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Abstract. The University of Maryland, Baltimore County
(UMBC) Hyper-Angular Rainbow Polarimeter (HARP2)
will be on board NASA’s Plankton, Aerosol, Cloud, ocean
Ecosystem (PACE) mission, scheduled for launch in January
2024. In this study we systematically evaluate the retriev-
ability and uncertainty of aerosol and ocean parameters from
HARP2 multi-angle polarimeter (MAP) measurements. To
reduce the computational demand of MAP-based retrievals
and maximize data processing throughput, we developed
improved neural network (NN) forward models for space-
borne HARP2 measurements over a coupled atmosphere and
ocean system within the FastMAPOL retrieval algorithm.
To this end, a cascading retrieval scheme is implemented in
FastMAPOL, which leverages a series of NN models of vary-
ing size, speed, and accuracy to optimize performance. Two
sets of NN models are used for reflectance and polarization,
respectively. A full day of global synthetic HARP2 data was
generated and used to test various retrieval parameters in-
cluding aerosol microphysical and optical properties, aerosol
layer height, ocean surface wind speed, and ocean chloro-
phyll a concentration. To assess retrieval quality, pixel-wise
retrieval uncertainties were derived from error propagation
and evaluated against the difference between the retrieval pa-

rameters and truth based on a Monte Carlo method. We found
that the fine-mode aerosol properties can be retrieved well
from the HARP2 data, though the coarse-mode aerosol prop-
erties are more uncertain. Larger uncertainties are associated
with a reduced number of available viewing angles, which
typically occur near the scan edge of the HARP2 instrument.
Results of the performance assessment demonstrate that the
algorithm is a viable approach for operational application to
HARP2 data after the PACE launch.

1 Introduction

Satellite remote sensing has greatly enhanced our under-
standing of the Earth’s environment, including the char-
acterization of atmospheric aerosols and surface properties
(Kaufman et al., 2002; Kokhanovsky et al., 2015; Kahn,
2015; Pörtner et al., 2023). Multi-angle polarimetric (MAP)
remote sensing, pioneered by the Polarization and Direc-
tionality of the Earth’s Reflectances (POLDER) instrument
on Advanced Earth Observing Satellites (ADEOS-I; 1996–
1997 and ADEOS-II; 2002–2003) and the Polarization and
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Anisotropy of Reflectances for Atmospheric Sciences cou-
pled with Observations from a Lidar (PARASOL; 2004–
2013) mission (Tanré et al., 2011), has emerged as a promis-
ing approach for retrieving geophysical properties from Earth
observations (Mishchenko and Travis, 1997; Hasekamp and
Landgraf, 2007; Knobelspiesse et al., 2012; Lacagnina et al.,
2017; Dubovik et al., 2019; Hasekamp et al., 2019b; Chen et
al., 2022).

This trend is set to continue with the forthcoming launch of
the National Aeronautics and Space Administration (NASA)
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission
in January 2024, featuring a hyperspectral scanning radiome-
ter named the Ocean Color Instrument (OCI) (Meister et
al., 2022) and two MAPs with high polarimetric accuracy:
the University of Maryland, Baltimore County (UMBC)
Hyper-Angular Rainbow Polarimeter (HARP2) (Martins et
al., 2018; McBride et al., 2023) and the Netherlands In-
stitute for Space Research (SRON) Spectro-Polarimeter for
Planetary EXploration one (SPEXone) (Hasekamp et al.,
2019a; Smit et al., 2019). The deployment of these instru-
ments presents an unprecedented opportunity to enhance our
understanding and representation of atmospheric and sur-
face conditions (Remer et al., 2019a, b; Frouin et al., 2019)
and bridge future MAP observations, such as the European
Space Agency (ESA) Multi-viewing Multi-channel Multi-
polarisation Imager (3MI) on board the MetOp-SG satellites
(Fougnie et al., 2018) and NASA’s Multi-Angle Imager for
Aerosols (MAIA) instrument (Diner et al., 2018).

Advanced simultaneous aerosol and surface property re-
trieval algorithms have been developed for MAP instruments
(Chowdhary et al., 2005; Waquet et al., 2009; Hasekamp
et al., 2011, 2019b; Dubovik et al., 2011, 2014; Wang et
al., 2014; Wu et al., 2015; Xu et al., 2016, 2021; Fu and
Hasekamp, 2018; Li et al., 2018, 2019; Stamnes et al.,
2018, 2023; Gao et al., 2018, 2021a, 2023; Chen et al., 2020;
Fu et al., 2020; Puthukkudy et al., 2020). Most of these re-
trieval algorithms developed for MAP observations are based
on iterative optimization approaches that utilize vector radia-
tive transfer (RT) forward models, capable of deriving atmo-
spheric and surface properties simultaneously. Constrained
by the speed of forward model calculations, MAP retrieval
algorithms are often computationally expensive, which lim-
its their applicability for large-scale operational data produc-
tion and makes it difficult to conduct comprehensive uncer-
tainty analyses. To address the data processing challenge re-
lated to the MAP instruments, Di Noia et al. (2015) devel-
oped a neural-network-based (NN-based) retrieval algorithm
that derives aerosol properties directly from groundSPEX (a
ground-based version of the SPEX instrument) and RSP (Re-
search Scanning Polarimeter; Cairns et al., 1999) measure-
ments. These directly inverted properties were then used as
initial values in a subsequent iterative optimization.

To further improve the processing efficiency and flexibil-
ity, NN-based forward models are sometimes introduced to
replace the radiative transfer calculation partially or fully in

the retrieval algorithms. For example, Fan et al. (2019) rep-
resented the polarimetric reflectance for an open-ocean sys-
tem using an NN and applied it to SPEXone data process-
ing by coupling it with a linearized radiative transfer atmo-
sphere model (Hasekamp and Landgraf, 2005). The PACE
HARP2 data pose a further challenge due to the large data
volume, with a swath more than an order of magnitude wider
than SPEXone’s. Gao et al. (2021a) demonstrated that an
NN-based forward model can be trained to represent the
vector radiative transfer calculation on a fully coupled at-
mosphere and ocean system. To process HARP2 data ef-
ficiently, the FastMAPOL algorithm was developed, pow-
ered by such an NN-based radiative transfer forward model,
and validated using AirHARP field campaign measurements
(Gao et al., 2021a, b) and HARP2 synthetic data (Gao et
al., 2021b, 2022). To facilitate data synergy from multi-
ple PACE instruments, Stamnes et al. (2023) utilized NN-
based forward models that combine spectral bands from
both HARP2 and SPEXone in MAP retrievals. These re-
cent developments build upon the successful application of
NNs in non-polarimetric remote sensing (Diego and Loyola,
2004; Schroeder et al., 2007; Fan et al., 2017; Chen et al.,
2018; Nanda et al., 2019; Shi et al., 2020; Ukkonen, 2022;
Stegmann et al., 2022; Ibrahim et al., 2022) and achieve the
high radiometric and polarimetric accuracy of modern MAPs
by using a larger number of hidden layers (e.g., three layers)
and nodes (usually 200–1000).

Building from these studies, this work presents a refine-
ment of the FastMAPOL retrieval algorithm suitable for
global-scale PACE HARP2 data processing. The NN forward
model is further optimized based on a realistic training data
set, including expected orbital satellite geometries and em-
ploying highly accurate vector radiative transfer simulations.
This allows us to test the processing performance on global
spaceborne data and illustrate the expected aerosol and ocean
color retrieval performance of HARP2. We introduce a novel
measurement-uncertainty-aware NN training via modifica-
tion of its cost function, resulting in an NN accuracy more
consistent with the retrieval’s cost function. Additionally, we
explore the trade-off between NN speed and accuracy, train-
ing different sizes of NNs based on the new cost function, and
further propose a cascading retrieval scheme that leverages a
series of NN models of varying size, speed, and accuracy. Ini-
tial retrievals are conducted using faster and smaller but less
accurate NN models, with subsequent retrievals performed
using larger and slower but more accurate NN models.

To analyze the retrieval performance and uncertainties of
these products, global over-ocean HARP2 radiative transfer
simulations were generated using the most accurate NN for-
ward model. This effort is a part of the day-in-the-life (DITL)
prelaunch data processing test organized by the PACE Sci-
ence Data Segment (SDS). Through the global-scale data
analysis based on the cascading NN scheme in FastMAPOL,
we examine the retrieval uncertainties for aerosol microphys-
ical and optical properties in both fine and coarse modes, as
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well as ocean surface wind speed and ocean chlorophyll a,
with respect to the location, geometries, and distribution of
geophysical properties. We have also included aerosol layer
height (ALH) in the HARP2 retrieval products, as encour-
aged by the sensitivity studies conducted on RSP (Wu et al.,
2016) and the HARP instrument (Xu et al., 2021). The quan-
tification of aerosol uncertainty can greatly enhance its appli-
cability in radiative forcing, air quality, and climate studies.
Consequently, this study offers a holistic discussion on the
retrieval algorithm and the resultant data products with their
associated uncertainties for HARP2 in anticipation of the up-
coming PACE mission.

This study presents the advancements made to the HARP2
aerosol and ocean retrieval algorithm for operational data
processing, including various improvements in the radiative
transfer model with more realistic representation of space-
borne measurements, effective NN training methodology,
flexible NN architectures, and a cascading retrieval scheme
with comprehensive uncertainty assessment. The paper is
organized in four sections, including a description of the
retrieval algorithm and NN forward model (Sect. 2), re-
trieval and uncertainty analysis of the global-scale simula-
tions (Sect. 3), and conclusion with discussions (Sect. 4).

2 Improved FastMAPOL retrieval algorithm

This section provides an overview of the enhancements
made to the FastMAPOL retrieval algorithm, with various
improvements in the radiative transfer model, NN training
methodologies, and retrieval schemes with cascading NN
models.

2.1 Simultaneous aerosol and ocean retrieval algorithm

HARP2 measures Stokes parameters Lt, Qt, and Ut (where
the subscript t represents total measurement) at 60 view-
ing angles at the 660 nm band and at 10 viewing angles
at the 440, 550, and 870 nm bands (Puthukkudy et al.,
2020; McBride et al., 2023). The total spectral measured re-
flectance (ρt(λ)) and degree of linear polarization (DoLP or
Pt(λ)) are used in the retrieval inversion, which are defined
as

ρt =
πr2Lt

µ0F0
, (1)

Pt =

√
Q2

t +U
2
t

Lt
, (2)

where F0 is the extraterrestrial solar irradiance, µ0 is the co-
sine of the solar zenith angle, and r is the Sun–Earth distance
correction factor in astronomical units. Note that the circular
polarization (Stokes parameter Vt) is not measured by HARP
instruments and is often, but not always, negligible for at-
mospheric studies (Kawata, 1978; Gassó and Knobelspiesse,
2022).

To derive aerosol and ocean information, the retrieval al-
gorithm minimizes the cost function χ2, which quantifies the
difference between the measurement and the forward model
simulation (Rodgers, 2000):
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where ρt and Pt are measurements, and ρf
t and P f

t are the
corresponding quantities computed from the forward model.
The state vector x contains all retrieval parameters. The sub-
script i stands for the index of the measurements at different
viewing angles and wavelengths, and N is the total number
of measurements used in the retrieval. The total uncertain-
ties of the reflectance and DoLP used in the algorithm are
denoted as σρ and σP ; both have contributions from mea-
surement uncertainties σm and forward model uncertainties
σf. In this work, the estimated expected measurement uncer-
tainties for HARP2 of 3 % on reflectance and 0.005 on DoLP
are used (McBride et al., 2023). Note that the above assumes
independence of spectral or angular correlation between un-
certainties; for a more complete treatment, Eq. (3) should be
represented in a matrix form using the error covariance ma-
trix (Rodgers, 2000; Gao et al., 2023). Statistical methods
such as autocorrelation analysis have been used to estimate
angular correlation strength from AirHARP field measure-
ments and may be applied to future HARP2 data (Gao et
al., 2023), but at present the correlation strength is not well
known, so the above form (equivalent to a diagonal covari-
ance matrix) is used. The retrieval is an iterative procedure
to minimize using the subspace trust-region interior reflec-
tive optimization approach (Branch et al., 1999) by varying
the state parameters x. In this work, the forward models are
based on the NN discussed in the next sections, and the Jaco-
bian matrices, used to determine the direction to update the
state parameter, are computed based on automatic differenti-
ation (Baydin et al., 2018) as formulated for the NN forward
model (Gao et al., 2021b) and implemented within the deep
learning framework (Osawa et al., 2019).

2.2 Coupled atmosphere and ocean radiative transfer
model

The training data for the NN forward model are generated
with a PACE-tailored vector radiative transfer model using
the successive orders of scattering method (Zhai et al., 2022),
with much better numerical accuracy than that of the HARP
instruments (Gao et al., 2021a). An improved pseudo spher-
ical shell (IPSS) correction is considered to improve the fi-
delity for larger solar and viewing zenith angles (Zhai and
Hu, 2022). Reflectance and DoLP are simulated at the PACE
satellite altitude (676 km above the Earth’s surface); viewing
and solar geometries are defined at the surface as shown in
Fig. 1 based on the formulas derived in Zhai and Hu (2022).
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Figure 1. Spherical shell frame of the Earth system. The radiative
transfer simulations are conducted according to the geometry de-
fined at the satellite with the solar and viewing zenith angles θ ′0 and
θ ′v , which are converted to the geometry at the Earth’s surface, with
the solar and viewing zenith angles defined as θ0 and θv. The solar
and viewing azimuthal angles also depend on the reference frame
but are not shown in the figure.

The forward radiative transfer simulations are conducted
assuming a coupled atmosphere and ocean system. The at-
mospheric molecule distributions follow the US standard at-
mospheric constituent profile (Anderson et al., 1986). Ab-
sorption by oxygen, water vapor, methane, carbon diox-
ide, ozone, and nitrogen dioxide is considered through line-
by-line calculations and integrated based on the double-k
method (Duan et al., 2005; Zhai et al., 2022). The ozone den-
sity and surface pressure are assumed in the range as defined
in Table 1. Near the Earth’s surface, an aerosol layer is con-
sidered with a vertical number density distribution assumed
as a Gaussian function (Wu et al., 2015):

N(z)=
Nt

σ
√

2π
exp

(
−
(z− zc)

2

2σ 2

)
, (4)

whereNt is the total aerosol column number density. zc is de-
fined as the aerosol layer height (ALH) in the range of 0.1 to
6 km above surface. σ is the standard deviation of the Gaus-
sian distribution which is fixed at 2 km. The aerosol size is
represented by the volume density of a combination of five
lognormally distributed “submodes” similar to previous stud-
ies using the MAPOL (Gao et al., 2018) and FastMAPOL
algorithms (Gao et al., 2021a). The mean radius ri and stan-
dard deviation σi are fixed with values of 0.1, 0.1732, 0.3,
1.0, and 2.9 µm and 0.35, 0.35, 0.35, 0.5, and 0.5, respec-
tively, following the work by Dubovik et al. (2011), Xu et
al. (2016), and Fu et al. (2020). The first three submodes are
used to represent the fine-mode aerosol, while the last two
submodes are the coarse mode. Fine and coarse modes are as-
sumed to have an independent complex refractive index with
no spectral variation within the HARP spectral range. There-
fore, the aerosol model includes 10 parameters: five volume

Table 1. Parameters used to represent the coupled atmosphere and
ocean system in the radiative transfer simulation and NN training.
θ0 and θv are the solar and viewing zenith angles. φv is the rela-
tive azimuth angle. Vi denotes the five volume densities. An aerosol
optical depth (AOD) range from 0.01 to 0.5 is considered and used
to constrain Vi . mr and mi are the real and imaginary parts of the
refractive index. Additional parameters include ozone column den-
sity (nO3), aerosol layer height (zc), surface pressure (Ps), ocean
surface wind speed (ws), and chlorophyll a concentration (Chl a).
The minimum (min) and maximum (max) values determine the pa-
rameter ranges used to generate NN training data, which are also
the constraints in the retrieval algorithm.

Parameters Unit Min Max

θ0
◦ 0 85

θv
◦ 0 85

φv
◦ 0 180

nO3 Dobson 150 450
mr,f (None) 1.3 1.7
mr,c (None) 1.3 1.7
mi,f (None) 0 0.03
mi,c (None) 0 0.03
V1 µm3 µm−2 0 0.14
V2 µm3 µm−2 0 0.11
V3 µm3 µm−2 0 0.07
V4 µm3 µm−2 0 0.2
V5 µm3 µm−2 0 0.62
zc km 0.1 6.0
Ps mb 950 1050
ws ms−1 0.5 15
Chl a mgm−3 0.01 10

densities (one for each submode), four independent param-
eters for the fine and coarse real and imaginary components
of refractive indices, and one for ALH. Polarimetric single-
scattering properties are modeled from these aerosol prop-
erties using the Lorenz–Mie code on spherical particles de-
veloped by Mishchenko et al. (2002). Note that particle non-
sphericity is important for the realistic simulation of mineral
dust aerosols (Dubovik et al., 2006) and will be incorporated
in the next version of NN forward model following the same
approach presented in this study.

The optical model for the underlying water surface is sum-
marized in Gao et al. (2019); briefly, it uses an open-ocean
model including contributions from seawater, colored dis-
solved organic matter, and phytoplankton, the latter two of
which are parameterized as a function of chlorophyll a con-
centration (Chl a; mgm−3). The seawater-polarized scatter-
ing properties are derived from the measured normalized
Mueller matrix (Voss and Fry, 1984; Kokhanovsky, 2003).
The ocean surface roughness is modeled by the isotropic
Cox–Munk model with a scalar wind speed (Cox and Munk,
1954). Whitecaps are considered following the parameteri-
zation by wind speed (Koepke, 1986). While not done here,
for future application to coastal waters where the open-ocean
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model is less valid, optimized NN models with sophisticated
bio-optical models with seven (Gao et al., 2018) to three
(Hannadige et al., 2023) parameters can be developed.

In summary, a total of 17 parameters are used as the in-
put of the NN forward model as indicated in Table 1. These
include the 10 aerosol parameters, as well as wind speed,
ozone column density, surface pressure, and Chl a, and three
geometric parameters: the solar zenith angle, viewing zenith
angle, and relative azimuth angle.

2.3 NN training and performance analysis

The NN forward models (one set for reflectance and one set
for DoLP) are trained following the procedures as summa-
rized in Gao et al. (2021a) based on the radiative transfer
simulations discussed in the previous section according to
the parameter range as summarized in Table 1. This extends
the previous work by including ALH and surface pressure as
additional parameters, and the range of viewing geometries
is also larger than the one used in the airborne measurement
by taking advantage of the newly developed IPSS correction
(Zhai and Hu, 2022) and the reference frame defined at the
Earth’s surface (Fig. 1). A total of 10 000 cases of radiative
transfer simulations were generated with random values of
the input parameters (this set is augmented as described be-
low). A uniform distribution of aerosol optical depth (AOD)
in the range between 0.01 and 0.5 is randomly sampled and
used to specify volume densities following the sample strat-
egy discussed in Gao et al. (2021a). In this study, we intro-
duce two additional steps in the NN training to boost the NN
performance:

1. Measurement-uncertainty-aware training. The NN for-
ward models have been shown to achieve much higher
accuracy than the HARP measurements using a leaky
ReLU (rectified linear unit) activation function and
three hidden layers (Gao et al., 2021a). However, at a
low wind speed, the sunglint signal, i.e., the sunlight
that reflects from the ocean surface around the specu-
lar reflection direction, can be strongly peaked, and this
can dominate the mean square error (MSE) cost func-
tion used by Gao et al. (2021a) for optimization at the
expense of precision in other areas. To avoid this issue,
the previous study removed simulations close to the di-
rection of specular reflection from the training data set,
but the lack of data in sunglint also affected the retrieval
results on wind speed and aerosol properties (Gao et
al., 2021b). To enable sufficient accuracy to predict the
reflection inside and outside of sunglint, we introduce
the training cost function that, analogously to the re-
trieval cost function, normalizes the fitting residuals by

the measurement uncertainty:

χ2
NN,ρ =

1
N

∑
i

([
ρt(i)− ρ

NN
t (x; i)

]2
σ 2
ρ (i)

)
, (5)

χ2
NN,P =

1
N

∑
i

([
Pt(i)−P

NN
t (x; i)

]2
σ 2
P (i)

)
, (6)

where ρt and Pt indicate training data, and ρNN
t and

PNN
t indicate the NN predictions. N in the denominator

is the batch size in the training (taken as 1024 here). The
same total uncertainty of σρ = 0.03ρt and σP = 0.005
as in Eq. (3) is used here. Therefore, χ2

NN,ρ represents
the percentage error of the NN predictions, which can
effectively incorporate the sunglint signals without di-
rectly impacting by its large magnitude. Since a con-
stant value of σP is used, χ2

NN,P is equivalent to a scaled
MSE cost function. The polarization signal is better
constrained within 0 and 1 for all viewing geometries,
and therefore its training performance is less affected
by the sunglint. This new cost function is a convenient
and meaningful extension to the conventional MSE cost
function applied on a set of normalized training data,
especially for reflectance (e.g., Aggarwal, 2018; Fan et
al., 2019; Gao et al., 2021a; Aryal et al., 2022; Stamnes
et al., 2023). We found that the NN training hyperpa-
rameters (such as learning rate or batch size) reported
by Gao et al. (2021a) still work well for the new cost
function. The resulting training process is aware of the
measurement uncertainty and therefore optimizes in a
way more relevant to the retrieval’s operation.

2. Training data augmentation. Generating training data
from forward radiative transfer simulations is usually
computationally expensive, which limits the NN train-
ing performance. However, one RT simulation can be
used to generate an arbitrary number of viewing angles
and increase the effective training data size, which may
improve NN accuracy. This concept is equivalent to data
augmentation in machine learning (Shorten and Khosh-
goftaar, 2019). Gao et al. (2021a) explored it by sam-
pling 100 sets of random viewing angles from every RT
simulation. In this study, we provide a more systematic
analysis of such data augmentation by sampling random
sets with 100, 400, and 1000 angles, corresponding to
total data sizes of 1 million, 4 million, and 10 million
points, respectively, from the 10 000 RT simulations.

The NN’s training performance is summarized in Fig. 2
for the feed-forward NN architecture with 17 inputs and 4
outputs and various hidden layer sizes (from two layers each
with 64 nodes and 128 nodes to three layers each with 128,
256, or 512 nodes). To simplify the notation, we represent
the hidden layer structure in a polynomial form; e.g., 1283 in
Fig. 2 represents three hidden layers each with 128 nodes. We
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Figure 2. Training cost functions for reflectance (a) and DoLP (b)
as a function of NN size. The background color indicates the num-
ber of training data used: 1 million (blue), 4 million (green), or 10
million (red). The horizontal axis indicates the size of hidden lay-
ers, as described in the text; for example, 642 indicates two hidden
layers with 64 nodes at each layer. All the NN models shown here
have 17 inputs and 4 outputs.

use 70 % of the simulated data for training (to minimize the
training cost function) and the remaining 30 % for validation
(to monitor the training process). Figure 2 shows that, with
increasing NN hidden layer number and size, the cost func-
tions for both training and validation data decrease, while
validation cost eventually becomes larger than training cost.
That suggests overfitting for the case of 1 million samples
and an NN size of 1283. Introducing more training data from
4 to 10 million and an NN size up to 5123 further reduces the
cost functions to convergence. More training data are gener-
ally able to reduce the difference between the training and
validation cost function as compared in Fig. 2. Using 10 mil-
lion total data, the reflectance NN performance stays stable,
with a small training cost function value of 0.01, which sug-
gests that the typical fitting residual between the NN and the
simulation is about

√
0.01= 0.1 times the measurement un-

certainty, i.e., 0.1× 3%= 0.3%.
For DoLP, the NN training is more difficult because the

DoLP uncertainty for HARP2 is often much smaller (0.005)
than the (3 %) reflectance uncertainty. Figure 2 shows that
generally a larger NN size is needed for DoLP to achieve
a similar cost function value to reflectance. Using 10 million
data and 5123 NN size, the cost function is about 0.04, which
suggests that the NN accuracy is

√
0.04= 0.2 times the mea-

surement uncertainty, with a value of 0.2× 0.005= 0.001.
Similar accuracy for NN reflectance requires a size of 2563.
An NN cost function value of 1 would indicate NN accuracy

comparable to the measurement uncertainty, which would be
achieved with an NN size of 642 for reflectance and 1282 for
DoLP.

Therefore, for the best performance of applying NN in
joint retrieval algorithms, we implemented a two-level cas-
cade scheme in FastMAPOL in which two rounds of re-
trievals are processed. In the first round, the NN size of 642

for reflectance and NN size of 1282 for DoLP are used to
efficiently find a rough solution. Then in the second (final)
round the NN size of 2563 for reflectance and 5123 for DoLP
are used to further fine-tune the state vector. Note that each
retrieval includes multiple iterations with an order of 10 and
involves the use of automatic differentiation to compute the
Jacobian matrix analytically (Gao et al., 2021b). Cascading
more levels could further improve the performance, but we
found that two cascaded levels are sufficient for this study.
By comparing the retrieval results with one and two cascad-
ing levels, we found that the retrieval uncertainties are simi-
lar to each other given the same high-accuracy NNs are used
at the last level of retrievals. Therefore, the cascading algo-
rithm will increase retrieval speed without impact retrieval
accuracy. To fully test the cascade system as discussed in the
next section, we used the best-accuracy NN with the largest
size of 5123 to generate a set of synthetic data simulations
and performed retrieval with the cascade retrieval scheme.

To further evaluate the NN uncertainty, we generated an
additional 1000 independent sets of radiative transfer simu-
lations with realistic HARP geometries as formulated in Gao
et al. (2021b) and calculated the mean absolute error (MAE)
and RMSE, comparing these simulations to the NN predic-
tions. We found that the MAE is more robust to the impacts
of outliers, similar to the discussion on the retrieval uncer-
tainties (Gao et al., 2022). Based on this analysis, discussed
in Appendix 1, NN uncertainties are estimated to be 0.5 % for
an NN size of 5123 and 0.002 for DoLP using 5123, both sim-
ilar to but slightly larger than the estimation from the training
cost function. This further confirms that the new training cost
function, considering measurement uncertainty, provides an
intuitive way to measure the NN optimization. Note that, to
ensure the high accuracy of the NN models, the RT simula-
tions with a numerical accuracy much higher than the mea-
surement and NN models are used to generate the training
data as discussed in Gao et al. (2021a). For the application to
real field measurements, the uncertainties including the NN
models, RT simulations, and the measurement uncertainties
need to be considered.

3 Retrieval analysis on synthetic global over-ocean
HARP2 measurements

To evaluate the retrieval performance in terms of both speed
and uncertainty in a realistic and representative way, we gen-
erated a day of synthetic over-ocean HARP2 measurements
along PACE satellite orbits. Random errors based on esti-

Atmos. Meas. Tech., 16, 5863–5881, 2023 https://doi.org/10.5194/amt-16-5863-2023



M. Gao et al.: FastMAPOL 5869

mated calibrated uncertainties are added to both the simu-
lated reflectance and DoLP measurements. The retrieval un-
certainties are evaluated through error propagation and then
validated by comparing the truth and retrieval results based
on the Monte Carlo approach (Gao et al., 2022). The view-
ing and solar geometries are based on realistic satellite orbits.
This analysis is useful to understand the retrieval capability
of the HARP2 data before PACE’s launch.

3.1 Synthetic HARP2 L1C radiative transfer
simulation

The Level-1C (L1C) file format is used to represent multi-
angle measurements where different viewing directions are
co-registered on the common spatial location to produce
multi-angle measurements for each pixel (Lang et al., 2019).
For the PACE mission, a set of common spatial grids are de-
fined within the L1C format for all three instruments: OCI,
SPEXone, and HARP2. The grids are based on the swath-
based Spacecraft Oblique Cylindrical Equal Area (SOCEA)
projection (Snyder, 1987) and documented in the PACE L1C
document (Knobelspiesse et al., 2023). The HARP2 data pro-
cessing will be performed by the PACE Science Data Seg-
ment (SDS) following the launch and instrument commis-
sioning. The prelaunch testing of the data processing has
been organized around a day in the life (DITL) that has been
chosen to be 21 March 2022 (spring equinox), to ensure good
daylight coverage over the majority of the world’s ocean. The
simulated PACE orbit for the DITL has been used to generate
the sensor and solar geometry for the instrument data simu-
lations to support the data processing tests by the SDS. The
HARP2 simulations and processing results described in the
following sections are based on the DITL.

The PACE L1C files are segmented in 5 min granules for
daytime portions of the orbit, yielding a total of 165 gran-
ules in 15 orbits as shown in Fig. 3. The equatorial crossing
time is at 13:00 LT with the satellite ascending northward.
The nadir swath width is 1633 km which grows to a maxi-
mum swath width of 2380 km around 40◦ along-track view-
ing zenith angle. The bin size is 5.2 km. The range of viewing
zenith angle can vary from approximately −60 to 60◦, with
data collected across a time span of 6 min, during which the
solar zenith angle can vary by up to 1.5◦. Exact per-view
solar geometries were used when generating the synthetic
HARP2 data, which are important for reducing the impact
from the measurement geometries due to satellite motions
(Hioki et al., 2021).

In the simulation, the surface pressure, ozone column den-
sity, surface wind speed, and speciated aerosol mass concen-
tration vertical profiles are sampled from the NASA GMAO
MERRA2 data (Gelaro et al., 2017; Randles et al., 2017;
Buchard et al., 2017) along the satellite orbit to best repre-
sent the natural global-scale variability in the atmospheric
state. Total column effective aerosol microphysical proper-
ties (column size and refractive index) were derived from

the MERRA2 simulations of speciated aerosol mass concen-
tration vertical profile by taking a volume-weighted average
over the size bins and species in the MERRA2 data set. The
aerosol size bins used in MERRA2 are different from the
aerosol submodes used in the NN forward model. We have
adjusted the volume density and refractive indices of the five
aerosol submodes (see Table 1) to best match the aerosol rep-
resentation in MERRA2. Hygroscopic growth of aerosol size
is considered based on the relative humidity profile in the
MERRA2 data (Castellanos et al., 2019). The total AOD in
MERRA2 data is used to derive the total volume density and
ensure that the same AOD will be produced based on the
column effective aerosol size, refractive index, and volume
density. The monthly average Chl a derived from MODIS
ocean color products is used as the input to the radiative
transfer simulation. Note that there are some small data gaps,
most visible in the tropical Atlantic Ocean, due to the gaps in
this Chl a product from heavy aerosol, cloud, or other data
quality flags. However, as they are small, the retrieval perfor-
mance analysis should not be significantly impacted.

The NN forward model with the maximum accuracy
(5123) is used to generate the simulated L1C data for a total
of 10 million pixels, each with 90 total viewing angles; ex-
amples for the HARP2 550 nm band with along-track view-
ing angles of −43.6, 0.8, and 39.5◦ are shown in Fig. 3. The
newly improved NN forward model can accurately repre-
sent the sunglint region, clearly recognizable from large re-
flectance magnitude at large viewing angles showing in the
Northern (a) and Southern Hemisphere (c), as well as near
the Equator (b) when looking near the nadir with a smaller
reflectance magnitude. At larger viewing angles, prominent
polarized signals are also shown in both the Northern (d) and
Southern Hemisphere (f). DoLP generally increases with the
viewing angle, until approaching the maximum value of 1 at
the Brewster angle around 53◦ at the air–water interface. The
backscattering direction usually shows a minimum polariza-
tion magnitude, such as near the Equator when looking near
the nadir (Fig. 3e).

Two cascaded NN forward models for reflectance and
DoLP, respectively, are used to conduct retrievals in the
FastMAPOL algorithm as discussed in Sect. 2. The his-
togram of the cost function values for the first and final re-
trievals is shown in Fig. 4. The first retrieval, whose NNs
have comparable uncertainty to the measurement uncertainty,
produces a most probable retrieval cost function of around
2.0. After using the more accurate NN with a much smaller
uncertainty, the final retrieval cost functions are mostly close
to 1.0. The average total time taken for a retrieval with this
two-layer cascade is 0.1 s, as shown in Fig. 4b, compared to
0.2 s for a retrieval using only the higher-accuracy NN (not
shown), corresponding to roughly a 50 % speedup.
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Figure 3. Global over-ocean simulation of HARP2 measurements at 550 nm for both reflectance (a–c) and DoLP (d–f), with a total of 15
orbits on the day of 21 March 2022. A total of 90 viewing angles at four HARP2 bands are generated, with three viewing angles in the
along-track direction shown in the plots.

Figure 4. (a) Histogram of the cost function values (χ2) for the first retrieval using a smaller neural network (blue) and the final retrieval
using the larger neural network (red) as summarized in Sect. 2. A histogram of processing time for the two-stage process is shown in (b).

3.2 Retrieval results

Initially, we conducted a retrieval analysis on a subset of
data by including all the parameters as shown in Table 1 ex-
cept the three geometric variables. The retrieval uncertainties
for the ozone density and surface pressure are large, with an
MAE of 53 DU and 24 mb and an RMSE value of 69 DU
and 32 mb, respectively. As a result, instead of retrieving

these two parameters, we choose to use the value directly
from MERRA2 and retrieve only aerosol and ocean proper-
ties (which also results in slightly increased accuracy) when
applying FastMAPOL to the L1C simulated data. Besides
the directly retrieved quantities (Table 1), the aerosol optical
depth (AOD) and single-scattering albedo (SSA) for both the
fine and coarse modes were computed from retrieved aerosol
volume densities and refractive indices using corresponding
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NNs trained similarly to the reflectance and DoLP but with a
much smaller size of two hidden layers each with 64 nodes
(Gao et al., 2021a). Total AOD is obtained as the summa-
tion of the fine- and coarse-mode AODs. Effective radius and
variance are also calculated from the components’ sizes and
retrieved volumes.

Figure 5 shows the global map of the retrieved AOD and
ALH as well as the corresponding truth values and the re-
trieval uncertainties based on error propagation. The retrieval
value and truth values are very similar to each other as shown
in Fig. 5a and b for AOD. Larger uncertainties are mostly as-
sociated with the edge of the orbit, where fewer than five
viewing angles per band (or total 20–30 angles) are avail-
able (see also the analysis in Hasekamp and Landgraf, 2007;
Wu et al., 2015; Xu et al., 2017; Gao et al., 2021b). For real
PACE data, the adaptive data screening method will be used
to automatically remove the angles impacted by cirrus clouds
and anomalies, and therefore the uncertainties will depend on
the number of available angles associated with the location
and size of those clouds (Gao et al., 2021b). Figure 5e and d
show that the aerosol layer height (ALH) error has a stronger
dependency on the AOD, with performance being generally
better (and uncertainties smaller) where AOD is larger.

Data densities showing the correlation and difference be-
tween retrieval and truth are shown for AOD, ALH, fine-
mode volume fraction (fvf), wind speed, and Chl a in Fig. 6.
The retrievals perform well, with the RMSE for AOD, ALH,
fvf, wind speed, and log10(Chl a) of 0.011, 0.9 km, 0.06,
1.4 ms−1, and 0.19, respectively. Similar to Fig. 6, Fig. 7
shows the comparison between the retrieval results, with the
truth for the fine-mode AOD at 550 nm, real part of the re-
fractive index, single-scattering albedo, effective radius, and
variance. The difference between retrieval and truth seems to
strongly depend on the fine-mode aerosol loading as shown
in the second row of Fig. 7. However, the retrieval becomes
more challenging for the coarse mode as shown in Fig. 8 due
to the much lower coarse AOD in general.

3.2.1 Uncertainty analysis

To understand the quality of the retrieval products, “theoreti-
cal retrieval uncertainties” are evaluated from the error prop-
agation method which maps the measurement uncertainties
to the retrieval domain based on the Jacobian with converged
retrieval parameters (Rodgers, 2000) and accelerated using
NN automatic differentiation (Gao et al., 2021b). This un-
certainty can be evaluated at every pixel and therefore pro-
vide a flexible metric to evaluate retrieval quality. Exam-
ples of AOD and ALH uncertainties are shown in Fig. 6c
and f. However, the real retrieval quality also depends on
how well the retrieval converges, which can eventually be
evaluated based on the difference between the retrieval re-
sults and the truth as shown in Figs. 6–8. To verify that the
theoretical retrieval uncertainty represents actual retrieval re-
sults, we employ the Monte Carlo error propagation (MCEP)

method, which generates random samples of errors based on
the theoretical uncertainties. Then, the histogram of the ran-
dom errors for a large volume of data can be compared with
the distribution of the real error (difference between retrieval
and truth) so that we can assess the difference and similarity
of error distribution derived from the two methods (Gao et
al., 2022).

We further group all the pixels according to their AOD
values in steps of 0.01 based on the retrieval results shown in
Figs. 6–8. The mean absolute error (MAE) is used to evalu-
ate both the average theoretical and real uncertainties, with
results summarized in Fig. 9. Figure 9a1 shows that both the
theoretical (red lines) and the true (blue lines) absolute un-
certainties of AOD increase from 0.002–0.004 to 0.015 as
AOD increases from 0.01 to 0.45, which also corresponds
to the reduction of relative uncertainty from 20 %–40 % to
5 %. The results agree with the analysis on synthetic HARP2
measurements with a uniform distribution of AOD (Gao et
al., 2021b, 2022). Points with AOD> 0.45 are excluded be-
cause there are a small number of pixels in this range so that a
few outliers could affect the statistics significantly. The high-
quality AOD may be useful for climate studies which usually
require a goal uncertainty of less than 0.02 (Mishchenko et
al., 2004; Kahn, 2015; GCOS, 2022).

Uncertainties of ALH decrease from 1 to 0.5 km within the
range of AOD for both theoretical and real uncertainty. The
retrieval uncertainty is larger than the results from the RSP
instrument, using a spectral range of 410–1590 nm, where
the MAE between the true the retrieval values is less than
250 m (Wu et al., 2016), probably as HARP2’s shortest wave-
length is 440 nm, and it has a larger polarimetric uncertainty
of 0.005 compared with RSP (0.002). However, the ALH can
still be useful for radiative forcing studies (e.g., Jia et al.,
2022) and air quality investigations (e.g., Wang and Christo-
pher, 2003).

Due to the wide angular range and the inclusion of sunglint
signals in the NN forward model, the real wind speed accu-
racy is found to be much higher (1 ms−1) compared to pre-
vious studies of 2–3 ms−1 (Gao et al., 2022). The theoretical
uncertainty has a smaller value of around 0.5 ms−1, which
suggests further room for retrieval improvement. The Chl a
uncertainties are evaluated as the MAE of the log10(Chl a)
uncertainty, as recommended by Seegers et al. (2018):

MAE(log)= 10Y , where

Y =
1
N

N∑
i=1

∣∣log10(Ri)− log10(Ti)
∣∣, (7)

where Ri and Ti denote the retrieval and truth values. This
“multiplicative error” is a relative, dimensionless metric and
takes values of 1 or more, where 1 indicates no error, 1.5
indicates a 50 % error, and so on. Figure 9e1 shows that Chl
a can be retrieved accurately with a ratio of mostly less than
2.0, which suggests the potential of the MAP data for the
evaluation of ocean properties. However, this will become

https://doi.org/10.5194/amt-16-5863-2023 Atmos. Meas. Tech., 16, 5863–5881, 2023



5872 M. Gao et al.: FastMAPOL

Figure 5. The retrieval results, truth, and uncertainties for AOD at 550 nm (a–c) and ALH (d–f).

Figure 6. The comparisons of the retrieved and truth values for total AOD (550 nm), ALH, fine-mode volume fraction (fvf) wind speed, and
Chl a. The top row shows heat maps (including the MAE and RMSE), while the bottom row shows the error of the corresponding upper-panel
parameters as a function of the total AOD at 550 nm. The colors indicate the data density estimated by a kernel density method (Silverman,
1986).

challenging when the ocean water optical properties are more
complex (Gao et al., 2019). Larger differences between the
theoretical and real uncertainties are found mostly at AOD>

0.2, as the ocean signal becomes increasingly obscured by
the aerosols.

For the fine mode, theoretical and real uncertainties are
compared in Fig. 9a2–e2. Fine-mode AOD seems to perform
similarly to total AOD. The theoretical uncertainties agree

with the real uncertainties when fine-mode AOD is larger
than 0.1 but underestimate real uncertainties when AOD is
lower. This may indicate lower sensitivity and higher insta-
bility due to the impacts of local minima in cost functions.
However, the theoretical uncertainty seems to capture the real
uncertainty well for effective radius and variance across the
range of fine-mode AOD.
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Figure 7. As in Fig. 6 except for fine-mode AOD, refractive index (mr), SSA, effective radius (reff), and variance(veff) and the bottom row
as a function of fine-mode AOD.

Figure 8. As in Fig. 7 except for coarse-mode properties instead of fine mode.

For the coarse mode, as the range of the coarse-mode
imaginary refractive index in MERRA2 is limited (mostly
< 0.001, probably due to the dominance of sea salt or other
coarse soluble aerosols), we limited the retrieval of this pa-
rameter to a similar range. The large spread of retrieved SSA
in Fig. 8c suggests the lack of sensitivity on the retrieval
of the coarse-mode imaginary refractive index. The uncer-
tainties are captured well by the theoretical uncertainties in
Fig. 9c3. After launch, sensitivity studies will be required
to better prescribe the coarse-mode imaginary refractive in-
dex. From the current synthetic data analysis, the real uncer-
tainties are much higher than the theoretical uncertainties for
coarse-mode properties. Low sensitivity is expected due to
the low aerosol loading and lack of longer-wavelength short-
wave infrared (SWIR) bands and therefore the challenges to
converge to the global minimum of the cost function. The
real uncertainties on coarse AOD are much larger than the
fine-mode uncertainties with a value of up to 0.03, although
the theoretical uncertainty for coarse-mode AOD is smaller
(0.002–0.005) than the fine-mode AOD uncertainty (0.005–
0.015), possibly due to the stronger constraint on the coarse-
mode absorption. For PACE data, a future synergy with the

SWIR bands from OCI may be used to improve the coarse-
mode retrieval quality (Hasekamp et al., 2019). However, the
impact of the coarse-mode aerosols in the application of at-
mospheric correction may be less severe due to their small
overall value and weak spectral variation.

4 Discussion and conclusions

In this study we illustrated the advancements made to the
FastMAPOL retrieval algorithm, including various improve-
ments in the radiative transfer model, NN training methodol-
ogy, NN architecture, and retrieval scheme.

– Radiative transfer model. We improved the radiative
transfer model which is used to generate the training
data for spaceborne measurement by including spheri-
cal shell correction, realistic solar and viewing geome-
tries, and additional input parameters such as surface
pressure and aerosol layer height.

– Training methodology. The NN models are trained
by incorporating the measurement uncertainty model
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Figure 9. Comparison of theoretical (red) and real retrieval uncertainties (blue) as a function of AOD for AOD, SSA, real part of the refractive
index (mr), effective radius (reff) and variance (veff), wind speed, and Chl a. AOD, fine-mode AOD, and coarse-mode AOD values are used
at the x axis from 0.01 to 0.45 with a step of 0.01.

into the training cost function, which better represents
sunglint signals and helps improve the NN relevance to
the retrieval’s operation.

– NN architecture. Flexible NN models with various num-
bers of hidden layers and numbers of nodes are investi-
gated, which achieve different speeds and accuracies.

– Retrieval scheme. Two levels of NN models with in-
creasing sizes and accuracies are used in a cascading
retrieval scheme to achieve high retrieval efficiency and
performance.

With the improved NN models and retrieval schemes, we
also systematically investigate the retrievability of aerosol
and ocean parameters and their uncertainty. The retrieval un-
certainties are analyzed based on the FastMAPOL retrievals
on the synthetic data sets, including the aerosol optical prop-
erties such as AOD and SSA and microphysical properties in-
cluding aerosol size, refractive index, and height with more
realistic statistics of the parameter values and viewing and
solar geometries. For example, the overall uncertainties for
AOD and wind speed are 0.01 and 1.4 ms−1. The retrieval
uncertainties at the pixel level are shown to depend on the
number of available viewing angles and the aerosol load-
ing. Fine-mode aerosol properties, such as the aerosol re-
fractive index, generally show smaller retrieval uncertainties
and better agreement between error propagation uncertain-
ties and real uncertainties from simulated retrievals. Coarse-

mode aerosol retrieval uncertainties are larger and not fully
captured by error propagations. We also demonstrated that
HARP2 measurements can be used to derive aerosol layer
height with an uncertainty of 0.5 to 1.0 km depending on the
aerosol loading.

Regarding the retrieval speed, in a previous version of
the FastMAPOL algorithm we employed NN forward mod-
els with analytical Jacobian evaluation based on automatic
differentiation, which had expedited the processing of the
AirHARP data from 1 h per pixel using on-the-fly radiative
transfer forward model simulations to around 0.3 s per pixel
(Gao et al., 2021a, b). In this study, the processing speed of
the HARP2 synthetic data is further improved to about 0.2 s
per pixel by optimizing the numerical code. It is further re-
duced to 0.1 s using a single CPU core by applying a cas-
caded approach in FastMAPOL. With the newest develop-
ment, the speed to process a single PACE L1C 5 min granule
with an order of 400× 500 pixels can be finished within 5 h
in a single CPU core. As already demonstrated in our system,
the whole day of synthetic data was processed within 5 h by
utilizing distributed computing and running all granules par-
allelly. This illustrates that global-scale MAP data processing
is feasible.

Furthermore, additional ocean properties can be derived
from the MAP measurements and retrieval results. For ex-
ample, NN models based on the retrieved aerosol and ocean
parameters have been used to obtain water-leaving sig-
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nals through the atmospheric and BRDF (bidirectional re-
flectance distribution function) corrections on real or syn-
thetic AirHARP and HARP2 measurements (Gao et al.,
2021a, 2022). Similarly, the retrieved aerosol properties can
be used to assist the hyperspectral atmospheric correction
as demonstrated using SPEX data as a PACE OCI proxy
(Gao et al., 2019; Hannadige et al., 2021). NN methods can
also be used to predict the polarimetric reflectance associ-
ated with complex water optical properties (Mukherjee et al.,
2020) and instantaneous photosynthetically available radia-
tion models within ocean bodies (Aryal et al., 2022) and
derive in-water optical properties from top-of-atmosphere
MAP measurements for PACE (Agagliate et al., 2023).

Therefore, based on the improved NN forward models,
this study provided an efficient spaceborne MAP data pro-
cessing algorithm and discussed the data product and the as-
sociated uncertainties analyzed from a global-scale synthetic
HARP2 data set. For the future applications to the real satel-
lite data after PACE launch, it would be important to en-
sure the forward model is appropriate for the measurements
by conducting input data quality control and data screening
(Gao et al., 2021b). Further evaluations on the measurement
uncertainty model can be conducted by comparing it with fit-
ting residual statistics (Gao et al., 2023). The algorithm and
uncertainty analysis provide a viable way to process global
HARP2 data and improve our capability to observe, under-
stand, and protect our environment.

Appendix A: Evaluation of NN forward model
uncertainty

As discussed in Sect. 2, to evaluate the NN uncertainty in-
dependently, we use an additional set of 1000 simulations
with realistic HARP geometries, formulated by Gao et al.
(2021b). To further evaluate the accuracy of the NN, both
the mean absolute error (MAE) and the root mean square
error (RMSE) are computed for both reflectance and DoLP
as shown in Fig. A1 and Table A1. As discussed in Gao et
al. (2022), the MAE is more robust than the RMSE to out-
liers. We estimate the NN uncertainties using the MAE as
σNN = π/2×MAE, which is equivalent to assuming the er-
ror following a Gaussian distribution (Gao et al., 2022). Note
that the RMSE is slightly larger than σNN. The estimated er-
rors are similar to the results obtained in Gao et al. (2021a),
where 20 000 training data each sampled with 100 angles are
used. Here, we decreased the training data set to 10 000 but
sampled each case at 1000 angles. Note that in this study
we have included the angles with sunglint, which includes
many more cases in the uncertainty evaluations. To further
improve the accuracy, we need to increase both the NN size
and training data volume. A balance of training data volume,
NN speed (smaller size), and NN accuracy (larger size, larger
training data volume) is discussed in Sect. 2. NN accuracy is
estimated with a value of 0.5 % for an NN size of 5123 and a
value of 0.002 for DoLP using 5123; both are slightly larger
than the estimation from the training cost function but on a
similar scale as discussed in Sect. 2. The estimated NN un-
certainties can be included in the total uncertainty model in
the retrieval cost function as discussed by Gao et al. (2021a).
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Figure A1. Comparison between the radiative transfer simulation and NN prediction: the left panel is reflectance (ρ) and the right panel is
DoLP (P ). The scatter plots are shown in the top panel, the absolute different in the middle panel, and the percentage difference in the bottom
panel. For each plot, the data points for the 550, 660, and 870 nm bands are shifted upward by constant offsets consecutively, as indicated by
the solid cyan lines.

Table A1. Comparisons of the uncertainties for reflectance (ρ) and DoLP (P ) for both measurements and forward models including calibra-
tion uncertainty (σcal), the radiative transfer simulation uncertainty (σRT), and the NN uncertainty (σNN). The percentage values listed in the
table indicate the percentage uncertainties.

Quantities Uncertainties 440 nm 550 nm 670 nm 870 nm

ρt σcal 3 % 3 % 3 % 3 %
σRT 0.00012 (0.08 %) 0.00005 (0.07 %) 0.00010 (0.2 %) 0.00015 (0.4 %)
RMSENN 0.0012 (0.52 %) 0.0011 (1.22 %) 0.0014 (1.79 %) 0.0014 (0.90 %)
MAENN 0.0005 (0.28 %) 0.0004 (0.38 %) 0.0004 (0.47 %) 0.0004 (0.58 %)
σNN 0.0007 (0.35 %) 0.0005 (0.47 %) 0.0005 (0.59 %) 0.0005 (0.72 %)

Pt σcal 0.005 0.005 0.005 0.005
σRT 0.0002 0.0002 0.0005 0.0007
RMSENN 0.0021 0.0020 0.0023 0.0028
MAENN 0.0011 0.0013 0.0015 0.0019
σNN 0.0014 0.0016 0.0018 0.0023
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HARP2 L1C simulated data, https://oceandata.sci.gsfc.nasa.gov/
directdataaccess/Level-1C/PACE-HARP2/2022/080/ (OB.DAAC,
2023c); and HARP2 L2 FastMAPOL product, https://oceandata.sci.
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K., and Cairns, B.: Simultaneous polarimeter retrievals of
microphysical aerosol and ocean color parameters from the
“MAPP” algorithm with comparison to high-spectral-resolution
lidar aerosol and ocean products, Appl. Opt., 57, 2394–2413,
https://doi.org/10.1364/AO.57.002394, 2018.

Stamnes, S., Jones, M., Allen, J. G., Chemyakin, E., Bell,
A., Chowdhary, J., Liu, X., Burton, S. P., Van Dieden-
hoven, B., Hasekamp, O., Hair, J., Hu, Y., Hostetler, C.,
Ferrare, R., Stamnes, K., and Cairns, B.: The PACE-
MAPP algorithm: Simultaneous aerosol and ocean polarime-
ter products using coupled atmosphere-ocean vector ra-
diative transfer, Frontiers in Remote Sensing, 4, 1–16,
https://doi.org/10.3389/frsen.2023.1174672, 2023.

Stegmann, P. G., Johnson, B., Moradi, I., Karpowicz, B.,
and McCarty, W.: A deep learning approach to fast ra-
diative transfer, J. Quant. Spectrosc. Ra., 280, 108088,
https://doi.org/10.1016/j.jqsrt.2022.108088, 2022.

Tanré, D., Bréon, F. M., Deuzé, J. L., Dubovik, O., Ducos,
F., François, P., Goloub, P., Herman, M., Lifermann, A., and
Waquet, F.: Remote sensing of aerosols by using polarized,
directional and spectral measurements within the A-Train:
the PARASOL mission, Atmos. Meas. Tech., 4, 1383–1395,
https://doi.org/10.5194/amt-4-1383-2011, 2011.

Ukkonen, P.: Exploring Pathways to More Accurate Ma-
chine Learning Emulation of Atmospheric Radiative
Transfer, J. Adv. Model. Earth Sy., 14, e2021MS002875,
https://doi.org/10.1029/2021MS002875, 2022.

Voss, K. J. and Fry, E. S.: Measurement of the Mueller matrix for
ocean water, Appl. Opt., 23, 4427–4439, 1984.

Wang, J. and Christopher, S. A.: Intercomparison between satellite-
derived aerosol optical thickness and PM2.5 mass: Implica-
tions for air quality studies, Geophys. Res. Lett., 30, 2095,
https://doi.org/10.1029/2003GL018174, 2003.

Wang, J., Xu, X., Ding, S., Zeng, J., Spurr, R., Liu, X., Chance,
K., and Mishchenko, M.: A numerical testbed for remote sens-
ing of aerosols, and its demonstration for evaluating retrieval
synergy from a geostationary satellite constellation of GEO-
CAPE and GOES-R, J. Quant. Spectrosc. Ra., 146, 510–528,
https://doi.org/10.1016/j.jqsrt.2014.03.020, 2014.

Waquet, F., Riedi, J., Labonnote, L. C., Goloub, P., Cairns, B.,
Deuzé, J.-L., and Tanré, D.: Aerosol Remote Sensing over
Clouds Using A-Train Observations, J. Atmos. Sci., 66, 2468–
2480, https://doi.org/10.1175/2009jas3026.1, 2009.

Wu, L., Hasekamp, O., van Diedenhoven, B., and Cairns,
B.: Aerosol retrieval from multiangle, multispectral pho-
topolarimetric measurements: importance of spectral range
and angular resolution, Atmos. Meas. Tech., 8, 2625–2638,
https://doi.org/10.5194/amt-8-2625-2015, 2015.

Wu, L., Hasekamp, O., van Diedenhoven, B., Cairns, B.,
Yorks, J. E., and Chowdhary, J.: Passive remote sensing
of aerosol layer height using near-UV multiangle polar-
ization measurements, Geophys. Res. Lett., 43, 8783–8790,
https://doi.org/10.1002/2016GL069848, 2016.

Xu, F., Dubovik, O., Zhai, P.-W., Diner, D. J., Kalashnikova, O.
V., Seidel, F. C., Litvinov, P., Bovchaliuk, A., Garay, M. J., van
Harten, G., and Davis, A. B.: Joint retrieval of aerosol and water-
leaving radiance from multispectral, multiangular and polarimet-
ric measurements over ocean, Atmos. Meas. Tech., 9, 2877–
2907, https://doi.org/10.5194/amt-9-2877-2016, 2016.

Xu, F., van Harten, G., Diner, D. J., Kalashnikova, O. V., Seidel, F.
C., Bruegge, C. J., and Dubovik, O.: Coupled retrieval of aerosol
properties and land surface reflection using the Airborne Mul-
tiangle SpectroPolarimetric Imager, J. Geophys. Res.-Atmos.,
122, 7004–7026, https://doi.org/10.1002/2017JD026776, 2017.

Xu, F., Gao, L., Redemann, J., Flynn, C. J., Espinosa, W. R.,
da Silva, A. M., Stamnes, S., Burton, S. P., Liu, X., Fer-
rare, R., Cairns, B., and Dubovik, O.: A Combined Lidar-
Polarimeter Inversion Approach for Aerosol Remote Sens-
ing Over Ocean, Frontiers in Remote Sensing, 2, 620871,
https://doi.org/10.3389/frsen.2021.620871, 2021.

Zhai, P.-W. and Hu, Y.: An improved pseudo spherical shell algo-
rithm for vector radiative transfer, J. Quant. Spectrosc. Ra., 282,
108132, https://doi.org/10.1016/j.jqsrt.2022.108132, 2022.

Zhai, P.-W., Gao, M., Franz, B. A., Werdell, P. J., Ibrahim, A.,
Hu, Y., and Chowdhary, J.: A Radiative Transfer Simulator for
PACE: Theory and Applications, Frontiers in Remote Sensing,
3, 840188, https://doi.org/10.3389/frsen.2022.840188, 2022.

https://doi.org/10.5194/amt-16-5863-2023 Atmos. Meas. Tech., 16, 5863–5881, 2023

https://doi.org/10.1142/3171
https://doi.org/10.1080/01431160600962574
https://doi.org/10.1364/OE.26.007404
https://doi.org/10.1109/TGRS.2020.3038892
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1364/AO.58.005695
https://doi.org/10.3133/pp1395
https://doi.org/10.1364/AO.57.002394
https://doi.org/10.3389/frsen.2023.1174672
https://doi.org/10.1016/j.jqsrt.2022.108088
https://doi.org/10.5194/amt-4-1383-2011
https://doi.org/10.1029/2021MS002875
https://doi.org/10.1029/2003GL018174
https://doi.org/10.1016/j.jqsrt.2014.03.020
https://doi.org/10.1175/2009jas3026.1
https://doi.org/10.5194/amt-8-2625-2015
https://doi.org/10.1002/2016GL069848
https://doi.org/10.5194/amt-9-2877-2016
https://doi.org/10.1002/2017JD026776
https://doi.org/10.3389/frsen.2021.620871
https://doi.org/10.1016/j.jqsrt.2022.108132
https://doi.org/10.3389/frsen.2022.840188

	Abstract
	Introduction
	Improved FastMAPOL retrieval algorithm
	Simultaneous aerosol and ocean retrieval algorithm
	Coupled atmosphere and ocean radiative transfer model
	NN training and performance analysis

	Retrieval analysis on synthetic global over-ocean HARP2 measurements
	Synthetic HARP2 L1C radiative transfer simulation
	Retrieval results
	Uncertainty analysis


	Discussion and conclusions
	Appendix A: Evaluation of NN forward model uncertainty 
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

