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Abstract. We assess the theoretical capability of the upcom-
ing France–UK MicroCarb satellite, which has a city-scan
observing mode, to determine integrated urban emissions of
carbon dioxide (CO2). To achieve this we report results from
a series of closed-loop numerical experiments that use an
atmospheric transport model with anthropogenic and bio-
genic fluxes to determine the corresponding changes in at-
mospheric CO2 column, accounting for changes in measure-
ment coverage due to cloud loading. We use a maximum
a posteriori inverse method to infer the CO2 fluxes based
on the measurements and the a priori information. Using
an urban CO2 inversion system, we explore the relative per-
formance of alternative two-sweep and three-sweep city ob-
serving strategies to quantify CO2 emissions over the cities
of Paris and London in different months when biospheric
fluxes vary in magnitude. We find that both the two-sweep
and three-sweep observing modes are able to reduce a priori
flux errors by 20 %–40 % over Paris and London. The three-
sweep observing strategy, which generally outperforms the
two-sweep mode by virtue of its wider scan area that typ-
ically yields more cloud-free observations, can retrieve the
total emissions of the truth within 7 % over Paris and 21 %
over London. The performance of the limited-domain city-
mode observing strategies is sensitive to cloud coverage and
particularly sensitive to the prevailing wind direction. We
also find that seasonal photosynthetic uptake of CO2 by the
urban biosphere weakens atmospheric CO2 gradients across

both cities, thereby reducing the sensitivity of urban CO2 en-
hancements and subsequently compromising the ability of
MicroCarb to reduce bias in estimating urban CO2 emis-
sions. This suggests that additional trace gases co-emitted
with anthropogenic CO2 emissions, but unaffected by the
land biosphere, are needed to quantify sub-city scale CO2
emissions during months when the urban biosphere is partic-
ularly active.

1 Introduction

Urban areas account for about 70 % of global energy-related
anthropogenic CO2 emissions (including Scope 1 and 2
emissions), while they comprise only 3 % of Earth’s surface
area (Turnbull et al., 2018). Recent studies have empirically
related city-scale CO2 emission estimates with urban popula-
tion density (Wu et al., 2020; Yang et al., 2020). With urban-
ization rates projected to increase to 68 % by 2050 (Chaouad
and Verzeroli, 2018), urban CO2 emissions have become a
focus of emission mitigation efforts to limit global warm-
ing to 1.5 ◦C above pre-industrial levels and to achieve car-
bon neutrality by 2050 (Masson-Delmotte et al., 2018, 2021).
Satellite-based measurements of atmospheric CO2 are dedi-
cated to support the monitoring of surface CO2 fluxes (Crisp
et al., 2017). Here, we explore the theoretical potential of the
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city-scan observing mode of the upcoming France–UK Mi-
croCarb satellite to quantify urban emissions of CO2.

Quantifying urban-scale greenhouse gas emissions is cur-
rently limited to individual and networks of ground-based
(in situ) instruments (Lopez et al., 2013; Bréon et al., 2015;
Turner et al., 2016; Helfter et al., 2016; Lauvaux et al., 2016;
Davis et al., 2017; Verhulst et al., 2017; Sargent et al., 2018;
Kunik et al., 2019) and to sensors on mobile platforms (Pitt
et al., 2019; Mallia et al., 2020; Ionov et al., 2021; Makarova
et al., 2021). Emissions of CO2 from the largest emission
hotspots, including cities, can already be observed along in-
dividual orbits using existing low-Earth-orbiting satellites of
GOSAT (Yokota et al., 2009; Morino et al., 2011; Kort et al.,
2012; Janardanan et al., 2016) and OCO-2 (Hakkarainen
et al., 2016; Schwandner et al., 2017; Crisp et al., 2017; El-
dering et al., 2017; Chevallier et al., 2022) either directly as
XCO2 , the atmospheric column-averaged dry-air mole frac-
tion of CO2 (Ye et al., 2020; Zheng et al., 2020; Lei et al.,
2021), or via monitoring tropospheric NO2 (Konovalov et al.,
2016; Goldberg et al., 2019; Reuter et al., 2019; Hakkarainen
et al., 2021; Park et al., 2021; Finch et al., 2022). The main
advantage of using data from low-Earth-orbiting satellites is
their global coverage, subject to cloud cover (Massie et al.,
2017) and elevated atmospheric aerosol loading (O’Dell
et al., 2018). The current generation of satellites employ in-
struments with small ground footprints and relatively long
revisit time (3 to 16 d), resulting in a low probability of sam-
pling clear skies over individual cities. This capability con-
tinues with GOSAT-2 (Suto et al., 2021) and TanSat (Cai
et al., 2014; Liu et al., 2018; Yang et al., 2018) and in the
near future by the Copernicus CO2 Monitoring Mission that
includes cross-track sampling (Kuhlmann et al., 2020; Sierk
et al., 2021) that will increase the probability of clear-sky
data being collected over cities.

The NASA Orbiting Carbon Observatory 3 (OCO-3), in-
stalled on the International Space Station in 2019 (Eldering
et al., 2019; Taylor et al., 2020), has an external pointing
mirror assembly that facilitates Snapshot Area Maps (SAMs)
that describe fore and aft sampling of a limited area of inter-
est on the ground such as a large city. Early analysis of OCO-
3 data over the Los Angeles Basin (Kiel et al., 2021) revealed
intra-urbanXCO2 gradients, reflecting the mosaic of emission
types and magnitudes across the region, thereby illustrating
the value of these sampling approaches. Using a limited num-
ber of SAMs, this study reported elevated XCO2 values have
a median value of 2 ppm, ranging from 0 to 6 ppm. A recent
study has combined OCO-3 XCO2 data with carbon monox-
ide (CO) retrievals from the TROPOspheric Monitoring In-
strument over Los Angeles and Shanghai, Baotou, and Zibo
in China to attribute and contrast intra-city gradients of CO2
using inferred estimates of combustion efficiency (D. Wu
et al., 2022).

MicroCarb, due for launch in early 2024, will be the first
European satellite dedicated to measuring atmospheric CO2
with sufficient precision to detect the changes associated with

surface fluxes across the world (https://microcarb.cnes.fr/en,
last access: 19 January 2023). Data from MicroCarb will en-
sure continuity with other satellites collecting atmospheric
CO2 from low Earth orbit, e.g. GOSAT, OCO-2, TanSat,
and GOSAT-2. The instrument is a passive spectrometer that
uses an echelle grating to disperse reflected sunlight (Pas-
cal et al., 2017) into four short-wave infrared bands sensi-
tive to changes in atmospheric CO2 (1.61 and 2.06 µm) and
O2 (0.76 and 1.27 µm) used as a proxy for the atmospheric
path length accounting for changes in, for example, orog-
raphy, aerosols, and clouds (Bertaux et al., 2020). Micro-
Carb will employ three observing modes: (1) nadir measure-
ments over land, which have a ground pixel size of 4.5 km
(across track)× 8.9 km (along track); (2) sunglint measure-
ments over oceans and lakes with a variable footprint size
but with the same order of magnitude as the nadir configu-
ration; and (3) city-mode observations that collect a series
of fore and aft measurements of atmospheric CO2 at a spa-
tial resolution of 2.25 km× 2.25 km as the satellite passes
over a target region, e.g. a city or a calibration reference
point collocated with a ground-based remote sensing instru-
ment, e.g. Total Carbon Column Observing Network (TC-
CON) (Wunch et al., 2011, 2017).

We use a series of closed-loop numerical experiments (i.e.
observing system simulation experiments) to evaluate the
theoretical ability of MicroCarb city-mode measurements to
estimate integrated city-wide CO2 emissions over Paris and
London, considering a realistic instrument noise model. We
quantify the impacts of different observing modes, random
measurement errors, cloud cover, and biogenic fluxes on in-
ferring urban fossil fuel CO2 emissions using synthetic Mi-
croCarb observations. We report results in three different
months, accounting for differences in cloud cover, prevailing
wind patterns, and biospheric CO2 fluxes. We also compare
the performance of two proposed sampling strategies being
considered by MicroCarb involving two and three measure-
ment sweeps across a city. In the next section, we describe
our modelling approach and provide details about how we
simulate synthetic MicroCarb observations. In Sect. 3, we
report our results, including a sensitivity analysis. We con-
clude the study in Sect. 4, including a discussion of our re-
sults and how we anticipate they will be used when Micro-
Carb is launched.

2 Data and methods

Here we describe the MicroCarb instrument and its city-
mode sampling strategy, as well as the individual compo-
nents of the closed-loop numerical experiments (Fig. 1) fo-
cused on Paris and London during April, July, and December
2018.
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Figure 1. Flow chart of the Observing System Simulation Experi-
ment (OSSE) for urban CO2 inversion.

2.1 MicroCarb city-mode configuration

The two-sweep and three-sweep city-scan sampling config-
urations (Fig. 2) are being considered by the MicroCarb sci-
ence team. Both city-scan configurations cover a city the
size of Paris or London. For any acquisition mode, the spa-
tial across-track (ACT) swath is acquired by a detector that
has 90 pixels in the spatial dimension and 1024 pixels that
collect spectral information for the four infrared bands de-
scribed above. In the nominal nadir mode of MicroCarb,
each individual ACT sounding results from the binning of
30 ACT pixels. The spatial along-track (ALT) dimension is
determined by the satellite velocity during the 1.3 s measure-
ment integration time, which leads to the nominal pattern of
three soundings of 4.5 km ACT× 8.9 km ALT, leading to a
13.5 km ACT swath and a continuous ALT sampling. The
city mode differs from the nominal nadir pattern in three
ways: (1) the satellite makes a permanent pitch rotation to
slow the projection of the line of sight on the ground, leading
to an ALT footprint size of 2.25 km (for the same 1.3 s mea-
surement integration time); (2) each individual ACT foot-

print results from the binning of 15 ACT pixels, leading to
six ACT footprints each with an ACT size of 2.25 km; and
(3) the ACT swath of the complete city-mode measurement
configuration is constructed by the juxtaposition of two or
three ALT sweeps, enabled by satellite pitch manoeuvres be-
fore and after flying over the target that provides forward
and backward viewing of the target. Each successive sweep
is shifted by 13.5 km ACT using a roll-axis pointing mirror
to get contiguous spatial observations. The roll-axis pointing
mirror also provides the opportunity to centre the city-mode
sampling pattern over cities that lie aside of the satellite track.
Further instrument details that enable the city-scale mode can
be found in Jouglet et al. (2021).

We study two configurations in the MicroCarb satellite
city-scan observing mode (Fig. 2): (1) the two-sweep config-
uration has only forward and backward observations, leading
to a∼ 40 km ACT swath (2× 13.5 km including the off-nadir
pointing footprint deformation); and (2) the three-sweep con-
figuration has forward, nadir, and backward observations,
leading to a ∼ 60 km ACT swath. These are typical values
including off-nadir centred city modes. For a city mode cen-
tred at nadir, the ACT swath is 34 km for the two-sweep mode
and 52 km for the three-sweep mode. The allowed duration
of each sweep mode leads to an ALT swath of ∼ 40 km.

2.2 Cloud screening

The MicroCarb science team will use ECMWF cloud fore-
casts to program city-mode measurements, in order to max-
imize the success of cloud-free observations. However, the
cloud forecast has a limited precision, and small-scale clouds
may not be predicted. Here, to realistically describe (and re-
move) observations contaminated by clouds on the spatial
scale of the observations, we use ERA5 total cloud cover
reanalysis data at 0.25◦× 0.25◦ resolution (Hersbach et al.,
2018) for the expected satellite equatorial overpass time
(12:00 UTC) of MicroCarb. We use a downscaling method
that assumes the dependence of the probability (f ) of a
cloud-free observation to its pixel size (s) and large-scale
cloud cover (P ) (Palmer et al., 2011):

f (P,s)= Fp(s)g(1−P), (1)

where g is defined as a constant factor for alignment between
the instrument pixel and the cloud-free subgrid region, which
we choose to be 1. The pixel size (s) of MicroCarb city-
scan observing mode is approximately 2 km × 2 km. Using
a constant alignment factor (g) will cause an overestimation
of the probability for cloud-free observations at high cloud
cover and an underestimation at low cloud cover. Fp(s) is the
penalty function accounting for the adverse effects on cloud-
free probability when the effective instrument pixel size is
larger than the nominal 1 km2 (Boesch et al., 2011):

Fp(s)=
26.098s−0.45

+ 10.18
26.098+ 10.18

. (2)
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Figure 2. MicroCarb city-mode sampling patterns for the two-sweep and three-sweep modes in Paris (a, b) and London (c, d). Samplings
are marked by quality flag (QF) using ERA5 total cloud cover at 12:00 UTC on 15 April 2018. QF= 0 means the samplings are cloud-free,
and QF= 1 means the samplings are cloud-contaminated. Numbers in the parentheses are the number of observations and the percentage
relative to the total number of observations for the two-sweep (228) and three-sweep (342) modes. The red star marks the city centre. The
satellite moves from northeast to southwest, and wind comes from southwest.

For each individual measurement pixel, we calculate its
cloud-free probability (f in Eq. 1) based on ERA5 total
cloud cover reanalysis data at 0.25◦× 0.25◦ resolution, and
then we generate a random number for each measurement
to compare with its cloud-free probability (f ) and determine
whether a measurement is cloud-free. The first step is related
to the organization of cloud distribution based on the ERA5
data, and the second step is related to the randomness of the
impact of cloud on satellite measurements.

We report our results over Paris and London for three ar-
bitrary days (5th, 15th, and 25th) from the months of April,
July, and December 2018 (Fig. A1). For some of these days
(five for Paris and three for London), we find that the cloud
cover is 100 %. In these cases, we arbitrarily halve the cloud
cover to 50 % to generate cloud-free observations (Table A1).
Out of the total 228 (two-sweep mode) and 342 (three-sweep
mode) individual observations over Paris and London, our
method assigns 72 (two-sweep mode) and 124 (three-sweep
mode) samplings to be cloud-free in Paris and 69 (two-sweep
mode) and 119 (three-sweep mode) cloud-free samplings in
London at 12:00 UTC on 15 April 2018, respectively (Fig. 2).

2.3 Anthropogenic CO2 emissions

We use the Open-source Data Inventory for Anthropogenic
CO2 (ODIAC, 2019 version) for monthly mean fossil fuel
emissions of CO2 in Paris and London at a spatial resolu-
tion of 1 km× 1 km (Oda and Maksyutov, 2011; Oda et al.,
2018). The data product uses satellite observations of night-
time light and power plant profiles (including emissions in-
tensity and geographical location) to distribute country-level
CO2 emission estimates from fossil fuel combustion. We
use ODIAC to guide our broader study domains for Paris
and London, ensuring we include anthropogenic source re-
gions that lie outside the spatial extent of MicroCarb city-
mode configurations (Fig. 3a and b). For our calculations,
we exclude a small number of extremely large emissions
sources (e.g. power plants and some industrial emissions)
that are more than 100 times larger than other (areal and point
sources) emission pixels but have lower uncertainties. In to-
tal, we exclude 9 pixels over Paris (about 0.1 % of 10 080
pixels), and 22 pixels are excluded in London (about 0.2 %
of 10 368 pixels). We exclude these sources because (1) the
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atmospheric transport model is not sufficiently accurate and
precise to infer the location and emissions strength of these
sources and errors in the locations of these point sources
diminish the ability to infer sub-city scale emissions (Oda
et al., 2017; Roten et al., 2022) and (2) these anomalously
large emissions complicate the matrix-based inverse method
calculation. We acknowledge that real measurements will
likely detect these large emission sources, subject to changes
in cloud cover and wind direction and speed. For meteoro-
logical circumstances where the resulting plume takes the
form of thin, anomalously large CO2 enhancement, only very
high-resolution models will be able to describe the plume
and estimate its parent emissions with fidelity. Paris emis-
sions of CO2 (1.71 t CO2 s−1 in April 2018) are concentrated
in the city centre, home to about 2.17 million people (The
National Institute of Statistics and Economic Studies). They
are 1.4 times the size of those from London (1.25 t CO2 s−1),
home to about 8.9 million people (United Nations World Pop-
ulation Prospects), where emissions are aligned in the east–
west direction along the River Thames.

2.4 Urban biosphere CO2 fluxes

We use the SMUrF (Solar-Induced Fluorescence for Mod-
eling Urban biogenic Fluxes) model (Wu et al., 2021) to
estimate the net ecosystem exchange (NEE) across Paris
and London. SMUrF estimates gross primary productivity
(GPP) using OCO-2-derived solar-induced chlorophyll flu-
orescence (SIF) (Zhang et al., 2018) and neural networks
to determine the relationship between ecosystem respiration
and air and soil temperatures and GPP. SMUrF determines
biome-specific model parameters by aggregating multiple
flux tower sites from similar biomes across the globe to de-
scribe urban biogenic fluxes. We interpolate NEE values to
the same grid used by ODIAC.

We evaluate SMUrF NEE estimates in France and UK by
using eddy-covariance flux measurements from the European
Fluxes Database Cluster: five sites in France (FR-Aur, FR-
Hes, FR-Lam, FR-LGt, and FR-Pue) and two sites in the
UK (UK-AMo and UK-EBu). Details of each site can be
found at http://www.europe-fluxdata.eu/home/sites-list (last
access: 19 January 2023). These flux sites correspond to a
variety of land types, including croplands (CRO), deciduous
broadleaf forests (DBF), permanent wetlands (WET), ever-
green broadleaf forests (EBF), and grasslands (GRA). We
acknowledge these sites are not located in urban areas due
to the lack of sufficient urban biosphere flux measurements
(only one urban flux site in London and the data are not
public); thus, this evaluation provides us with limited confi-
dence to understand the gradients in atmospheric CO2 across
these cities. All flux data in France are from 2018 (same year
as our model meteorology). In the absence of UK flux data
from 2018 we use data from 2015 (UK-AMo) and 2011 (UK-
EBu).

The seasonal-mean NEEs simulated by SMUrF in July
2018 agree reasonably with the eddy-covariance flux data
(slope= 1.07 for the ensemble mean of all sites, and the cu-
mulative seasonal-mean NEE is −12 g m−2 d−1 for the sim-
ulated flux and −10 g m−2 d−1 for the flux data), indicat-
ing that the simulated biogenic CO2 fluxes are in a realis-
tic range, although there are differences between site-specific
model and observed photosynthetic uptake due to random er-
rors, interpolation errors, and different spatial and temporal
scales (Fig. A2). Figure 3c and d show the spatial distribution
of urban biosphere CO2 fluxes on the 15 April 2018. We find
substantial biospheric uptake over Paris and London during
this month, comparable to the magnitude of fossil fuel emis-
sions but with peak values located in contrasting regions. As
we discuss below, these different emission distributions have
implications for inferring fossil fuel combustion fluxes from
atmospheric data.

2.5 Atmospheric transport model

We use the column version of the Stochastic Time-Inverted
Lagrangian Transport model (X-STILT) (D. Wu et al., 2018;
Fasoli et al., 2018; Lin et al., 2003) to link surface CO2 fluxes
to variations of atmospheric CO2 mole fractions at the lo-
cations of satellite soundings (Figs. A3 and A4). X-STILT
traces the movement of air parcels backwards in time for
24 h. For the purposes of this study, we use a typical aver-
aging kernel profile of OCO-2 that describes the vertical sen-
sitivity of the column observations to changes in CO2 in the
column. We apply this averaging kernel and pressure weight-
ing functions to the model fields to describe the footprints of
satellite-based atmospheric CO2 observations. The footprints
describe the sensitivity of CO2 columns at the receptors (lo-
cations where the satellite observes the atmosphere) to up-
wind surface fluxes.

To drive air parcels in X-STILT we use Global Forecast
System meteorological data with a horizontal resolution of
0.25◦ (GFS0.25) (National Centers for Environmental Pre-
diction, National Weather Service, NOAA, U.S. Department
of Commerce, 2015). At the receptor, 3000 air parcels evenly
distributed from the surface to 3 km height are released from
the atmospheric column of each observation. We simulate
footprints for the cloud-free observations sampled by Mi-
croCarb. The sum of the convolution of footprints and the
ODIAC and SMUrF fluxes represents the urban CO2 en-
hancements from upwind CO2 fluxes, as sampled by air
parcels arriving at the locations of each observation.

2.6 Maximum a posteriori inverse method

We use the maximum a posteriori (MAP) inverse method
(Enting, 2002; Tarantola, 2004; Feng et al., 2009) in which
we solve for a posteriori CO2 emissions by minimizing a
cost function that describes the mismatch between the model-
calculated enhancements and the measurements, accounting
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Figure 3. Monthly mean fossil fuel CO2 emissions in April 2018 from ODIAC in Paris (a) and London (b). Biogenic CO2 fluxes at
12:00 UTC on 15 April 2018 simulated by the SMUrF model in Paris (c) and London (d).

for a priori and measurement uncertainties. Minimizing the
cost function results in the following expressions:

x̂ = x0+ (HB)T(HBHT
+R)−1(y−Hx0), (3)

Ŝ= B− (HB)T(HBHT
+R)−1(HB), (4)

where x̂ and Ŝ denote the a posteriori state of grid-based CO2
emission estimates across a city and the associated error co-
variance matrix, respectively. x0 and B denote the a priori
emissions and the associated error covariance matrix. The
measurement vector y includes the atmospheric CO2 column
enhancements, with the associated errors described by the
observation error covariance matrix R (including measure-
ment errors and atmospheric transport errors). H denotes the
Jacobian matrix that describes the sensitivity of atmospheric
CO2 column enhancements to changes in CO2 emissions.

To evaluate the theoretical performance of the MicroCarb
city-mode data on improving a priori knowledge of urban
CO2 emissions over Paris and London, we use an error reduc-
tion metric (η) that takes into account differences between
the a priori and a posteriori error covariance matrices (Palmer
et al., 2000):

η =

1−

(
Ŝi,i
Bi,i

)1/2
× 100%, (5)

where the subscripts denote the diagonal elements of the er-
ror covariance matrices. The larger the value of η the larger
the reduction in uncertainty of CO2 emissions due to using
the atmospheric CO2 measurements.

2.7 Closed-loop numerical experiments

Figure 1 describes the experimental approach we take to as-
sess the theoretical ability of MicroCarb city-scan mode mea-
surements to quantify urban emissions of CO2 from Paris and
London. Here, we discuss the individual steps involved, fol-
lowing K. Wu et al. (2018). We use the ODIAC emissions
and the SMUrF fluxes, described above, as the true state. We
optimize individual flux components as separate state vec-
tor elements. The spatial resolution of fluxes is 1 km× 1 km,
and the temporal resolution is monthly. In Paris, the size of
the state vector is 10 080× 1 for only the fossil component
and 20 160× 1 when including fossil and biogenic fluxes.
The introduction of biogenic fluxes doubles the size of the
state vector because we optimize them separately. The corre-
sponding CO2 column enhancements are generated from the
true fluxes by the column-mean X-STILT transport model, as
described above.

We then add realistic observation noise to each cloud-
free scene (determined by the cloud coverage) based on esti-
mates from detailed simulations of the MicroCarb measure-
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ment error budget. These simulations transfer the instrumen-
tal performances (signal-to-noise ratio, spectral sampling,
and spectral band positions) to random measurement error
using the gain matrix formalism from Rodgers (2000). Only
the radiometric noise has been included here. The measure-
ment random error is expressed as the standard deviation of
a Gaussian probability distribution law, which is computed
for each footprint given its Sentinel-2 L1C reflectance, so-
lar zenith angles, and atmospheric profiles for temperature,
H2O, and CO2. The random measurement errors range 0.4–
1.6 ppm with a mean value of 0.93 ppm for both the two-
sweep and three-sweep configurations over Paris and mean
values of 0.88 ppm (two-sweep) and 0.91 ppm (three-sweep)
over London (Fig. A5). We add an assumed additional 20 %
random error to the urban CO2 column enhancement to ac-
count for atmospheric transport errors (Deng et al., 2017;
Lauvaux et al., 2019), assuming the transport model is un-
biased. A more formal estimation of atmospheric transport
errors would suggest more confidence than we have in our
estimate of the uncertainty in the X-STILT model. We will
examine the impacts of different transport errors (described
by the observation error covariance matrix) on the error re-
duction (η) of flux inversion. Based on these error estimates
in the observation error covariance matrix (R), we generate
synthetic observed CO2 enhancements, which are assumed
to be unbiased.

Evaluating our ability to reduce a priori flux errors (in-
cluding systematic and random errors) is the primary objec-
tive of this study. We respectively assume a mean system-
atic and random flux error of 2 µmol m−2 s−1 (about 34 %)
for fossil fuel emissions (Oda et al., 2019; K. Wu et al.,
2018). The mean random error of the biological fluxes is esti-
mated as 25 % (which is an approximately mean value of the
standard deviations of the seasonally averaged biogenic CO2
fluxes) based on the eddy-covariance flux measurements at
the ecosystem sites described above. The total systematic and
random flux errors are constrained by the chi-square test that
should be close to one. We use an eigenvalue decomposition
method to generate a priori flux noise from the flux error co-
variance matrix (B). The vector of flux noise is calculated by
multiplying the eigenvector of the flux error covariance ma-
trix (after considering the spatial correlation of errors) with a
normal distribution vector characterizing the systematic and
random flux errors. The flux errors are spatially correlated
with an exponentially decaying function of the distance be-
tween emission grids, and the spatial correlation length is as-
sumed to be 10 km (Saide et al., 2011; Wu et al., 2011). We
then sample the resulting a priori distribution of CO2 column
enhancements where there are cloud-free measurements and
use the MAP inverse method to infer the a posteriori flux es-
timates and associated uncertainties over Paris and London.
We can assess the ability of using the synthetic measurements
to retrieve the true urban emissions from Paris and London
at different times throughout the year.

3 Results

We report our results over Paris and London for three arbi-
trary days (5th, 15th, and 25th) from the months of April,
July, and December 2018. This allows us to investigate the
impacts of different cloud cover and wind fields on the flux
inversion of the proposed MicroCarb sampling strategies and
to understand how seasonal changes in the urban biosphere
will influence our ability to determine urban anthropogenic
emissions of CO2. In total, we report the results of nine sce-
narios (3 d per month for 3 months). In terms of structur-
ing our results, we first use the results on 15 April 2018 to
demonstrate the effectiveness of the inversion system and
then generalize these results for all nine scenarios. We firstly
only include the fossil component and focus on estimating
fossil fuel CO2 emissions (Sect. 3.1 and 3.2) and then ex-
tend the inversion system to include the biogenic component
(Sect. 3.3 and 3.4).

3.1 Flux estimates on 15 April 2018

Figure 4a, b, e, and f show the spatial distribution of the
true and a priori fossil fuel CO2 fluxes over Paris and Lon-
don. Application of our random and systematic errors, as part
of the closed-loop experimental configuration, introduces a
significant difference between the truth and a priori emis-
sions (Figs. A6a and A7a). We use cloud-free satellite mea-
surements to sample urban CO2 enhancements that corre-
spond to these emissions, as observed by MicroCarb using
its proposed two-sweep and three-sweep city-mode config-
urations (Fig. 2). The number of cloud-free data over Paris
at 12:00 UTC on 15 April 2018 using the two-sweep and
three-sweep observing modes is 72 and 124, respectively.
The corresponding number of cloud-free data over London
is 69 and 119, respectively. The a posteriori CO2 fluxes over
Paris (Fig. 4c and d) and London (Fig. 4g and h) illustrate
that cloud-free MicroCarb observations can broadly retrieve
the spatial structure and magnitude of the true emissions.
The a posteriori emission optimized by the two-sweep con-
figuration can retrieve the true integrated emission for Paris
within 18 % from an a priori state of 52 % larger than the
truth. Similarly, this configuration results in an a posteriori
emission estimate for London that is within 28 % of the true
value from an initial a priori difference of 74 %. The three-
sweep mode performs better to retrieve the total emissions
of the truth within 7 % (Paris) and 21 % (London). For both
cities, the a posteriori uncertainty is approximately half that
of its a priori value. The three-sweep configuration outper-
forms the two-sweep configuration due to a higher number
of cloud-free observations. For this day, the X-STILT foot-
prints, describing the sensitivity of column-averaged CO2
measurements to urban emissions, come from south of both
Paris (Fig. A3b) and London (Fig. A4b). Consequently, size-
able flux correction and error reduction are shown in the
south of Paris (Fig. A6) and London (Fig. A7). The error re-

https://doi.org/10.5194/amt-16-581-2023 Atmos. Meas. Tech., 16, 581–602, 2023



588 K. Wu et al.: Theoretical assessment of MicroCarb to estimate urban CO2 emissions

duction is more significant for the three-sweep configuration
due to more cloud-free observations.

Figure 5 shows the urban CO2 column enhancements that
correspond to the true, a priori, and a posteriori emissions.
The a posteriori CO2 enhancements are closer to the “per-
fect” observations (OBS), which are generated from the true
emissions, demonstrating the effectiveness of using the Mi-
croCarb city-mode samplings to correct flux errors and im-
prove the estimation of urban CO2 enhancements. The prior
and posterior column CO2 enhancements for Paris and Lon-
don on 15 April 2018 range 0–4 ppm, with mean values of
the perfect observations of 1.28± 0.71 ppm over Paris and
0.67± 0.46 ppm over London for the two-sweep mode, con-
sistent with previous studies on other cities (Kort et al., 2012;
Hedelius et al., 2017, 2018; Kiel et al., 2021). Variation in
enhancements reflects the spatial distribution of emissions
across the cities and the footprints related to local meteoro-
logical conditions.

3.2 Sensitivity to cloud cover and measurement
uncertainty

We estimate the sensitivity of flux error reduction to obser-
vation uncertainties (including atmospheric transport errors)
and the data availability to a different number of cloud-free
observations within the three-sweep configuration (Fig. 6).
The peak spatially averaged error reduction is approximately
18 % with the observation uncertainty of 0.5 ppm and the
largest number of measurements. The lowest error reduction
is for the minimal data availability with 80 % cloud cover.
Moreover, the scenario of all data (342 OBS) with 1.25 ppm
observation uncertainty shows similar error reduction to the
scenario of clear sky with 1 ppm observation uncertainty for
both Paris and London, indicating better measurement preci-
sion can partially compensate for fewer measurements. For
both cities, the sensitivity of error reduction to changes in
the observation uncertainty is similar for different cloud cov-
erage, with increasing cloud coverage resulting in a near-
uniform decrease in the flux error reduction.

3.3 Influence of biogenic CO2 fluxes

Figure 7 shows how the introduction of biospheric CO2
fluxes can influence the ability to infer anthropogenic CO2
emissions. For this calculation we use the same true and
a priori fields for the anthropogenic emissions of CO2 over
Paris on 15 April 2018 (Fig. 4a and b). The effect of adding
biospheric CO2 fluxes is to reduce the urban CO2 enhance-
ments. These smaller column enhancements, within the con-
text of the measurement uncertainties, limit our ability to re-
duce the random and systematic flux errors we impose as part
of our closed-loop experiment and consequently to quantify
correctly anthropogenic CO2 emissions. The total a posteri-
ori anthropogenic emission estimate over Paris inferred us-
ing the three-sweep mode is 2.19 t CO2 s−1 (Fig. 7a), which

is further from the true state than the emission estimate for
the same scenario but in the absence of biospheric fluxes
(Fig. 4d). The a posteriori uncertainty increases by 51 % from
0.45 to 0.68 t CO2 s−1 relative to the scenario without bio-
spheric fluxes. The a posteriori flux noise is larger (Fig. 7b)
with a degraded error reduction (Fig. 7c) relative to the sce-
nario without biospheric fluxes (Fig. A6f and g). Although
the random error correction of the fossil component is only
related to the random error of the biogenic component, we
find that biospheric uptake reduces the signal-to-noise ratio
in satellite measurements (Fig. 7d), which limits the ability to
reduce bias in the a priori anthropogenic CO2 emissions. The
degree of the influence from biosphere is subject to the un-
certainty of a priori biogenic fluxes, the separation of anthro-
pogenic signals from net CO2 measurements, and the scale
of inverted fluxes.

3.4 Ensemble analysis of Paris and London scenes

We generalize the results for nine individual scenarios over
Paris and London, distributed evenly between April, July, and
December 2018 (Figs. 8 and 9). The nine scenes differ be-
cause of different biospheric fluxes and meteorological con-
ditions, including cloud cover and prevailing wind, that im-
pact the data availability and footprints. In general, all con-
figurations improve the a priori estimate, the extent of which
is determined by the number of cloud-free observations over
each city, the sweep configuration used, and the introduction
of seasonal biospheric CO2 fluxes. This general discussion
is consistent with our analysis from the 15 April 2018, de-
scribed above. The three-sweep observing mode results in
the most accurate reproduction of true urban emissions over
Paris and London due to a higher number of cloud-free ob-
servations (Fig. 8). Ignoring the impact of biospheric CO2
fluxes, the mean values of error reduction (including sys-
tematic and random error corrections) are 39 % (two-sweep)
and 46 % (three-sweep) for Paris, and those values are 44 %
(two-sweep) and 50 % (three-sweep) for London (Fig. 9a and
c). In Paris, the scenario that results in the largest improve-
ment to the a priori estimate is on 25th December 2018. This
is due to a greater number of cloud-free observations (Ta-
ble A1) and weakly dispersed footprints from the south of
Paris (Fig. A3i) that are correlated with the distribution of
the a priori flux noise (Fig. A6a). A contrasting scenario, as-
sociated with weak improvement to the a priori estimate, is
over Paris on 5 July 2018. This is mainly due to the foot-
print originating from the north of the city (Fig. A3d) and
therefore insensitive to the a priori flux noise. Generally, sce-
narios associated with the weakest improvements are associ-
ated with the lowest number of cloud-free observations, e.g.
25 April 2018 over Paris (Table A1). We find similar results
over London. Our analysis suggests that cloud cover and pre-
vailing wind (speed and direction) are both determinants of
city-scan observations being able to infer accurately urban
anthropogenic emissions of CO2.
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Figure 4. Truth, prior state, and posterior state based on the cloud-free samplings of the two-sweep and three-sweep modes in Paris (a–d) and
London (e–h) at 12:00 UTC on 15 April 2018. The values in parentheses are the total CO2 emissions within the domain and its uncertainty.

Figure 5. Urban CO2 enhancements for the two-sweep and three-sweep modes in Paris (a, b) and London (c, d).

Including the impact of seasonal biospheric CO2 fluxes
(with the associated uncertainties) generally reduces the ur-
ban CO2 column enhancements and consequently limits the
ability to reduce systematic and random errors in the fos-
sil component (Fig. 8b and d), particularly during April and
July when the biosphere is more active and the flux error
reductions are 20 %–40 % over Paris and London (Fig. 9b

and d). We acknowledge our results are dependent on the
uncertainties estimated for these biospheric fluxes. Decreas-
ing the uncertainty of the a priori biospheric CO2 fluxes will
strengthen the relationship between the data and simulated
urban CO2 enhancements that consequently contributes to
accurately quantifying anthropogenic CO2 emissions.
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Figure 6. Spatially averaged flux error reduction with the change of observation uncertainty under different sampling scenarios in Paris (a)
and London (b). Numbers in parentheses are the number of observations and the percentage relative to the total number of observations for
the three-sweep mode (342).

Figure 7. Posterior fossil fuel CO2 fluxes (a), posterior flux noise (b), flux error reduction (c), and urban CO2 enhancements (d) after
including biogenic CO2 fluxes in Paris for the three-sweep mode. The values in parentheses are the total emissions within the domain and its
uncertainty.

4 Conclusions and discussion

We evaluate the ability of MicroCarb city-scan observing
modes to infer sub-city scale anthropogenic CO2 emissions
with sufficient measurement accuracy and density. Both the
two-sweep and three-sweep observing modes are able to re-
duce a priori flux errors for 20 %–40 % over Paris and Lon-

don and retrieve the emission spatial structures of the truth.
The three-sweep mode generally outperforms the two-sweep
mode due to a wider scan area and a higher number of
cloud-free observations. Cloud cover and prevailing wind
are two determinants of city-scan observations for inferring
accurately urban anthropogenic emissions of CO2. The in-
version system corrects more flux errors when there is less
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Figure 8. Total fossil fuel CO2 emissions within the domain in Paris (a, b) and London (c, d) for different sampling scenarios. Panels (a)
and (c) do not include the biogenic CO2 flux component, while panels (b) and (d) include the biogenic fluxes.

cloud cover and the footprints cover the area correlated to
the distribution of a priori flux noise. The column-averaged
urban CO2 enhancements are 0–4 ppm for the cities we ex-
amined, with mean values of 1.28± 0.71 ppm over Paris and
0.67± 0.46 ppm over London. Quantifying sub-city scale
emissions requires improving the accuracy and precision of
satellite-based CO2 measurements. Moreover, the presence
of biospheric CO2 fluxes diminishes the ability to estimate
anthropogenic CO2 emissions. Combining additional trace
gases that are emitted with CO2 during combustion (e.g. CO
or NO2) can help to infer urban CO2 emissions (Konovalov
et al., 2016; Reuter et al., 2019; Hakkarainen et al., 2021;
Park et al., 2021; D. Wu et al., 2022), especially during
the growing season when the land biosphere absorbs atmo-
spheric CO2.

We demonstrate the ability of using synthetic unbiased Mi-
croCarb data to infer urban CO2 emissions, but there are ad-
ditional limitations and uncertainties introduced by using real
data that will have systematic and random errors (Broquet
et al., 2018). Reducing random errors can be achieved by in-
creasing the number of independent measurements. Address-
ing regional systematic errors is more difficult. For exam-
ple, we find that column-averaged urban CO2 enhancements
are typically less than 1 % of the atmospheric background

column concentration (about 415 ppm), so that a regionally
varying systematic measurement error of the order of 1 ppm
would significantly degrade emission estimates inferred from
the data. We expect that larger-scale systematic errors would
be identified and corrected by ground-based remote sensing
instruments (e.g. TCCON). Establishing city-scale ground-
based atmospheric remote sensing networks would help cor-
rect regional systematic errors.

Estimating the regional background CO2 column concen-
tration is important for quantifying the magnitude of urban
CO2 enhancements due to net urban emissions, including an-
thropogenic and biospheric CO2 fluxes. A range of methods
have been employed in different studies to quantify regional
background values (Kort et al., 2012; Ye et al., 2020; Kiel
et al., 2021). Here, we have sidestepped this issue by taking
advantage of the closed-loop experiment configuration. To
estimate city-scale CO2 emissions from real MicroCarb data,
we will need to consider the additional uncertainty associ-
ated with the calculation of the elevated CO2 column. Here,
we find that the three-sweep observing mode outperforms
the two-sweep mode because of the larger number of obser-
vations that help to reduce random errors. The three-sweep
mode also has a wider scan outside the urban plume that will
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Figure 9. Similar to Fig. 8 but for the error reduction of the total city-scale emissions.

help to reduce bias in estimating regional background CO2
values.

This study assumes unbiased and uncorrelated atmo-
spheric transport errors. However, these errors are likely to
be correlated at the sub-city scale. We acknowledge that X-
STILT used in the study is not tuned for simulating ele-
vated emissions given the use of a vertically integrated 2-D
footprint. Future work will include the use of the vertically
resolved footprint associated with each air parcel, and the
vertical profiles of sector-specific emissions to improve the
hyper-near-field simulations of point sources following prior
approaches (Maier et al., 2022; Mallia et al., 2018). Also,
relatively low (high) wind speed will produce the strong
(weak) urban enhancement signals but are associated with
relatively large (small) transport errors. Better understanding
atmospheric transport and a priori flux errors is essential to
improve the accuracy and precision of high-resolution urban
a posteriori CO2 flux estimates. Our assumptions about at-
mospheric transport errors likely result in the best-case sce-
nario for error reduction that can be achieved by the Micro-
Carb city-scan observing modes.

As with other polar-orbiting satellites, MicroCarb pro-
vides a limited amount of data over urban areas due to sea-
sonal cloud cover (especially for mid-to-high-latitude cities)
and elevated aerosol loading in urban areas, as well as be-

cause of their orbital configuration. As a result, the instru-
ment will not see CO2 immediately overhead of some parts
of the city, and some cloud-free pixels, particularly between
cloud breaks, will likely have a bias due to 3-D cloud radia-
tion effects (Massie et al., 2017). Table A1 lists the number
and percentage of cloud-free data over our test cities. In Paris,
4 of the 9 d collect cloud-free data (the other 5 d are covered
by cloud at 12:00 UTC). For these 4 d, only 40 %–50 % of
the data are cloud-free. Lei et al. (2021) found only 17 % of
OCO-2 soundings over the 70 most populated cities are of
high quality, consistent with our calculations (18 %–22 %).
The number of available measurements is reduced further
considering the effective footprints over urban areas. Using
satellites to collect data throughout the day over a particular
location can only be achieved with a constellation of satel-
lites or with a satellite in a geostationary orbit; neither solu-
tion is currently planned.

Seasonal biospheric uptake of CO2 within and around ma-
jor cities will weaken observed CO2 gradients across cities
that would otherwise be determined by anthropogenic emis-
sions. The use of 14C isotope and CO has been demonstrated
to separate fossil and biogenic fluxes inferred by ground-
based atmospheric CO2 measurements (Turnbull et al., 2015;
Basu et al., 2020; Miller et al., 2020; K. Wu et al., 2022).
There are number of candidate approaches to alleviate this
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challenge for satellite-based CO2 inversions but none have
been proven extensively. A coupled assimilation of CO2 with
other trace gases that are co-emitted with anthropogenic CO2
emissions such as CO or NO2 provides constraints of the ac-
tivity rates of individual anthropogenic sectors but still re-
quires sector-based knowledge of emission factors. Likewise,
being able to reliably relate net biospheric fluxes to data
products observed from satellites could also help to isolate
fossil fuel emissions of CO2 from natural fluxes over cities.

Appendix A

Figure A1. ERA5 total cloud cover at 12:00 UTC on the 5th, 15th, and 25th in April, July, and December 2018 over Paris and London. The
black lines are the coastline, and the red stars mark the city centre of Paris and London.
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Table A1. The number of cloud-free observations and their percentage relative to the total number of observations for the two-sweep (228)
and three-sweep (342) modes in Paris and London. Bold numbers mark the dates that we artificially halve the cloud cover from 1 to 0.5;
otherwise, there are no cloud-free samplings at 12:00 UTC on those dates.

Two-sweep, 5 15 25
three-sweep

Apr 67 (29 %), 114 (33 %) 72 (32 %), 124 (36 %) 27 (12 %), 33 (10 %)
Paris Jul 89 (39 %), 127 (37 %) 112 (49 %), 185 (54 %) 114 (50 %), 169 (49 %)

Dec 69 (30 %), 128 (37 %) 76 (33 %), 108 (32 %) 101 (44 %), 151 (44 %)

Apr 85 (37 %), 151 (44 %) 69 (30 %), 119 (35 %) 81 (36 %), 130 (38 %)
London Jul 121 (53 %), 159 (46 %) 148 (65 %), 226 (66 %) 48 (21 %), 66 (19 %)

Dec 78 (34 %), 116 (34 %) 70 (31 %), 111 (32 %) 57 (25 %), 59 (17 %)

Figure A2. Diurnal variation of seasonally averaged eddy-covariance flux measurements (a) and net ecosystem exchange (NEE) simulated
by the SMUrF model (b). Error bars are the standard errors of the seasonal means. Flux data are downloaded from the European Fluxes
Database Cluster, with five sites in France (FR-Aur, FR-Hes, FR-Lam, FR-LGt, and FR-Pue) and two sites in the UK (UK-AMo and UK-
EBu). Site information is described on the website (http://www.europe-fluxdata.eu/home/sites-list). The land types are croplands (CRO),
deciduous broadleaf forests (DBF), permanent wetlands (WET), evergreen broadleaf forests (EBF), and grasslands (GRA).
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Figure A3. Monthly mean ODIAC emissions and the simulated footprint of a cloud-free sampling in the two-sweep mode at 12:00 UTC on
the 5th, 15th, and 25th in April, July, and December 2018 over Paris. The values for the footprint are displayed on a logarithmic colour scale.
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Figure A4. Same as Fig. A3 but for London.
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Figure A5. Probability density of the observation uncertainty (random measurement error) in Paris (a) and London (b).

Figure A6. Prior flux noise (prior state minus truth), flux correction (posterior minus prior state), posterior flux noise (posterior state minus
truth), and flux error reduction using the cloud-free samplings of the two-sweep (b–d) and three-sweep (e–g) modes in Paris (considering
only anthropogenic emissions.).

Figure A7. Same as Fig. A6 but for London.
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