	3.7	0.8	22	23	6.8
96	0.8	10	< 0.1	2.7	10	1.1	4.4	1.3	35	37	8.3
100	1.1	7.6	<0.1	2.0	11	1.1	3.6	1.4	38	40	8.5

Figure S33. V8R_O3_561 Southern polar autumn day.
Table S35. Ozone error budget for Southern polar autumn night, MA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
20	2.8	<0.1	2.2	3.0	0.8	2.0	5.3	1.4	1.6	4.2	5.8
30	4.0	<0.1	0.2	2.5	0.3	1.6	7.8	0.8	1.3	2.4	8.1
40	5.1	<0.1	< 0.1	2.9	0.4	1.2	7.0	0.7	1.9	3.2	7.3
50	2.3	0.3	0.2	2.4	0.9	1.5	6.5	1.0	3.6	3.9	7.0
60	1.3	1.3	< 0.1	2.1	1.6	2.4	3.6	2.1	6.2	6.9	4.7
70	1.8	2.4	< 0.1	1.0	2.9	2.4	3.7	5.2	7.8	10	3.8
80	0.7	2.5	< 0.1	0.9	1.2	1.6	3.5	1.1	14	14	4.0
90	11	5.4	< 0.1	1.0	2.1	1.4	2.9	0.7	12	12	5.9
96	12	6.8	< 0.1	2.8	3.0	1.1	2.8	1.7	14	15	7.3
100	8.1	5.7	<0.1	4.4	6.0	1.0	2.8	1.9	24	25	7.0

Figure S34. V8R_O3_561 Southern polar autumn night.

S2 Errors budget for O₃ UA data

In this section we provide the errors for the UA data.

representative atmosphere label	month(s) used	latitude range	solar zenith angle range
Northern polar winter day	Jan, Feb	$65^\circ N-90^\circ N$	< 90°
Northern polar winter night	Jan, Feb	$65^\circ N - 90^\circ N$	> 100°
Northern polar spring day	Apr	$65^\circ N-90^\circ N$	< 90°
Northern polar spring night	Apr	$65^\circ N - 90^\circ N$	> 100°
Northern polar summer day	Jul, Aug	$65^\circ N - 90^\circ N$	< 90°
Northern polar summer night	Jul, Aug	$65^\circ N-90^\circ N$	> 100°
Northern polar autumn day	Oct	$65^\circ N-90^\circ N$	< 90°
Northern polar autumn night	Oct	$65^\circ N-90^\circ N$	> 100°
Northern midlatitude winter day	Jan, Feb	$40^\circ N - 60^\circ N$	< 90°
Northern midlatitude winter night	Jan, Feb	$40^\circ N - 60^\circ N$	> 100°
Northern midlatitude spring day	Apr	$40^\circ N - 60^\circ N$	< 90°
Northern midlatitude spring night	Apr	$40^\circ N - 60^\circ N$	> 100°
Northern midlatitude summer day	Jul, Aug	$40^\circ N - 60^\circ N$	< 90°
Northern midlatitude summer night	Jul, Aug	$40^\circ N - 60^\circ N$	> 100°
Northern midlatitude autumn day	Oct	$40^\circ N - 60^\circ N$	< 90°
Northern midlatitude autumn night	Oct	$40^\circ N - 60^\circ N$	> 100°
Tropics day	Apr	$20^\circ S - 20^\circ N$	< 90°
Tropics night	Apr	$20^\circ S - 20^\circ N$	> 100°
Southern midlatitude winter day	Jul, Aug	$40^\circ S - 60^\circ S$	< 90°
Southern midlatitude winter night	Jul, Aug	$40^\circ S - 60^\circ S$	> 100°
Southern midlatitude spring day	Oct	$40^\circ S - 60^\circ S$	< 90°
Southern midlatitude spring night	Oct	$40^\circ S - 60^\circ S$	> 100°
Southern midlatitude summer day	Jan, Feb	$40^\circ S - 60^\circ S$	< 90°
Southern midlatitude summer night	Jan, Feb	$40^\circ S - 60^\circ S$	> 100°
Southern midlatitude autumn day	Apr	$40^\circ S - 60^\circ S$	< 90°
Southern midlatitude autumn night	Apr	$40^\circ S - 60^\circ S$	> 100°
Southern polar winter day	Jul, Aug	$65^\circ S - 90^\circ S$	< 90°
Southern polar winter night	Jul, Aug	$65^\circ S - 90^\circ S$	> 100°
Southern polar spring day	Oct	$65^\circ S - 90^\circ S$	< 90°
Southern polar spring night	Oct	$65^\circ S - 90^\circ S$	> 100°
Southern polar summer day	Jan, Feb	$65^{\circ}S - 90^{\circ}S$	< 90°
Southern polar summer night	Jan, Feb	$65^{\circ}S - 90^{\circ}S$	$> 100^{\circ}$
Southern polar autumn day	Apr	$65^\circ S - 90^\circ S$	< 90°
Southern polar autumn night	Apr	$65^{\circ}S - 90^{\circ}S$	> 100°

Table S36. Labels and definitions of the representative atmospheric conditions which were used to calculate the error budget for UA data.

Table S37. Ozone error budget for Northern polar winter day, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
40	6.4	<0.1	<0.1	2.4	0.5	0.9	6.4	0.8	2.4	2.7	6.8
50	3.0	0.2	0.1	2.0	0.8	1.1	7.8	1.4	3.7	4.3	8.0
60	0.7	1.2	< 0.1	1.4	2.3	2.0	6.3	3.0	7.9	8.9	6.6
70	0.2	2.9	< 0.1	1.5	2.0	1.6	6.8	2.0	16	17	7.3
80	0.3	6.5	< 0.1	0.9	3.7	1.7	4.2	< 0.1	17	18	6.4
90	1.2	6.0	< 0.1	1.5	6.9	1.3	3.8	0.5	25	26	5.9
96	0.8	6.3	<0.1	1.9	10	1.1	3.8	0.7	37	39	6.5

Figure S35. V8R_O3_661 Northern polar winter day.

Table S38. Ozone error budget for Northern polar winter night, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	1.6	0.4	0.2	1.7	0.9	1.1	5.8	0.9	3.7	4.4	5.9
60	1.5	1.7	< 0.1	2.2	1.6	1.8	3.4	2.2	4.8	5.9	4.3
70	2.3	2.3	< 0.1	0.9	3.7	2.1	4.5	5.1	7.9	11	4.2
80	1.0	2.8	< 0.1	0.9	2.2	2.0	4.2	0.6	12	12	3.6
90	9.2	5.3	< 0.1	1.2	1.7	1.4	3.5	1.4	11	12	4.8
96	7.4	4.2	< 0.1	3.2	3.5	0.9	3.3	1.7	17	18	5.8
100	4.9	4.7	<0.1	5.0	6.8	1.0	3.6	1.5	28	29	6.8

Figure S36. V8R_O3_661 Northern polar winter night.

Table S39. Ozone error budget for Northern polar spring day, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.3	<0.1	0.2	2.4	0.6	1.3	5.4	0.8	2.8	3.0	6.0
60	0.8	0.4	< 0.1	2.0	1.5	1.6	4.7	2.0	4.1	5.0	5.2
70	0.2	3.7	< 0.1	1.1	2.7	1.2	4.9	2.0	12	12	6.0
80	0.1	5.9	< 0.1	0.6	2.0	1.0	3.8	0.4	15	16	6.4
90	0.6	4.9	< 0.1	2.3	5.3	1.1	3.3	1.6	21	22	6.0
96	0.3	7.6	<0.1	3.9	8.7	0.9	3.7	2.2	35	36	7.3

Figure S37. V8R_O3_661 Northern polar spring day.

Table S40. Ozone error budget for Northern polar spring night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
40	6.7	<0.1	<0.1	2.9	0.4	1.1	6.7	0.7	1.7	1.9	7.3
50	2.5	< 0.1	0.2	2.2	0.6	1.5	5.2	0.8	2.8	3.2	5.7
60	1.4	0.5	< 0.1	2.2	1.5	1.7	3.5	2.2	4.2	5.2	4.3
70	1.2	2.0	< 0.1	1.0	3.3	1.7	4.2	4.0	8.5	10	4.5
80	0.3	4.2	< 0.1	0.4	1.0	1.0	3.3	< 0.1	14	14	4.8
90	7.7	4.4	< 0.1	0.9	1.4	1.6	2.9	2.7	10	11	4.9
96	10	6.0	< 0.1	2.2	2.4	1.2	2.9	3.4	12	13	6.0
100	6.4	5.3	<0.1	4.0	4.8	1.2	3.0	2.9	21	22	6.4

Figure S38. V8R_O3_661 Northern polar spring night.

Table S41. Ozone error budget for Northern polar summer day, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.5	<0.1	0.2	2.4	0.5	1.5	4.6	0.6	2.3	2.5	5.3
60	1.1	0.2	< 0.1	1.9	1.2	1.4	4.4	1.8	3.4	4.2	4.9
70	0.3	4.1	< 0.1	0.7	2.4	0.8	6.1	2.3	9.0	10	7.1
80	0.1	7.0	< 0.1	0.4	2.3	0.6	3.9	1.9	16	16	7.6
90	1.1	8.5	< 0.1	1.7	4.7	1.1	3.6	4.3	18	20	7.5
96	0.5	13	<0.1	2.6	7.8	1.5	4.9	4.8	31	33	11

Figure S39. V8R_O3_661 Northern polar summer day.

Table S42. Ozone error budget for Northern polar summer night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.6	<0.1	0.2	2.2	0.6	1.6	4.8	0.7	2.6	2.8	5.5
60	1.4	0.2	< 0.1	1.8	1.4	1.4	3.8	2.1	3.7	4.6	4.4
70	1.1	3.8	< 0.1	1.1	3.2	1.0	4.3	3.6	9.0	10	5.5
80	0.1	5.3	< 0.1	0.7	1.7	0.7	3.4	1.2	15	15	6.2
90	3.6	5.0	< 0.1	1.9	1.9	1.3	3.0	3.5	12	13	5.6
96	4.6	6.8	< 0.1	3.3	4.5	1.3	3.2	2.5	20	21	7.4
100	2.0	7.1	<0.1	4.6	7.3	1.5	3.7	2.0	31	32	7.9

Figure S40. V8R_O3_661 Northern polar summer night.

Table S43. Ozone error budget for Northern polar autumn day, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.4	0.1	0.1	2.3	0.7	1.0	6.3	0.9	3.2	3.4	6.8
60	0.7	0.7	< 0.1	1.8	1.9	1.7	5.4	2.2	5.7	6.5	5.8
70	0.2	2.4	< 0.1	1.2	2.4	1.3	5.7	2.2	13	13	5.9
80	0.1	4.1	< 0.1	0.8	2.7	1.1	3.7	< 0.1	17	17	5.3
90	1.1	6.4	< 0.1	1.7	5.7	1.0	3.6	0.9	22	23	6.9
96	0.7	10	< 0.1	2.9	9.3	0.7	4.2	1.4	36	38	8.5
100	1.0	11	<0.1	2.5	10	0.4	3.9	1.9	37	39	12

Figure S41. V8R_O3_661 Northern polar autumn day.

Table S44. Ozone error budget for Northern polar autumn night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.3	0.3	0.2	2.2	0.8	1.2	6.9	1.1	3.5	3.9	7.3
60	1.2	1.4	< 0.1	2.0	1.6	1.9	3.5	2.2	5.1	5.9	4.4
70	2.1	2.8	< 0.1	1.0	3.9	2.1	4.1	5.6	8.4	11	3.9
80	0.8	3.5	< 0.1	1.0	1.5	1.6	3.3	1.3	13	14	3.7
90	14	7.1	< 0.1	0.7	1.3	1.4	3.4	1.3	10	11	6.6
96	12	4.7	< 0.1	2.5	2.3	1.0	3.2	1.8	14	14	5.7
100	9.0	5.1	<0.1	4.1	5.1	0.8	3.4	2.1	23	24	6.3

Figure S42. V8R_O3_661 Northern polar autumn night.

Table S45. Ozone error budget for Northern midlatitude winter day, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
40	7.2	<0.1	<0.1	2.7	0.4	1.0	6.5	0.7	1.8	2.1	7.0
50	2.5	0.2	0.1	2.3	0.7	1.9	6.1	1.1	2.9	3.8	6.5
60	0.8	0.7	< 0.1	1.9	1.8	1.6	5.0	2.4	5.3	6.2	5.4
70	0.3	3.4	< 0.1	0.9	2.5	1.2	5.2	2.9	12	12	5.9
80	0.1	4.0	< 0.1	1.1	3.4	0.9	4.1	< 0.1	18	18	5.5
90	0.7	4.9	< 0.1	2.2	7.1	0.9	3.8	0.8	25	26	5.8
96	0.5	6.1	<0.1	3.2	10	0.8	3.7	1.0	36	38	6.7

Figure S43. V8R_O3_661 Northern midlatitude winter day.

Table S46. Ozone error budget for Northern midlatitude winter night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
40	7.2	<0.1	< 0.1	2.5	0.4	0.8	6.1	0.6	1.9	2.1	6.6
50	2.8	0.2	0.1	2.4	0.7	1.4	6.6	0.9	3.2	3.9	6.9
60	1.4	0.8	< 0.1	1.9	1.8	1.5	4.2	2.6	5.7	6.8	4.6
70	0.9	1.6	< 0.1	1.1	3.4	2.0	5.1	4.4	9.4	11	4.8
80	0.4	3.8	< 0.1	1.1	2.3	2.1	4.3	0.3	14	15	3.8
90	5.0	3.7	< 0.1	0.7	1.8	1.5	3.1	1.1	13	13	3.7
96	7.1	4.9	< 0.1	2.3	3.1	1.0	2.9	1.4	15	16	5.5
100	5.4	5.4	<0.1	3.4	6.2	0.9	2.9	1.2	26	27	6.2

Figure S44. V8R_O3_661 Northern midlatitude winter night.

Table S47. Ozone error budget for Northern midlatitude spring day, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.5	<0.1	0.2	2.3	0.6	1.3	5.6	0.8	2.8	3.1	6.2
60	1.0	0.4	< 0.1	1.9	1.7	1.4	5.1	2.3	4.8	5.7	5.5
70	0.3	3.8	< 0.1	0.9	2.5	1.1	5.2	2.3	12	13	6.2
80	0.2	5.7	< 0.1	0.5	2.0	1.1	3.6	0.2	14	15	6.6
90	0.6	5.0	< 0.1	2.4	6.0	1.1	3.4	1.4	24	25	6.1
96	0.3	6.6	<0.1	3.7	9.4	0.8	3.6	1.7	36	38	7.1

Figure S45. V8R_O3_661 Northern midlatitude spring day.

Table S48. Ozone error budget for Northern midlatitude spring night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
40	7.3	<0.1	<0.1	2.7	0.3	1.1	7.0	0.8	1.7	1.9	7.6
50	2.7	<0.1	0.1	2.2	0.6	1.6	5.2	0.8	2.8	3.2	5.8
60	1.5	0.2	< 0.1	1.7	1.5	1.5	3.7	2.3	4.2	5.2	4.3
70	1.2	3.7	< 0.1	0.9	3.6	1.4	3.8	5.2	10	12	5.0
80	0.2	4.9	< 0.1	0.6	1.1	1.3	3.1	< 0.1	14	14	5.4
90	7.2	4.9	< 0.1	0.7	1.4	1.5	3.1	3.4	10	11	5.6
96	12	9.0	< 0.1	1.7	2.3	1.2	2.8	3.6	12	14	8.2
100	7.6	9.2	<0.1	3.1	4.6	1.4	3.1	2.9	20	22	7.8

Figure S46. V8R_O3_661 Northern midlatitude spring night.

Table S49. Ozone error budget for Northern midlatitude summer day, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.6	<0.1	0.1	2.3	0.6	1.5	5.2	0.7	2.6	2.9	5.8
60	1.1	0.5	< 0.1	1.7	1.6	1.2	5.1	2.3	4.5	5.4	5.4
70	0.3	6.5	< 0.1	0.9	2.4	1.2	7.1	2.5	12	13	9.2
80	0.2	7.1	< 0.1	0.4	2.2	1.4	3.6	1.8	16	16	7.3
90	1.3	12	< 0.1	2.5	5.4	0.9	3.8	2.5	20	22	10
96	0.7	13	<0.1	3.3	10	1.0	4.2	2.3	34	37	11

Figure S47. V8R_O3_661 Northern midlatitude summer day.

Table S50. Ozone error budget for Northern midlatitude summer night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.8	<0.1	0.1	2.2	0.5	1.5	4.9	0.6	2.6	2.8	5.5
60	1.5	0.2	< 0.1	1.5	1.6	1.2	4.1	2.3	4.3	5.3	4.4
70	1.2	4.7	< 0.1	1.4	3.2	1.3	4.4	4.2	10	11	6.2
80	0.1	5.9	< 0.1	0.9	1.4	1.4	3.0	1.1	15	15	6.3
90	4.2	6.8	< 0.1	1.2	1.9	1.2	3.1	3.3	12	13	6.7
96	6.0	8.5	< 0.1	2.4	4.0	1.1	3.0	2.7	18	19	8.4
100	2.7	9.0	<0.1	3.7	6.7	1.2	3.3	2.1	29	30	8.6

Figure S48. V8R_O3_661 Northern midlatitude summer night.

Table S51. Ozone error budget for Northern midlatitude autumn day, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.7	<0.1	0.1	2.4	0.6	1.1	6.1	0.8	2.9	3.2	6.6
60	0.9	0.6	< 0.1	1.9	1.9	1.4	5.5	2.5	5.7	6.6	5.8
70	0.2	4.4	< 0.1	0.8	2.3	1.0	5.5	2.9	13	14	6.7
80	0.2	5.0	< 0.1	0.7	2.5	1.2	3.6	0.1	16	17	5.8
90	1.0	5.8	< 0.1	1.9	5.8	1.1	3.5	1.0	23	24	6.4
96	0.5	8.0	<0.1	2.9	9.2	0.7	3.8	1.4	35	37	7.6

Figure S49. V8R_O3_661 Northern midlatitude autumn day.

Table S52. Ozone error budget for Northern midlatitude autumn night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.8	<0.1	0.1	2.3	0.7	1.3	6.1	0.8	3.1	3.5	6.6
60	1.4	0.6	< 0.1	1.8	1.7	1.6	3.8	2.5	5.2	6.2	4.3
70	1.0	2.7	< 0.1	1.0	3.4	1.7	4.6	4.8	10	12	4.8
80	0.4	4.4	< 0.1	0.4	1.4	1.5	4.1	0.6	14	15	4.8
90	10	5.0	< 0.1	0.7	1.7	1.6	2.9	1.4	11	11	5.4
96	11	7.1	< 0.1	1.9	2.1	1.1	2.8	2.0	13	14	7.2
100	8.6	5.6	<0.1	3.6	4.5	2.8	2.9	2.1	21	22	6.2
110	1.5	0.4	< 0.1	2.9	7.4	1.6	2.6	1.3	35	36	4.2

Figure S50. V8R_O3_661 Northern midlatitude autumn night.

Table S53. Ozone error budget for Tropics day, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
40	6.6	<0.1	0.1	2.1	0.3	0.7	4.9	0.5	1.5	1.7	5.3
50	2.6	<0.1	0.1	2.3	0.6	1.4	5.3	0.8	2.6	3.0	5.8
60	1.1	0.5	< 0.1	2.0	1.6	1.3	5.3	2.3	5.1	6.1	5.6
70	0.2	5.6	< 0.1	0.7	1.9	0.8	6.8	2.9	12	13	8.6
80	0.2	5.9	< 0.1	0.6	2.1	1.3	3.4	0.1	16	16	6.7
90	0.9	6.1	< 0.1	1.7	4.5	1.1	3.3	1.2	19	20	6.3
96	0.7	12	< 0.1	3.1	8.5	1.2	4.0	1.5	33	36	8.4
100	0.7	14	<0.1	3.0	9.3	1.8	3.9	1.7	36	39	12

Figure S51. V8R_O3_661 Tropics day.

Table S54. Ozone error budget for Tropics night, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.8	0.1	0.2	2.2	0.7	1.8	5.2	0.9	2.9	3.2	5.9
60	1.4	0.3	< 0.1	2.1	1.5	1.8	3.8	2.4	4.3	5.3	4.6
70	1.2	5.9	< 0.1	1.2	3.2	1.4	4.2	5.7	11	13	6.9
80	0.7	5.9	< 0.1	0.3	1.5	2.2	5.1	0.1	12	13	7.1
90	8.6	6.9	< 0.1	0.8	1.4	1.5	2.8	2.0	10	10	7.2
96	15	13	< 0.1	1.3	2.0	1.2	2.7	2.8	11	13	12
100	12	10	< 0.1	2.4	3.8	1.0	2.8	3.2	17	18	10

Figure S52. V8R_O3_661 Tropics night.

Table S55. Ozone error budget for Southern midlatitude winter day, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.2	<0.1	0.2	2.3	0.8	1.2	6.2	0.9	3.4	4.2	6.4
60	0.7	0.8	< 0.1	2.1	1.6	1.7	5.2	2.4	6.2	7.1	5.6
70	0.2	3.9	< 0.1	1.3	1.7	1.2	5.5	2.3	13	14	6.4
80	0.1	3.7	< 0.1	0.8	2.9	1.3	3.6	0.2	17	18	5.0
90	0.8	5.3	< 0.1	2.0	6.6	1.1	3.6	1.0	25	26	6.2
96	0.4	5.9	<0.1	2.8	10	1.0	3.4	1.2	37	38	7.1

Figure S53. V8R_O3_661 Southern midlatitude winter day.

Table S56. Ozone error budget for Southern midlatitude winter night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.4	0.1	0.1	2.3	0.7	1.3	6.2	0.9	3.3	4.0	6.5
60	1.3	0.9	< 0.1	2.0	1.6	2.0	3.8	2.4	5.0	6.1	4.5
70	0.9	3.3	< 0.1	1.3	3.2	1.7	4.8	4.1	10	12	4.9
80	0.4	3.9	< 0.1	0.6	1.4	1.7	3.8	< 0.1	14	15	4.3
90	5.1	4.5	< 0.1	1.3	1.3	1.3	3.0	1.8	12	13	5.0
96	6.2	5.0	< 0.1	3.1	4.0	1.0	2.9	1.7	18	19	6.0
100	3.3	4.7	<0.1	4.3	7.0	1.0	2.9	1.3	30	31	6.5

Figure S54. V8R_O3_661 Southern midlatitude winter night.

Table S57. Ozone error budget for Southern midlatitude spring day, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.5	<0.1	0.2	2.3	0.7	1.6	5.7	0.9	3.0	3.5	6.2
60	0.9	0.5	< 0.1	2.1	1.4	1.7	5.0	2.2	4.8	5.6	5.6
70	0.2	4.7	< 0.1	0.7	2.0	1.0	5.1	2.5	12	13	6.7
80	0.2	5.8	< 0.1	0.6	2.0	1.2	3.6	0.2	15	15	6.6
90	0.8	6.2	< 0.1	1.9	5.2	1.1	3.5	1.3	21	22	6.4
96	0.5	10	< 0.1	3.2	8.5	1.0	3.7	2.0	34	36	8.3
100	0.5	11	<0.1	3.0	8.7	0.8	3.0	2.2	36	37	12

Figure S55. V8R_O3_661 Southern midlatitude spring day.

Table S58. Ozone error budget for Southern midlatitude spring night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.7	<0.1	0.2	2.2	0.7	1.7	5.3	0.8	2.9	3.2	5.9
60	1.4	0.3	< 0.1	2.1	1.5	1.7	3.7	2.3	4.3	5.2	4.5
70	1.2	3.6	< 0.1	0.6	3.4	1.4	3.7	4.8	10	11	4.8
80	0.2	5.0	< 0.1	0.4	1.1	1.1	3.2	0.2	14	14	5.5
90	8.1	6.3	< 0.1	1.2	1.0	1.6	3.1	2.9	10	11	6.4
96	13	8.5	< 0.1	2.2	2.0	1.4	2.7	3.2	11	12	8.5
100	7.7	7.6	< 0.1	3.5	4.8	1.1	2.8	2.7	22	23	8.0

Figure S56. V8R_O3_661 Southern midlatitude spring night.

Table S59. Ozone error budget for Southern midlatitude summer day, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.4	<0.1	0.2	2.2	0.7	1.7	5.1	0.8	2.8	3.1	5.8
60	1.0	0.5	< 0.1	2.3	1.3	2.1	4.5	2.6	3.9	5.0	5.5
70	0.3	5.7	< 0.1	0.5	2.5	0.7	6.6	2.9	12	13	8.6
80	0.2	7.1	< 0.1	0.3	2.0	1.2	3.6	1.6	15	16	7.3
90	1.1	8.8	< 0.1	1.9	4.7	1.0	3.6	2.2	19	20	8.5
96	0.6	11	< 0.1	3.3	8.7	0.8	4.0	2.2	34	36	11
100	0.4	8.9	< 0.1	3.2	10	0.4	3.7	1.5	38	39	10

Figure S57. V8R_O3_661 Southern midlatitude summer day.

Table S60. Ozone error budget for Southern midlatitude summer night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.8	<0.1	0.2	2.2	0.7	1.8	5.0	0.8	2.8	3.1	5.7
60	1.4	0.3	< 0.1	2.3	1.5	2.0	3.7	2.3	4.2	5.2	4.7
70	1.1	4.5	< 0.1	1.0	3.4	1.3	3.6	4.7	9.2	11	5.6
80	0.1	6.0	< 0.1	0.9	1.4	1.4	3.2	1.0	15	15	6.4
90	3.4	5.4	< 0.1	1.6	1.4	1.3	3.3	2.4	12	13	6.0
96	6.4	7.7	< 0.1	1.9	3.0	1.1	2.8	2.1	14	15	7.6
100	3.9	7.4	< 0.1	2.9	6.1	1.0	3.0	1.8	26	27	7.7

Figure S58. V8R_O3_661 Southern midlatitude summer night.

Table S61. Ozone error budget for Southern midlatitude autumn day, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.7	<0.1	0.1	2.4	0.7	1.3	6.7	1.0	3.4	3.7	7.2
60	0.8	0.8	< 0.1	1.9	1.6	1.6	5.8	2.6	6.4	7.3	6.2
70	0.3	2.4	< 0.1	1.2	1.8	1.5	5.3	2.3	12	12	5.8
80	0.1	4.5	< 0.1	0.7	3.1	1.1	3.7	< 0.1	17	18	5.7
90	0.9	6.7	< 0.1	1.8	6.4	1.1	3.6	1.0	24	25	6.9
96	0.6	9.3	<0.1	2.8	9.0	0.8	3.8	1.5	35	37	8.6

Figure S59. V8R_O3_661 Southern midlatitude autumn day.

Table S62. Ozone error budget for Southern midlatitude autumn night, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.8	<0.1	0.1	2.3	0.7	1.5	5.9	0.9	3.3	3.5	6.5
60	1.4	0.5	< 0.1	2.0	1.5	1.6	4.3	2.7	5.8	6.8	4.7
70	1.0	1.7	< 0.1	1.2	3.0	1.9	5.0	4.4	10	11	5.3
80	0.3	3.8	< 0.1	0.3	1.2	1.0	3.3	0.6	15	15	4.4
90	10	6.5	< 0.1	0.6	1.3	1.6	3.1	1.6	11	11	6.7
96	11	7.4	< 0.1	2.3	2.4	1.1	2.7	1.9	14	14	7.4
100	6.6	6.6	<0.1	3.7	5.5	1.1	2.7	2.0	25	26	7.1

Figure S60. V8R_O3_661 Southern midlatitude autumn night.

Table S63. Ozone error budget for Southern polar winter day, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	1.5	0.2	0.2	1.8	0.8	0.9	5.2	0.9	3.7	4.2	5.4
60	0.5	0.8	< 0.1	2.4	1.4	1.7	4.5	1.8	6.0	6.6	5.2
70	0.1	2.6	< 0.1	1.4	1.3	1.2	5.1	1.5	15	15	5.6
80	0.1	3.8	< 0.1	0.8	3.6	1.1	3.7	0.2	18	19	5.0
90	0.6	5.5	< 0.1	2.1	7.4	1.1	3.6	1.0	27	28	6.0
96	0.4	6.5	<0.1	2.7	10	0.9	3.5	1.1	38	40	7.0

Figure S61. V8R_O3_661 Southern polar winter day.

Table S64. Ozone error budget for Southern polar winter night, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	1.4	0.5	0.2	1.5	0.9	1.2	5.4	0.9	4.0	4.4	5.6
60	1.4	2.1	< 0.1	2.5	1.4	2.0	3.2	1.9	5.6	6.3	4.7
70	1.7	2.7	< 0.1	0.6	2.9	2.1	4.5	4.6	8.6	11	4.4
80	0.8	2.8	< 0.1	0.7	1.2	1.6	3.4	0.9	13	13	3.8
90	6.9	6.2	< 0.1	1.5	1.6	1.2	3.1	0.9	13	13	6.4
96	7.9	6.9	< 0.1	3.6	3.9	0.9	3.0	1.8	18	19	7.6
100	5.0	6.8	<0.1	5.0	6.8	0.9	3.1	2.3	29	30	8.2

Figure S62. V8R_O3_661 Southern polar winter night.

Table S65. Ozone error budget for Southern polar spring day, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.3	<0.1	0.2	2.3	0.7	1.7	4.9	0.9	2.8	3.2	5.6
60	0.9	0.2	< 0.1	2.4	1.1	2.1	4.5	2.0	4.1	4.8	5.4
70	0.3	4.4	< 0.1	0.8	2.2	0.9	5.7	2.0	11	12	7.1
80	0.1	6.7	< 0.1	0.5	2.0	1.1	3.7	0.6	15	16	6.9
90	0.7	6.4	< 0.1	2.1	4.6	1.2	3.1	1.9	19	20	6.2
96	0.4	9.0	< 0.1	3.5	8.2	1.0	3.4	2.3	34	36	7.8
100	0.4	6.5	<0.1	3.6	11	0.7	2.9	1.9	40	42	8.0

Figure S63. V8R_O3_661 Southern polar spring day.

Table S66. Ozone error budget for Southern polar spring night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.5	0.1	0.2	2.3	0.7	1.7	5.4	0.8	3.0	3.5	5.9
60	1.4	0.4	< 0.1	2.2	1.4	1.9	3.8	2.3	4.8	5.7	4.5
70	1.2	4.8	< 0.1	0.8	3.0	1.6	3.8	5.2	10	12	5.8
80	0.3	4.4	< 0.1	0.3	1.1	1.5	3.4	0.2	14	14	5.4
90	10	6.7	< 0.1	0.8	1.6	1.6	2.9	2.7	10	11	7.0
96	12	7.2	< 0.1	2.2	2.1	1.3	2.7	3.3	11	12	7.7
100	7.3	6.3	<0.1	3.6	4.5	1.1	2.6	3.1	21	21	7.2

Figure S64. V8R_O3_661 Southern polar spring night.

Table S67. Ozone error budget for Southern polar summer day, UA. All uncertainties are 1σ .

altitude	mean O_3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.3	<0.1	0.2	2.1	0.6	2.0	4.3	0.8	2.5	2.8	5.2
60	1.0	0.2	< 0.1	2.8	1.3	3.0	3.6	2.0	3.3	4.2	5.4
70	0.4	3.2	< 0.1	1.5	2.8	1.4	5.4	2.0	9.1	10	6.3
80	0.1	7.5	< 0.1	0.3	2.2	0.4	4.2	1.2	16	16	8.2
90	0.9	8.1	< 0.1	2.0	3.7	1.4	3.2	3.5	15	17	6.7
96	0.6	14	<0.1	3.9	7.4	1.7	4.8	3.2	30	33	11

Figure S65. V8R_O3_661 Southern polar summer day.

Table S68. Ozone error budget for Southern polar summer night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.6	<0.1	0.2	2.1	0.7	1.9	5.0	0.8	2.9	3.2	5.7
60	1.4	0.2	< 0.1	2.7	1.4	2.1	3.7	2.2	4.3	5.1	4.9
70	1.2	3.7	< 0.1	0.8	3.0	1.2	3.7	4.2	8.6	10	5.1
80	0.1	5.8	< 0.1	0.8	1.5	1.2	3.2	1.2	15	15	6.4
90	3.9	5.6	< 0.1	1.8	1.9	1.3	3.2	2.7	12	13	6.2
96	6.2	7.2	< 0.1	2.7	3.7	1.2	2.9	2.0	16	17	7.7
100	3.3	6.6	<0.1	3.9	6.6	1.2	3.2	1.5	28	29	7.5

Figure S66. V8R_O3_661 Southern polar summer night.

Table S69. Ozone error budget for Southern polar autumn day, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.3	0.2	0.1	2.2	0.7	1.3	6.6	1.1	3.3	4.0	6.8
60	0.7	0.9	< 0.1	2.2	1.5	1.7	5.1	2.1	6.3	7.0	5.7
70	0.2	2.0	< 0.1	1.4	1.5	1.2	6.2	2.1	14	14	6.5
80	0.1	3.7	< 0.1	0.7	3.2	1.0	3.9	< 0.1	18	18	5.2
90	1.0	5.9	< 0.1	1.7	6.5	0.9	3.9	0.8	24	25	6.8
96	0.7	7.4	< 0.1	2.3	10	0.8	4.2	1.1	37	39	7.8
100	0.8	8.4	<0.1	2.3	12	1.1	4.1	1.5	41	43	9.4

Figure S67. V8R_O3_661 Southern polar autumn day.
Table S70. Ozone error budget for Southern polar autumn night, UA. All uncertainties are 1σ .

altitude	mean O3 vmr	NLTE	interf	ILS	offset	gain	spectro	T+LOS	noise	random	syst
(km)	(ppmv)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
50	2.2	0.4	0.2	2.0	0.9	1.4	6.7	1.1	3.8	4.2	7.1
60	1.3	1.4	< 0.1	2.8	1.6	2.0	3.2	2.1	6.5	7.1	4.7
70	2.4	2.2	< 0.1	0.7	2.9	2.0	4.2	5.5	7.1	10	3.9
80	0.8	2.1	< 0.1	0.8	1.2	1.5	3.5	1.2	13	14	3.8
90	11	4.7	< 0.1	0.8	2.2	1.4	3.2	0.7	12	12	5.5
96	12	7.1	< 0.1	3.2	2.8	1.0	3.0	1.8	14	15	7.6
100	8.8	5.9	<0.1	4.7	5.3	0.9	3.2	2.1	24	25	7.6

Figure S68. V8R_O3_661 Southern polar autumn night.