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Abstract. Multi-angle polarimeters (MAPs) are powerful in-
struments to perform remote sensing of the environment.
Joint retrieval algorithms of aerosols and ocean color have
been developed to extract the rich information content of
MAPs. These are optimization algorithms that fit the sen-
sor measurements with forward models, which include ra-
diative transfer simulations of the coupled atmosphere and
ocean systems (CAOSs). The forward model consists of sub-
models to represent the optics of the atmosphere, ocean wa-
ter surface and ocean body. The representativeness of these
models for observed scenes and the number of retrieval pa-
rameters are important for retrieval success. In this study, we
have evaluated the impact of three different ocean bio-optical
models with one, three and seven optimization parameters
on the accuracy of joint retrieval algorithms of MAPs. The
Multi-Angular Polarimetric Ocean coLor (MAPOL) joint re-
trieval algorithm was used to process data from the airborne
Research Scanning Polarimeter (RSP) instrument acquired
in different field campaigns. We performed ensemble re-
trievals along three RSP legs to evaluate the applicability of
bio-optical models in geographically varying water of clear
to turbid conditions. The average differences between the
MAPOL aerosol optical depth (AOD) and spectral remote
sensing reflectance (Rrs(λ)) retrievals and the MODerate res-
olution Imaging Spectroradiometer (MODIS) products were
also reported. We studied the distribution of retrieval cost
function values obtained for the three bio-optical models. For
the one-parameter model, the spread of retrieval cost func-

tion values is narrow regardless of the type of water even
if it fails to converge over coastal water. For the three- and
seven-parameter models, the retrieval cost function distribu-
tion is water type dependent, showing the widest distribu-
tion over clear, open water. This suggests that caution should
be used when using the spread of the cost function distribu-
tion to represent the retrieval uncertainty. We observed that
the three- and seven-parameter models have similar MAP re-
trieval performances in all cases, though they are prone to
converge at local minima over open-ocean water. It is nec-
essary to develop a screening algorithm to divide open and
coastal water before performing MAP retrievals. Given the
computational efficiency and the algorithm stability require-
ments, we recommend the three-parameter bio-optical model
as the coastal-water bio-optical model for future MAPOL
studies. This study provides important practical guides on the
joint retrieval algorithm development for current and future
satellite missions such as NASA’s Plankton, Aerosol, Cloud,
ocean Ecosystem (PACE) mission and ESA’s Meteorological
Operational-Second Generation (MetOp-SG) mission.

1 Introduction

The enhanced capabilities in satellite remote sensing of
Earth have enabled detailed observation of the atmosphere,
ocean and land, thereby improving the accurate determi-
nation of spatial and temporal distributions of the con-
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stituents of each. Satellite-borne spectroradiometers in par-
ticular have substantially advanced the way we view our
home planet, and their information content will increase in
the future as the technology evolves from multispectral to
hyperspectral capabilities. Multi-angle polarimeters (MAPs),
such as the Polarization and Directionality of the Earth’s
Reflectance (POLDER) (Deschamps et al., 1994), Airborne
Multi-angle Spectro-Polarimetric Imager (AirMSPI) (Diner
et al., 2013), Spectro-polarimeter for Planetary EXploration
(SPEX) (Smit et al., 2019), Research Scanning Polarime-
ter (RSP) (Cairns et al., 2003), Multi-viewing Multi-Channel
Multi-Polarization Imager (3MI) (Fougnie et al., 2018) and
Multi-Angle Imager for Aerosols (MAIA) (Van Harten et
al., 2021), have even greater information content compared
to other existing single-viewing angle spectroradiometers,
such as the MODerate Resolution Imaging Spectrometer
(MODIS), Visible Infrared Imaging Radiometer Suite (VI-
IRS), and Ocean and Land Color Instrument (OLCI), owing
to their ability to perform measurements at multiple view-
ing angles and different polarimetric states (Dubovik et al.,
2019).

Atmospheric aerosols play a critical role in the Earth’s cli-
mate and air quality (Boucher et al., 2013; Li et al., 2017).
Aerosols affect Earth’s energy balance directly by absorbing
and scattering solar radiation and indirectly by interacting
with clouds. Some of the traditional retrieval algorithms such
as those for MODIS-like instruments result in larger aerosol
and ocean color retrieval uncertainties when compared with
the accuracy required for climate modeling (Remer et al.,
2005; Sayer et al., 2016), which is due to the limited informa-
tion content in single-viewing spectrometer measurements
(Mishchenko et al., 2004). The large retrieval uncertainties
of aerosols and ocean color also limit the accuracy of aerosol
radiative forcing determination, thereby hindering our under-
standing of global climate change (Boucher et al., 2013). Im-
proved aerosol characterization and quantification will sup-
port accurate estimation of atmospheric path radiance in the
atmospheric correction (AC) process of ocean color remote
sensing (Mobley et al., 2016). The spectral remote sensing
reflectance (Rrs(λ) (sr−1)) estimated through the AC process
can be used to infer ocean optical and biogeochemical prop-
erties that are important for a broader understanding of phy-
toplankton dynamics, primary production, the global carbon
cycle and the ocean’s ecological response to climate change
(Frouin et al., 2019).

AC is the process of removing atmospheric and surface
contributions from the total measured signal at the top of the
atmosphere (TOA) so that ocean color can be assessed. AC
algorithms can be divided into two categories of processing
strategies: traditional (or heritage) AC algorithms applica-
ble to MODIS-like spectroradiometers (Gordon and Wang,
1994) and joint aerosol and ocean retrieval algorithms appli-
cable to MAP measurements (Mishchenko and Travis, 1997;
Chowdhary et al., 2001; Hasekamp and Landgraf, 2007;
Knobelspiesse et al., 2012; Remer et al., 2019a, b). Tradi-

tional or heritage AC algorithms (Gordon and Wang, 1994)
estimate the aerosol properties at near-infrared (NIR) wave-
lengths by assuming the water leaving radiance in NIR to
be negligible or appropriately modeled (the so-called black
pixel assumption) (Bailey et al., 2010). The aerosol proper-
ties are then extrapolated into the visible by using the appro-
priate aerosol models that fit NIR radiances (Zibordi et al.,
2009; Gordon, 2021; Utry et al., 2014). This assumption does
not unequivocally work in optically complex water, which
can lead to an overestimate of aerosol path radiance either
with nonzero NIR water leaving radiance or when absorbing
aerosols are present (IOCCG, 2000, 2010). The heritage al-
gorithm implemented by NASA’s Ocean Biology Processing
Group (OBPG; https://oceancolor.gsfc.nasa.gov, last access:
5 October 2023) works well over open water but can produce
negative Rrs(λ) in blue wavelengths over turbid water (Bai-
ley et al., 2010) given the aforementioned reasons. Efforts
have been made to overcome negative Rrs(λ) (Bailey et al.,
2010; He et al., 2012; Fan et al., 2021; Ibrahim et al., 2019),
though the problem has not been fully resolved yet.

The second category of AC algorithms makes use of the
larger information content available from MAPs. These in-
struments have a greater information content, which can
be used to characterize aerosol microphysical properties
(Mishchenko and Travis, 1997; Chowdhary et al., 2001;
Hasekamp and Landgraf, 2007; Knobelspiesse et al., 2012;
Remer et al., 2019a, b) and thus offer the potential for
improvements in both aerosol and ocean color retrievals.
Joint retrieval algorithms provide simultaneous retrievals of
aerosols and ocean color by fitting the sensor measure-
ments with forward model simulations for the coupled atmo-
sphere and ocean system (CAOS) (Chowdhary et al., 2005;
Hasekamp et al., 2011; Xu et al., 2016; Stamnes et al., 2018;
Gao et al., 2018, 2019, 2020, 2021; Fan et al., 2021). The
simulations are carried out by vector radiative transfer mod-
els with parameterizations that define the state of the CAOS.
The difference between measurements and the model simu-
lation is quantified by a cost function, which is minimized
by iteratively perturbing the free parameters in the radiative
transfer model. The forward model of ocean color joint re-
trieval algorithms consists of sub-models to simulate the op-
tics of the CAOS, which is composed of the atmosphere,
ocean surface and ocean body. The robustness of the joint
retrieval algorithms depends on the representativeness of
CAOS models over an observed scene. One important com-
ponent of CAOS is the ocean bio-optical models that repre-
sent the spectral behaviors of aquatic inherent optical prop-
erties (IOP(λ)s) (e.g., pure seawater, phytoplankton, colored
dissolved organic matter (CDOM) and non-algal particles
(NAPs)) (IOCCG, 2006).

Ocean water is loosely classified into two categories,
Cases I and II, based on the constituents present in the water
and those constituents’ relationships with Rrs(λ). In Case 1
water the IOP(λ)s co-vary with the presence of phytoplank-
ton and its derived CDOM, which are typically found off-
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shore in the open ocean. The IOP(λ)s of Case I water are
typically parameterized using the concentration of the phy-
toplankton pigment chlorophyll a ([Chl a] [mg m−3]) and,
hence, result in single-parameter bio-optical models. Un-
like Case I water, Case II water, which is most commonly
found in coastal and turbid environments, consists of phy-
toplankton, NAP and CDOM, none of which are ubiqui-
tously co-varied. Consequently, multiple parameters are re-
quired to represent Case II water IOP(λ)s. Many joint re-
trieval algorithms (Chowdhary et al., 2005; Hasekamp et al.,
2011; Xu et al., 2016; Stamnes et al., 2018) assume single-
parameter bio-optical models developed for Case I water,
whereas only a few algorithms (Chowdhary et al., 2012; Gao
et al., 2018, 2019; Fan et al., 2021) adopt multi-parameter
(three to seven parameters) bio-optical models. The choice
of the bio-optical model has a great impact on the retrieval
performance of joint retrieval algorithms. Fan et al. (2021)
have studied the impact of different bio-optical models on re-
trieval accuracy, but their results were limited to radiometric
measurements under a single-view angle. Gao et al. (2019)
showed that a seven-parameter bio-optical model is superior
in representing coastal water to the single-parameter model,
though it is still an open question for the optimal bio-optical
model for coastal water for joint retrieval algorithms.

The goal of this study is to examine the overall impact
of bio-optical models with different numbers of free pa-
rameters on the performance and uncertainty of joint re-
trieval algorithms for Case II water. Hannadige et al. (2023)
showed that multi-parameter bio-optical models with three
and five parameters show similar retrieval performances for
the semi-analytical algorithm (SAA) based on in situ multi-
band Rrs(λ) measurements. An independent study showed
that the number of free parameters a retrieval algorithm
might meaningfully retrieve is roughly four based on in situ
hyperspectral Rrs(λ)measurements (Cael et al., 2023). Here,
for the first time, we have examined to which extent these
conclusions hold for the joint retrieval algorithms using air-
borne MAP measurements, which have not been studied be-
fore. The quality of the retrievals in this study is evaluated
with respect to the magnitude of the retrieval cost func-
tion values, the distribution of retrieval cost function values
(Sect. 3) from the ensemble retrievals and the sanity check
with MODIS retrievals. We studied the uncertainty of the dif-
ferent bio-optical models based on the spread of ensemble re-
trieval cost function values, which is important to understand
the impact of the bio-optical models on the convergence be-
havior of the non-linear least squares fitting algorithms. This
has not been examined in previous studies. Given the in-
herent problems associated with MODIS retrievals over op-
tically complex scenes, we consider the MODIS products
merely a reference rather than a validation dataset.

In this study the Multi-Angular Polarimetric Ocean
coLor (MAPOL) joint retrieval algorithm (Gao et al.,
2018, 2019, 2020) is used to evaluate the performance of
the ocean bio-optical models with different numbers of

free parameters. MAPOL is an optimization approach that
retrieves aerosol microphysical properties (aerosol optical
depth (AOD), single scattering albedo (SSA), size distribu-
tion and refractive index) and in-water properties (Rrs(λ),
[Chl a] and component IOP(λ)s) simultaneously. Three bio-
optical models are used, i.e., the single-parameter model for
open-ocean water and two coastal bio-optical models with
three and seven free parameters, respectively. The MAPOL
algorithm was used to inverse the Research Scanning Po-
larimeter (RSP) measurements from two NASA airborne
campaigns (Aerosol Characterization from Polarimeter and
Lidar (ACEPOL) (https://www-air.larc.nasa.gov/missions/
acepol, last access: 10 December 2022) (Knobelspiesse et al.,
2020) and North Atlantic Aerosols and Marine Ecosystems
Study (NAAMES) (https://www-air.larc.nasa.gov/missions/
naames, last access: 10 December 2022) (Behrenfeld et al.,
2019). The RSP measurements were selected such that the
underlying water represents clear to turbid water conditions.
The retrieval results were checked against the AOD product
from MODIS and High Spectral Resolution Lidar (HSRL)-2
(Burton et al., 2013) and ocean color products (Rrs(λ) and
[Chl a]) from MODIS. The retrieval uncertainties have been
evaluated with respect to the Glory uncertainty requirement
for AOD (Mishchenko et al., 2004) and PACE uncertainty
requirements for open-ocean Rrs(λ) (Werdell et al., 2019).

The conclusions from this study can be used to provide
recommendations for selecting suitable bio-optical models
for joint retrieval algorithms over coastal water to improve
their accuracy and computational efficiency. The larger pa-
rameter space required for Case II parameterizations leads to
longer forward model simulation times or decreases in the
likelihood of accurate retrieval convergence. Thus, the bal-
ance between the model fidelity and the parameter space is
vital to improve retrievals and uncertainties. This study also
expects one to improve the performance of the polynomial-
based atmospheric correction (POLYAC) algorithm (Han-
nadige et al., 2021), which is an AC algorithm for hyper-
spectral single-view radiometers applied over optically com-
plex scenes, such as over coastal water. POLYAC relies on
collocated MAP retrievals from the MAPOL algorithm to
estimate the hyperspectral path radiance to calculate hyper-
spectral Rrs(λ), which is crucial for retrieving phytoplankton
functional types (IOCCG, 2014). Though this study was car-
ried out with MAPOL, the conclusions are equally applicable
to other joint retrieval algorithms of aerosols and ocean color,
which thus have greater impacts beyond MAPOL.

This paper is organized as follows. Section 2 reviews the
data used in the study; Sect. 3 describes the MAPOL algo-
rithm and the respective bio-optical models; Sect. 4 presents
the methodology and the retrieval results along with an un-
certainty assessment under three different scenes; Sect. 5 dis-
cusses the overall results; and, finally, Sect. 6 summarizes the
conclusions.
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2 Data

2.1 Airborne data

In this study, we used airborne RSP measurements acquired
from the ACEPOL 2017 (https://www-air.larc.nasa.gov/
missions/acepol/index.html, last access: 10 December 2022)
(Knobelspiesse et al., 2020) and NAAMES 2015 (https://
www-air.larc.nasa.gov/missions/naames/index.html, last ac-
cess: 10 December 2022) (Behrenfeld et al., 2019) air-
borne field campaigns. The ACEPOL campaign was held
from 19 October to 9 November 2017, covering California,
Nevada, Arizona, New Mexico and the coastal Pacific Ocean.
NAAMES 2015 was the first deployment of the NAAMES
campaign conducted from 5 November to 2 December 2015
over the North Atlantic Ocean.

RSP is an along-track scanner, with 152 viewing angles
within ±60◦. It has nine spectral channels spanning the vis-
ible to shortwave infrared (SWIR) with central wavelengths
of each band located at 410, 470, 550, 670, 865, 960, 1590,
1880 and 2250 nm. RSP-1 and RSP-2 are two versions of
the RSP instrument that differ in measurement uncertainty
characterizations. RSP measurements over oceans have been
used for aerosol and ocean color retrievals in multiple studies
(Chowdhary et al., 2005, 2012; Stamnes et al., 2018; Gao et
al., 2019, 2020) with promising performances. In the ACE-
POL campaign, RSP-2 measurements were acquired with a
relative radiometric characterization uncertainty of approxi-
mately 0.03 and polarimetric characterization uncertainty of
about 0.002 in degree of linear polarization (DoLP), whereas
in the NAAMES 2015 campaign RSP-1 measurements were
acquired with radiometric (relative) and polarimetric char-
acterization uncertainties of approximately 0.015 and 0.002,
respectively. The instrument noise model for RSP is provided
in Knobelspiesse et al. (2019).

We performed MAP retrievals across three RSP flight
legs over selected open- and coastal-water regions. From the
ACEPOL campaign, we selected a coastal leg across Mon-
terey Bay, where the water was mostly clear offshore and
turbid when closer to the coast. From the NAAMES cam-
paign, we selected a coastal leg across Delaware Bay and
an open-ocean leg offshore and outward from Delaware Bay.
Each case has been named based on the campaign and the
type of water present: ACEPOL-Mix, NAAMES-Coastal and
NAAMES-Open. Gao et al. (2019) showed a single-pixel
retrieval from the NAAMES-Coastal case inside Delaware
Bay comparing the retrieval performances of one- and seven-
parameter bio-optical models. The details of the three cases
are summarized in Table 1 and Fig. 1. The three cases were
selected based on the availability of RSP measurements in
cloud-free conditions, the water turbidity of the location and
the availability of desired MODIS retrieval products. The tur-
bidity of the water was assumed based on MODIS [Chl a]
retrievals (Hu et al., 2012).

RSP wavelength bands corresponding to water vapor ab-
sorption (960 and 1880 nm), as well as those wavelength
bands with high noise (1590 and 2250 nm bands only for
DoLP), were excluded from the retrieval. The viewing angles
contaminated by Sun glint and clouds were excluded from
the retrieval to reduce retrieval uncertainty. For each location
of interest, five consecutive pixels along the RSP leg were
averaged to achieve better measurement accuracy. The RSP
legs with averaged pixels are shown in Fig. 1. For the ACE-
POL and NAAMES campaigns, the size of each averaged
pixel is approximately 1 and 0.5 km, respectively. The cor-
responding averaged measurements (reflectance and DoLP)
were applied in the retrieval.

2.2 Validation data

The AOD from the ACEPOL campaign is validated against
HSRL-2. Due to the lack of at-sea in situ validation data,
we performed sanity checks of the retrieval results using
MODIS AOD and Rrs(λ) products. MODIS is a single-
view angle multispectral imager on both the NASA Terra
and Aqua satellite platforms. The MODIS-OC (ocean color)
product (NASA Ocean Color Web, 2020; https://oceancolor.
gsfc.nasa.gov, last access: 5 October 2023) is processed us-
ing the standard NASA AC algorithm (Mobley et al., 2016)
developed based on the atmospheric correction algorithm
(Gordon and Wang, 1994) as modified by Ahmad et al.
(2010). We used level 2 ocean color (OC) products from
the MODIS instrument on board the Aqua satellite (version
2022.0). It provides a spatial coverage of 1 km resolution
at nadir. The OC products include Rrs(λ) at 412, 443, 469,
488, 531, 547, 555, 645, 667 and 678 nm and [Chl a] via
the Color Index-based Algorithm (CIA; Hu et al., 2012). We
also obtained MODIS AOD at 869 nm and the Ångström ex-
ponent derived from the standard NASA Atmospheric Cor-
rection (AC) algorithm to estimate the spectral AOD at RSP
wavelengths. The ACEPOL 2017 campaign flew the HSRL-
2 along with RSP, with the former instrument also providing
accurate data for AOD validation.

3 The MAPOL joint retrieval algorithm

The MAPOL joint retrieval algorithm simultaneously re-
trieves aerosol and ocean color properties from MAP mea-
surements. It has been validated with synthetic RSP data
(Gao et al., 2018) and real RSP (Gao et al., 2019; Hannadige
et al., 2021) and SPEX airborne measurements (Gao et al.,
2020; Hannadige et al., 2021).

3.1 Retrieval cost function

The algorithm minimizes the difference between the MAP
measurements and forward model simulations for CAOS
(Zhai et al., 2009, 2010). The forward model simulation is
iteratively optimized (Levenberg–Marquardt non-linear least
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Table 1. Summary of the datasets used in this study.

RSP leg ACEPOL-Mix NAAMES-Coastal NAAMES-Open

Date 7 November 2017 4 November 2015 4 November 2015
Number of pixels 62 40 106
UTC time range 20:13–20:25 18:21–18:26 17:34–18:20
Aircraft altitude 20 km 6.7 km 6.8 km
Solar zenith angle 53◦ 59◦ 55◦

Relative azimuth angle 75◦ 110◦ 75◦

Scattering angle range [105◦, 132◦] [91◦, 132◦] [93◦, 133◦]

Figure 1. Geographical locations of the selected RSP legs.

squares optimization) by perturbing the set of free parameters
that represent the atmosphere and ocean optical properties.
The least squares cost function (χ2(x)) used to quantify the
difference between the measurement and the forward model
simulation is defined as

χ2(x)=
1
N

∑
i

([
ρt(i)− ρ

f
t (x; i)

]2
σ 2

t (i)
+

[
Pt(i)−P

f
t (x; i)

]2
σ 2
P (i)

)
, (1)

where ρt = πr
2Lt/µ0F0 is the total measured reflectance,

and Pt =

√
Q2

t +U
2
t /Lt is the total measured DoLP. Lt, Qt

and Ut are the first three Stokes parameters measured at sen-
sor level; µ0 is the cosine of the solar zenith angle; F0 is
the extraterrestrial solar irradiance; and r is the Sun–Earth
distance in astronomical units. ρf

t and P f
t denote the total re-

flectance and DoLP simulated from the forward model. x is
the state vector of the retrieval, i is the measurement index
corresponding to a particular angle or wavelength, and N is
the total number of measurements used in the retrieval. σt and
σP are the total uncertainties of reflectance and DoLP, which
include the RSP instrument characterization (Knobelspiesse
et al., 2019), variance due to averaging nearby pixels and for-
ward model uncertainties. The forward model uncertainty is
estimated as 0.015 and 0.002 for the radiometric and polari-
metric uncertainties, respectively (Gao et al., 2023). The un-
certainty correlation between angles has been ignored (Kno-
belspiesse et al., 2012; Gao et al., 2023).

The χ2 value of a converged retrieval indicates the good-
ness of fit of the retrieval. A χ2 value substantially larger

than 1 suggests the insufficiency of the forward model to
accurately represent a given set of MAP measurements. A
χ2 close to 1 implies that the difference between the mea-
surement and the corresponding forward model simulation is
within the uncertainty quantified by σt and σP. In this study,
we used χ2 values obtained under each retrieval to assess
their retrieval quality and performances.

3.2 Forward model

The forward model of the MAPOL algorithm is a vec-
tor radiative transfer model based on the successive or-
der of scattering method (Zhai et al., 2009, 2010). The
CAOS is defined as three layers: a top molecular layer,
a middle layer with mixed aerosols and molecules (2 km
height), and an ocean layer bounded by a rough water sur-
face (Cox and Munk, 1954). The aerosol size distribution
is composed of five spherical aerosol sub-modes: three fine
modes and two coarse modes, each with a log-normal dis-
tribution. The mean radius and variance are fixed (Gao et
al., 2020). The complex refractive index spectra of the two
aerosol modes are based on the principal component analy-
sis (PCA) of datasets representing spectral refractive indices
of water, dust-like, biomass burning, industrial, soot, sulfate,
water-soluble (Shettle and Fenn, 1979) and sea salt aerosols
(de Almeida et al., 1991). The refractive indices are approxi-
mated as m(λ)=m0+α1p1(λ), where m0 and α1 are fitting
parameters, and p1(λ) is the first order of the principal com-
ponent.
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In the MAPOL forward model, the analytical Fournier–
Forand phase function (Fp) (Fournier and Forand, 1994) is
used to represent the particulate scattering phase function.
The Fp is determined by Bp (i.e., bbp/bp) (Mobley et al.,
1993). The overall phase function of water is obtained by
mixing Fp with that of a pure-water phase function, which
is then multiplied by the normalized Mueller matrix derived
from measurements (Voss and Fry, 1984; Kokhanovsky,
2003) to obtain the total Mueller matrix of water assuming
invariant polarization properties (Zhai et al., 2017).

MAPOL retrieves the spectral aerosol refractive indices
described by eight parameters (two (fine and coarse) modes
× two PCA × two parts (real and imaginary)); aerosol vol-
ume densities (five parameters, one for each aerosol sub-
mode); one parameter to represent the roughness of ocean
surface, i.e., wind (characterized by isotropic Cox Munk
model; Cox and Munk, 1954); and either one, three or seven
parameters to represent water IOP(λ)s depending on the
choice of bio-optical model in the retrieval.

Bio-optical models

MAPOL includes two ocean bio-optical models in the for-
ward model to represent Case I and II water separately.
The Case I water bio-optical model (“C1P1”) is a single-
parameter model based on [Chl a], where the number fol-
lowing “P” stands for the number of free parameters in
the model. The Case II (“C2P7”) model contains seven
bio-optical parameters. In this study, we have included a
third Case II water bio-optical model with three parameters
(“C2P3”). A detailed description of the bio-optical models is
given below.

C2P7 (Eqs. 2–5) is a coastal or Case II bio-optical model
with seven parameters.

aph(λ)= Aph(λ)[Chl a]Eph(λ), (2)

adg(λ)= adg(440)exp
[
−Sdg(λ− 440)

]
, (3)

bbp(λ)= bbp(660)
(
λ

660

)−Sbp

, (4)

Bp(λ)= Bp(660)
(
λ

660

)−SBp

, (5)

where aph(λ) (m−1) is the absorption coefficient of phyto-
plankton parameterized in terms of [Chl a] using Aph and
Eph spectral coefficients obtained from Bricaud et al. (1998),
adg(λ) (m−1) is the spectral absorption coefficient of CDOM
and NAP, bbp(λ) (m−1) is the spectral backscattering coef-
ficient of particulate matter, Bp(λ) is the spectral backscat-
tering fraction of particulate matter, Sdg (nm−1) is the spec-
tral exponential slope of adg(λ) (in nm−1), Sbp is the spec-
tral slope of the power law function of bbp(λ), and SBp is
the spectral slope of the power law function of Bp(λ). The
magnitudes of the spectral slopes Sdg, Sbp and SBp depend

on the composition and the size of the oceanic particles
and therefore represent microphysical properties such as re-
fractive index, effective radius and particle size distribution
slope (Jonasz, 2007). The seven free parameters are [Chl a],
adg(440), bbp(660),Bp(660), Sdg, Sbp and SBp where 440 and
660 represent reference wavelengths in nanometers (nm).

C2P3 is a three-parameter model simplified from the C2P7
model (Eqs. 2–5). To reduce the number of free parameters,
we fixed the spectral slopes. Sdg typically varies between
0.01 and 0.02 nm−1 in natural water. Based on the in situ
measurements over oceans (Roesler et al., 1989), most of the
existing bio-optical models such as the default configuration
for the generalized IOP (GIOP-DC) model (Werdell et al.,
2013) adopt Sdg = 0.018 nm−1. It has been found that the
particulate backscattering ratio from in situ measurements
shows little or no spectral dependence, and the mean partic-
ulate backscattering ratio is 0.010 (Chami et al., 2005; Whit-
mire et al., 2007). We have fixed SBp at 0 and assumed a
spectrally invariant backscattering fraction Bp of 0.01. Sbp
typically varies between 0 and 2 from small to large parti-
cles (Werdell et al., 2013). Sbp was fixed at 0.3 in this study
which was obtained by a sensitivity analysis carried out by
Hannadige et al. (2023). We acknowledge that these fixed
values could deviate under specific water conditions. The re-
maining free parameters of the model are [Chl a], adg(440)
and bbp(660).

C1P1 (Eqs. 6–10) is a [Chl a]-based single-parameter
Case I water bio-optical model (Zhai et al., 2015, 2017). The
absorption coefficient of phytoplankton aph(λ) is the same as
Eq. (2). The absorption adg(λ) is given by Eq. (3) as in the
C2P7 model, though Sdg is fixed at 0.018 nm−1, and adg(440)
is specified by Eqs. (6) and (7) in terms of [Chl a] (IOCCG,
2006):

adg(440)= p2aph(440) (6)

p2 = 0.3+
5.7× 0.5aph(440)
0.02+ aph(440)

. (7)

Similarly, bbp(λ) is also contributed to only by phyto-
plankton and is expressed in terms of [Chl a] (Huot et al.,
2008).

bbp(λ)= Bp× bp(λ), (8)

where bp(λ) (m−1) is the spectral scattering coefficient of
particulate matter.

bp(λ)= bp(660)
(
λ

660

)−Sp

(9)

bp(660)= 0.347[Chl a]0.766 (10)

In Eq. (9), Sp is the spectral coefficient of bp. For 0.02<
[Chl a]< 2 mg m−3, Sp =−0.5

(
log10[Chl a] − 0.3

)
. For

[Chl a]> 2 mg m−3, Sp = 0. Bp is assumed to be spec-
trally invariant and is described as Bp = 0.002+0.01(0.50−
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0.25log10[Chl a]). The three bio-optical models are summa-
rized in Fig. 2.

4 Retrieval results

We performed retrievals with the MAPOL algorithm
(Sect. 3) for the three cases (ACEPOL-Mix, NAAMES-
Coastal and NAAMES-Open) described in Sect. 2. Sepa-
rate retrievals were carried out using each bio-optical model
(C2P7, C2P3 and C1P1 described in Sect. 3) for all the cases,
regardless of the type of water they represent.

The final retrieval results are based on the ensemble re-
trieval technique (Gao et al., 2019, 2020). The technique can
reduce the likelihood of convergence of the algorithm at lo-
cal minima instead of the global minimum. The ensemble re-
trieval was carried out by performing 100 retrievals for each
averaged RSP pixel. For each retrieval, the retrieval param-
eters are initialized with randomly generated initial values
of each parameter, which are confined within a boundary as
specified in Table 2 for bio-optical model parameters (Gao et
al., 2018, 2019; Hannadige et al., 2023) and as in Gao et al.
(2018) for atmospheric parameters.

The retrievals were sorted based on their χ2 distribution,
which is attributed to whether the ensemble of retrievals con-
verged at the global minimum (narrow χ2 distribution) or
different local minima (broad χ2 distribution). For each of
the RSP pixels, we averaged 30 % (i.e., cumulative proba-
bility = 30 %) of the total retrievals to calculate the final re-
trieval results. We studied average retrievals from all three
bio-optical models using different cumulative probabilities at
a time. About 30 % cumulative probability yielded the low-
est χ2 and retrieval variability. The selection of cumulative
probability of less than 30 % did not leave enough ensem-
ble retrievals to estimate the average retrieval results (for the
C1P1 model this number is about 70 %; to make it consis-
tent across all three bio-optical models, 30 % was selected).
It should be noted that all the converged retrievals under the
three case studies yielded χ2 larger than 0.3. The minimum
and maximum χ2 values within this 30 % are denoted as
χ2

min and χ2
max, respectively. For all three cases, the selec-

tion of the first 30 % lowest χ2 retrievals resulted in χ2
max

values which are about five points higher than the χ2
min (that

is χ2
max ≈ 5+χ2

min). The choice of the cumulative probabil-
ity or the χ2

max depends on the accuracy requirement of the
retrieval.

The resultant uncertainties of the retrieval parameters are
determined as the standard deviation of the retrievals within
χ2

min and χ2
max. The uncertainties are associated with differ-

ent initial values in the optimization. Due to a large number
of retrieval parameters and the non-linearity of the cost func-
tions, the choice of the initial values often becomes important
(Gao et al., 2020). Based on Gao et al. (2020) and Gao et
al. (2023), the uncertainty derived from ensemble retrievals
within the χ2

min–χ2
max range may not always be comparable to

the uncertainty calculated from the error propagation method
(Knobelspiesse et al., 2012). The error propagation method
directly relates the retrieval uncertainties to measurement un-
certainties. The evaluation of uncertainties calculated from
the error propagation method is subject to future study.

4.1 ACEPOL-Mix

The minimum retrieval cost function value χ2
min is affected

by the type of water present and the bio-optical model em-
ployed in the retrieval. For relatively clear water, where
1< [Chl a]< 3 mg m−3, the χ2

min values obtained under all
the three bio-optical models are similar (2< χ2

min < 3). The
average χ2

min value within 30 % of the lowest χ2 retrievals
(χ2

avg30 %
) is comparable to the χ2

min (Fig. 3). For C2P3 and
C2P7, χ2

avg30 %
< 1.5×χ2

min. This suggests that the ensem-
ble retrieval χ2 values have a narrow spread attributed to the
fact that most of the retrievals have reached their global min-
imum.

With increasing turbidity towards the coast, the χ2
min val-

ues from C1P1 retrievals follow an increasing trend with in-
creasing [Chl a]. Both the C2P3 and C2P7 models show sim-
ilar χ2

min values along the track, whose χ2
min values (< 5) also

tend to increase with increasing [Chl a] but with less vari-
ability than that of C1P1 (χ2

min > 5). Larger χ2
min indicates

the inability of the forward model to accurately fit the MAP
measurement. In other words, the C1P1 model is insufficient
to fully represent the turbid water IOP(λ)s compared to the
C2P3 and C2P7 bio-optical models.

We further validated the retrieval results and evaluated the
retrieval uncertainties (Figs. 4 and 6) associated with each
bio-optical model using AOD retrievals from HSRL-2 and
MODIS. MODIS and HSRL-2 AOD (Fig. 5) were collocated
with RSP within a maximum distance of around 1.7 and
0.5 km. There are no in situ Rrs(λ) measurements available
for validation for this scene. Instead, we compared Rrs(λ)

with collocated MODIS Rrs(λ) collected within a maximum
distance of 0.5 km. The time difference between MODIS and
RSP measurements is roughly 1 h. The MODIS 412, 469,
555 and 667 nm ocean color bands were chosen to compare
the corresponding RSP Rrs(λ) at 410, 470, 550 and 670 nm
bands. AOD from RSP was compared with the MODIS AOD
based on the AC data product, a choice to ensure the consis-
tency of ocean color and aerosol data products. In this case
study, the AOD and Rrs(λ) retrievals obtained by averaging
30 % of the lowest χ2 cases were compared with those ob-
tained for the χ2

min case (the results are not shown here). The
comparison of RSP-retrieved AOD at 532 nm with HSRL-2
and MODIS is given in Fig. 5. For clear visualization, the
density of the pixels has been reduced in the plots. The ver-
tical bars indicate the 1σ uncertainty.

Regardless of the selected bio-optical model or the tur-
bidity of the water, all three models, C1P1, C2P3 and
C2P7, show similar AOD values, suggesting that the bio-
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Figure 2. The summary of the MAPOL bio-optical models. The free parameters of each model are indicated in bold.

Table 2. The upper and lower boundaries of the bio-optical model parameters.

Parameter Model Lower/upper
boundaries

[Chl a] (mg m−3) C1P1, C2P3, C2P7 0.001/30.0
adg(440) (m−1) C2P3, C2P7 0.001/2.5
Sdg (nm−1) C2P7 0.005/0.02
bbp(660) (m−1) C2P3, C2P7 0.001/0.1
Sbp C2P7 0.001/2.5
Bp(660) C2P7 0.001/0.05
SBp C2P7 −0.2/0.2

optical model does not substantially influence AOD retrievals
(Fig. 4). Overall, the MODIS AOD agrees with the averaged
MAPOL AOD within 1σ of the retrieval of all three bio-
optical models, except at 410 nm, at which the MODIS AOD
is slightly outside of the 1σ AOD uncertainty limits.

The AOD retrieved by HSRL-2 and MODIS at 532 nm
is similar. Based on the AOD retrieval comparison with re-
spect to HSRL-2 and MODIS at 532 nm (Fig. 5), the C2P3
model shows the overall best agreement among the three bio-
optical models (Table 3). The differences between the HSRL-
2, MODIS and RSP-retrieved AOD may be related to differ-
ent sampling volumes, viewing geometries of the instruments
and retrieval algorithms.

In the comparison of Rrs(λ) retrievals under the three bio-
optical models (Fig. 6), MODIS shows negative Rrs(λ) val-
ues at shorter wavelengths (410 and 470 nm) over the one or
two pixels closest to the coast around 121.95◦W. The AOD
values over these pixels are also much larger compared to
MAPOL retrievals. This indicates that the MODIS AC algo-
rithm has overestimated the aerosol signal over coastal water,
thereby makingRrs(λ) negative. There are no negativeRrs(λ)

values found in the MAPOL retrievals. MODIS-estimated
Rrs(λ) values are higher than those from MAPOL for rel-
atively clear water at 410, 470 and 550 nm but agree well
at 670 nm with Rrs(λ) values retrieved from the C2P3 and
C2P7 models. The C1P1 model also agrees well at 670 nm
but not when closer to the coast. For the MODIS, compa-
rably larger Rrs(λ) values at shorter wavelengths can be ex-
plained by the comparably smaller AOD values at the respec-
tive wavelengths. A smaller difference in AOD can lead to a
larger difference in Rrs(λ). The differences between MODIS
products and MAPOL retrievals using the three bio-optical
models are given in Table 3.

The corresponding retrieval uncertainties for AOD and
Rrs(λ) are calculated as discussed in Sect. 4. The retrieved
AOD values are similar across the three bio-optical models,
but their AOD uncertainties differ due to the differences in
their retrieval χ2 distribution. C1P1 shows the lowest AOD
and Rrs(λ) retrieval uncertainties. Yet, even though C1P1
shows smaller uncertainties compared to the other two mod-
els, the accuracy of theRrs(λ) retrievals is not satisfactory for
the two most nearshore pixels with respect to MODIS. The
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Table 3. ACEPOL-Mix: the average relative differences ( 1
N

∑[
amodel−aMODIS

aMODIS

]
(%), where a is either AOD or Rrs(λ), and N is the total

number of retrieved pixels (sample size); N = 62) of AOD and Rrs(λ) between MODIS and the three bio-optical models (C1P1, C2P3
and C2P7) at 410, 470, 550 and 670 nm. Negative Rrs(λ) values from MODIS were excluded. The differences are based on 30 % averaged
retrievals. The standard deviations of the relative differences are given inside the parentheses.

410 nm 470 nm 550 nm 670 nm

C1P1 16.3 (7.4) 8.9 (6.1) 5.5 (5.4) 9.3 (6.5)
AOD C2P3 19.9 (10.1) 12.1 (7.9) 6.5 (6.1) 6.4 (6.0)

C2P7 15.6 (8.6) 8.5 (6.7) 5.1 (5.7) 10.3 (6.1)

C1P1 60.7 (6.0) 56.8 (4.7) 39.1 (9.3) 34.6 (11.0)
Rrs(λ) C2P3 66.9 (6.9) 61.9 (10.7) 40.1 (15.0) 14.9 (12.8)

C2P7 58.4 (5.6) 53.6 (9.8) 30.2 (13.0) 17.3 (15.7)

Figure 3. ACEPOL-Mix: panel (a) shows the MODIS-retrieved
[Chl a]. The dashed gray lines indicate [Chl a]= 1, 3 and
10 mg m−3. Panel (b) shows the χ2

min obtained for the RSP re-
trievals across the ACEPOL-Mix leg under the three bio-optical
models: C1P1, C2P3 and C2P7. Panel (c) shows the average χ2

min
value for the 30 % of the lowest χ2 retrievals. Data are given with
respect to the longitude of the location. The coast of Monterey Bay
is to the right-hand side of the plots.

average uncertainty is less than 0.01 for AOD at all the given
RSP wavelengths. This falls within the AOD uncertainty re-
quirement defined by the Glory mission, namely a maximum
of 0.02 over the ocean (Mishchenko et al., 2004). Overall, the
C2P3 AOD uncertainty is slightly higher than that of C2P7.
But it becomes smaller than that of C2P7 over the coastal
water.

The Rrs(λ) uncertainty values from C2P3- and C2P7-
based retrievals are similar, with a maximum of 0.0004,

0.0005, 0.0007 and 0.0003 sr−1 at 410, 470, 550 and 670 nm,
respectively. These uncertainties fall within the PACE-
defined Rrs(λ) uncertainty: from 400 to 600 nm the absolute
uncertainty is 0.0006 sr−1, and from 600 to 710 nm the ab-
solute uncertainty is 0.0002 sr−1 (Werdell et al., 2019). For
C1P1 the Rrs(λ) uncertainty is less than 0.0002 sr−1 for all
the wavelengths shown in Fig. 6 and falls within the PACE-
defined Rrs(λ) uncertainty.

The C1P1 AOD uncertainty is comparable with the other
two models, but C1P1 Rrs(λ) uncertainty is significantly
lower than the other two models. One reason can be ex-
plained as the total number of free parameters in the retrieval.
With the C1P1 model, there are a total of 15 parameters to be
retrieved. For C2P3 and C2P7, that increases to 17 and 21,
respectively. With fewer parameters, it is easier to converge
at the global minimum within the parameter space, or a sim-
ilar local minimum is always achieved. Here, for the C1P1
model, the majority of the retrievals are converged to the
same point (either a local minimum or the global minimum);
hence, the uncertainty defined by the spread of the cost func-
tion values is relatively small. With a larger number of free
parameters in the retrieval, convergence can be achieved at
a local minimum more often than at the global minimum.
That makes the χ2 distribution widespread; hence, the un-
certainty becomes larger. Since C2P3 is a simplified version
of the C2P7 model (that is a subset of the C2P7 model), we
can expect C2P3 and C2P7 to have similar performances.

4.2 NAAMES-Coastal

The NAAMES-Coastal case (4 November 2015) covers RSP
retrievals over Delaware Bay (Fig. 1b), which is a coastal-
water region with high turbidity. The χ2

min value obtained for
each pixel with the three bio-optical models (C1P1, C2P7
and C2P3) is given at the bottom of Fig. 7. The averaged
χ2

min for the 30 % of the lowest χ2 (χ2
avg30 %

) cases is the
same as χ2

min for C1P1 and roughly twice the χ2
min value for

both C2P3 and C2P7. We did not see a significant differ-
ence between the retrieval results obtained from the lowest
χ2 case and 30 % average; hence, only the averaged AOD
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Figure 4. ACEPOL-Mix: the comparison of RSP-retrieved averaged spectral AOD across Monterey Bay with MODIS AOD and retrieval
uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3 and C2P7 at 410, 470, 550 and 670 nm for
averaged retrievals. The vertical bars indicate the 1σ uncertainty. Data are given with respect to the longitude of the location. The coast of
Monterey Bay is to the right-hand side of the plots.

Figure 5. ACEPOL-Mix: the comparison of retrieved AOD at
532 nm with HSRL-2 and MODIS AOD at 532 nm. The AOD ob-
tained for the lowest χ2 case is shown here. Results are shown for
the retrievals under the three bio-optical models C1P1, C2P3 and
C2P7. Data are given with respect to the longitude of the location.
The coast of Monterey Bay is to the right-hand side of the plots.

and Rrs(λ) retrievals are shown here. The MODIS [Chl a]
data (Fig. 7) show values larger than 5 mg m−3, and the peak
value exceeds 20 mg m−3. The C1P1 model has shown the
highest χ2

min values around 100 still with a narrow χ2 dis-
tribution, whereas both C2P3 and C2P7 models show χ2

min
values around 1.5. The large χ2

min values around 100 with
narrow χ2 distributions imply the insufficiency of the C1P1
model to represent highly turbid coastal water. This also sug-
gests that caution needs to be taken when using the cost func-
tion spread to study the uncertainty of retrieval parameters.
Overall, the C2P3 and C2P7 models show the same capabil-
ity to represent turbid coastal water.

The averaged AOD obtained under the C1P1 model is
larger than that obtained with C2P3 and C2P7, likely be-
cause the C1P1 model misrepresents the water properly in
Delaware Bay (Fig. 8). We collocated the MODIS AOD
and ocean color products within a maximum distance of
0.8 km. The time difference between MODIS and RSP scan-
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Figure 6. ACEPOL-Mix: the comparison of the RSP-retrieved averaged Rrs(λ) across Monterey Bay with MODIS Rrs(λ) product and
retrieval uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3 and C2P7 at 410, 469, 554 and
670 nm for averaged retrievals. The vertical bars indicate the 1σ uncertainty. Data are given with respect to the longitude of the location. The
coast of Monterey Bay is to the right-hand side of the plots.

ning times is approximately 1 h. The MODIS AOD values
at 410 nm are within the uncertain limits of C1P1 and fall
within the uncertainty limits of C2P3 and C2P7 at the rest
of the wavelengths. Correspondingly, the C1P1 Rrs(λ) is
less than that from C2P3 and C2P7 (Fig. 9). At 410 and
470 nm, the Rrs(λ) retrieved with C2P7 is on average larger
than that from C2P3, but similar values are retrieved at 550
and 670 nm. The MODIS Rrs(λ) agrees well with C2P3 and
C2P7 at 470, 550 and 670 nm. At 410 nm, MODIS Rrs(λ)

is mostly similar to that retrieved from C2P3. The average
relative differences between MODIS AOD and Rrs(λ) with
MAPOL retrievals under the three bio-optical models are
given in Table 4.

The AOD and Rrs(λ) retrieval uncertainties (Figs. 8 and 9)
are generally similar across the three bio-optical models,
with a few exceptions seen for C1P1 Rrs(λ) uncertainty at
longer wavelengths. The average AOD uncertainty is less
than 0.02 at all the given RSP wavelengths and meets the
AOD uncertainty requirement for climate models as assessed

by Mishchenko et al. (2004). The Rrs(λ) uncertainty for
the C2P7 model is larger at shorter wavelengths (410 and
470 nm), where the corresponding Rrs(λ) signals are small.
Overall, the C2P3 and C2P7 models result in Rrs(λ) uncer-
tainties near the uncertainty defined by the PACE mission ex-
cept at 670 nm. Even though theRrs(λ) retrieval uncertainties
are very small, the significantly larger χ2 values under the
C1P1 model and the inability to match the MODIS retrievals
suggest that the C1P1 model is not suitable to represent the
coastal-water properties.

4.3 NAAMES-Open

The NAAMES-Open case (4 November 2015) covers RSP
retrievals along the open ocean outward from Delaware Bay
(Fig. 1c). The χ2

min values obtained for each pixel, under the
three bio-optical models (C1P1, C2P7 and C2P3), are shown
in Fig. 10b. The averaged χ2

min for the 30 % of the lowest
χ2 cases is the same as χ2

min for C1P1, and around 5 times
the χ2

min value for both C2P3 and C2P7, showing larger χ2
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Table 4. NAAMES-Coastal: the average relative differences (%) of AOD and Rrs(λ) between MODIS and the three bio-optical models
(C1P1, C2P3 and C2P7) at 410, 470, 550 and 670 nm. Sample size is N = 40. The differences are based on 30 % averaged retrievals.
Negative Rrs(λ) values from MODIS were excluded. The standard deviations of the relative differences are given inside the parentheses.

410 nm 470 nm 550 nm 670 nm

C1P1 9.7 (4.2) 4.1 (2.9) 11.7 (6.3) 29.5 (9.9)
AOD C2P3 22.0 (3.5) 12.5 (4.4) 4.7 (3.7) 13.8 (7.6)

C2P7 23.6 (3.4) 14.0 (4.5) 5.4 (3.7) 13.0 (7.3)

C1P1 31.4 (21.2) 63.4 (10.2) 75.5 (4.5) 90.5 (1.7)
Rrs(λ) C2P3 17.4 (14.7) 18.4 (6.2) 7.1 (4.3) 7.6 (5.7)

C2P7 60.8 (35.3) 7.9 (4.5) 10.5 (5.9) 7.9 (4.8)

Figure 7. NAAMES-Coastal: panel (a) shows MODIS [Chl a]. The
dashed gray lines indicate [Chl a]= 5, 10 and 20 mg m−3. Panel (b)
shows χ2

min obtained for the RSP retrievals under the three bio-
optical models: C1P1, C2P3 and C2P7. Panel (c) shows the average
χ2

min value for the 30 % of the lowest χ2 retrievals. Data are given
with respect to the longitude of the location. The RSP leg is located
along the eastward coast of Delaware Bay.

distributions. This implies that the C2P3 and C2P7 models
result in retrievals that converge at different local minima,
instead of the global minimum. The MODIS [Chl a] values
(Fig. 10a) are less than 0.5 mg m−3 in the open ocean and in-
crease up to 4 mg m−3 closer to the coast/Delaware Bay. The
χ2

min values are similar across all three bio-optical models
with values around 1. There are some pixels from longitude
71.5 to 72.3◦W which show larger χ2

min values, which we
found to be attributed to cirrus cloud contamination.

For this case, we collocated MODIS AOD and Rrs(λ)

within a maximum distance of 1.4 and 0.5 km, respectively.

The time difference between MODIS and RSP scanning
times is 1 h. The comparison with MODIS AOD (Fig. 11)
shows a better agreement with averaged AOD retrievals from
all three bio-optical models. Some exceptions are seen in the
locations that were attributed to cloud contamination. Un-
like the previous two cases, the C1P1-averaged Rrs(λ) values
show the best agreement with MODIS Rrs(λ) values, mostly
over open water (Fig. 12). The C2P3- and C2P7-averaged
Rrs(λ) values show better agreement only when closer to the
coast (−74.5◦W), where C1P1 is not expected to provide a
complete representation of the water optical properties.

For the C2P3 and C2P7 models, the comparison of Rrs(λ)

retrievals obtained for the lowest χ2 retrieval of the ensem-
ble retrieval shows better agreement with MODIS Rrs(λ)

compared to the averaged retrievals. For AOD, the C2P3-
and C2P7-averaged retrievals show a better agreement with
MODIS AOD than the lowest χ2 retrievals. However, the
agreement of the lowest χ2 AOD retrievals from C2P3 and
C2P7 with MODIS is better than that from C1P1. The rel-
ative differences between MODIS- and MAPOL-retrieved
AOD corresponding to χ2

min and χavg30 % are given in Table 5,
and the same for Rrs(λ) is given in Table 6. There is a signifi-
cant difference seen in the relative difference values between
χ2

min and χavg30 % forRrs(λ)which is not significant for AOD.
The distribution of χ2 values in the ensemble retrieval there-
fore largely affects the accuracy of Rrs(λ) retrievals.

The AOD uncertainties (Fig. 11) are similar across the
three bio-optical models, with a maximum of 0.015 at all
given wavelengths. ForRrs(λ) (Fig. 12) C1P1 shows the low-
est uncertainties owing to its small parameter space, which
leads to better convergence near the global minimum. The
multi-parameter models show comparably larger Rrs(λ) un-
certainties that are still within the PACE-defined uncertain-
ties except at 410 nm.

5 Discussion

In this study, we have evaluated the retrieval performances of
three bio-optical models within CAOSs under different wa-
ter conditions. For the ACEPOL-Mix case, the water varies
from relatively clear to highly turbid conditions, with [Chl a]
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Figure 8. NAAMES-Coastal: the comparison of the RSP-retrieved averaged AOD across Delaware Bay with MODIS AOD and uncertainty.
Results are shown for the retrievals under the three bio-optical models C1P1, C2P3 and C2P7 at 410, 470, 550 and 670 nm for averaged
retrievals. The vertical bars indicate the 1σ uncertainty. Data are given with respect to the longitude of the location. The RSP leg is located
along the eastward coast of Delaware Bay.

Table 5. NAAMES-Open: the average relative differences (%) of AOD between MODIS and the three bio-optical models (C1P1, C2P3 and
C2P7) at 470, 550 and 670 nm. Sample size is N = 106. The differences are given for the retrievals from χ2

min case and averaged retrievals
χ2

avg30 %
. The standard deviation of the relative differences is given inside the parentheses.

410 nm 470 nm 550 nm 670 nm

C1P1 7.2 (4.7) 9.0 (5.9) 13.7 (9.0) 20.7 (11.9)
χ2

avg30 %
C2P3 9.0 (6.0) 8.6 (5.2) 13.5 (8.4) 21.6 (11.6)
C2P7 7.4 (5.1) 7.9 (5.0) 13.3 (8.4) 21.6 (13.0)

C1P1 19.7 (12.0) 25.5 (13.3) 31.4 (16.5) 40.5 (23.0)
χ2

min C2P3 31.3 (10.7) 36.7 (11.2) 44.9 (13.2) 53.5 (15.7)
C2P7 29.0 (11.7) 34.3 (12.2) 45.5 (13.7) 51.1 (16.2)
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Figure 9. NAAMES-Coastal: the comparison of the RSP-retrieved averaged Rrs(λ) across Delaware Bay with MODIS Rrs(λ) product and
uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3 and C2P7 at 410, 470, 550 and 670 nm for
averaged retrievals. The vertical bars indicate the 1σ uncertainty. Data are given with respect to the longitude of the location. The RSP leg is
located along the eastward coast of Delaware Bay.

Table 6. The same as Table 5 but for Rrs(λ).

410 nm 470 nm 550 nm 670 nm

C1P1 27.0 (16.6) 25.7 (11.4) 21.0 (8.9) 19.2 (6.1)
χ2

avg30 %
C2P3 84.0 (7.3) 84.4 (8.4) 69.0 (10.6) 52.5 (10.7)
C2P7 80.0 (10.4) 81.8 (10.6) 67.2 (12.9) 49.7 (13.2)

C1P1 20.6 (16.4) 20.9 (11.4) 21.5 (9.0) 51.0 (6.6)
χ2

min C2P3 27.2 (22.7) 42.8 (15.7) 24.8 (16.6) 36.8 (15.6)
C2P7 22.3 (20.3) 37.7 (15.2) 21.3 (16.4) 33.2 (16.9)

values ranging from 1–20 mg m−3. The NAAMES-Coastal
case includes RSP measurements over highly turbid water
(5< [Chl a]< 20 mg m−3). For the NAAMES-Open case,
the water is mostly clear and becomes turbid when closer
to the coast (0.1< [Chl a]< 3 mg m−3).

We have evaluated the retrieval performances based on the
magnitude of the retrieval cost function values, the spread
of the cost function distribution, the validity of the retrieved
AOD and Rrs(λ) values, and the corresponding retrieval un-
certainties. For the NAAMES-Open case, the C1P1 model
shows low χ2

min values, indicating good fitting against RSP
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Figure 10. NAAMES-Open: panel (a) shows MODIS [Chl a]. The
dashed gray lines indicate [Chl a]= 0.5 and 1 mg m−3. Panel (b)
shows χ2

min obtained for the RSP retrievals under the three bio-
optical models: C1P1, C2P3 and C2P7. Panel (c) shows the aver-
age χ2

min value for the 30 % of the lowest χ2 retrievals. Data are
given with respect to the longitude of the location. The coast is to
the left-hand side of the plots.

measurements. The C2P3 and C2P7 models also show good
fitting with the RSP measurements but only when the χ2

min
cases are considered. The C1P1 model shows the best agree-
ment in AOD and Rrs(λ) retrieval results with independent
data sources from the MODIS. The C1P1 retrieval perfor-
mance in the ACEPOL-Mix case is satisfactory when the
water is relatively clear ([Chl a]< 3 mg m−3), that is, to-
wards the open ocean. The C2P3 and C2P7 models in the
NAAMES-Coastal case and nearshore ACEPOL-Mix pix-
els show better agreement in averaged AOD and Rrs(λ) re-
trievals with uncertainties within the Glory uncertainty re-
quirement for AOD and the PACE uncertainty requirement
for Rrs(λ).

The overall results indicate that the choice of bio-optical
model (either a single parameter or multi-parameter) affects
the accuracy of the retrievals, which is especially true for
Rrs(λ) retrievals. Hannadige et al. (2023) showed similar re-
trieval performances for three- and five-parameter bio-optical
models whenRrs(λ) is inverted using SAA-based algorithms.
Here we demonstrated that the joint retrieval performances
of the C2P3 and C2P7 models are mostly similar, showing
that the same conclusion holds for joint retrieval algorithms
using the airborne MAP measurements. For coastal water,
it is inappropriate to use the single-parameter bio-optical

model. The C2P3 and C2P7 models show good retrieval per-
formances over turbid water.

We have also evaluated the distribution of ensemble χ2

values based on χ2
min and χ2

avg30 %
values. The study of cost

function distributions helps us understand the impact of bio-
optical models on the convergence behavior of the non-
linear least squares fitting algorithms. For the C1P1 model,
the χ2 distribution from all three cases is narrow, and even
the resultant χ2 values are large. This suggests that the use
of cost function distribution alone to study the uncertainty
of retrieval parameters is misleading. For C2P3 and C2P7,
over moderately to highly turbid water (ACEPOL-Mix and
NAAMES-Coastal, 1< [Chl a]< 20 mg m−3), the χ2 val-
ues are mostly closer to 1, and the distribution is nearly nar-
row, implying their capability to reach near the global min-
imum with multiple parameters over coastal water. But in
the NAAMES-Open case, C2P3 and C2P7 show widespread
χ2 distributions, implying their inability to reach the global
minimum with multiple parameters over open water. This can
be explained by the degrees of freedom in the water leaving
signal and the number of optimization parameters in the bio-
optical models.

In the NAAMES-Open case, even though the averaged re-
trieval results from C2P3 and C2P7 are on average not satis-
factory over clear water, the retrieval results corresponding to
the lowest χ2 show good agreement with MODIS AOD and
Rrs(λ). This implies that the C2P3 and C2P7 models can ac-
curately represent clear water optical properties with proper
interpretation and conscientious use of the χ2 distributions.
However, the averaged retrieval results differ significantly, as
the retrieval χ2 distributions under the C2P3 and C2P7 mod-
els are widespread compared to that of C1P1. For the prac-
tical use of these bio-optical models, we suggest performing
initial retrievals using the C1P1 bio-optical model and then
re-performing the retrievals with either C2P3 or C2P7 mod-
els in case the C1P1 model results in significantly larger χ2

values.
The C2P3 and C2P7 models show similar retrieval perfor-

mances for all three case studies. The MAPOL retrievals un-
der the C2P3 model use 17 retrieval parameters, whereas the
C2P7 model uses 21 parameters. The C2P7 provides a larger
parameter space that encompasses all the possible parameter
value combinations of the C2P3 model; hence, their perfor-
mances are similar. MAPOL is computationally demanding,
as it needs to iteratively run the radiative transfer forward
model for CAOS. The algorithm stability and the time taken
for a single retrieval are proportional to the size of the re-
trieval parameters. For the C2P3 model, it takes an average
of 3 h for a single CPU core to process one-pixel retrieval
with RSP measurements, whereas for the C2P7 model the
time increases up to 8 h, since an increased number of pa-
rameters leads to more forward model and Jacobian evalua-
tions in least squares fitting algorithms. Therefore, the C2P3
model is more efficient for the MAPOL algorithm to repre-
sent Case II water.
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Figure 11. NAAMES-Open: the comparison of the RSP-retrieved spectral AOD across the open ocean with MODIS AOD and uncertainty.
Results are shown for the retrievals under the three bio-optical models C1P1, C2P3 and C2P7 at 410, 469, 554 and 670 nm for averaged
retrievals. The lines (C1P1 – solid, C2P3 – dashed, C2P7 – dotted) indicate the retrievals obtained for the χ2

min case. The markers show the
average retrieval. The uncertainty plots show the 1σ uncertainty for averaged retrievals. Data are given with respect to the longitude of the
location. The coast is to the left-hand side of the plots.

The operational version of MAPOL, called FastMAPOL,
replaces the radiative transfer forward model with neural net-
works, which can process several pixels within a second in a
single CPU (Gao et al., 2021). We expect to update both the
MAPOL and FastMAPOL algorithms with the C2P3 model
in the future. The fixed parameters in the three-parameter
C2P3 model might not be true for all the water, which is
subject to fine-tuning. The availability of airborne MAP mea-
surements over the oceans under cloud-free conditions is lim-
ited, and we cannot cover a larger range of atmosphere and
water conditions in this study. The unavailability of accurate
in situ measurements over the selected locations for the vali-
dation is yet another limitation. We expect to further improve
our bio-optical models based on the MAP measurements to
be acquired from the PACE mission plan to launch in early
2024.

The [Chl a] alone does not fully represent the turbid-
ity of the water, as the sediment/NAP concentration and
CDOM availability are also important factors. There is no
clear boundary between Case I and II water (IOCCG, 2000);
hence, we cannot provide a clear set of conditions where we
need to apply each of the bio-optical models used in this
study. There is no universal bio-optical model to represent
water bio-optical properties (Fan et al., 2021). At least two
separate bio-optical models are required to represent Case I
and II water. The three cases in this study do not cover in-
land/lake water. The applicability of C2P3 and C2P7 to lakes
or inland water is subject to a future study.
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Figure 12. NAAMES-Open: the comparison of the RSP-retrieved spectral Rrs(λ) across the open ocean with MODIS Rrs(λ) product and
uncertainty. Results are shown for the retrievals under the three bio-optical models C1P1, C2P3 and C2P7 at 410, 469, 554 and 670 nm for
averaged retrievals. The lines (C1P1 – solid, C2P3 – dashed, C2P7 – dotted) indicate the retrievals obtained for the χ2

min case. The markers
show the average retrieval. The uncertainty plots show the 1σ uncertainty for averaged retrievals. Data are given with respect to the longitude
of the location. The coast is to the left-hand side of the plots.

6 Conclusions

In this paper, we have evaluated the performance of the
MAPOL joint retrieval algorithm using three bio-optical
models. The RSP measurements from different field cam-
paigns covering different water types are used. The re-
trieval performance evaluation is based on the magnitude
of the cost function values (χ2), the spread of the retrieval
cost function distribution, the validity of retrieved AOD,
and Rrs(λ) values and their respective uncertainty analy-
sis. The three bio-optical models include C1P1, a single-
parameter Case I water model, and C2P3 and C2P7, which
are multi-parameter Case II bio-optical models. Three cases,
ACEPOL-Mix, NAAMES-Costa and NAAMES-Open, were
selected based on their location and water turbidity observed
with respect to [Chl a] derived from the NASA OBPG algo-

rithm with MODIS measurements. NAAMES-Coastal cov-
ers highly turbid water, ACEPOL-Mix covers highly tur-
bid and relatively clear water, and NAAMES-Open covers
open clear water. The retrieved AOD was validated against
that from HSRL-2 (ACEPOL-Coastal) and/or MODIS, and
Rrs(λ)was compared against that from MODIS. The MODIS
Rrs(λ) over highly turbid water shows negative values for
shorter wavelengths (410 and 470 nm) that, hence, cannot be
used as a validation dataset. On the other hand, the MODIS
data products are used to perform sanity checks of the RSP-
based MAPOL retrievals.

We evaluated the spread of the retrieval cost function dis-
tribution from the ensemble retrievals with the three bio-
optical models. The C1P1 model showed narrow χ2 distri-
butions regardless of the type of water present or the mag-
nitude of χ2

min values. This makes the retrieval uncertainty
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from the C1P1 model smaller, even though the model cannot
accurately represent a particular water type (large cost func-
tion values). Therefore convergence has to be ensured before
the uncertainty evaluation, since the use of cost function dis-
tribution alone to study the retrieval uncertainties can be mis-
leading. The C2P3 and C2P7 models showed the widest cost
function distributions over open water, with χ2

min compara-
ble to that of C1P1. C2P3 and C2P7 showed narrow χ2 dis-
tributions over moderately to highly turbid water with small
χ2 values. These observations implied the ability of the re-
trievals based on multi-parameter bio-optical models to con-
verge near the global minimum over different water.

We also observed that the retrieval accuracies of AOD
and Rrs(λ) are directly related to the choice of the bio-
optical model (single parameter or multi-parameter) in the
retrieval. The Rrs(λ) retrieval is significantly affected. The
C1P1 model shows good retrieval performances only over
relatively clear water ([Chl a]< 3 mg m−3). The results sug-
gested that the multi-parameter models C2P3 and C2P7 are
better at representing turbid coastal water. The C2P3 and
C2P7 models also have the potential to accurately represent
clear open water (NAAMES-Open) in joint retrieval algo-
rithms but with a conscientious interpretation of their χ2 dis-
tributions. The C2P3 and C2P7 models tend to converge to
local minima, and the extensive spread of χ2 values dimin-
ishes the ability of multi-parameter models to retrieve clear
water accurately and makes the interpretation of the retrieval
results difficult. Therefore, it is preferred to develop screen-
ing algorithms to divide open and coastal water before per-
forming MAP retrievals.

Similar to the SAA-based Rrs(λ) inversions (Hannadige
et al., 2023), multi-parameter models (C2P3 and C2P7) per-
form equally well when used with joint retrieval algorithms
and airborne MAP measurements. The C2P3 model is more
computationally efficient than the C2P7 model, as fewer free
parameters lead to significantly less processing time and
more stable retrieval performances.

Data availability. The data files for RSP and HSRL-2
used in this study are listed below. The RSP and HSRL-
2 data are available from the ACEPOL data portal (https:
//doi.org/110.5067/SUBORBITAL/ACEPOL2017/DATA001;
ACEPOL Science Team, 2017) and NAAMES data archived
at the NASA Atmospheric Science Data Center (ASDC;
https://doi.org/10.5067/SUBORBITAL/NAAMES/DATA001;
NAAMES Science Team, 2017).
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