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Abstract. Instrumentation packages for eddy covariance
(EC) measurements have been developed for unoccupied
aerial vehicles (UAVs) to measure the turbulent fluxes of la-
tent heat (LE), sensible heat (H ), and CO2 (Fc) in the atmo-
spheric boundary layer. This study aims to evaluate the per-
formance of this UAV-based EC system. First, the measure-
ment precision (1σ ) of georeferenced wind was estimated to
be 0.07 ms−1. Then, the effect of the calibration parameter
and aerodynamic characteristics of the UAV on wind mea-
surement was examined by conducting a set of calibration
flights. The results showed that the calibration improved the
quality of the measured wind field, and the influence of up-
wash and the leverage effect can be ignored in wind mea-
surement by the UAV. Third, for the measurements of tur-
bulent fluxes, the error caused by instrumental noise was es-
timated to be 0.03 µmolm−2 s−1 for Fc, 0.02 Wm−2 for H ,
and 0.08 Wm−2 for LE. Fourth, data from the standard op-
erational flights were used to assess the influence of reso-
nance on the measurements and to test the sensitivity of the
measurement under the variation (±30 %) in the calibration
parameters around their optimum value. The results showed

that the effect of resonance mainly affected the measurement
of CO2 (∼ 5 %). The pitch offset angle (εθ ) significantly af-
fected the measurement of vertical wind (∼ 30 %) and turbu-
lent fluxes (∼ 15 %). The heading offset angle (εψ ) mainly
affected the measurement of horizontal wind (∼ 15 %), and
other calibration parameters had no significant effect on the
measurements. The results lend confidence to the use of the
UAV-based EC system and suggest future improvements for
the optimization of the next-generation system.

1 Introduction

In environmental, hydrological, and climate change sciences,
flux measurement at the regional scale (level of several to
tens of kilometers) is a pressing problem (Mayer et al., 2022;
Chandra et al., 2022). Process-based or remote-sensing-
based (RS) models are often used to estimate land surface
fluxes in matter and energy from continental to global scales
with a typical spatial resolution of 1–10 km (Hu and Jia,
2015; Mohan et al., 2020; Liu et al., 1999). However, ob-
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servational data, especially at similar scales to models’ esti-
mates, are often lacking, which presents a significant chal-
lenge for the validation and evaluation of the surface flux
products from these models’ estimates (Li et al., 2018, 2017).
On the ground, in the past few decades, extensive eddy
covariance (EC) flux sites with their composed networks
and optical-microwave scintillometer (OMS) sites have been
built to provide temporally continuous monitoring of surface
flux at local (hundreds of meters around the measurement site
of ground EC) and path (a distance of a few hundred meters
to nearly 10 km between the transmitter and receiver termi-
nal of OMS) scales (Yang et al., 2017; Liu et al., 2018; Zhang
et al., 2021; Zheng et al., 2023). However, flux from ground
measurements needs to be scaled up to kilometer scale to
provide comparable surface “relative-truth” flux data for the
process- or RS-based models at larger spatial scales (Liu et
al., 2016). But the spatial density of these flux measurement
sites is still low compared to the heterogeneity in surface
fluxes, which means that major scaling bias may exist in the
upscaled flux data (Wang et al., 2016; Li et al., 2021). There-
fore, regional-scaled oriented flux measurement techniques
need to be developed to complement the missing scale be-
tween these ground- and model-based approaches (Chu et
al., 2021).

An aircraft-based EC flux measurement method, which
has been developed for turbulence measurements for more
than 40 years (Lenschow et al., 1980; Desjardins et al., 1982),
is considered to be the optimum method for measuring tur-
bulent flux at regional scales (several hundred square kilo-
meters) (Gioli et al., 2004; Garman et al., 2006). To date,
several types of aircraft, including occupied or unoccupied
fixed-wing aircraft, delta-wing aircraft, and helicopters, have
been used for measurements of turbulent flux by equipping
them with the EC sensors to measure three-dimensional (3D)
wind, air temperature, and gas concentrations at a high fre-
quency (Gioli et al., 2006; Metzger et al., 2012; Wolfe et
al., 2018; Sun et al., 2021a; Reuter et al., 2021). Among
them, fixed-wing aircraft and delta-wing aircraft are better
airborne platforms for EC measurements compared to heli-
copters due to their tightly coupled structure with the wind
sensor and because their flow distortion around the fuselage
can more easily be avoided or modeled (Prudden et al., 2018;
Garman et al., 2008). A wide range of occupied aircraft has
been developed to measure turbulent flux, including single-
engine light aircraft (e.g., Sky Arrow 650, Long-EC, weight-
shift microlight aircraft) (Gioli et al., 2006; Crawford and
Dobosy, 1992; Metzger et al., 2012), twin-engine aircraft
(e.g., Twin Otter, NASA Carbon Airborne Flux Experiment)
(Desjardins et al., 2016; Wolfe et al., 2018), and larger quad-
engine utility aircraft (e.g., NOAA WP-3D Orion aircraft)
(Khelif et al., 1999). These airborne flux measurements, in
combination with ground EC measurements, provide an ex-
cellent opportunity to produce regional-scaled, spatiotempo-
ral, continuous surface flux datasets that can improve our un-
derstanding of the processes of land–atmosphere interactions

in regional and global changes (Chen et al., 1999; Prueger et
al., 2005; Calmer et al., 2019; Tadić et al., 2021). However,
occupied aircraft are expensive to operate and maintain. Avi-
ation safety and operational regulations require that occupied
aircraft must fly above a minimum altitude (400 m above the
highest elevation within 25 km on each side of the center line
of the air route in China) and must avoid hazardous con-
ditions such as icing or severe turbulence. The flow distor-
tion induced by the aircraft itself (from the wings, fuselage,
and the propellers) complicates the wind vector measurement
from the aircraft platform, which means that sophisticated
correction procedures should be applied to correct for the
flow distortion effects (Elston et al., 2015; Williams and Mar-
cotte, 2000; Drüe and Heinemann, 2013).

In recent years, there has been a rapidly growing interest in
unoccupied aerial vehicle (UAV) platforms for atmospheric
research, especially because of their lower construction, op-
eration, and maintenance costs compared with occupied plat-
forms. High-performance fixed-wing UAVs offer a high pay-
load capacity (5–10 kg) and similar endurance (2–3 h) and
operating altitude (3500 m or higher above sea level) to oc-
cupied aircraft but with much less turbulence disturbance
due to their small fuselage size (Reineman et al., 2013).
More importantly, the advancements in small, fast, and pow-
erful sensors and microprocessors make it possible to use
UAVs for comprehensive atmospheric measurements (Sun et
al., 2021a). Several types of UAVs with different atmospheric
measurement objectives have been developed and deployed,
ranging from small (e.g., 140 g small unoccupied meteoro-
logical observer) to medium (e.g., 1.5 kg meteorological mini
unoccupied aerial vehicle, 1.0 kg multi-purpose automatic
sensor carrier) and large (e.g., 6.8 kg Manta, 5.6 kg ScanEa-
gle) (Reuder et al., 2016; Båserud et al., 2016; Reineman et
al., 2013; Zappa et al., 2020). A comprehensive overview of
these UAVs for atmospheric measurement can be found in
Elston et al. (2015) and Sun et al. (2021a). For turbulence
measurement, the UAVs were equipped with a commercial
or custom multi-hole (five- or nine-hole) probe paired with
an integrated navigation system (INS) to obtain the wind
vector. Small and medium UAVs could typically only mea-
sure fast 3D wind vectors and air temperature fluctuations for
measurements of momentum and sensible heat flux, whereas
large UAVs were equipped with more types (e.g., radiation,
optics, or gas concentration) and more accurate sensors for
the measurement of more types of meteorological proper-
ties, including sensible and latent heat fluxes, CO2 fluxes,
and radiation fluxes, as well as surface properties (Reineman
et al., 2013; Sun et al., 2021a). UAVs can be deployed in a
variety of application environments and complex conditions,
which offer distinct advantages over occupied aircraft in their
ability to safely perform measurements in low-altitude con-
ditions (below 100 m above ground level) and greatly reduce
operational costs (Witte et al., 2017). Anderson and Gaston
(2013) predict that UAVs will revolutionize spatial data col-
lection in ecology and meteorology.
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The EC method is a well-developed technology for di-
rectly measuring vertical turbulent flux (fluxes of sensible
heat, latent heat, and CO2) within the atmospheric bound-
ary layers (ABLs) (Peltola et al., 2021). It requires accu-
rate time (for the ground tower) or spatial (for the mobile
platform) series of both the transported scalar quantity and
the transporting turbulent wind. Each should be measured
at sufficient frequency to resolve the flux contribution from
small eddies (Vellinga et al., 2013). However, the measure-
ment of the georeferenced 3D wind vector, which is a pre-
requisite for EC measurements, is challenging for airborne
platforms. The georeferenced 3D wind measured by airborne
platforms is the vector sum of the aircraft velocity relative to
the earth (inertial velocity) and the velocity relative to the
air (relative wind vector or true airspeed). Therefore, accu-
rate measurements of the relative wind as well as the motion
and attitude of the platform are essential to accurately mea-
sure the georeferenced wind vector and the turbulent flux
(Metzger et al., 2011). Garman et al. (2006) estimated the
measurement precision (1σ ) of the vertical wind measure-
ments of a commercial nine-hole turbulence probe (known
as the Best Air Turbulence probe, often abbreviated as BAT
probe) to be 0.03 ms−1 by combining the precision of the
BAT probe and the integrated navigation system. A light
delta-wing EC flux measurement aircraft developed by Met-
zger et al. (2011) reported a 1σ precision of wind measure-
ment of 0.09 ms−1 for horizontal wind and 0.04 ms−1 for
vertical wind using a specially customized five-hole probe
(5HP). On this basis, in combination with a commercial in-
frared gas analyzer, the 1σ precision of flux measurement
was 0.003 ms−1 for friction velocity, 0.9 Wm−2 for sensi-
ble heat flux, and 0.5 Wm−2 for latent heat flux (Metzger
et al., 2012). The EC flux measurement from a UAV plat-
form can now be achieved with a similar reliability to an oc-
cupied platform. The Manta and ScanEagle UAV-based EC
measurements developed by Reineman et al. (2013) achieved
precise wind measurements (0.05 ms−1 for horizontal and
0.02 ms−1 for vertical wind) using a custom nine-hole probe
and a commercial high-precision integrated navigation sys-
tem (INS). However, the onboard instrument packages for
the Manta and ScanEagle UAVs are independent of each
other in their measurements of turbulent and radiation fluxes,
and the CO2 flux measurement is lacking.

Inspired by these studies, Sun et al. (2021a) used a
high-performance fuel-powered vertical takeoff and land-
ing (VTOL) fixed-wing UAV platform to integrate the sci-
entific payloads for EC and radiation measurements to ob-
tain a comprehensive measurement of turbulent and radi-
ation fluxes. This UAV-based EC system could measure
turbulent fluxes of sensible heat, latent heat, and CO2, as
well as radiation fluxes including net radiation and upward-
and downward-looking photosynthetically active radiation
(PAR). This system was successfully tested in Inner Mon-
golia, China, and was applied to measure the regional sen-
sible and latent heat fluxes in the Yancheng coastal wet-

land in Jiangsu, China (Sun et al., 2021a, b). During these
field studies, the UAV-based EC measurements achieved a
near-consistent observational result compared with ground
EC measurements (Sun et al., 2021b). However, some short-
comings in the developed UAV-based EC system were also
identified. In particular, the noise effects from the engine and
propeller were not fully isolated, resulting in high-frequency
noise in the measured scalars (air temperature as well as H2O
and CO2 concentrations). This UAV-based EC system is con-
tinuously being improved (in Sect. 2.1). However, no quanti-
tative evaluations of the measurement precision of the wind
field and turbulent flux as well as of the influence of the res-
onance noise from the UAV operation have been made yet.
Previous work using ground EC as a benchmark to assess the
measurement performance of the UAV-based EC system has
been disputed due to differences in EC sensors, platforms,
measurement height, and source areas (i.e., footprint), as well
as the influence of surface heterogeneity, flux divergence, the
inversion layer, and the stochastic nature of turbulence (Sun
et al., 2021b; Wolfe et al., 2018; Hannun et al., 2020).

This study attempts to evaluate the performance of the
UAV-based EC system developed by Sun et al. (2021a) in the
measurements of wind field and turbulent fluxes. For these
purposes, data from two field measurement campaigns, in-
cluding a set of calibration flights and some standard op-
erational flights, were used in this study. First, the current
study investigated the quality of the measurement of the geo-
referenced wind vector, including measurement error (1σ ),
and the improvements for wind measurement after system
calibration. Second, using the measured data from standard
operational flights, the flux measurement error related to in-
strumental noise was estimated with a method proposed by
Billesbach (2011). Errors propagated through the correction
terms (i.e., Webb–Pearman–Leuning (WPL) correction for
latent heat and CO2 flux) were also included in our analysis
(Webb et al., 1980; Kowalski et al., 2021). Then, the impacts
of resonance noise on the measured scalar variance and the
flux covariance were also estimated by comparing the real
(co)spectral curve with the theoretical reference curve from
Massman and Clement (2005). Lastly, the sensitivity of the
measured georeferenced wind vector and turbulent flux to the
errors in the calibration parameters (determined by the cali-
bration flight) were assessed by adding an error of ±30 % to
their calibrated value.

2 Materials and methods

2.1 The UAV-based EC system

The VTOL fixed-wing UAV platform used for EC measure-
ment has minimal requirements for the takeoff location and
offers a high payload capacity of up to 10 kg. This UAV has a
wingspan of 3.7 m, a fuselage length of 2.85 m, and a maxi-
mum takeoff weight of 60 kg. The UAV engine is mounted in
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a pusher configuration, allowing for the turbulence probe to
be installed directly on the nose of the UAV, minimizing or
eliminating airflow contamination due to upwash and side-
wash generated by the wings (Crawford et al., 1996). Con-
trol of the UAV is totally autonomous, and the pilots have
the option to enable manual control in emergency conditions.
The UAV has a cruise flight speed of 28 to 31 ms−1 with an
endurance of almost 3 h, and it has a flight ceiling of up to
3800 m above sea level. Detailed information about this UAV
can be found in Sun et al. (2021a).

The flux payloads of the UAV-based EC system include
a precision-engineered five-hole pressure probe (5HP) for
measurement of the true airspeed as well as the attack (α) and
sideslip (β) angles of the incoming flow relative to the UAV,
a dual-antenna integrated navigation system (INS) for high-
accuracy measurement of UAV ground speed and attitude, an
open-path infrared gas analyzer (IRGA) for recording the gas
concentrations of CO2 and water vapor, a fast temperature
sensor for measurement of the fast temperature fluctuations,
and a slow-response temperature probe for providing a mean
air temperature reference. The sensor modules and their 1σ
precision of the measured variables related to EC measure-
ment are listed in Table 1. For the 5HP, the 1σ measurement
precision was acquired from the wind tunnel test after wind
tunnel calibration (Sun et al., 2021a).

The sample rate of EC measurement is 50 Hz, except for
the slow-response temperature probe (1 Hz), yielding a tur-
bulence horizontal resolution of approximately 1.2 m at a
cruising speed of 30 ms−1. The system was improved ac-
cording to deficiencies identified after several field mea-
surements with the following adjustments: (1) a laser dis-
tance measurement unit was mounted for measuring the dis-
tance between the UAV and the ground level, (2) the plat-
inum resistance thermometer was replaced by a thermocou-
ple (Omega T-type COCO-003; ∅0.075 mm) for improving
the resistance of the high-frequency temperature measure-
ments to vibration noise from the engine, (3) the vibration
isolator structure of the IRGA was improved, and (4) the
original data logger (CR1000X, Campbell, USA) was re-
placed with a lighter one (CR6, Campbell, USA). All the dig-
ital and analogue signals from the sensor modules are stored
and synchronized by the onboard data logger, and the on-
board scientific payloads are designed to be isolated from the
electronic components of the UAV to ensure that any prob-
lems that occur would not jeopardize the safety of flying (Sun
et al., 2021a).

2.2 Field campaign

2.2.1 In-flight calibration campaign

In order to calibrate the mounting error in the 5HP of the
UAV-based EC system, an in-flight calibration campaign was
carried out on 4 September 2022 at the Caofeidian shoal har-
bor in the Bohai Sea of northern China. At low tide, a large

Figure 1. Flight trajectories of the calibration flight campaign car-
ried out on 4 September 2022 at the Caofeidian shoal harbor in
the Bohai Sea of northern China. The land surface image is from
the Sentinel-2A satellite image, with the true color combination ac-
quired on 1 September 2022.

area of the tidal flat is exposed, while at high tide, only the
barrier islands are visible (Xu et al., 2021). The assumption
conditions should be satisfied for the calibration flight, in-
cluding (1) low-turbulence transport conditions (i.e., no dis-
turbance), (2) a constant mean horizontal wind, and (3) mean
vertical wind near 0 (Drüe and Heinemann, 2013; Vellinga et
al., 2013; Van Den Kroonenberg et al., 2008). This allows for
identical wind components for several consecutive straights
in opposite or vertical flight directions. These assumptions
are usually well satisfied above the ABL or under stable at-
mospheric conditions (Drüe and Heinemann, 2013). Over the
sea surface, due to its uniform- and cool-surface properties,
the turbulence fluctuations are weaker than those over the
land surface (Mathez and Smerdon, 2018), making it a more
ideal environment for conducting calibration flights.

The in-flight calibration campaign in this study included
three flight maneuvers: the “box” maneuver, the “racetrack”
maneuver, and the “acceleration–deceleration” maneuver.
The trajectories of these flight maneuvers are shown in Fig. 1.
The calibration flight was executed between 07:28 and 07:48
(Beijing time), and the average flight altitude was 400 m
(σ =±0.78 m) above sea level. Considering the uniform and
cool underlying surface and the stable atmospheric condi-
tions of the early morning, we assume no disturbance from
the underlying surface during the calibration flight, and the
assumptions for the calibration flight are satisfied.

The box maneuver (brown line in Fig. 1) is used to deter-
mine the mounting misalignment angle in the heading (εψ )
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Table 1. Summary of the sensor modules, measured variables, and their measurement precision used to determine the georeferenced wind
velocity and turbulent flux.

Sensor (module, company, country) Variables Precision (1σ )

Integrated navigation system Roll, pitch, heading 0.1◦

(BD992-INS, Trimble, USA) Horizontal velocity 0.007 ms−1

Vertical velocity 0.02 ms−1

Five-hole probe Attack angle 0.02◦∗

(ADP-55, Simtec AG, Switzerland) Sideslip angle 0.04◦∗

True airspeed 0.05 ms−1∗

Static pressure 1.1 hPa
Dynamic pressure 0.003 hPa

Infrared gas analyzer CO2 density 0.2 mgm−3

(EC150, Campbell, USA) H2O density 0.004 gm−3

Thermistor (100K6A1IA, Campbell, USA) Temperature (slow) 0.2 ◦C

Thermocouple (T-type COCO-003, Omega, USA) Temperature (fast) 0.5 ◦C

∗ Results from the wind tunnel test.

and pitch (εθ ) between the 5HP and the center of gravity
(CG) of the UAV. The flight path is a box in which the four
straight legs are flown at a constant cruising speed, flight
altitude, and heading for 2 continuous minutes. The race-
track maneuver (yellow line in Fig. 1) is used to evaluate
the quality of the calibration parameters acquired from the
previous box maneuver. The flight path consists of two par-
allel straight flight tracks connected by one 180◦ turn. Each
straight flight section lasts 2 min at a constant speed and
flight altitude. Lastly, the acceleration–deceleration maneu-
ver (purple line in Fig. 1) is used to check the influence of
lift-induced upwash from the wing to the measured attack
angle by the 5HP. During this maneuver, the aircraft is kept
straight and level at a constant pressure altitude. When be-
ginning this maneuver, the aircraft accelerates to its maxi-
mum airspeed (35 ms−1). Then, the airspeed gradually re-
duces to near its minimum airspeed (25 ms−1) and back up to
its maximum airspeed. The pressure altitude of the aircraft is
maintained throughout this maneuver, and the entire maneu-
ver lasts 1 min. This maneuver creates a series of continuous
changed pitch (θ ) and attack (α) angles. If the relationship
between the incident flow attack angles (α) measured by the
5HP and the pitch angle measured by the INS is close to 1 : 1,
it indicates that the effect from the fuselage-induced flow dis-
tortion on the wind measurements is negligible (Garman et
al., 2006).

2.2.2 Standard operational flight campaign

The reliability of the EC measurement from UAVs is suscep-
tible to several factors, mainly including instrumental noise,
resonance noise, and the quality of the calibration parame-
ter, etc. In order to evaluate the flux measurement error re-
lated to instrumental noise and the effects of resonance on

the measured scalar and to investigate the sensitivity of the
measured georeferenced wind vector and turbulent flux to
uncertainty in the calibration parameter, we used data from
seven flights in the Binhai New Area in Tianjin, China, be-
tween 8 and 16 August 2022. This area is located in the west
coast of the Bohai Sea and is a coastal alluvial plain with alti-
tudes between 1 and 3 m (Chen et al., 2017). The flight path,
shown in Fig. 2, includes three parallel transect lines of ap-
proximately 4 km in length each and at 1–2 km intervals. All
flights occurred during the daytime and were performed in
the same trajectory at a low altitude of about 90 m above sea
level. The flight area covered three different underlying sur-
face types – land, coastal zone, and water surfaces – which
can represent typical flux intensity characteristics over dif-
ferent surface conditions.

During the standard operational flight campaign, the at-
mospheric stability changed from stable (Monin–Obukhov
stability parameter, z/L= 1.93) to very unstable (z/L=
−10.28) conditions as measured by the UAV, where z is
the flight height above ground level, and L is the Obukhov
length. The stable condition mostly occurred on the flight
path located over the sea surface, while the unstable con-
dition mostly occurred on the flight path located over the
land surface. These flight data provided various measurement
conditions for us to evaluate the performance of the devel-
oped UAV-based EC system.

2.3 Data processing

The raw data collected with the onboard data logger (CR6,
Campbell, USA) are subsequently saved in the Network
Common Data Form (NetCDF) format. These raw data in-
clude dynamic and static pressures, the attack and sideslip
angles of incoming flow, slow (1 Hz) and fast (50 Hz) air tem-
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Figure 2. Flight trajectories of the standard operational flight cam-
paign carried out between 8 and 16 August 2022 in the Binhai New
Area, Tianjin, China. The land surface image is from the Sentinel-
2A satellite image, with the true color combination acquired on 27
August 2022.

peratures, the mass concentrations of H2O and CO2, and the
full navigation data (including 3D location, ground speed,
angular velocity, and attitude, etc.) of the UAV. The subse-
quent data processing includes three stages in order to calcu-
late the flux data from the measured raw data.

In the first stage, a moving-average filter was used to de-
tect outliers in each variable. Detected outliers were removed
and replaced by values obtained by linear interpolation. Out-
liers tend to be rare. However, if outliers constitute more than
20 % of the data points, the corresponding flight data should
be discarded.

In the second stage, the georeferenced 3D wind vector is
calculated. The full form of the equations for calculating the
georeferenced wind vector with the UAV-based EC system is
described in detail in the Supplement in Part A. From the air-
borne platform, the georeferenced wind vector is measured
in two independent reference coordinate systems: the rela-
tive true airspeed (Ûa) measurement in the aircraft coordi-
nate system and the ground speed of the aircraft (Up) in the
georeferenced coordinate system. The georeferenced wind
(U ) is the vector sum of the relative true airspeed (Ûa), the
UAV’s motion (Up), and the tangential velocity due to the
rotational motion of the aircraft (“lever arm” effect), which
are described in Eq. (S2) in the Supplement. In this stage,
the acquired calibration parameters (εψ and εθ ) from the cal-
ibration flight are substituted into the Eq. (S8) to correct the
mounting angle offset errors between the 5HP and the CG of
the UAV. The final equations for the georeferenced wind vec-
tor calculation (Eqs. S15–S17) revealed that the lever arm ef-

fects due to the spatial separation between the tip of the wind
probe and the CG of the UAV may influence the wind mea-
surements. Typically, the separation distance (L) is small,
and the influence of the lever arm effects can be ignored when
L is less than about 10 m (Lenschow, 1986). In the current
UAV-based EC system, the displacements of the 5HP tip with
respect to the CG of the UAV along the three axes of the UAV
body coordinates are as follows: xb

= 1.459 m, yb
= 0 m,

and zb
= 0.173 m (in the Supplement in Part A). Therefore,

in practice, the influence of leverage effects in georeferenced
wind calculation was also ignored in this study. This was also
confirmed by assessing the difference in the georeferenced
wind vector with and without the leverage effect correction
term in this study (in Sect. 3.1).

In the final stage, based on the EC technology and spa-
tial averaging, turbulent fluxes are calculated using the co-
variances of vertical wind (w) with air temperature (Ta) for
sensible heat flux (H ), with water vapor density (q) for la-
tent heat flux (LE), and with CO2 density (c) for CO2 flux
(Fc) and with the necessary correction (Webb et al., 1980).
The time lag due to the separation between the 5HP tip, the
adjacent temperature probe, and the open-path gas analysis
did not need to be corrected because the time delay was very
small at the cruise airspeed of 30 ms−1 and sensor separa-
tion of less than 20 cm. Only the measurement data from the
straight-line portion of the flight path were used in the flux
calculation. A detailed calculation procedure and formulas
for calculating H , LE, and Fc used by the current UAV-
based EC system are provided in the Supplement in Part B,
including spatial averaging, coordinate rotation, and neces-
sary correction (i.e., WPL correction for LE and Fc). In this
study, all measured data of each straight and level flight leg
(each with a length of about 4 km) from the standard opera-
tional flight campaign were used to calculate turbulent flux,
regardless of the uncertainty in fluxes associated with spatial
averaging.

2.4 Evaluation scheme

2.4.1 Wind measurement evaluation

The key to successful aircraft EC measurements lies in the
translation of an accurately measured, aircraft-oriented wind
vector to the georeferenced orthogonal wind vector (Thomas
et al., 2012). Determining the georeferenced wind vector re-
quires a sequence of thermodynamic and trigonometric equa-
tions (Metzger et al., 2012). These equations propagate vari-
ous sources of error to the measured georeferenced wind vec-
tor. To estimate the measurement errors in the georeferenced
wind vector, we used the linearized Taylor series expansions
of Eqs. (S15)–(S17) derived by Enriquez and Friehe (1995)
(Eqs. S18–S20) to determine the sensitivities of each of the
georeferenced wind vector components with respect to the
relevant variables. Then, these sensitivity terms can be com-
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bined to compute the overall measurement error (1σ ) in the
georeferenced 3D wind vector (Eqs. S21–S23).

The above wind measurement error analysis gives the
nominal measurement precision of the georeferenced wind
but does not consider the influence of environmental
changes. Following the methods of Lenschow and Sun
(2007), we assess the accuracy of wind measurements from
the UAV in satisfying the minimum signal level needed for
resolving the mesoscale variations in the three wind compo-
nents in the encountered atmospheric conditions. Firstly, the
minimum required signal level for measurement of vertical
airspeed (ω) under the encountered atmospheric conditions
could be estimated as (Lenschow and Sun, 2007)

∂w

∂t
< 0.2

√
2σw2πkUa, (1)

where the true airspeed (Ua) is set to a mean cruise speed
of 30 ms−1, σw is the peak signal magnitude of the power
spectra, and k is the corresponding wavenumber (Thomas et
al., 2012). The measurement error in the vertical wind com-
ponent can be calculated as (Lenschow and Sun, 2007)

∂w

∂t
∼=2

∂Ua

∂t
+Ua

∂2

∂t
+
∂wUAV

∂t
, (2)

with 2= α− θ , where α is the attack angle, θ is the pitch
angle, and wUAV is the UAV’s vertical velocity. According
to Lenschow and Sun (2007), the signal level and mesoscale
fluctuation of horizontal wind components (u and v) are con-
siderably larger than those of vertical wind, so the accuracy
criteria are not nearly as stringent. The measurement error
of the horizontal wind component could be calculated as
(Lenschow and Sun, 2007)

∂u

∂t
∼=−

∂Ua

∂t
+
∂uUAV

∂t
, (3)

∂v

∂t
∼=9

∂Ua

∂t
+ vtas

∂9

∂t
+
∂vUAV

∂t
, (4)

and

9 ≡ ψ ′+β, (5)

where uUAV and vUAV are the UAV’s horizontal velocity mea-
sured from INS, ψ ′ is the departure of the measured true
heading from the average true heading, and β is the sideslip
angle of airflow. If the measurement error of the 3D wind
vector from Eqs. (2)–(4) is smaller than the required mini-
mum signal level of the vertical and horizontal wind com-
ponents, it can be confirmed that the measurement accuracy
of the georeferenced 3D wind vector from the UAV is suf-
ficient to resolve the mesoscale variations in the three wind
components in the encountered atmospheric conditions.

In addition, accurate measurements of the georeferenced
wind vector typically not only depend on the measurement
precision of the sensors (i.e., 5HP and INS), but also relate

to the quality of the calibration parameters and the geome-
try structure of the UAV (i.e., flow distortion and leverage
effect). To evaluate the effect of the latter two, a calibra-
tion flight campaign (Sect. 2.2.1) was performed to deter-
mine the calibration parameter (εψ , εθ ) and check its qual-
ity, as well as ascertain the effects of the lever arm and up-
wash by the wings. The methods for acquiring the calibra-
tion parameter were given by Vellinga et al. (2013) and Sun
et al. (2021a), and the results are reported in the Supplement
in Part C (Figs. S2 and S3). During the in-flight calibration
campaign, a racetrack maneuver was performed to check the
quality of the calibration parameters determined from the box
flight maneuver. The initial (εψ = 0◦, εθ = 0◦) and calibrated
(εθ =−0.183◦, εψ = 2◦, in the Supplement in Part C) sets
of parameters were used to calculate the georeferenced wind
vector. By comparing the mean and standard deviation (SD)
of the horizontal and vertical wind vectors between the ini-
tial and calibrated sets, the quality of the georeferenced wind
vector measurement in real environmental conditions can be
verified.

The relative wind vector (Ûa) measured by the aircraft is
susceptible to flow distortion because the airplane must dis-
tort the flow to generate lift and thrust. The aircraft’s pro-
pellers, fuselage, and wings are the main sources of flow dis-
tortion as flow barriers (Metzger et al., 2011). For fixed-wing
aircraft, the wind probe, mounted on the nose of the UAV and
extended as far forward off the fuselage as possible, could
avoid the flow distortion induced by the fuselage and pro-
pellers. The effects from the induced upwash by the wings
can also influence the correspondence between the measured
and free-stream flow variables (Garman et al., 2008). The
induced upwash modifies the local angle of attack, causing
the measured attack angle (α) to be larger than the free-
stream attack angle (α∞) (Garman et al., 2008). Therefore,
for wind measurements by large-scale occupied fixed-wing
aircraft, the upwash effects must be corrected (Garman et
al., 2008; Kalogiros and Wang, 2002). However, the UAV
seldom needs this correction due to the size of the fuselage
and the fact that the airspeed is very low compared to an oc-
cupied aircraft.

In this study, in order to assess whether the lift-induced up-
wash can be safely ignored by the current UAV-based EC sys-
tem, an acceleration–deceleration flight maneuver was per-
formed. According to Crawford et al. (1996), the pitch an-
gle (θ ) of the INS instrument can be utilized as an estimate
of the free-stream attack angle (α∞) if the aircraft’s verti-
cal velocity is 0, since it is unaffected by lift-induced up-
wash and varies directly with α∞ when the ambient vertical
wind is 0. Under ideal conditions (0 aircraft vertical veloc-
ity and 0 ambient vertical wind), the approximation relation-
ship of θ ∼= α∞ is valid when θ < 6◦ (Crawford et al., 1996;
Vellinga et al., 2013). Departures from the 1 : 1 relationship
can be caused by airflow distortion around the airplane be-
hind the 5HP. The acceleration–deceleration maneuver pro-
duced various pitch and attack angles measured under var-
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ious airspeeds, which allowed a direct comparison between
the pitch angle (θ ) and the attack angle (α). If the slope be-
tween α and θ is close to unity, it indicates that the influence
of lift-induced upwash can be ignored; otherwise, its influ-
ence should be corrected (Garman et al., 2006). Meanwhile,
the influence of leverage effects was also evaluated based
on the measurement data from the acceleration–deceleration
maneuver by considering or ignoring the leverage effect cor-
rection term in Eqs. (S15)–(S17).

2.4.2 Flux measurement error caused by instrumental
noise

Flux measurement errors from UAVs can be attributed to sev-
eral sources, mainly including instrumental noise, data han-
dling, atmospheric conditions, spatial averaging length, and
bumpy flight environments (Mahrt, 1998; Finkelstein and
Sims, 2001; Mauder et al., 2013). They can be systematic or
random. Determination of the flux measurement error caused
by instrument noise is very useful, as it is related not only
to the system performance, but also to the minimum resolv-
able capability for the flux to be measured. In the current
study, uncertainty related to instrumental noise (listed in Ta-
ble 1) was estimated using the direct method proposed by
Billesbach (2011). This method is called “random shuffle”
(denoted as RS) and was “designed to only be sensitive to
random instrument noise”. According to Billesbach (2011),
the uncertainty in the flux covariance can be expressed as

σ
w′x′
=

1
N

∑N

i,j=1
w′(ti)x

′(tj ), (6)

where x is the target entity of the covariance, and N is the
number of measurements contained in the block averaging
period, j ∈ [1. . .N ], but the values are in a random order. The
idea behind the RS method was that the random shuffling
would remove the covariance between biophysical (source
or sink) and transport mechanisms, leaving only the ran-
dom “accidental” correlations mostly attributed to instrument
noise (Billesbach, 2011). It means that the shuffled compo-
nent x is uncorrelated to itself in time or space and decorre-
lates x from w, resulting in two independent variables (i.e.,
w′x′ ∼ 0), and any residual value (i.e., w′x′ 6= 0) of the co-
variance is attributed to random instrument noise.

In this study, in order to obtain a robust estimate of the
instrumental noise, σ

w′x′
was repeatedly calculated 20 times

for every straight and level flight leg in the operational flight
(Fig. 2), and the means of the absolute values of these re-
peated estimated σ

w′x′
values were used to estimate the ran-

dom uncertainty related to instrumental noise. According to
Rannik et al. (2016), the RS method tends to overestimate
the covariance uncertainty. Then, the uncertainties in the flux
covariance of sensible heat (σ

w′T ′
), latent heat (σ

w′ρ′v
), and

CO2 (σ
w′ρ′c

) were estimated using the RS method.
It should be noted that the measurement error in the EC

flux is influenced not only by the uncertainty in the raw co-

variance but also by the propagated errors form the correc-
tion terms (i.e., WPL correction) or any lens contamination
(Serrano-Ortiz et al., 2008). The signal quality of the IRGA
was checked before each flight measurement to ensure that
the measurement of gas concentrations is not affected by lens
contamination. The relative uncertainty in the flux measure-
ment was estimated using the partial derivatives of the flux
calculation equation derived by Liu et al. (2006) (Eqs. S28–
S30). These equations ignored the perturbation terms from
the errors in the individual scalar (i.e., ρv, ρc, T ), which were
proved to be very small (Serrano-Ortiz et al., 2008). At last,
after several repetitive calculations of Eq. (6), the averaged
uncertainty results were then combined to Eqs. (S28)–(S30)
to estimate the flux measurement error caused by instrumen-
tal noise.

2.4.3 Resonance effects

Previous work has found that the measurement of the atmo-
spheric scalars (e.g., air temperature as well as H2O and CO2
concentrations) by the current UAV-based EC system was
susceptible to resonance effects caused by the operation of
the engine and propeller (Sun et al., 2021b). In order to fur-
ther reduce the noise influence from resonance effects, the
vibration damping structure was further optimized. The ref-
erence (co)spectral curve of Massman and Clement (2005)
was then used to quantify the influence of the resonance ef-
fects remaining after vibration isolation optimization. Mass-
man and Clement (2005) gave the generalization mathemati-
cal expression of the models of spectra and cospectra as fol-
lows:

Co(f )= A0
1/fx[

1+m(f/fx)2µ
] 1

2µ

(
m+1
m

) , (7)

where f is frequency (Hz), fx is the frequency at which
fCo(f ) reaches its maximum value, A0 is a normaliza-
tion parameter, m is the (inertial subrange) slope parame-
ter, and µ is the broadness parameter. To describe cospec-
tra, m should be 3/4; to describe spectra, m should be 3/2.
According to Massman and Clement (2005), µ was set to
7/6 under stable atmospheric conditions and to 1/2 under
unstable atmospheric conditions. The fast Fourier transform
(FFT) method was used to calculate the spectra and cospec-
tra of the measured turbulent variables. Before calculating
the turbulence (co)spectra, conditioning of the raw turbu-
lence data was performed, including linear detrending and
tapering using the Hamming window to reduce the spectral
leakage (sharp edge) according to Kaimal et al. (1989).

The noise influence from resonance mainly appears in the
high-frequency domain. According to the feature of the spec-
tral curve, the frequency range of the noise region was arti-
ficially designated to f > 8 Hz for air temperature, f = 1–
5 Hz for water vapor, and f = 1–8 Hz for CO2. The normal-
ized spectral and cospectral curves were adopted, and the
area difference in the designated frequency range beneath
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the (co)spectral curve between the measured and reference
(co)spectral curves was calculated to quantify the influence
of resonance noise in the variance and flux covariance of
the measured atmospheric scalars. An example is shown in
Fig. 3, and also shown is the reference (co)spectral curve of
Massman and Clement (2005), with the (co)spectral maxi-
mum at fx = 0.1. The red region in Fig. 3 represents the
extent of the impact of the resonance noise in the variance
(Fig. 3a–c) and flux covariance (Fig. 3d–f) of the measured
scalars.

2.4.4 Sensitivity analysis

To understand the relevance of the calibration parameters for
the measurement of the georeferenced wind vector and tur-
bulent flux, two sensitivity tests were conducted. The mag-
nitude of the perturbation in the wind vector and turbulent
flux was investigated as a function of the uncertainties in the
four calibration parameters, including three mounting mis-
alignment angles (εψ , εθ , εφ) between the 5HP and the CG
of the UAV and one temperature recover factor (εr = 0.82)
used to calculate the ambient temperature (Eq. 3 in Sun et
al., 2021a).

First, the sensitivity of the georeferenced wind vector and
turbulent flux to the uncertainties in the individual calibration
parameters was investigated. The georeferenced wind vector
and turbulent flux were calculated based on the straight leg
(about 4 km) of the standard operational flight by adding an
error of ±30 % to the calibrated value of each calibration
parameter alternately, except for εφ , for which the typical
range of ±0.9◦ was taken for sensitivity analysis (Vellinga
et al., 2013).

Then, in order to test the overall interaction between the
parameters, a second sensitivity test was performed to cal-
culate the georeferenced wind vector and turbulent fluxes by
adding a ±30 % error to all calibration parameters simulta-
neously. Lastly, relative errors (REs) were calculated to eval-
uate the perturbation in the wind vector and turbulent flux
under the variation in each calibration parameter as well as
under simultaneous variation in all calibration parameters.
In the sensitivity analysis, the calculated georeferenced wind
and turbulent flux, whose absolute values were less than their
least-resolvable magnitude, were filtered out to avoid the in-
fluence of the errors contained in the measurements them-
selves on the results.

2.4.5 Relative error

In this study, relative error (RE) was used to evaluate the in-
fluence of different factors on the measurements of the geo-
referenced wind vector and turbulent flux. It is defined as

RE=
|x0| − |x|

|x|
× 100%, (8)

where | | means the absolute value, x is the “true” value, and
x0 is the influenced value. RE> 0 means the exerted influ-

ence will cause the measurement value to be larger than the
true value and vice versa.

3 Results

3.1 Wind measurement evaluation

Wind measurement evaluation for the UAV-based EC system
includes three aspects: (1) checking measurement precision
and the system’s ability to resolve the mesoscale variations
in the wind, (2) checking the quality of the acquired cali-
bration parameters, and (3) checking whether the measured
wind vector is affected by upwash flow and leverage effects.

First, according to the equations described in the Supple-
ment in Part A (Eqs. S18–S23), the measurement precision of
the horizontal wind components is a function of the true air-
speed and true heading, while the measurement precision of
vertical wind components is largely decided by the true air-
speed. The typical values of the true airspeed, ranging from
25 to 35 ms−1 (interval of 1 ms−1), and the true heading,
ranging from 0 to 180◦ (interval of 30◦), were used in the
evaluation of the wind measurement error. The measurement
precision (1σ ) of the georeference 3D wind vector from air-
craft was then estimated using the measurement precision of
the related parameters from Table 1. The results are shown in
Fig. 4 for the measurement precision of horizontal wind (σu
and σv in Fig. 4a and b) and vertical wind (σw in Fig. 4c).
The typical values of the measurement precision range from
0.05 to 0.07 ms−1 for the horizontal wind component u, from
0.02 to 0.08 ms−1 for the horizontal wind component v, and
from 0.05 to 0.07 ms−1 for the vertical wind component w.

Generally speaking, an autopiloted UAV can maintain a
near-constant true airspeed during the cruise flight phase. At
a true airspeed of 30 ms−1 for the current UAV during the
cruising, the maximum measurement errors in the northward,
eastward, and vertical velocities of the georeferenced wind
components were calculated as approximately 0.06, 0.07,
and 0.06 ms−1, respectively. Then, we assume that a min-
imum signal-to-noise ratio of 10 : 1 is required to measure
the wind components with sufficient precision for EC mea-
surement (Metzger et al., 2012). Accordingly, in the real en-
vironments, horizontal and vertical wind speeds greater than
0.7 and 0.6 ms−1, respectively, can be reliably measured (Ta-
ble 2).

The above results gave the nominal precision for wind
measurement that does not consider the influence of envi-
ronmental conditions. Changes in the environment will lead
to sensor drift, increasingly deteriorating the measurement
with flight duration (Metzger et al., 2012; Lenschow and Sun,
2007). Following the methods of Lenschow and Sun (2007),
the ability of wind measurements from UAVs to resolve the
mesoscale variations in the 3D wind components in the en-
countered atmospheric conditions was assessed. For the ver-
tical wind, the mesoscale variability was defined as the peak
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Figure 3. Influence of the resonance noise on the spectral (a–c) and cospectral (d–f) curves of the measured scalars based on the measured
data from one standard operational flight carried out on 8 August 2022 in the Binhai New Area, Tianjin, China. The red region is the area
difference in the designated frequency range (vertical dashed–dotted black line) beneath the (co)spectral curve between the measured and
reference (co)spectral curve.

Figure 4. Estimated measurement precision (1σ ) of the horizontal wind (a, b) and vertical wind (c) according to the equations described in
the Supplement in Part A (Eqs. S18–S23).

Table 2. The maximum measurement error in the northward (u),
eastward (v), and vertical (w) velocities of the georeferenced wind
components at the true airspeed of 30 ms−1 and the least-resolvable
magnitude assuming the minimum required signal-to-noise ratio of
10 : 1.

Measurements Measurement Least-resolvable
precision (1σ ) magnitude

u wind speed (ms−1) 0.06 0.6
v wind speed (ms−1) 0.07 0.7
w wind speed (ms−1) 0.06 0.6

signal magnitude of the power spectral curve. The corre-
sponding average wavenumber was determined as 0.09 m−1

based on the straight flight leg (about 4 km, lasting about
120 s) of the standard operational flight. Then, according to
Eq. (1), the minimum required signal level for the vertical

wind measurement was estimated as ∂w/∂t ' 0.14 ms−2.
The accuracy of the vertical wind measurement using Eq. (2)
is estimated as follows. The first term on the right-hand side
of Eq. (2) is dominated by the drift in the differential pressure
transducer; the value of ∂Ua = 0.05 ms−1 acquired from the
wind tunnel test was used (Table 1). The histogram of 2 de-
rived from the standard operational flights is shown in Fig. 5.
The 99 % confidence interval indicates that the value of 2
seldom exceeds±3◦, i.e.,±0.053 radians. Thus, the value of
the first term was estimated as 2.2× 10−5 ms−2.

The second term in Eq. (2) is a combination of the INS
pitch accuracy and 5HP attack angle accuracy. The combined
accuracy of these two sensors was applied to derive ∂2=
0.0024 radians. Thus, the second term in Eq. (2) was esti-
mated as 6×10−4 ms−2. Finally, the third term in Eq. (2) was
estimated as 1.7× 10−4 ms−2, according to the stated accu-
racy of the vertical velocity from the INS. The overall perfor-
mance of the vertical wind measurement (7.9× 10−4 ms−2)
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Figure 5. Histogram of 2 derived from the standard operational
flights. The component density is scaled so that the histogram has a
total area of 1. The red vertical lines indicate the distribution aver-
age (solid) and the 99 % confidence interval (dashed). The dashed
black bell curve displays a reference fitted normal distribution.

was accurate enough to resolve the mesoscale variations in
vertical air velocity.

The required accuracy of horizontal wind for mesoscale
measurement was estimated to be 10 times larger than that
of vertical wind; i.e., ∂u/∂t ' ∂v/∂t ' 1.4 ms−2. The mea-
surement accuracy of the horizontal wind component u was
estimated as 4.8× 10−4 ms−2 according to Eq. (3). Like the
first term in Eq. (2), with the value of 9 rarely exceeding
±0.18 radians, the measurement accuracy of the horizontal
wind component v was estimated as 2.7× 10−2 m s−2 ac-
cording to Eq. (4). Thus, the measurement accuracy of the
horizontal wind components was accurate enough to resolve
the mesoscale variations in the horizontal air velocity as well.

Second, before checking the quality of the acquired cal-
ibration parameters, the calibration results of the offset in
pitch (εθ ) and heading (εψ ) angles based on the box ma-
neuver are provided in the Supplement in Part C (Figs. S2
and S3). The final calibration values are εθ =−0.183◦ and
εψ = 2◦. In order to verify the quality of these calibration
parameters, a racetrack maneuver was performed. Figure 6
shows the validation results by plotting wind vector statistics
and calculating summary statistics for the racetrack maneu-
ver (including turns), using the initial (εθ = εψ = 0◦, Fig. 6a)
and calibrated (Fig. 6b) sets of parameters, respectively. In-
troduction of the calibration parameter effectively improved
the quality of the georeferenced wind vector measurement.
The SD for wind direction, σUdir , is 4.9◦ for the calibrated
set compared to 8.7◦ for the initial set, and the SD of wind
speed, σU , is 0.52 ms−1 for the calibrated set compared to
1.12 ms−1 for the initial set. The averaged vertical wind
speed is much closer to 0 (w =−0.006 ms−1) for the cali-
brated set than for the initial set (w = 0.1 ms−1). For the hor-
izontal wind, it is evident from Fig. 6 that the measurement

of wind direction and velocity is insignificantly affected by
sharp turns. On the contrary, the measurement of the verti-
cal wind component is obviously affected by turns in flight,
as shown by the large fluctuations in the vertical wind speed
around the scan value of 150 (bottom panels in Fig. 6). It
should be noted that the influence of upwash flow and the
leverage effect are not considered in the calculated georefer-
enced wind vector.

Third, in order to check the influence of the lift-induced
upwash on the measured attack angle from the 5HP, an
acceleration–deceleration flight maneuver was performed.
During the acceleration–deceleration maneuver, INS data
showed the vertical velocity of the UAV to be 0.05±
0.2 ms−1, the altitude of the UAV to be 392± 0.6 m, and the
heading of the UAV to be 199± 2.4◦. We assume that the
flight conditions meet the requirements of the acceleration–
deceleration maneuver (Vellinga et al., 2013). The relation-
ship between the pitch angle (θ ) measured by the INS and
the attack angle (α) measured by the 5HP is plotted in Fig. 7,
where the attack angle was not corrected for lift-induced up-
wash. The slope (0.94) between θ and α is close to its the-
oretical value of 1, and the intercept (0.16) is close to 0. It
indicates that the lift-induced upwash has only a very small
effect on the attack angle, and the influence of upwash could
be ignored.

Finally, the georeferenced wind vector was calculated with
and without the correction for the leverage effect based on the
measurement data from the acceleration–deceleration flight
maneuver. The averaged relative differences between the cor-
rected and uncorrected horizontal and vertical wind speeds
are 0.1 % and 0.2 %, respectively. The SD for horizontal wind
speed is 0.307 ms−1 without the level arm term compared to
0.306 ms−1 when the level arm term is introduced. The SD of
vertical wind speed is 0.254 ms−1 without the level arm term
compared to 0.253 ms−1 with the level arm term. The correc-
tion of the leverage effect had a minimal effect on improving
the georeferenced wind vector measurement; therefore, this
correction term can be ignored.

3.2 Flux measurement error caused by instrumental
noise

Flux measurement error caused by the instrumental noise
gives the lowest limit of the value that the UAV-based EC
system is able to measure. It was assessed by combining
the covariance uncertainty estimated by the RS method and
the propagation of errors in the flux correction terms. Be-
fore estimating the flux covariance uncertainty with the RS
method, using the measured data from each straight and
level flight leg of the standard operational flight (Fig. 2),
the normalized integrated cospectral (ogives) curves of sen-
sible heat (Fig. 8a), latent heat (Fig. 8b), and CO2 (Fig. 8c)
flux are formed as a function of the wavenumber (k), where
k = 2πf/Ua. As shown in Fig. 8, although the heteroge-
neous turbulence (or mesoscale turbulence) interfered with

https://doi.org/10.5194/amt-16-5659-2023 Atmos. Meas. Tech., 16, 5659–5679, 2023



5670 Y. Sun et al.: Quality evaluation for a UAV-based eddy covariance system

Figure 6. Quality check of the calibration parameter by plotting wind vector statistics and calculating summary statistics for the racetrack
maneuver, using the initial (a) and calibrated (b) sets of parameters, respectively. The calibration flight was carried out on 4 September 2022
at the Caofeidian shoal harbor in the Bohai Sea of northern China.

Figure 7. Relationship between the pitch angle (θ ) measured by the
integrated navigation system (INS) and the attack angle (α) mea-
sured by the five-hole probe (5HP). The fitted linear equation is also
shown.

the shape of the ogive curves, most curves converged at the
high- and low-frequency ends, which indicated that these
segmented data were sufficiently long to represent the lowest

significant frequencies contributing to the covariance (Sun et
al., 2018).

The results of the instrumental-noise-related relative flux
measurement error compared to the magnitude of the flux are
shown in Fig. 9. It can be seen that the flux measurement
error caused by instrumental noise significantly decreases
when the flux magnitude increases. It is not surprising, since,
in theory, instrumental noise is usually close to a constant,
and the relative flux measurement error caused by instrumen-
tal noise will decrease with increasing measurement magni-
tude. Overall, instrumental noise has the least effect on la-
tent heat flux (ranging from 0.02 % to 2.42 % in this study)
measurements, followed by sensible heat flux (ranging from
0.05 % to 8.6 % in this study), and has the greatest effect on
the measurement of the CO2 flux (ranging from 0.22 % to
75.6 % in this study). Then, a simple rational function rela-
tionship between the relative measurement error and the flux
magnitude is fitted according to the measured data, where
the constant term in the denominator is set to 0. The fit-
ted coefficient in the numerator can be considered to be the
flux measurement error caused by instrumental noises, which
are 0.03 µmolm−2 s−1, 0.02 Wm−2, and 0.08 Wm−2 for the
measurement of the CO2 flux, sensible heat flux, and latent
heat flux, respectively. At last, using the signal-to-noise ra-
tio of 10 : 1, the minimum magnitudes for reliably resolving
the CO2 flux as well as sensible and latent heat fluxes were
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Figure 8. Normalized ogive curves as a function of the wavenumber for the flux covariance of sensible heat (a), latent heat (b), and CO2 (c)
from each straight and level flight leg of the standard operational flights in Sect. 2.2.2.

estimated as 0.3 µmolm−2 s−1, 0.2 Wm−2, and 0.8 Wm−2,
respectively.

3.3 Resonance noise

The resonance noise from the engine and propeller can lead
to systematic overestimation of the variance and covariance
of the observed atmospheric scalars. The noise mainly ap-
pears in the high-frequency domain of the (co)spectra, and
the reference (co)spectral curve of Massman and Clement
(2005) was used to quantify the systematic bias caused by
the resonance noise.

All spectral curves of the variance of the measured scalars
(including air temperature as well as H2O and CO2 con-
centrations) approximately followed the reference spectral
curve and the reference −2/3 slope in the inertial subrange
(Fig. 3a–c). The largest scatter occurred in the spectra of CO2
(Fig. 3c). When comparing the spectral curve with the refer-
ence spectra, the resonance noise led to a systematic devi-
ation in the variance of the air temperature as well as H2O
and CO2 concentrations of 0.1± 0.1 %, 1.0± 0.79 %, and
4.4±0.66 %, respectively. For the flux covariance of sensible
heat, latent heat, and CO2, all the cospectral curves approx-
imately follow the reference cospectral curve and the refer-
ence −4/3 slope in the inertial subrange (Fig. 3d–f). Com-
pared with the reference cospectra, the resonance noise led to
a systematic deviation in the flux of sensible heat, latent heat,
and CO2 of 0.07± 0.004 %, 0.3± 0.25 %, and 2.9± 1.62 %,
respectively.

The results show that the resonance noise has a very lit-
tle impact on the measured variance and flux covariance.
The measurements of the CO2 concentration and flux are the
most susceptible to the resonance noise, but the impact of
this noise is limited to around 5 % of the observed value.

3.4 Sensitivity analysis

In order to investigate the relevance of the calibration param-
eters for the measurement of the georeferenced wind vector
and turbulent flux, two sensitivity tests were conducted by
adding an error of ±30 % to the calibrated parameters used

(εψ , εθ , εφ,εr). We assumed that the maximum uncertainties
contained in the calibration parameter are not more than 30 %
of its own value.

First, the sensitivity of the georeferenced 3D wind and tur-
bulent flux to the uncertainty in the individual calibration pa-
rameter was tested. The RE value is used to quantify the sen-
sitivity, and the results are summarized in Tables 3 and 4.
For the measurement of the georeferenced wind vector, Ta-
ble 3 shows that the uncertainties in the temperature recovery
factor (εr) and 5HP mounting misalignment error in the roll
(εφ) angle do not contribute significantly to errors in the wind
measurements, which were typically smaller than 4 % of the
observed value in this study. Parameter εθ had the largest ef-
fect on the vertical wind component (up to 30 %), whereas
εψ had the largest effect on the horizontal wind component.
For the measurement of turbulent fluxes, Table 4 shows that
the errors in εr and εφ , which were typically smaller than
5 % of the observed value in this study, do not significantly
influence the flux measurements. Uncertainties in the εθ and
εψ calibration parameters had significant effects on the mea-
surement of turbulent fluxes. Errors in εθ result in significant
perturbation (large RE variance) in the measured turbulent
fluxes, including sensible heat, latent heat, and CO2, while
errors in εψ to some extent mainly affect the measurement of
the latent heat flux (RE may affect the latent heat flux with
up to 15 %).

The second sensitivity test was performed to evaluate the
overall interaction between the calibration parameters and
the calculation of the georeferenced wind vector and turbu-
lent flux by adding an error of ±30 % to all the calibration
members simultaneously. Tables 5 and 6 provide a summary
of the RE from the second sensitivity test. For the measure-
ment of the georeferenced wind vector (Table 5), adding an
error of ±30 % to all the calibration parameters at the same
time resulted in great perturbations in both the horizontal
(low RE with high variance) and vertical wind components
(high RE with low variance). For the measurement of turbu-
lent fluxes, adding a 30 % error in all of the calibration pa-
rameters can result in errors in the measured fluxes of more
than 10 %. In addition, Table 6 also reveals that the latent heat
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Figure 9. Relative flux measurement error caused by the instrumental noise plotted against the magnitude of the flux. Also shown is the fitted
error curves. Measured data were from the standard operational flights in Sect. 2.2.2.

Table 3. RE from the sensitivity test for the georeferenced 3D wind vector (u,v,w). An error factor of ±30 % was added to each calibrated
parameter. The georeferenced 3D wind vector was calculated based on the straight leg of the standard operational flight.

Parameter Error (%) RE of georeferenced 3D wind vector
mean±SD

u (%) v (%) w (%)

εr −30 0.04± 0.41 −0.004± 2 0± 0
30 0.06± 0.43 0.27± 1.1 −0.07± 0.23

εϕ
∗

−30 0.41± 2.51 −0.09± 2.05 1.15± 2.43
30 −0.43± 2.61 0.09± 1.79 −1.1± 2.66

εθ −30 0.03± 0.41 −0.35± 2.54 −30.51± 6.42
30 0.05± 0.45 0.42± 1.82 30.37± 6.61

εψ −30 2.98± 25.06 −2.04± 16.3 0± 0
30 −2.97± 24.96 2.42± 16.63 0± 0

∗ The optimum calibration value is set to 0; εϕ is varied over ±0.9◦, which is 30 % of its typical range.

flux is more sensitive to the errors in the calibration parame-
ter than other measured fluxes (higher mean and variance of
the RE compared to other measurements).

4 Discussions

The current study aimed to evaluate the performance of the
UAV-based EC system developed by Sun et al. (2021a) in the
measurements of wind vector and turbulent fluxes.

First, the wind measurement precision (nominal precision)
of the UAV-based EC system was estimated by propagating
the sensor errors to the georeferenced wind vector using the
linearized Taylor series expansions from Enriquez and Friehe
(1995). The 1σ precision for the georeferenced wind mea-
surement was estimated to be ±0.07 ms−1, and the least-
resolvable magnitude for wind measurement was estimated
to be 0.7 ms−1 by assuming the minimum signal-to-noise ra-
tio of 10 : 1. The derived wind measurement minimum re-
solvable magnitude can be used as a basic reference for the
wind measurement capability of the UAV-based EC system,
and the measured values of wind vectors smaller than the
minimum resolvable values should be considered unreliable.

The accuracy of the sensors was also assessed by examin-
ing the collected data in the real environment. Our results
revealed that the overall performance of the georeferenced
wind measurement is of sufficient accuracy to resolve the
mesoscale variations in the 3D wind components under the
encountered atmospheric conditions. Therefore, it is possi-
ble to capture the mesoscale variability in the atmospheric
boundary layer (ABL) over a wide range of spatial scales by
performing long flight paths.

Second, based on the measurement data from the in-flight
calibration campaign, several key factors affecting the accu-
racy of the georeferenced wind measurement were analyzed.
The UAV-based EC system was calibrated (in the Supple-
ment in Part C) using measured data from the box flight ma-
neuver to correct the mounting misalignment between the
5HP and the CG of the UAV in the heading (εθ =−0.183◦)
and pitch (εψ = 2◦) angles. The quality of the acquired cal-
ibration parameters was verified using the measured data
from the racetrack flight maneuver, and the acquired cali-
bration value effectively improved the observed wind field
with smaller variance compared with the wind calculated us-
ing the initial value of the calibration parameter. At the same
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Table 4. RE from the sensitivity test for the turbulent fluxes. An error factor of ±30 % was added to each calibrated parameter. The turbulent
fluxes were calculated based on the straight leg of the standard operational flight.

Parameter Error (%) RE of turbulent flux
mean±SD

Fc (%) H (%) LE (%) u∗ (%)

εr −30 1.04± 3.04 −0.76± 4.82 0.1± 0.29 0± 0
30 −1.0± 3.3 0.74± 4.8 −0.1± 0.29 0.2± 1.07

εϕ
∗

−30 0.07± 1.2 0.03± 0.7 0.15± 1.51 0.54± 1.71
30 −0.14± 0.89 −0.06± 0.7 −0.16± 1.46 0.12± 1.61

εθ −30 −3.27± 11.18 −0.8± 9.48 0.19± 11.91 −4.08± 5.61
30 2.34± 10.52 −0.44± 8.24 −1.27± 9.92 3.73± 4.53

εψ −30 1.78± 5.18 −0.73± 4.87 1.89± 13.42 0.63± 5.75
30 −0.99± 3.96 −0.57± 3.26 2.66± 11.76 −0.59± 4.42

∗ See Table 3.

Table 5. RE from the sensitivity test for the georeferenced 3D wind vector (u,v,w) calculated by adding an error of ±30 % to all the
calibrated parameters simultaneously. The georeferenced 3D wind vector was calculated based on the straight leg of the standard operational
flight.

Parameter Error (%) RE of georeferenced 3D wind vector
mean±SD

u (%) v (%) w (%)

All −30 4.24± 27.89 −3.2± 21.1 −29.35± 4.63
30 −4.15± 27.46 3.55± 21.91 29.16± 4.86

time, the measurement of the vertical wind component was
significantly affected by the in-flight turn (maintaining an ap-
proximately 20◦ roll). Therefore, it is necessary to avoid us-
ing the measured data from the turn section for turbulent flux
calculation. Compared to other studies (Vellinga et al., 2013;
Reineman et al., 2013), the relatively large variance in the
horizontal wind and wind direction after calibration in this
study may be caused by the nonstationary condition of the
turbulence. This was caused by the fact that the flight alti-
tude of 400 m was not high enough to totally avoid interac-
tion from the underlying surface.

The current calibration procedure did not include methods
to determine the offset angle in roll (εϕ) and the tempera-
ture recovery factor (εr) because of the small vertical separa-
tion (27.3 cm) between the 5HP and the roll axis of the UAV
and the small Mach number (< 0.1) during operational flight.
The default (εϕ = 0◦) and empirical (εr = 0.82) values were
adopted for these two calibration parameters. The sensitivity
analysis shows that these two parameters do not have a large
effect on the wind vector and turbulent flux.

It should be noted that wind measurement from the air-
borne platform may be susceptible to flow distortion and
rigid-body rotation (leverage effects). Generally, the influ-
ence of these two factors was ignored by the UAV plat-
form. To confirm that these effects could be safely ig-

nored, data from the acceleration–deceleration flight maneu-
ver were used to analyze the effects of lift-induced upwash
and the leverage effect on the wind measurements. Our re-
sults demonstrated that the upwash has almost no effect on
the wind measurement, which was indicated by the relation-
ship of nearly 1 : 1 (0.94 in Fig. 7) between the measured
attack angles and pitch angle. The slight departures from the
ideal 1 : 1 relationship may have been caused by the non-
stationary condition during the flight. With respect to the
influence of the leverage effects, the differences in the 3D
wind vector between with and without the leverage effect
correction are very small as well. Ignoring the influence of
the leverage effect has almost no effect on the measurement
of wind. Therefore, we concluded that the georeferenced 3D
wind vector can be measured reliably by the current UAV-
based EC system without considering the interference from
the lift-induced upwash and leverage effects.

Third, the instrumental-noise-related flux measurement er-
ror was estimated by combining the covariance uncertainty
estimated by the RS method and the propagation of errors in
the flux correction terms. By assuming that the instrumen-
tal noise was close to a constant, we fitted a simple rational
function relationship between the relative measurement error
and the flux magnitude according to measured data (Fig. 9),
and the fitted coefficient in the numerator can be consid-

https://doi.org/10.5194/amt-16-5659-2023 Atmos. Meas. Tech., 16, 5659–5679, 2023



5674 Y. Sun et al.: Quality evaluation for a UAV-based eddy covariance system

Table 6. RE from the sensitivity test for the turbulent flux calculated by adding an error of ±30 % to all the calibrated parameters simultane-
ously. The turbulent flux was calculated based on the straight flight leg of the standard operational flight.

Parameter Error (%) RE of turbulent flux
mean±SD

Fc (%) H (%) LE (%) u∗ (%)

All −30 −1.19± 10.51 −0.9± 8.06 2.71± 13.91 −2.92± 8.19
30 −0.49± 10.01 −1.66± 5.4 −6.07± 13.24 1.74± 6.55

ered to be the flux measurement error caused by instrumental
noises. The estimated instrumental-noise-related flux mea-
surement errors of CO2, sensible heat flux, and latent heat
flux were 0.03 µmolm−2 s−1, 0.02 Wm−2, and 0.08 Wm−2,
respectively. Since the RS method used the shuffled raw mea-
surement data directly to calculate the instrumental noise in
the flux covariance, its estimates inevitably included the ef-
fects of resonance noise from the UAV. Using the signal-to-
noise ratio of 10 : 1, the least-resolvable magnitude for turbu-
lent flux measurement was estimated to be 0.3 µmolm−2 s−1

for the CO2 flux, 0.2 Wm−2 for the sensible heat flux, and
0.8 Wm−2 for the latent heat flux.

Fourth, because the UAV-based EC system has not com-
pletely insulated the noise from the operation of the engine
and propeller and its effect on the measured scalars, the ref-
erence (co)spectra of Massman and Clement (2005) were
used to quantify the effect of the resonance noise on the vari-
ance and flux covariance of the measured scalars. Due to the
fact that the effect of the resonance noise mainly appeared
in the high-frequency domain, we artificially designated the
frequency range of the noise region for air temperature, wa-
ter vapor, and CO2 (Sect. 2.4.3). By calculating the area
difference between the measured and reference (co)spectral
curves for the designated frequency range, the resonance ef-
fect could be quantified. The results show that, overall, reso-
nance noise has little impact on the variance and flux covari-
ance of the measured scalars. The measurements of the CO2
concentration and its flux covariance were the most suscepti-
ble to resonance noise, but the maximum effect was less than
5 %. It should be noted that this method may overestimate
the deviation caused by the resonance noise due to the refer-
ence and measured (co)spectral curves not fully overlapping
in the inertial subrange (shown in Fig. 3).

Fifth, two sensitivity tests were conducted to assess the
perturbation in the georeferenced wind velocity and turbulent
flux under variation (±3 %) in each calibration parameter
around its calibrated value (εψ = 2◦, εθ =−0.183◦, εφ = 0◦,
εr = 0.82) as well as under simultaneous variation (±30 %)
in all calibration parameters. Their REs were used to evalu-
ate the sensitivity, and values of wind and flux less than their
least-resolvable magnitude were removed from this analy-
sis. The results revealed that uncertainties in the tempera-
ture recovery factor (εr) and mounting offset in the roll angle
(εϕ) do not significantly contribute to an error in the mea-

Figure 10. Relationship between the magnitude of the horizontal
wind velocity (u,v) and the relative error (RE) from the sensitivity
test.

surement of the wind vector (RE< 4 %) and turbulent fluxes
(RE< 5 %). Calibration parameters that had the largest ef-
fect on the measurement of the georeferenced wind vector
and turbulent flux are the mounting offset angle in pitch (εθ )
and heading (εψ ). Uncertainties in εθ had a direct effect on
the measurement of the vertical wind component, and these
errors then propagated to the measured fluxes, resulting in
a large error contained in the measured fluxes (∼ 15 %). A
negative error in εθ will lead to an underestimation of the
vertical wind and vice versa. Errors in εψ directly affect the
measurement of the horizontal wind, and to some extent, the
measurement of turbulent flux. By checking the relationship
between the magnitude of the horizontal wind (u,v) and RE,
a near-rational function relationship was seen, as shown in
Fig. 10. The influence of the error in εψ decreased signifi-
cantly with the increase in the magnitude of the horizontal
wind velocity. Additionally, the measurement of the latent
heat flux may be greatly affected by the error in εψ , which is
reflected by the relatively large deviancy (∼ 14 %) of the RE.
Therefore, the εθ and εψ parameters need to be calibrated
carefully.

Lastly, it should be noted that the accuracy of the mea-
sured georeferenced wind field and turbulent flux from the
UAV-based EC system is subject to the combination of many
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factors, mainly including sensor accuracy, the UAV power
plant, the UAV fluctuation (e.g., variation in the UAV atti-
tude and flight height), and the atmospheric conditions dur-
ing the measurements, etc. This study mainly focused on as-
sessing the effects of sensor precision and the UAV power
plant on the measurement errors in the georeferenced wind
vector and turbulent flux. Evaluation results gave the lowest
limit of the wind field and turbulent flux that the UAV-based
EC system can measure reliably. Direct comparison of flux
measurements between aircraft and the traditional ground
tower is still challenging due to the difference in the mea-
surement height, mechanism (time series for ground EC and
space series for aircraft), and instruments (e.g., wind sen-
sor). Previous studies have extensively compared the mea-
surement of fluxes and the wind vector between airborne and
ground-based EC methods and found consistent results (Gi-
oli et al., 2004; Metzger et al., 2012; Sun et al., 2021b). At
the same time, substantial and consistent over- or underes-
timations of the measured wind and fluxes by aircraft com-
pared to ground measurements were observed and reported.
These differences may be due to several factors, such as ver-
tical flux divergence (the measurement height of the UAV
is higher than the ground tower), surface heterogeneity (in-
duced by the larger footprint region of the UAV compared to
the ground tower), measurement errors (e.g., window length,
resonance noise), and their differences in the platform and
sensors. Therefore, in order to evaluate the measurement per-
formance of the UAV-based EC system realistically, it is nec-
essary to conduct a comparison test on the same platform and
in the same environment to exclude the influence of these
factors.

5 Conclusions and further work

The main objective of this study was to quantitatively evalu-
ate the performance of the developed UAV-based EC system
in the measurement of a georeferenced wind field and turbu-
lent flux. In terms of measuring precision, magnitudes larger
than 0.7 ms−1 for wind velocity, 0.3 µmolm−2 s−1 for CO2
flux, 0.2 Wm−2 for sensible heat flux, and 0.8 Wm−2 for la-
tent heat flux could be reliably measured by the UAV-based
EC system. Carefully calibrated offset angles in pitch (εθ )
and heading (εψ ) were shown to effectively improve the qual-
ity of wind field measurements, and the influences of flow
distortion and the leverage effect on the wind measurement
were minimal and could be ignored. The influence of reso-
nance noise on the measurement of air temperature and water
vapor was small (typically < 1 % for their variance and flux
covariance), but the influence on the measurement of CO2
(around 5 % for variance and flux covariance) was relatively
large.

The relevance of the calibration parameters (εr, εφ , εψ ,
εθ ) for the measurement of the georeferenced wind vector
and turbulent flux was also assessed based on two sensitivity

tests. The measurements of the georeferenced wind vector
and turbulent flux were insensitive to the errors in εr and εφ ,
while uncertainties in the εθ and εψ calibration parameters
had the strongest effects on the measurements. Because of εθ
determining the magnitude of the vertical wind, its error will
lead directly to uncertainties in vertical wind measurement
and then propagate the uncertainties to the measured turbu-
lent flux. Errors in εψ have a direct effect on the measure-
ment of horizontal wind and to some extent the measurement
of turbulent flux. Therefore, these two calibration parame-
ters need to be calibrated carefully. Conducting the UAV-
based EC measurement when the wind velocity is larger than
3 ms−1 can lead to more stable and reliable (RE< 10 %) re-
sults of the wind speed measurement compared to a relatively
windless environment.

Finally, we concluded that the developed UAV-based EC
system measured the georeferenced wind field and turbulent
flux with sufficient precision. The lift-induced upwash and
leverage effect had almost no effect on the measurement of
the georeferenced wind vector. The resonance effect caused
by the operation of the engine and propeller mainly affected
the measurement of CO2, and its effect on variance and flux
covariance was around 5 %. The quality of the εψ and εθ cal-
ibration parameters has a significant effect on the measure-
ments of the georeferenced wind vector and turbulent flux,
which underscores the importance of careful calibration. The
UAV-based EC system has several advantages over occupied
aircraft, including less turbulence disturbance in wind mea-
surement, lower measurement altitude (above ground level),
simpler operation, and lower operating costs, etc. Mean-
while, there are still some challenges that need to be over-
come like, for example, how to effectively isolate the reso-
nance noise, how to directly evaluate the measurement per-
formance of the UAV-based EC system by comparing it with
the traditional tower-based EC instruments, and how to prop-
erly interpret the instantaneous flux from aircraft. Future re-
search may include the development of a new UAV-based EC
system with the following improvements: (1) a new electro-
powered UAV platform with the advantages of being quieter
(low noise) and having a low cruising speed; (2) a ground-
vehicle-based validation platform to enable direct compara-
tive evaluation of the UAV-based EC system with traditional
ground EC methods under near-identical environmental con-
ditions; (3) a graphics-based real-time monitoring system to
make it possible to change the flight pattern according to real-
time data; and (4) a number of integrated field observation
experiments that combine tower-based EC networks, OMSs,
and multi-source satellite RS to further prompt the develop-
ment of theory and methodology for airborne flux measure-
ments. Ultimately, the versatility of the UAV-based EC sys-
tem as a low-cost and widely applicable environmental re-
search aircraft will further improve our understanding of the
energy- and matter-cycling processes at regional scales.
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