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Abstract. Measurements of column-averaged dry air mole
fraction of CO2 (termed XCO2) from the Orbiting Car-
bon Observatory-2 (OCO-2) contain systematic errors and
regional-scale biases, often induced by forward model er-
ror or nonlinearity in the retrieval. Operationally, these bi-
ases are corrected for by a multiple linear regression model
fit to co-retrieved variables that are highly correlated with
XCO2 error. The operational bias correction is fit in tandem
with a hand-tuned quality filter which limits error variance
and reduces the regime of interaction between state variables
and error to one that is largely linear. While the operational
correction and filter are successful in reducing biases in re-
trievals, they do not allow for throughput or correction of
data in which biases become nonlinear in predictors or fea-
tures. In this paper, we demonstrate a clear improvement in
the reduction in error variance over the operational correc-
tion by using a set of nonlinear machine learning models,
one for land and one for ocean soundings. We further illus-
trate how the operational quality filter can be relaxed when
used in conjunction with a nonlinear bias correction, which
allows for an increase in sounding throughput by 14 % while
maintaining the residual error in the operational correction.
The method can readily be applied to future Atmospheric
CO2 Observations from Space (ACOS) algorithm updates,
to OCO-2’s companion instrument OCO-3, and to other re-
trieved atmospheric state variables of interest.

1 Introduction

Carbon dioxide (CO2) is a key contributor to radiative forc-
ing, and hence rising levels in the atmosphere are of con-
cern due to their influence on future climate. Following
a long history of critical in situ measurements of CO2 at
key sites around the world that allowed us to better un-
derstand the carbon cycle on continental scales, the era of
space-based remote sensing began with the Scanning Imag-
ing Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY) in March 2002 (Bovensmann et al., 1999)
and the Atmospheric Infrared Sounder (AIRS) launched in
May 2002 (Aumann et al., 2003). These missions were fol-
lowed by dedicated CO2 observers such as the Greenhouse
gases Observing SATellite (GOSAT) mission in 2009 (Kuze
et al., 2009) and the Orbiting Carbon Observatory-2 (OCO-2)
in 2014 (Crisp et al., 2004). These data have yielded substan-
tial scientific insights, such as a much more dynamic tropi-
cal carbon cycle compared with previous understanding (e.g.,
Liu et al., 2017; Palmer et al., 2019; Crowell et al., 2019;
Peiro et al., 2022), as well as studies into power plant emis-
sions and plumes (Nassar et al., 2017).

OCO-2 measures reflected solar radiances, from which
column-averaged CO2 dry air mole fractions (XCO2) are
retrieved with the NASA Atmospheric CO2 Observations
from Space (ACOS) algorithm (Crisp et al., 2012; O’Dell
et al., 2012; Connor et al., 2008). Radiances are measured
in the near-infrared oxygen A band near 0.76 µm, the short-
wave infrared weak CO2 band near 1.6 µm, and the short-
wave infrared strong CO2 band near 2.05 µm. ACOS is based
on Bayesian optimal estimation (Rodgers, 2000) that adjusts
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input parameters (e.g., XCO2, aerosols, surface character-
istics, surface pressure) to maximize agreement between a
modeled spectrum (derived by a radiative transfer model) and
OCO-2 measurements. The parameters that best explain the
measured radiances are labeled as the “retrieved” parameters.
ACOS has undergone continuous improvement since the ini-
tial version.

Since the radiances contain uncorrected calibration arti-
facts and the modeled representation of the atmospheric ra-
diative transfer is not perfect, retrieved parameters contain
systematic biases. The inverse problem is under-constrained
and leads to posterior errors in retrieved parameters that are
correlated. To correct for errors in XCO2 arising from these
types of dependencies, a multiple linear regression (MLR)
bias correction with co-retrieved state variables or features
used as predictors is fit to the difference (1XCO2) between
the ACOS-retrieved XCO2 and a truth proxy estimate of
XCO2. This method was first introduced for ACOS retrievals
applied to the GOSAT instrument (Wunch et al., 2011) and
later extended to OCO-2 and OCO-3 (O’Dell et al., 2018;
Taylor et al., 2020, 2023). The MLR bias correction is fit in
tandem with a quality filter of empirically defined thresholds
on a set of features. The bias correction and quality filter are
derived iteratively, with filter thresholds chosen restricting
features to a range in which the relationship between1XCO2
and the parameters are mostly linear, improving the goodness
of fit for the multilinear regression, which is then used in turn
to retune the quality filter thresholds. The combined bias cor-
rection and quality filtering process is derived manually so
that the final product must be hand-tuned for each algorithm
update. After the feature-based correction, a footprint cor-
rection and global Total Carbon Column Observing Network
(TCCON) offset are applied. The combined bias correction
and quality filter process is robust across a set of ground truth
proxy metrics and greatly reduces both mean bias and error
scatter of XCO2 retrieved from OCO-2. Full details of the op-
erational bias correction and filtering can be found in O’Dell
et al. (2018).

A drawback of applying the quality filter is the exclu-
sion of data due to the linear assumption of the bias cor-
rection to which the quality filter limits the regime of in-
teraction between state vector variables and 1XCO2, thus
removing data where the bias is nonlinear. Due to loss of
data, the bias correction and quality filter are often disre-
garded for local studies (Nassar et al., 2017; Mendonca et
al., 2021) and are too limiting for certain regions (Jacobs et
al., 2020). Applying nonlinear machine learning techniques
has shown great promise for the task of bias correction for
GOSAT and GOSAT-2 (Noël et al., 2022) and TROPOMI
(Schneising et al., 2019). Specific correction of 3D cloud bi-
ases for OCO-2-retrieved XCO2 (Massie et al., 2016) using
a nonlinear method fit on a small set of features correlated
with 3D cloud effects in addition to the linear operational
correction is demonstrated in Mauceri et al. (2023).

This research demonstrates a general nonlinear bias cor-
rection approach for OCO-2 build 10 (B10; Taylor et
al., 2023) via a machine learning method and provides a
post hoc explanation of the overall contribution of the se-
lected state vector features. Our nonlinear bias correction
is shown to reduce systematic errors and increase the per-
centage of good-quality soundings by allowing for the relax-
ation of the hand-tuned thresholds employed with the stan-
dard quality threshold method. The framework presented in
this paper for identifying informative features for bias correc-
tion can be adapted for future OCO-2 and 3 ACOS algorithm
updates.

2 Data

To develop a bias correction, we define three truth proxy
datasets for the true atmospheric column mole fraction.
1XCO2 is then set as the difference between the raw ACOS
retrieval of XCO2 and the truth proxy estimate of XCO2, as
shown in Eq. (1). For the TCCON and model mean truth
proxies, the OCO-2 averaging kernel is also applied as de-
scribed in Taylor et al. (2023).

1XCO2 = XCO2,ACOS−XCO2,Proxy (1)

We use the same proxy datasets used in the development
of the operational bias correction (Osterman et al., 2020):
co-located OCO-2 soundings with TCCON, a collection of
small area clusters of soundings for which XCO2 is not ex-
pected to vary above the instrument noise, and a set of mod-
eled mole fractions whose underlying surface flux is con-
strained by the NOAA global in situ network (Masarie et
al., 2014). Datasets include soundings from November 2014
through to February 2019. Each truth proxy captures a dif-
ferent scale of retrieval error and as such gives complemen-
tary information as described in O’Dell et al. (2018). All
datasets were sampled in conjunction with corresponding lo-
cations and times in the OCO-2 B10 L2 Lite files which can
be found at https://disc.gsfc.nasa.gov/datasets/ (last access:
10 January 2022). Spatial coverage and sounding count are
shown in Fig. 1. The newest version available, the level 2
product, is build 11 (B11); however at the time of writing it
was undergoing reprocessing.

2.1 TCCON truth proxy

TCCON is a system of ground-based sun-looking Fourier
transform spectrometers with growing global coverage that
retrieves column-averaged dry air mole measurements of the
trace greenhouse gases from radiances in similar spectral
bands to OCO-2. Since each site has been extensively val-
idated against World Meteorological Organization (WMO)-
traceable in situ observations on board aircraft, TCCON of-
fers the most accurate comparison for XCO2 (Wunch et
al., 2010). While TCCON is well calibrated, site coverage is
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Figure 1. Spatial coverage for each truth proxy. The mean of a set
of flux models is shown in panel (a), small area approximation is
shown in panel (b), and TCCON is shown in panel (c).

limited outside of North America, Europe, and Oceania. The
TCCON dataset therefore is spatially the sparsest of the three
truth proxies and offers non-uniform point comparisons. We
use the same dataset as the operational correction consist-
ing of OCO-2 soundings co-located with TCCON GGG2014
measurements (Wunch et al., 2017, 2011) in space (2.5◦ lat,
5◦ long) and time (2 h). The stations used in this work are
shown in Table 1.

2.2 Small area approximation truth proxy

The small area approximation described in O’Dell et
al. (2018) offers insight into small-scale drivers of bias
and retrieval variability. The small area approximation truth
proxy assumes that XCO2 within a 100 km neighborhood is
largely uniform for a given overpass by OCO-2. This as-
sumption is evaluated in Worden et al. (2017), where it was
found by using a high-resolution atmospheric model (GEOS-
5) that variance of XCO2 is around 0.1 ppm per 100 km. The
proxy offers improved spatial coverage compared to TCCON
but struggles to capture biases with low variability over the
small area.

2.3 Flux models truth proxy

A set of flux inversion models form the largest of the truth
proxy datasets, both in number of soundings and in spatial
coverage. The models included in this truth proxy set are
found in Table 2. The posterior XCO2 fields produced by
the models are sampled along OCO-2 tracks; the proxy is
then computed as the average of the models at every sound-
ing where there is good agreement (within 1.5 ppm) among
models (O’Dell et al., 2018; Osterman et al., 2020).

3 Methods

3.1 Gradient boosting

To model systematic error from co-retrieved state vector el-
ements, we employ a machine learning method known as
extreme gradient boosting or XGBoost (Chen and Guestrin,
2016) which can fit both linear and nonlinear relationships.
XGBoost is an ensemble model where a set of simple models
known as regression trees (Breiman 1984) are sequentially
trained, with each new member fit on residuals of the previ-
ous trees. During inference, the weighted sum is taken across
the ensemble members. Members are grown or fit by select-
ing features that provide high information gain (Eq. 2). Infor-
mation gain is calculated by evaluating the sum of the gradi-
ents G and hessians H of the loss function at left and right
leaf nodes when selecting split points for a feature during tree
fitting. For our experiments we minimize the mean squared
error between the truth proxy bias yi and the estimate ŷi as
the loss function, as shown in Eq. (3). Features that are infor-
mative for reducing residual error during tree development
yield high gain values. These values can be summed across
trees in the ensemble to produce a ranking of feature contri-
bution. This provides a post hoc method of interpretability
yielding a high level or global view of feature importance to
correcting 1XCO2. While this method of interpretability is
less informative than the regression coefficients provided by
a linear model, it is useful for tasks such as feature selection.

XGBoost employs L1 and L2 norm regularization to re-
duce overfitting to outliers present in the training dataset. The
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Table 1. TCCON sites used in bias correction and filtering for B10 ACOS.

TCCON Continent Latitude Altitude Operational date range Data citation
(station name∗ means an island) (m)

Saga∗ Asia 33.2◦ N 7 June 2011–present Shiomi et al. (2014)

Orléans Europe 48.0◦ N 130 August 2009–present Warneke et al. (2019)

Garmisch Europe 47.5◦ N 740 July 2007–present Sussman and Rettinger (2018)

Tsukuba∗ Asia 36.1◦ N 30 December 2008–present Morino et al. (2018a)

Sodankylä Europe 67.4◦ N 188 January 2009–present Kivi et al. (2014)

Rikubetsu Asia 43.5◦ N 380 November 2013–present Morino et al. (2018c)

Izaña∗ Africa 28.3◦ N 2367 May 2007–present Blumenstock et al. (2017)

JPL N. America 34.2◦ N 390 March 2011–July 2013 Wennberg et al. (2017a)
June 2017–May 2018

Bialystok Europe 53.2◦ N 180 March 2009–October 2018 Deutscher et al. (2019)

Bremen Europe 53.1◦ N 27 July 2004–present Notholt et al. (2019)

Wollongong Australia 34.4◦ S 30 May 2008–present Griffith et al. (2014b)

Park Falls N. America 45.9◦ N 440 May 2004–present Wennberg et al. (2017b)

Réunion∗ Africa 20.9◦ S 87 September 2011–present De Maziére et al. (2017)

Anmyeondo Asia 36.5◦ N 30 August 2014–present Goo et al. (2014)

Darwin Australia 12.4◦ S 30 August 2005–present Griffith et al. (2014a)

Lauder∗ Australia 45.0◦ S 370 June 2004–present Pollard et al. (2019)

Lamont N. America 36.6◦ N 320 July 2008–present Wennberg et al. (2016)

Karlsruhe Europe 49.1◦ N 116 September 2009–present Hase et al. (2015)

Manaus S. America 3.2◦ S 49.2 August 2014–June 2015 Dubey et al. (2014)

Paris Europe 48.8◦ N 60 September 2014–present Té et al. (2014)

Burgos∗ Asia 18.5◦ N 35 March 2017–present Morino et al. (2018b)

Table 2. Flux models used for the model mean truth proxy. TM5 – Global Chemistry Transport Model Transport Model 5; TM3 – Global
Chemistry Transport Model Transport Model 3; LMDZ – Laboratoire de Météorology, EnKF – ensemble Kalman filter; 4D-Var – 4D-
Variation Data Assimilation.

Model name Institute Transport Resolution Inverse Citation
model (lat× long× time) method

CarbonTracker NOAA Global Monitoring TM5 2◦× 3◦× 3 h EnKF Peters et al. (2007),
Laboratory CarbonTracker (2021)

CarboScope Max Planck Institute TM3 4◦× 5◦× 6 h 4D-Var Rödenbeck (2005), Rödenbeck et
for Biogeochemistry al. (2018), CarboScope (2021)

CAMS Copernicus Atmosphere LMDZ 1.9◦× 3.75◦× 3 h 4D-Var Chevallier et al. (2010),
Monitoring Service CAMS (2021)
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effect of the regularization is governed by the hyperparame-
ters λ and γ and must be carefully selected or tuned. To find
these hyperparameters we use a k-fold cross validation strat-
egy in which the training dataset is divided into k subsets
(we use k = 10) and each subset is sequentially held out for
evaluation for a model trained on the rest of the data. Per-
formance across the k folds is averaged, and the process is
repeated for each potential selection of hyperparameters. We
found a λLAND = 2.5 and γLAND = 3.75 for the land correc-
tion and λOCEAN = 2.0 and γOCEAN = 10.0.

Information gain=
1
2

[
G2

Left
HLeft+ λ

+

G2
Right

HRight+ λ

−
(GLeft+GRight)

2

HLeft+HRight+ λ

]
− γ (2)

Mean squared error loss=
1
N

N∑
i=1

(
yi − ŷi

)2 (3)

3.2 Quality filtering

Soundings of the lowest quality are typically caught by the
O2 A band preprocessor (Taylor et al., 2012) and IMAP-
DOAS (Frankenberg et al., 2005) algorithms due to clouds
and low SNR in the continuum and are then screened out
before being run through the L2 retrieval algorithm (Taylor
et al., 2016). After retrieval, an additional number of sound-
ings are flagged and removed for which the ACOS algorithm
failed to converge or for which the chi-squared difference be-
tween modeled and measured spectra is too large. Addition-
ally, large unphysical outliers present in the tails of the condi-
tional distributions of several atmospheric state variables are
also removed by hand using domain-expert-selected thresh-
olds. Finally, users can select for high-quality retrievals using
the binary XCO2 quality flag (QF) with “good” data having
a QF= 0 and “poor” data having QF= 1. The operational
XCO2 quality flag is derived using a set of filters applied
to the state vector variables found in conjunction with lin-
ear parametric bias correction. An initial linear correction is
fit on soundings that have passed the preprocessing filtering
steps. Each filter is then hand selected, QF= 1 data are re-
moved, and the bias correction is re-fit until a final set of
filters and linear model weights are derived that sufficiently
reduce mean bias and scatter (O’Dell et al., 2018).

To assess the ability of the nonlinear method to correct
QF= 1 data and the potential for increased throughput of
well-corrected data, we derive a new quality flag (QFNew).
Our flag is developed in a similar fashion to the B10 qual-
ity flag for use with the nonlinear correction. The first step is
to start with the same set of state vector variables and associ-
ated thresholds. Next, thresholds are relaxed for a selection of
state vector variables that allow for higher sounding through-
put while maintaining or reducing corrected 1XCO2 across
truth proxies. Thresholds are never set to be more constrain-

ing than the B10 values in order to not remove soundings that
are already considered to be of passing quality.

3.3 Training and test split

For training and evaluating the nonlinear correction, we sub-
set each of our truth proxy datasets into training and test-
ing datasets. First, datasets are split by the two surface
types: ocean and land. In B10, both operation modes (nadir
and glint) are combined for the land bias correction due to
low variance in feature importance between nadir and glint
(O’Dell et al., 2018). To compare to the operational correc-
tion, we also combine both modes for the land correction
model. The land and ocean datasets are subset once more
by truth proxy to identify informative features for the final
land and ocean models. To ensure that model performance is
indicative of how well the models generalize to unseen data,
we hold out a year of data for evaluation of the final land
model and ocean model. Models are trained on data from
2014, 2015, 2016, and 2017 and then evaluated on data from
2018. Since data from 2019 are limited, we exclude them
from both training and evaluation.

3.4 Experiment design

First, the footprint correction as described in O’Dell et
al. (2018) is applied to the training and evaluation datasets.
We then evaluate two methods for bias-correcting retrieved
XCO2: a nonlinear machine learning model called XGBoost
and, as a baseline, an MLR model trained similar to the hand-
tuned model used in the operational correction. For correct-
ing land nadir and land glint data, a single XGBoost model
and MLR are trained using all three truth proxies. The pre-
dictor variables or features are the same for both model types.
This allows for comparison between the nonlinear model and
baseline linear method to properly assess that improved fit is
coming from the captured nonlinearity and not just the in-
clusion of the additional predictors. A single XGBoost and
MLR are derived for correcting ocean glint data, again using
all three proxies and the same set of ocean features. We also
compare our approach to the operational land correction and
ocean correction for B10.

To identify a set of informative features to be used as in-
puts for the XGBoost land and ocean models, we first train
a set of models independently on each truth proxy. These
six models (three for land and three for ocean) are initially
fit on a large set of potentially informative features, using
QF= 0+ 1 data. The resulting feature importance derived
from these initial models is used to filter down the feature
set to identify a subset of features that is highly informative
across truth proxies. The resulting feature sets are combined
to train the final proposed model pair (one for land and one
for ocean), which are trained using all truth proxies.

Next, we compare the final models trained on QF= 0+ 1
data against models trained only on good-quality data as-
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signed QF= 0 and then evaluate each model pair on QF= 0
soundings that have been temporally held out. This is to en-
sure the ability of the nonlinear method to reproduce the lin-
ear model, which is the currently accepted community stan-
dard. Secondly, we evaluate the model trained on QF= 0+ 1
data on the excluded regime of data labeled QF= 1, where
nonlinear relationships between 1XCO2 and predictors be-
come more pronounced. Finally, we derive a new quality flag
(QFNew) used in conjunction with the nonlinear correction
that increases the throughput of well-corrected data while
maintaining similar error metrics as the operational filter and
correction.

4 Results

4.1 Feature selection

We select informative features for our bias correction follow-
ing an iterative procedure. In the first step, we train XGBoost
models for each proxy by surface type and operation mode
(six models in total). These initial models are trained using
a large subset of co-retrieved state vector variables (shown
in Table C1) which are potentially informative for correcting
1XCO2 from the B10 L2 Lite files. The resulting models
are used to rank features according to their information gain,
which is defined in Eq. (2). Features that are less informa-
tive are removed from the set, and new models are trained
with the reduced feature set. Afterwards, feature importance
is once again evaluated. To ensure robustness to correlation
among features (which information gain does not account
for), we calculate Pearson’s correlation values between fea-
tures. Features with an absolute Pearson value greater than
0.5 are included one a time, and the feature with the highest
importance is kept. This process is iteratively repeated until
reaching a relatively small subset of maximally informative
features. These features are combined to train the final bias
correction models, which are trained on all proxies. Seven
features are selected for land correction and five features for
ocean, as shown in Fig. 2. The resulting features used in the
final models and a brief description are shown in Table 3.

Features used for the operational correction are also highly
informative for the proposed nonlinear corrections and in-
clude the difference between the retrieved CO2 profile and
prior profile used for land and ocean (co2_grad_del), as well
as two surface pressure difference terms: dpfrac for land and
dp_sco2 for ocean (Kiel et al., 2019). The co2_grad_del is
the change in profile shape and the prior and is calculated
as the difference in dry air mole fraction at the surface, de-
noted as CO2(1), from the fraction at ∼ 0.6316 times the
retrieved surface pressure; it is in units of parts per million
(ppm). The calculation for co2_grad_del is shown in Eq. (4).
For land, the dpfrac term is a difference ratio that considers
the smaller dry air column over higher elevations and is de-
fined in Eq. (5), where XCO2,raw is the uncorrected retrieval

of the column average and Pap,SCO2 and Pret are the prior sur-
face pressure at the strong band pointing offset and retrieved
pressure, respectively. For ocean, dp_sco2 is used and is the
retrieved surface pressure minus the strong band prior. The
extensive use of co2_grad_del and surface pressure deltas for
bias correction is discussed in Kulawik et al. (2019).

co2_grad_del=
[
CO2,ret(1)−CO2,ret(0.6316)

]
−
[
CO2,prior(1)−CO2,prior(0.6316)

]
(4)

dpfrac= XCO2,raw

(
1−

Pap,SCO2

Pret

)
(5)

For land, the h2o_ratio is used and is the ratio of XH2O
estimated by single-band retrievals from the strong and weak
CO2 bands separately using the IMAP-DOAS algorithm,
which can differ from unity in the presence of atmospheric
scattering (Taylor et al., 2016). We use three aerosol fea-
tures for our bias correction over land scenes, the first be-
ing the sum of dust, water, and sea salt optical thickness
termed DWS. We include retrieved ice particle optical depth
(aod_ice) and the finer stratospheric aerosol optical depth
(aod_strataer). The last feature used for land, as well as for
ocean, is the albedo slope for the strong CO2 band termed
albedo_slope_sco2. This variable represents the slope of the
reflectance across the strong CO2 spectral band for land
soundings and the slope of the Lambertian component of
the combined Cox–Munk and Lambertian Bidirectional Re-
flectance Distribution Function (BRDF) for ocean soundings
(Cox and Munk, 1954). In addition to the co2_grad_del,
albedo_slope_sco2, and dp_sco2, two additional variables
are used for the correction of ocean G (glint) scenes. These
are snr_wco2, which is the estimated signal-to-noise ratio de-
rived during optimal estimation, and finally rms_rel_wco2,
which is the percent residual error from the forward-modeled
radiance for the weak CO2 to the measured radiance.

4.2 Model evaluation for QF = 0

To ensure that the nonlinear method generalizes the linear
relationships largely observed for QF= 0, we evaluate two
XGBoost models – one which is fit on QF= 0+ 1 and one
fit on QF= 0 – to an MLR fit on the same feature set as the
nonlinear models. As the operational quality flag is hand-
tuned by re-fitting an MLR, the regime between the variables
selected for correction and systematic error are reduced to
mostly linear relationships. The nonlinear method has only
a marginal improvement over the MLR and B10 correction
on soundings that are passed by the operational quality fil-
ter over land (0.02–0.04 ppm) and a slightly more substan-
tial improvement over ocean (0.09–0.10 ppm) on the eval-
uation data. We found that retraining the XGBoost models
on QF= 0 data does not offer a substantial reduction in er-
ror despite initial XGBoost models being trained on unfil-
tered data. We forgo the iterative refitting approach that is
required for the MLR and operational correction by training
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Figure 2. Feature importance for final land model trained with all proxies (a). Feature importance for final ocean model trained with all
proxies (b). Error bars denote variance in feature importance across 10 runs with different random seeds.

Table 3. Selected features for use in our bias correction models. The first column shows state vector variable names as defined in the B10 L2
files, the second provides a brief description, and the last column shows which region and viewing mode correction the variable is used for.
NG signifies nadir plus glint and G glint.

State variable Description Surface type and
operation mode

dpfrac Surface pressure difference that considers smaller dry air columns over higher Land NG
elevations (Kiel et al., 2019).

h2o_ratio Ratio of retrieved H2O column in weak and strong CO2 bands by IMAP-DOAS. Land NG

DWS Additive combination of retrieved dust, water, and sea salt aerosol optical depth. Land NG

aod_strataer (aod_st) Retrieved upper-tropospheric plus stratospheric aerosol optical depth at 0.755 µm. Land NG

aod_ice (aod_ic) Retrieved ice cloud optical depth at 0.755 µm. Land NG

co2_grad_del Difference between the retrieved vertical CO2 profile and prior. Land NG/ocean G

albedo_slope_sco2 Retrieved strong band reflectance slope (land) or slope of Lambertian albedo Land NG/ocean G
component of BRDF (ocean).

dp_sco2 Surface pressure difference between the retrieved and prior, evaluated for the strong Ocean G
CO2 band location on the ground.

rms_rel_wco2 RMSE of the L2 fit residuals in the weak CO2 band relative to the signal. Ocean G

snr_wco2 The estimated signal-to-noise ratio in the continuum of the weak CO2 band. Ocean G

once on QF= 0+ 1 data. Table 4 shows the QF= 0 RMSE
results for XGBoost models trained on both QF= 0+ 1 data
and QF= 0 data, alongside the MLR model fit to the filtered
regime for 2018 and B10 operational correction.

4.3 Correcting outside of the filtered regime

Correction of systematic error outside of the quality-filtered
regime (QF= 1) is difficult to fit with a linear model. Strong
nonlinearities are observed for many of the co-retrieved state
vector variables and 1XCO2. For many variables this be-
havior is observed over un-physical values in a few spurious
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Table 4. RMSE scores for 2018 on QF= 0 data. Results are shown for land and ocean data by truth proxy and model. Two XGBoost models
are shown: one trained on QF= 0+ 1 (XGBoostQF0+1) data and then evaluated on QF= 0 and another (XGBoostQF=0) trained and evaluated
on only QF= 0 data. A multiple linear regression (MLRQF=0) is also fit for QF= 0 using the same feature set. In the last column, RMSE for
operationally corrected XCO2 (B10) is shown.

Land QF= 0

Truth proxy XGBoostQF=0+1 RMSE XGBoostQF=0 RMSE MLRQF=0 RMSE B10 RMSE
(ppm) (ppm) (ppm) (ppm)

Small area 0.83 0.82 0.84 0.85
TCCON 1.15 1.14 1.19 1.20
Model mean 1.05 1.05 1.09 1.11
All 1.03 1.02 1.05 1.07

Ocean QF= 0

Truth proxy XGBoostQF=0+1 RMSE XGBoostQF=0 RMSE MLRQF=0 RMSE B10 RMSE
(ppm) (ppm) (ppm) (ppm)

Small area 0.45 0.44 0.56 0.52
TCCON 0.83 0.81 0.89 0.95
Model mean 0.67 0.66 0.78 0.76
All 0.65 0.65 0.75 0.74

soundings that are easily filtered out. Variables such as
h2o_ratio which are responsible for the bulk of the quality
filtering (h2o_ratio thresholds remove ∼ 10 % of soundings)
exhibit such nonlinear characteristics over their marginal dis-
tributions. The dependent linear correction and quality fil-
ter is prohibitive for correcting and passing data in these re-
gions of the domain. Figures 3 and 4 illustrate the interaction
between state variables chosen for correction and 1XCO2.
The nonlinear model (green) improves both the mean and
variance of 1XCO2 over both the raw 1XCO2 (red) be-
fore correction and B10 correction (blue). Table 5 displays
the RMSE scores of the XGBoost-corrected XCO2 and op-
erationally corrected XCO2 for QF= 1 data. The nonlin-
ear correction provides a large improvement in reducing the
residual error for QF= 1 data over the operational correction
with a 1.33–2.26 ppm improvement for land data and 1.11–
1.38 ppm for ocean. These errors are still significantly larger
than the corresponding QF= 0 errors.

4.4 Comparison to B10

For the operational correction, regression weights for the lin-
ear model are hand-selected that have good agreement in
their correction across truth proxies. The full operational cor-
rection also includes a fixed correction for each of OCO-2’s
eight footprints, as described in Osterman et al. (2020). To
provide a fair comparison between the full correction mod-
els, we also apply the footprint correction after applying the
nonlinear feature correction. Table 6 shows the mean and 1σ
standard deviation for each bias correction and QF regime.
The largest improvement in the nonlinear method over B10
comes when correcting QF= 1 data, achieving a 59 % im-
provement in the reduction of error variance for land and a

Table 5. RMSE scores for 2018 on QF= 1 data. XGBoost-corrected
XCO2 and operationally corrected XCO2 (B10) for land and ocean
data.

Land QF= 1

Truth proxy XGBoostQF=0+1 RMSE B10 RMSE
(ppm) (ppm)

Small area 1.92 3.25
TCCON 2.81 5.07
Model mean 2.46 3.95

Ocean QF= 1

Truth proxy XGBoostQF=0+1 RMSE B10 RMSE
(ppm) (ppm)

Small area 1.25 2.36
TCCON 1.68 2.90
Model mean 1.53 2.91

67 % improvement for ocean data. The improvement in cor-
rection over B10 is less significant for QF= 0 with improve-
ment of 8 % for land and 19 % for ocean.

Regionally, the nonlinear correction shows up to a 0.5 ppm
improvement over northern Africa, where the B10 correc-
tion appears to underestimate 1XCO2 in comparison. A re-
duction in biases is also observed in large parts of South
America’s tropical and subtropical regions, as well as parts
of tropical Asia shown in Fig. 5a. These regions also con-
tain the largest difference in land NG (nadir plus glint)
correction between the methods with an average difference
(B10−XGBoost) of−0.5 ppm. There is a slight positive dif-
ference between methods over the Amazon Basin and Congo
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Figure 3. 1XCO2 vs. land features for 2018. Mean interaction and 2σ SD for uncorrected 1XCO2 plotted in red, XGBoost corrected in
green, and B10 corrected in blue. The vertical black dotted lines indicate B10 QF filters, and arrows point towards the region assigned QF= 0.
Individual soundings are shown with gray scatter.

rainforest (Fig. 5e). Figure 5c and d illustrate the improve-
ment of the nonlinear method to correct QF= 1 data over the
operational approach. For QF= 1, where the interaction be-
tween features and error is nonlinear, large biases in XCO2
remain after operational correction. The XGBoost model re-
duces these remaining biases in many regions, indicating that
there may still be usable data that are filtered out by the op-
erational QF when paired with the nonlinear correction.

4.5 Increased sounding throughput

One of the benefits of the nonlinear bias correction is the
potential for increased throughput of well-corrected QF= 1
data. Improved throughput of well-corrected data would be

of benefit to point analysis studies where data are limited by
the operational QF and potentially of benefit to flux models
as well. To provide an empirical example of this, we create a
modified version of the operational XCO2 quality flag utiliz-
ing our proposed ocean correction model and land correction
model. We take a conservative approach where initial filter
values are set equal to those of the operational quality filter-
ing. Then, we select a few variables for which the filters are
relaxed to increase sounding throughput while maintaining
the RMSE of the combined operational correction and qual-
ity filter. With our new quality flag (QFNew), we are able
to increase sounding throughput by approximately 14 % over
the B10 QF while matching the RMSE of the B10 correction,
as shown in Table 7.
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Figure 4. 1XCO2 vs. ocean features for 2018. Mean interaction and 2σ SD for uncorrected 1XCO2 plotted in red, XGBoost corrected
in green, and B10 corrected in blue. The vertical black dotted lines indicate B10 QF filters, and arrows point towards the region assigned
QF= 0. Individual soundings are shown with gray scatter.

Table 6. Comparison of combined proxy mean and standard devia-
tion XGBoost-corrected XCO2, XCO2 after the operational correc-
tion (B10), and un-corrected XCO2 (raw) for 2018 and all QF filter
regimes for both land and ocean data.

QF= 0

Surface and XGBoost B10 Raw
mode (ppm) (ppm) (ppm)

Land NG −0.04± 1.02 −0.13± 1.06 −1.90± 1.68
Ocean G 0.02± 0.64 0.18± 0.71 −1.61± 1.10

QF= 1

Surface and XGBoost B10 Raw
mode (ppm) (ppm) (ppm)

Land NG 0.01± 2.45 −1.24± 3.83 −2.83± 3.69
Ocean G −0.06± 1.50 −1.17± 2.59 −2.79± 2.75

QF= 0+ 1

Surface and XGBoost B10 Raw
mode (ppm) (ppm) (ppm)

Land NG −0.03± 1.75 −0.59± 2.64 −2.78± 2.73
Ocean G −0.01± 1.07 −0.36± 1.85 −2.09± 2.03

For many features, the quality filters were not changed
from the operational filters, as relaxing filters on variables
that are already passing most of their conditional distri-
butions would allow for only marginal improvements in
throughput at the cost of large systematic errors. There-
fore, we select only features for which large portions of the
marginal distributions are removed by the operational flag
and where the nonlinear correction improves both the mean
and variance of 1XCO2. The relaxed filters for these vari-
ables are shown in Figs. B1 and B2 by the vertical red dashed
lines, and the range of data assigned QFNew= 0 is shown in
the red parentheses. The operational filter also minimizes the
unitless metric of the binned standard deviation of 1XCO2
divided by the posterior XCO2 uncertainty below a value of
3 ppmppm−1 (Osterman et al., 2020). When tuning QFNew,
we also aim to minimize this metric. Higher throughput
of well-corrected data is observed in northern and central
Africa, the Amazon Basin, and in latitudes above 60◦ N as
seen in Fig. 6. While the selection of these variables and the
relaxation of their filter values are subjective, this empirical
result illustrates the benefit of a quality flag derived in con-
junction with the nonlinear bias correction. Future work will
focus on the automation of defining the quality flag thresh-
olds using a data-driven approach.
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Figure 5. Remaining XCO2 biases (1XCO2) after correction for 2018 and model mean proxy, binned to a 3◦× 3◦ resolution. 1XCO2
after the XGBoost correction for QF= 0 is shown in panel (a), 1XCO2 after the B10 correction for QF= 0 is shown in panel (b), 1XCO2
after the XGBoost correction for QF= 1 is shown in panel (c), 1XCO2 after the B10 correction for QF= 1 is shown in panel (d), and the
difference (B10−XGBoost) for QF= 0 is shown in panel (e).

Table 7. RMSE for combined XGBoost correction, B10 QF percent data throughput, and QFNew percent data throughput by surface and
mode for 2018.

Surface (mode) XGBoost RMSE B10 % passing QFNew % passing
(ppm) (%) (%)

Land (nadir plus glint) 1.07 59 69
Ocean (glint) 0.72 60 74
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Figure 6. Relative increase in percent passing QFNew over B10 QF
for 2018 aggregated by 4◦× 4◦ bins.

5 Discussion and future work

5.1 Generalization across proxies

We acknowledge that even with a temporal training and test-
ing split, there is still some circularity due to the lack of a
truly independent truth proxy. This issue has been discussed
at length for the operational bias correction in Taylor et
al. (2023), and the comparison and selection of independent
validation datasets are still an open area of study. The risk
of overfitting due to circularity becomes greater when fitting
a more complex machine learning model. To evaluate gen-
eralizability to a fully independent validation proxy, we fit a
set of XGBoost models on two truth proxies and evaluate on
the third proxy which is held out during training. The same
temporal split is used where 2018 data for the held-out proxy
are used for evaluation. Results are shown in Fig. 7, for land,
and Fig. 8, for ocean. Each column shows the residual fit for
the hold-out proxy for QF= 0 (top row) and QF= 1 (bottom
row). For QF= 0, increase in RMSE was minimal for both
surface types and across proxies. There was some impact to
performance on QF= 1 data when compared to training with
all three proxies, particularly for TCCON with an increase in
RMSE of ∼ 0.1 ppm for land and ocean data, indicating that
the information contained in TCCON is not adequately rep-
resented by the model mean and small area approximation
proxies which capture variability at larger scales. A potential
approach to reducing circularity in the evaluation of the truth
proxies would be to train the bias correction on TCCON and
either the model mean or small area approximation using the
third proxy not chosen for validation.

5.2 Evaluating feature importance between filter
regimes

To understand the contribution of the features to correcting
bias in QF= 0 and QF= 1 data, we compare the informa-
tion gain between the two regimes. To perform the ablation

study, we again employ the models trained on individual
truth proxies and retrain and evaluate them on QF= 0 and
again on QF= 1 data. Figure 9 shows the information gain
for each filter regime for land and for ocean. For land, dpfrac
and co2_grad_del are highly informative for correction of
QF= 0 data by the machine learning model. Similarly for
ocean QF= 0 data, the surface pressure delta term dp_sco2
and co2_grad_del are also highly informative. In operation,
these terms are also used for bias correction in all ACOS ver-
sions (dpfrac replaced dP in build 9, B9) to date. These vari-
ables are responsible for the largest reduction in unexplained
variance in the filtered regime (Payne et al., 2022; Osterman
et al., 2020; O’Dell et al., 2018).

For land QF= 1 data, there are a drop in importance
for co2_grad_del and dpfrac, a large increase for h2o_ratio,
and relative increases for the albedo and aerosol terms.
To explain the high importance for the h2o_ratio, we look
to the nonlinear interaction outside of the bound imposed
by the operational filter which removes soundings with a
h2o_ratio greater than 1.023, reducing the regime of interac-
tion to one that is not highly correlated with 1XCO2. In the
QF= 1 regime, h2o_ratio corresponds to a significant neg-
ative bias. Larger values of h2o_ratio are explained in Tay-
lor et al. (2016), where it was shown that retrieved surface
albedo from the strong CO2 band is generally lower than the
weak CO2 band. In cases of larger aerosol presence, this sen-
sitivity leads to weakening of the absorption features and a
positive departure from unity. The additional albedo term for
the strong CO2 band and the additional aerosol terms also
increase in importance for QF= 1.

For ocean QF= 1 data, there is a significant change in
information gain for several features. The surface pressure
delta term dp_sco2 becomes significantly less informative
for correcting QF= 1, where negative values of dp_sco2 are
relatively uncorrelated with 1XCO2. Similarly to land, the
albedo term for the strong CO2 band is more informative for
correcting outside the filtered regime along with the residual
error between forward-modeled radiances and measurements
in the weak CO2 band.

5.3 Preservation of CO2 enhancements

We assess the risk of the proposed bias correction to cor-
rect and remove plume features in the data. Several features
heavily utilized by the XGBoost models and in operational
correction, such as the CO2 gradient delta and surface pres-
sure terms (e.g., dpfrac, dp_o2a), are differences between the
ACOS-retrieved state and the prior. Therefore, there is po-
tentially a risk for the bias correction to use the delta terms
to overcorrect the retrieved XCO2 to the truth. We compare
XGBoost-corrected XCO2 for two known plumes first iden-
tified in Nassar et al. (2021). The two example plumes are
shown in Fig. 10a and b: an ocean glint and land nadir plume
in Taean, South Korea, and a land nadir plume observed
over two co-located power plants in Ohio, USA. We com-
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Figure 7. Comparison of XCO2 derived from XCO2 corrected by XGBoost (XCO2 ML) vs. truth proxy (XCO2 True) for land by the
hold-out proxy set and hold-out year (2018). Panels (a) and (d) display results of a XGBoost model trained on [TCCON, Model Mean] and
evaluated on Small Area. Panels (b) and (e) display results of a XGBoost model trained on [Small Area,TCCON] and evaluated on Model
Mean. Panels (c) and (f) display results of a XGBoost model trained on [Model Mean, Small Area] and evaluated on TCCON. Generalization
for the hold proxy and QF= 0 is shown in the top row and QF= 1 in the bottom.

Figure 8. Comparison of XCO2 derived from XCO2 corrected by XGBoost (XCO2 ML) vs. truth proxy (XCO2 True) for ocean by the
hold-out proxy set and hold-out year (2018). Panels (a) and (d) display results of a XGBoost model trained on [TCCON,Model Mean] and
evaluated on Small Area. Panels (b) and (e) display results of a XGBoost model trained on [Small Area,TCCON] and evaluated on Model
Mean. Panels (c) and (f) display results of a XGBoost model trained on [Model Mean, Small Area] and evaluated on TCCON. Generalization
for the hold proxy and QF= 0 is shown in the top row and QF= 1 in the bottom.
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Figure 9. Feature importance for land is shown in panel (a), and feature importance for ocean is shown in panel (b). Y axis displays the
normalized information gain from XGBoost models, with QF= 0 shown in darker colors and QF= 1 shown in lighter colors.

pare the uncorrected XCO2 retrieval (B10 raw), the opera-
tionally corrected XCO2 (B10 corrected), and the machine-
learning-corrected XCO2 (XGBoost corrected) and note that
the machine-learning-corrected product captures enhance-
ments not present in the training data. These results are also
consistent with the findings in Mauceri et al. (2023), which
include similar delta terms. This is further illustrated with
the Taean plume which consists of ∼ 35 % QF= 0 sound-
ings and ∼ 65 QF= 1 soundings. QFNew= 0 improves the
passing rate to ∼ 60 %, as shown in Fig. 10c. The red stars
show data that are passed by QF= 0 (and by construction
QFNew= 0), and the blue stars show data that would be re-
moved by QF= 1 but are passed by QFNew= 0, indicating
where the increase in available data for the plume feature is.
Of particular interest is the increase in data within the feature
around 36.95◦, which includes maximum observed enhance-
ment value.

5.4 Potential for further improving data throughput

Figure 11 further illustrates how the shape of the filtering or
decision surface can affect data throughput. Soundings are
binned by two state vector features: h2o_ratio and dpfrac.
Figure 11b and d show the improvement in the reduction of
mean 1XCO2 and of the error divided by the posterior un-
certainty from the nonlinear correction. The QF filters for
each feature are indicated by the black dashed lines, and the

interior of the intersection of these filters indicates the region
of state space that is labeled as QF= 0 (note: the additional
filters of the QF further reduce the data that are passed in this
region). Significant portions of the distribution, which the
nonlinear method can accurately correct, lay outside of this
filtered region and are labeled QF= 1. A data-driven filter
can be constructed using similar interpretable machine learn-
ing techniques and produce a unified correction and filtering
product. Furthermore, moving away from the binary qual-
ity flag to a ternary (“very good”, “good”, “bad”) will likely
provide an improved data product for end users. Data-driven
methods for quality filtering have already proven to be useful
in the northern high latitudes (Mendonca et al., 2021), and a
genetic algorithm was previously used to derive the “warn
levels” which complement the operational quality flag found
in early OCO-2 data versions (Mandrake et al., 2015). An
important task for such future work will be to ensure that the
machine learning method learns a physically consistent fil-
ter that can increase data throughput while still limiting vari-
ance of error and 1XCO2. We also acknowledge that while
the Taean plume shown in Fig. 10 illustrates an empirical
example of the ability of a nonlinear correction to improve
throughput of good-quality data, further evaluation of the in-
tersection (QF= 1 and QFNew= 0) will be required before
bringing such a method to operation.
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Figure 10. Two CO2 plumes captured downwind from power plants (Nassar et al., 2021). A land nadir plume near the J. M. Gavin and Kyger
Creek power plants in Ohio, USA (lat 38.93◦, long −82.12◦), on 30 July 2015 (a). An ocean glint and land nadir plume at Taean, South
Korea (lat 36.91◦, long 126.23◦), on 17 April 2015 are shown in panel (b). Regions with the example plumes are not present in the training
dataset and consist of QF= 0+ 1 data. Panel (c) shows the increase in XGBoost-corrected data for QFNew= 0 that would be filtered by the
B10 QF.

Figure 11. Hex bin plots show conditional distributions of 2018 1XCO2 vs. dpfrac and h2o_ratio. Remaining 1XCO2 after the operational
correction for B10 is shown in panel (a). Remaining 1XCO2 after the nonlinear correction is shown in panel (b). Binned SD of 1XCO2
divided by the posterior uncertainty from the retrieved XCO2 is shown in panel (c) for the operational correction for B10 and panel (d) for
the nonlinear correction. B10 QF filter thresholds for both features are shown with black dashed lines for reference.

6 Conclusion

We demonstrate an approach for selecting co-retrieved state
vector variables and other features to be used as input for a
land model and an ocean model to correct biases in ACOS-
retrieved XCO2. The use of the nonlinear method allows for

decoupling of the dependent bias correction and filter used
in operation, as the filter no longer needs to limit the correc-
tion function to a linear fit. By doing so, this method achieves
a 59 % and 67 % improvement in the reduction of the error
variance over the operational correction on QF= 1 data for
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land and ocean, respectively. To utilize this improvement in
correction, we derive a new quality flag (QFNew) by relax-
ing select filter thresholds from the operational quality flag.
Using the proposed QFNew flag, we increase data through-
put by 14 % while maintaining a comparable residual error to
the operational B10 correction. The workflow outlined in this
research is extendable to future ACOS algorithm updates and
OCO-2’s companion instrument, OCO-3, on board the Inter-
national Space Station.

Appendix A: Feature selection and importance

To assess the robustness of our choice of features, we com-
pare the ranking produced by the information gain feature
importance generated by the gradient booster with the rank-
ing produced by a method called permutation feature impor-
tance (Fisher et al., 2018). Permutation feature importance
captures the contribution to residual error when a feature has
its values randomly shifted across observations. Permutation
feature importance is a model-agnostic post hoc method that
does not require the bias correction model to be retrained.
In Fig. A1 we compare the normalized rankings for the in-
dividual proxy/surface/mode models that were used to select
variables for the final bias correction models trained on all
truth proxies. Good agreement is observed in both the over-
all ranking and magnitude of normalized feature importance
between both methods.

Figure A1. Comparison of feature importance derived from information gain and permutation importance. Normalized importance (permu-
tation importance in stars and information gain in circles) is shown for land and ocean features and by truth proxy. The feature importance
produced by both methods is largely in agreement in ranking and overall contribution.

The feature importance from the models trained on indi-
vidual proxies and QF= 0+ 1 data was used to identify state
variables to be used as input for the proposed bias correction
models. While there is generally good agreement between
the proxies, the overall magnitude and ranking differ slightly,
as shown in Fig. A2. For TCCON the aerosols and albedo
terms contribute more to the correction, while the same terms
are less informative for the small area approximation, which
is likely due to the small area proxy capturing biases that vary
slowly over larger scales. For ocean, the albedo_slope_sco2
is informative for the small area proxy, and all proxies exhibit
better agreement in their feature importance.
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Figure A2. Feature importance for individual truth proxy models. Error bars indicate variance over 10 runs with different random seeds.
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Appendix B: Threshold values for QFNew

Figure B1. Variables selected for land QFNew: the difference between the uncorrected retrieval and the model mean truth proxy is shown
with the black curve. The difference between the operational correction and the model mean truth proxy is shown in the light green curve.
The difference after the nonlinear correction is shown by the dark green curve. The binned SD error divided by the posterior uncertainty of
XCO2 is shown by the green pluses and right y axis. B10 QF filters are indicated by the vertical black dashed lines, and QFNew is shown by
the red dashed lines. Region of data denoted as QFNew= 0 is contained within the red values in the parentheses.

Figure B2. Variables selected for ocean QFNew: the difference between the raw uncorrected retrieval and the model mean truth proxy is
shown with the black curve. The difference between the operational correction and the model mean truth proxy is shown by the light blue
curve. The difference after the nonlinear correction is shown by the dark blue curve. The binned SD error divided by the posterior uncertainty
of XCO2 is shown by the blue pluses and right y axis. B10 filters are indicated by the vertical black dashed lines, and a potential filter is
shown by the red dashed lines. Region of data denoted as QFNew= 0 is contained within the red values in the parentheses.
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Appendix C: Lite file variables

Table C1. Features used or considered for the operational and proposed bias correction and filtering. BC stands for B10 bias correction, and
ML BC stands for XGBoost bias correction.

State variable Description Used for B10 BC, ML BC,
QF, QFNew

dpfrac Surface pressure difference that considers smaller dry air columns over higher B10 BC, ML BC, QF, QFNew
elevations (Kiel et al., 2019).

h2o_ratio Ratio of retrieved H2O column in weak and strong CO2 bands by IMAP-DOAS. ML BC, QF, QFNew∗

DWS Additive combination of retrieved dust, water, and sea salt aerosol optical depth. B10 BC, ML BC, QF, QFNew

aod_strataer Retrieved upper-tropospheric plus stratospheric aerosol optical depth at 0.755 µm. ML BC, QF, QFNew

aod_ice Retrieved ice cloud optical depth at 0.755 µm. ML BC, QF, QFNew∗

co2_grad_del Difference between the retrieved vertical CO2 profile and prior. B10 BC, ML BC, QF, QFNew

dp_sco2 Surface pressure difference between the retrieved and prior, evaluated for the strong B10 BC, ML BC, QF, QFNew∗

CO2 band location on the ground.

snr_wco2 The estimated signal-to-noise ratio in the continuum of the weak CO2 band. ML BC, QF, QFNew

co2_ratio Ratio of retrieved CO2 column in the weak and strong CO2 bands by IMAP-DOAS. QF, QFNew∗

altitude_stddev The standard deviation of the surface elevation in the target field of view. QF, QFNew∗

Unit is in meters.

max_declocking_wco2 An estimate of the absolute value of the clocking error in the weak CO2 band, QF, QFNew∗

expressed as a percent.

max_declocking_sco2 An estimate of the absolute value of the clocking error in the strong CO2 band, QF, QFNew∗

expressed as a percent.

dp_o2a The difference in retrieved surface pressure to O2 A band surface pressure prior. QF, QFNew

dp_abp The difference in the retrieved surface pressure to the fast O2 A band preprocessor retrieval. QF, QFNew∗

albedo_slope_sco2 Retrieved strong band reflectance slope (land) or slope of Lambertian albedo ML BC, QF, QFNew
component of BRDF (ocean).

albedo_slope_wco2 Slope of the weak CO2 band albedo with respect to wavenumber. QF, QFNew∗

albedo_sco2 Surface reflectance at a reference wavelength in the strong CO2 band in the primary scattering QF, QFNew∗

geometry from the retrieved BRDF (land) and retrieved Lambertian albedo (ocean).

albedo_quad_sco2 Quadratic coefficient of the albedo_sco2 term with respect to wavenumber (land only). QF, QFNew

albedo_quad_wco2 Quadratic coefficient of the albedo_wco2 term with respect to wavenumber (land only). QF, QFNew

aod_total Retrieved aerosol optical depth of cloud and aerosol at 0.755 µm. QF, QFNew∗

rms_rel_sco2 RMSE of the L2 fit residuals in the strong CO2 band relative to the signal. QF, QFNew

rms_rel_wco2 RMSE of the L2 fit residuals in the weak CO2 band relative to the signal. ML BC, QF, QFNew

detlaT Retrieved offset to prior temperature profile in Kelvin. QF, QFNew

aod_sulfate Retrieved aerosol optical depth of sulfate aerosol at 0.755 µm. B10 BC, QF, QFNew

aod_oc Retrieved aerosol optical depth of organic carbon aerosol at 0.755 µm. B10 BC, QF, QFNew

aod_water Retrieved aerosol optical depth of water aerosol at 0.755 µm. QF, QFNew

dust_height Retrieved central pressure of the dust aerosol layer, relative to the retrieved surface pressure. QF, QFNew

aod_seasalt Retrieved aerosol optical depth of sea salt aerosol at 0.755 µm. QF, QFNew

Fs_rel Retrieved fluorescence relative to the O2A band continuum signal. QF, QFNew

chi2_wco2 Reduced chi-squared value of the L2 fit residuals for the weak CO2 band. QF, QFNew

windspeed Retrieved surface wind speed over water surfaces. QF, QFNew

water_height Retrieved central pressure of the cloud water layer, relative to the retrieved surface pressure. QF, QFNew

∗ Changed filter threshold for QFNew.
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