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S1: Theoretical derivation of the operation principle of planar DMA
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Figure S1 operation principle of planar DMA

Vpua: Voltage between the two electrodes;
h: Distance between the two electrodes;
The electric field between the two electrodes: E = VD% (S1)

During the scanning period of planar DMA, the electric field is applied on the z-direction, a laminar particle-free sheath flow is circulating

thorough the capacitor along the x-direction at the flow rate of O, and the aerosol flow is fed into the capacitor thorough input slit located at the



top electrode at the flow rate of Q.. The direction of aerosol flow is parallel to the electric field and perpendicular to the sheath flow.

The particle velocity in x-direction is given as: u,(z) = 3—’: (S2)
The equation can be transformed as d, = u,(z) - d; (S3)
The particle velocity in z-direction is given as:
S E e gz, = e (S4)

where Z, represent the electric mobility of the particle and Sy, represent the cross-section area of inlet slit.

. Vpma-Z . . dz  VpmaZ
SQ—“ is much smaller than DM: £ equation (S4) can be written as: u, = d—i = % (S5)
slit
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h
VbmaZp

Equation (S5) can be transformed as d; = d, (S6)

Combined equation (S3) and (S6), we can get the relation that
_ ux(2)h

VpmaZp

[lu(z)yd,  (S8)

'dz (S7)

X

h
Vpma-Zp

Integrating equation (S7), we can get the equation that | OL d,=
where L represent the distance between the inlet slit and the monodispersed particle exit.

Assuming that 1, (z) = %, where w represents the width of the capacitor and w-h represent the cross-section area of the capacitor, the

o Iy e R L . - (S9)

integral equation can be transformed as | 0 —
‘VpmaZp

0 w-h VDMA'Zp



QShl’Z, and combined with the assumption that Qg = u,(2) - w -h, we can get the expression of

Equation (S9) can be written as Z,, =

_ Uy(2).h?

Vpma-L

Zp

(S10)
In equation (S10) u,(z) represent the average speed of sheath flow along z-direction; L and h represent the horizontal distance of inlet the
exit and between the two electrodes, respectively; Vpy 4 represent the voltage applied between the two electrodes.

Account for the planar DMA PS5, the sheath flow speed is uniform along z-direction (ii,.(z) = u,), the physical dimension of L and h are

40mm and 10mm, respectively. The relation of the electric mobility (Z,) and the voltage applied by planar DMA P5 (Vpma) can be expressed

as:

= gy

Vpma-L

S2: Mobility diameter calculation

Calculation of diameter from mobility (Tammet, 1995; Wiedensohler et al., 2012)

neCc(Dp)
p— 3Dy

(S12)
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n is Number of elementary charges on the particle; e is Elementary charge = 1.60x107" C; C, is Cunningham slip correction; D, is Mobility

li:Ivlo(

diameter; p is Dynamic gas viscosity; A is Mean free path of gas; T is Temperature, and is set as 298.15 K; P is Pressure, assuming P equals to
latm; To is Reference temperature (296.15 K); Py is the Reference pressure = latm = 101325 Pa; Ao is Mean free path at 296.15K and latm = 67.3

x 10” m; pois the gas viscosity at 296.15K and latm, which is equals to 1.83245 x 10° kg m™! 57!
S3: Theoretical calculation of the resolving power of planar DMA

Assuming that variances are additive, the resolving power for a planar DMA is given by the following formula:

R—Z — (AZFWHM)2 — (l Qin+Qout)2 + (20‘\/211’12 \/L2+h2)2 (816)
4 Lsiit Qct+Qm L h

Where W is the width of the DMA channel at the outlet slit (14.9 mm), Lgit is the monodisperse sampling slit length (6.5 mm), Q.. IS the
monodisperse sampling flow rate, Q;,is the polydisperse aerosol flow rate, Q. is the flow rate at the DMA sheath gas inlet, Qm is the flow rate at
the DMA sheath gas outlet, 20(2In2)Y? is the width at half maximum of a Gaussian distribution, L is the separation channel length, h is the normal
distance between electrodes and ((L?+h?)¥2)/h is the projection of the Gaussian distribution width into the outlet electrode. In this planar DMA,
the polydisperse sample is electrically pushed through the inlet slit; indeed, a small counterflow (0.5 -1 L/min in this work) is exhausted through

the inlet slit in order to prevent droplets from entering the DMA. Since Q;,and Q,,. are much lower than Q. and Qm, the following simplification



may be assumed with little error: Qc~Qm — Q:=Qm=Q, where Q is the sheath gas flow rate through the separation channel. Hereafter only Q will
be considered.

The variance of a Gaussian distribution 6°=2Dt, is controlled by the ion time of residence in the DMA t and the diffusion coefficient of the ions
in the sheath gas D. The Einstein relation (D=ZKT/Ne), relates D with the electrical mobility Z, the Boltzmann’s constant k, the gas absolute

temperature T and the net charge on the particle Ne. The time of residence t in the planar DMA can be expressed as follows:

t=t=(L)L=-" (S17)
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Where E is the electric field between the DMA electrodes and Vowa is the voltage between the electrodes. So o can be expressed as:

2 2
—ZDt—ZZkT 2ZkT h — 2kTh (818)
Ne Ne ZVpma  VpmaNe
And Q can be expressed as a function of the Reynolds number:
Uh Q

Re = T = m (819)
Where U is the sheath gas velocity in the DMA channel and v is the kinematic viscosity of the gas. Then R can be rewritten as:
R-1— an+Qout 4 L2kt (1 + [ﬁ]2> (S20)
leltz Re V VDMANe L
Convective diffusion problems at large Reynolds numbers are well known to be governed by the Peclet number Pe defined as:

(S21)

Uh _ ZVpmaL _ VpmaLNe
D hD  hKT

Pe = Re~ =
D

Therefore, R can be expressed as a function of Pe number:



R~ = l( Qin+Qout)2 n 16In2 (£ n E) 16ln2 (£ + E)l (822)
Lg1it2 Rev Pe \h L Pe h L

S4: Supplementary figures and tables
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Figure S2 The relation of blower control voltage with sheath flow rate and corresponding DMA PS5 sizing range
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Figure S3 The positive ion mobility spectrum of THAB under suction mode (Vbiower = 5V, Qin= SL/min, Qour= 1.5SL/min) with different
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Figure S4 THA" Signal intensity normalized by monodispersed flow rate
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Figure S5 Positive ion mobility spectrum of electrospraied THAB solution obtained from HalfMini + Lynx E12
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Figure S6 Schematic diagram of tandem DMA system
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Figure S7 The distribution of transmission efficiency of the DMA P5 when classifying THA" _under different sheath flow rate, with
Qout= 2.5 L/min
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Figure S8 The distribution of transmission efficiency of the DMA P5 when classifying THA" _under different sheath flow rate, with
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Figure S9 Ton mobility distribution of the main identified clusters.Table S1 Inverse mobilities 1/Z (V s/cm?) for four tetra-alkyl
ammonium positive ions



Table S1 Inverse mobilities 1/Z (V s/cm?) for four tetra-alkyl ammonium positive ions

TMAI TBAI THAB TDAB
Peak™ Ude et al. Ude et al. Ude et al. Ude et al.
this work this work this work this work
2005 2005 2005 2005
A" 0.458 0.459 0.723 0.718 1.03 1.03 1.269 1.285
A*(AB) 0.667 0.677 1.164 1.153 1.533 1.529 1.811 1.846
A*(AB)2 - 1.475 1.450 1.898 1.893 —
Table S2 Inverse mobilities 1/Z (V s/cm?) for four tetra-alkyl ammonium negative ions
Peak TMAI TBAI THAB  TDAB
B 0.423 0.422 0.436 0.436
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