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Abstract. Strong methane point source emissions generate
large atmospheric concentrations that can be detected and
quantified with infrared remote sensing and retrieval algo-
rithms. Two standard and widely used retrieval algorithms for
one class of observing platform, imaging spectrometers, in-
clude pixel-wise and column-wise approaches. In this study,
we assess the performance of both approaches using the
airborne imaging spectrometer (Global Airborne Observa-
tory) observations of two extensive controlled-release exper-
iments. We find that the column-wise retrieval algorithm is
sensitive to the flight line length and can have a systematic
low bias with short flight lines, which is not present in the
pixel-wise retrieval algorithm. However, the pixel-wise re-
trieval is very computationally expensive, and the column-
wise retrieval algorithms can produce good results when
the flight line length is sufficiently long. Lastly, this study
examines the methane plume detection performance of the
Global Airborne Observatory with a column-wise retrieval
algorithm and finds minimum detection limits of between 9
of 10 kg h−1 and 90 % probability of detection between 10
and 45 kg h−1. These results present a framework of rules for
guiding proper concentration retrieval selection given con-
ditions at the time of observation in order to ensure robust
detection and quantification.

1 Introduction

Multiple studies have shown that, in many regions across
emission sectors, a significant component of the anthro-
pogenic methane (CH4) budget come from a relatively

small population of high-emission discrete point sources
(e.g., Lyon et al., 2015; Frankenberg et al., 2016; Irakulis-
Loitxate et al., 2022; Lauvaux et al., 2022; Sherwin et al.,
2023a; Duren et al., 2019; Cusworth et al., 2022). This re-
sult has significant policy implications, as identifying and
mitigating a large proportion of CH4 emissions quickly is
required to limit adverse climate warming effects in the next
few decades (Ocko et al., 2021). Several atmospheric remote-
sensing platforms are particularly sensitive to these emis-
sion types. In particular, airborne imaging spectrometers with
shortwave infrared (SWIR) sensitivity have emerged as use-
ful tools for point source quantification due to their high spa-
tial resolution, low detection limit, and ability to map large
areas for point sources. The accuracy of the emission quan-
tification of point sources depends on a combination of in-
strument performance, the CH4 concentration retrieval algo-
rithm, plume identification and delineation, and environmen-
tal variables including surface illumination and atmospheric
transport (Gorroño et al., 2023; Ayasse et al., 2018). Methane
retrieval algorithms for remote-sensing platforms that rely
on solar backscattered radiance, like imaging spectrometers,
vary in implementation and complexity (Jacob et al., 2022).
As the ecosystem of airborne and satellite imaging spectrom-
eters grows, understanding how retrieval assumptions propa-
gate to emission estimates is required to ensure that remote-
sensing-derived emission estimates are robust and accurate.

Controlled-release experiments provide a means of in-
dependently evaluating detection limits and uncertainty in
emission estimates. Initial unblinded controlled-release ex-
periments with the next-generation Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS-NG) were performed to as-
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sess detection limits and quantification accuracy at rela-
tively low emission rates (maximum release was 141 kg h−1)
(Thorpe et al., 2016). In 2021 and 2022, Stanford University
conducted more comprehensive, blinded controlled-release
experiments to validate multiple ground-based, airborne, and
satellite CH4 sensing technologies. Carbon Mapper, a non-
profit organization that provides facility-scale CH4 emission
data via remote sensing, participated in both experiments.
Carbon Mapper contracted the Global Airborne Observatory
(GAO) imaging spectrometer, which has the same design as
AVIRIS-NG, to collect the raw radiance data that Carbon
Mapper then processed to emission estimates. The Carbon
Mapper flights resulted in over 250 observations of metered
emission rates between 5 and 1500 kg h−1. These data pro-
vide an excellent opportunity to test, compare, and validate
CH4 emissions retrieval algorithms.

In this paper, we use now unblinded controlled-release
data to provide a quantitative sensitivity assessment of two
CH4 retrieval algorithms: (1) a column-wise matched filter
algorithm and (2) a pixel-wise iterative maximum a poste-
riori – differential optical absorption spectroscopy (IMAP-
DOAS) algorithm. We also use these data to assess a min-
imum detection limit for the Carbon Mapper airborne plat-
form. During the 2021 and 2022 controlled-release exper-
iments, we employed two observing strategies with GAO:
(1) rapid repeat surveys focused on the controlled-release
site, which resulted in many observations but smaller im-
age sizes (2021 experiment), and (2) broad imaging of the
controlled-release site and surrounding areas, which resulted
in greater characterization of the background but fewer ob-
servations (2022 experiment). The latter strategy was more
representative of our standard operations for mapping large
regions. We show that the performance of the retrieval algo-
rithm is strongly sensitive to the observing strategy, specifi-
cally for column-wise retrievals that depend on background
characterization using many pixels across the scene. These
results establish a general rule framework for selecting re-
trievals and quantifying systematic biases based on observ-
ing conditions at the time of acquisition. This is an espe-
cially critical finding given the computational efficiency, and
therefore operational use, of the column-wise approach com-
pared with the pixel-wise approach. These results corrob-
orate a 10 kg h−1 detection limit for this class of airborne
imaging spectrometer but also highlight the complexities and
contributing factors that alter detection limits on a scene-by-
scene bases. The rules and frameworks established here can
be applied and adapted to other observing platforms that may
apply similar CH4 retrieval approaches.

2 Methods

2.1 Controlled-release experiments

A series of controlled-release experiments were performed
by a Stanford University team in summer 2021 and fall
2022 (Rutherford et al., 2023; Sherwin et al., 2023b; El Ab-
badi et al., 2023). These experiments evaluated the detection
limits and quantification accuracy of various CH4 measure-
ment technologies, including ground-based, airborne, and
satellite platforms. In 2021, Carbon Mapper participated in
controlled-release tests conducted on 30 and 31 July and on
3 August 2021 near Midland, Texas. The metered release
rates were between 10 and 1500 kg h−1. In addition, a sonic
anemometer was located at the site to provide wind speed and
direction data at 10 m above ground level. In 2022, Carbon
Mapper participated in controlled-release tests on 10–12, 28,
29, and 31 October 2022 near Casa Grande, Arizona. The
metered release rates were between 5 and 1450 kg h−1, and
10 m sonic anemometer data were also provided. For more
details on the controlled-release experiments, see Rutherford
et al. (2023) (2021 experiments) and El Abbadi et al. (2023)
(2022 experiments).

For both the 2021 and 2022 controlled releases, we
used the GAO platform. The Visible to ShortWave Infrared
(VSWIR) imaging spectrometer onboard GAO measures
ground-reflected solar radiation at wavelengths from 380 to
2510 nm with 5 nm spectral sampling. The instrument spa-
tial resolution is correlated to the flight altitude. For these
studies, the instrument was flown at 10 000 ft (∼ 3 km), re-
sulting in an approximate pixel size of 3 m. GAO has a 34◦

field of view, which results in an approximate swath width
(or cross-track extent) of approximately 2 km when flown at
3 km altitude. The flight line length refers to the along-track
direction of data acquisition and can vary in length depend-
ing on observing preferences.

In the first controlled-release experiment, we maximized
the number of observations during the short campaign
window by flying short (∼ 3 km) flight lines around the
controlled-release site. This resulted in 229 observations of
the controlled-release site (including null releases). However,
this flight line length was well below our standard observing
practice and had consequences with respect to the column-
wise retrieval. Thus, for the second controlled-release experi-
ment, the flight line length was extended to 20 km, which was
more representative of normal survey operations, resulting in
121 observations of the controlled-release site. In both ex-
periments, we applied our standard quality control protocols
to eliminate scenes with clouds or cloud shadows, unstable
plume morphology, or unstable wind conditions. After qual-
ity checks, there were 163 plumes for the 2021 controlled-
release experiment and 87 plumes for the 2022 experiment.
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2.2 Column-wise retrieval

The column matched filter (CMF) is a column-wise statisti-
cal algorithm to estimate CH4 concentration enhancements.
CMF algorithms are used operationally for Carbon Mapper
airborne campaigns given their computational efficiency and
ability to reduce systematic instrument error that may occur
across nonuniform across-track elements in an imaging spec-
trometer. The algorithm takes the following form (Thompson
et al., 2015):

α̂(x)= (x−µ)T6−1t/
(
tT6−1t

)
, (1)

where α̂ is the path-length concentration CH4 enhancement
(units ppm m), x is a radiance spectrum, µ is the mean radi-
ance spectrum in an along-track column, 6 is a covariance
matrix, and t is a unit absorption spectrum. The vectors x,
µ, and t include 71 elements, which represent all bands in
the [2104, 2459] range, where CH4 has known absorption
properties (Roberts et al., 2010). In essence, the CMF uses
statistics from all pixels in a flight column to assess whether
a single pixel’s spectrum has an CH4 enhancement that is
above the background concentration (i.e., has deeper absorp-
tion features). Sufficient column-wise statistics (i.e., pixels)
are needed to define a robust covariance matrix. Initially, we
supposed that the number of pixels in a column (i.e., flight
line length) should be at least 7 times larger the number of
active bands used in the retrieval and that no column should
have more than 5 % of its pixels enhanced by CH4. As we
use 71 active bands in the retrieval, this suggests a ∼ 497-
pixel flight line length minimum (1.5 km for a flight altitude
of 3 km). Although this reasoning was used in general to de-
fine minimum flight line lengths, in practice, Carbon Mapper
performs wide-area surveys of many facilities at regional and
basin scales, resulting in much longer flight line lengths.

2.3 Pixel-wise retrieval

The IMAP-DOAS algorithm is a pixel-wise CH4 retrieval.
IMAP-DOAS estimates dry-air column-average CH4 con-
centrations (XCH4; units ppb) on a per-pixel basis by simu-
lation of top of the atmosphere (TOA) radiance and inversion
(or retrieval) for the best atmospheric parameters that reduce
mismatch between an observed spectrum and a simulated
spectrum, assuming some prior constraints. For the simulated
spectrum, IMAP-DOAS uses a radiative transfer model that
relies on a multilayered Beer–Lambert law equation to simu-
late high-frequency atmospheric features and a multidimen-
sional polynomial to represent low-frequency reflectance and
scattering features (Cusworth et al., 2019; Frankenberg et al.,
2005; Thorpe et al., 2017). The simulated spectrum must ac-
count for H2O and N2O, the other absorbing gases in the
2210–2400 nm spectra window, and low-frequency surface
features modeled as a polynomial of order k = [0,k]. There-

fore, the state vector (x) is composed of the following:

x =
(
sCH4 , sH2O, sN2O,a0, . . .,ak

)
, (2)

where s is a scaling factor applied to the column mixing ratio
for each gas from the US Standard Atmosphere. To retrieve
the state vector from the radiance, we apply a forward model:

F h(x)=

I0(λ)exp
(
−A

∑3
n=1

sn
∑72

I=1
τn,l

)∑K

k=0
αkPk(λ), (3)

where F h is the high-resolution TOA radiance at wavelength
λ; I0 is the solar spectrum; A is the geometric air mass fac-
tor; τn,l is the optical depth for either CH4, H2O, or N2O
(n) and the vertical level (l); sn is the scaling factor for that
optical depth; α is a polynomial coefficient; and P is the
kth polynomial. The optical depth τn,l is calculated at each
wavelength by multiplying the HIgh-resolution TRANsmis-
sion (HITRAN) absorption cross section by the volume mix-
ing ratio (VMR) and the vertical column density (VCD) of
dry air in a 72-layer atmosphere from the Modern-Era Ret-
rospective analysis for Research and Applications Version 2
(MERRA-2) meteorological reanalysis.

In order to model the TOA radiance, we take F h(X) over
the 2210–2410 nm spectral range at a 0.02 nm resolution and
convolve the spectrum using the band centers and full width
at half maximum (FWHM) from the instrument (for AVIRIS-
NG, this is a 5 nm spacing and a 6 nm FWHM). The observed
TOA radiance (y) is represented as follows:

y = F (x)+ ε, (4)

where ε is the observational error. The forward model is non-
linear, so the solution must be obtained iteratively. At each
iteration (i), a Jacobian matrix is calculated of the state vec-
tor.

Ki =
∂F

∂x
|x=xi (5)

We use Gauss–Newton iteration to solve for the optimal state
vector:

xi+1 =xA+
(

KT
i S−1

O Ki +S−1
A

)−1
KT
i S−1

A[
y−F (xi)+Ki (xi − xA)

]
, (6)

where SO is the error covariance matrix defined by the signal-
to-noise ratio (SNR), xA is the prior estimate of the state vec-
tor, and SA is the prior error covariance matrix.

IMAP-DOAS has been used in multiple previous studies
for a smaller population of emission sources (Cusworth et
al., 2020; Thorpe et al., 2017; Cusworth et al., 2021) but
is currently not run operationally for large-area surveys due
to computational constraints. The benefit of IMAP-DOAS is
that (1) each retrieved pixel is independent and (2) retrieval
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uncertainties can be explicitly characterized by the Bayesian
formulation of the retrieval. This contrasts with the CMF ap-
proach, where the retrieved concentration for a single pixel
depends on the quality and density of pixels in an acquisi-
tion (e.g., a single along-track column). However, the current
processing time of IMAP-DOAS makes its operational use
limited. At best, it takes 1 s per pixel to run; therefore, 5700
pixels (typically corresponding to a 300 m× 300 m area) can
take 2–3 h to run. In contrast, it takes about 7 min to run an
entire 3.3 million pixel scene with the CMF. Future process-
ing improvements may significantly reduce the computation
cost, but it is unlikely that IMAP-DOAS will ever be as com-
putationally efficient as the CMF.

2.4 Emission rates

For both CMF and IMAP-DOAS, we estimate emission
rates via the integrated methane enhancement (IME) method
(Frankenberg et al., 2016; Varon et al., 2018):

Q=
IME
L
×Ueff, (7)

whereQ is the emissions rate, IME is the integrated mass en-
hancement in kilograms, and L is the length in meters (in this
case, the length is calculated using the square root of the area
of the plume). Ueff is the effective wind speed and is calcu-
lated from the 10 m anemometer winds using the following
equation:

Ueff = 1.1× log(U)+ 0.6, (8)

where U is the 10 m anemometer wind speed. In the absence
of a 10 m anemometer wind observation at the site of the
plume, High-Resolution Rapid Refresh (HRRR) reanalysis
products are used to estimate the 10 m wind speed at the time
and location of the observed CH4 plume.

The IME was calculated slightly differently for IMAP-
DOAS and the CMF. For the CMF (which retrieves an en-
hancement above background and, therefore, does not have
background CH4 incorporated in the pixel values), we calcu-
lated thresholds using the 80th–98th percentile of the 1 km
area around the plume origin. The thresholds were then used
to filter out low values, and we subsequently calculated con-
nected components starting at the plume origin and used a
dilation to fill in gaps. The resulting plume mask was used
to calculate the IME and L for both methods. In order to
account for uncertainty due to the thresholds, this process
was repeated for each percentile in the above range, and the
IME and L values were averaged together to get the final
IME and L. For IMAP-DOAS (which retrieves a total col-
umn concentration), we used the same methods stated above
to determine the plume. However, IMAP-DOAS retrieves a
total column concentration, so the background CH4 needs to
be subtracted off. The background concentration was deter-
mined by taking the pixels not included in the plume mask
and taking a percentile (95th percentile for the 2021 plume

Figure 1. CMF (a) and IMAP-DOAS (b) comparison to metered
emission rates for the 2021 controlled-release experiment with
shorter-than-normal flight lines. An ordinary least squares (OLS)
fit to CMF results in y = 0.26x+ 146 with R2

= 0.42. An OLS fit
to IMAP-DOAS results in y = 0.98x+83 with R2

= 0. 72. For both
panels, the solid line represents the 1 : 1 line, the dashed line is the
OLS fit, and the error bars represent 1σ uncertainties.

and 99th percentile for the 2022 plumes). For the CMF emis-
sion results, the uncertainties were derived from the standard
deviation of the wind speeds 90 s prior to the observations
and from the standard deviation of the IME and L due to
different thresholds. For the IMAP-DOAS results, the uncer-
tainties are derived directly from the retrieval and from the
standard deviation of the winds as stated above.

3 Results and discussion

3.1 The 2021 controlled release

Estimated airborne emission rates compared to metered
emissions are shown in Fig. 1 for both CMF and IMAP-
DOAS. An ordinary least squares (OLS) fit between the CMF
results and the metered emissions results in y = 0.26x+146
and R2

= 0.42. An OLS fit between IMAP-DOAS and me-
tered emissions results in y = 0.98x+83 and R2

= 0.72. The
CMF approach in this case significantly underestimated the
metered emission rates. In contrast, emission rates derived
from IMAP-DOAS showed good correlation and little bias
across the population of releases. These values differ slightly
from the values published in Rutherford et al. (2023) due to
different emission quantification methods and quality filter-
ing, but the trends remain the same.

The bias seen in the 2021 CMF result prompted us to re-
visit the line length assumption described above (i.e., the line
length pixel minimum must be 7 times the length of active
bands). A review of our standard line lengths for field cam-
paigns, specifically the larger regional surveys of the Permian
basin performed between 2019 and 2021 (Cusworth et al.,
2019, 2022), revealed that the line lengths flown during the
2021 controlled-release experiment were an order of magni-
tude shorter than normal operations (Fig. 2). In the CMF for-
mulation (Eq. 1), the magnitude of a CH4 enhancement is di-
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Figure 2. Flight line lengths during the 2021 and 2022 controlled-
release experiments compared to Carbon Mapper Permian field
campaigns (Cusworth et al., 2021, 2022). The data are displayed
as a box plot, with the blue box representing the interquartile range,
the gray bar representing the median, the dashed lines representing
the respective minimum and maximum, and the black circles repre-
senting outliers.

rectly related to the mean and covariance of pixels contained
in a column. With a smaller flight line, the column covariance
is calculated with a smaller number of pixels; this means that
pixels with a CH4 enhancement have a larger influence over
the covariance, thereby making any deviations from the back-
ground (i.e., CH4 enhancements) possibly smaller. The sys-
tematic low bias seen in Fig. 1a from the CMF result could
therefore be indicative of flight lines that were systematically
too short. In contrast, as IMAP-DOAS is a pixel-based algo-
rithm and is therefore indifferent to flight lines lengths for
quantification, the much closer agreement to metered emis-
sion rates in Fig. 1b is additional evidence that short flight
lines drove much of the bias in the CMF result.

To provide further evidence that systematically short flight
lines bias CMF-derived concentrations (and therefore emis-
sions), we selected a subset of 50 flight lines that were flown
during standard campaign operations in the Permian between
2019 and 2021. We isolated a single unique plume in each
line, cropped the scene around that plume such that it was
1200 pixels (or 6 km) in the along-track direction, and then
ran the CMF algorithm. As the 2019–2021 Permian cam-
paigns were flown at higher altitudes (5–9 km), we cropped
these scenes to match the average number of pixels per col-
umn during the 2021 controlled-release experiment. There-
fore, these cropped scenes are representative of the statisti-
cal sampling conditions also present in the controlled-release
CMF results. Figure 3 shows the results of cropping 2019–
2021 Permian scenes to the same pixel dimension as the 2021
controlled-release experiment. What is immediately obvious
is that estimated emissions from these cropped scenes are
much lower than the standard CMF emission estimates that
use all pixels in the along-track direction. An OLS fit be-
tween the cropped and standard CMF emissions results in
y = 0.14x+ 81 with R2

= 0.47, showing a severe reduction
in estimated emissions. This lends additional evidence that
the poor results in Fig. 1 were driven primarily by short flight
lines.

The analyses described by Figs. 1, 2, and 3 lend con-
fidence that the 2021 bias in CMF results was driven by

Figure 3. Effect of cropping scene length on CMF results. Scenes
were taken from 2019–2021 Permian campaigns that were flown
under normal operations (i.e., not a controlled release experiment)
and then cropped to 1200 pixels in length; following this, the CMF
was rerun. The resulting emissions are compared to the emissions
from the standard full-line CMF processing. The OLS fit results in
y = 0.35x+ 40 with R2

= 0.77.

short flight lines. However, this unfortunately renders the
2021 controlled-release experiment incapable of assessing
how a properly constrained (i.e., 20–50 km flight line length)
CMF algorithm performs quantitatively against a standard
metered emission rate. Nevertheless, given the good perfor-
mance of IMAP-DOAS on the 2021 controlled-release data,
we cross-compared emission rates from the 2019–2021 Per-
mian campaigns derived from both CMF and IMAP-DOAS
algorithms. This subset includes more than 60 plumes that
relate to 20 distinct facilities that were imaged on at least
3 separate days during airborne campaigns by GAO during
the Permian 2019–2021 campaigns (Cusworth et al., 2022).
These plumes represent a dynamic range of emission rates
reported by the CMF algorithm (90–3900 kg h−1) and por-
tray a diversity of infrastructure types in this region. The
results of the IMAP-DOAS–CMF comparison are shown in
Fig. 4. Figure 4a shows instantaneous plume-to-plume emis-
sion comparison for the different retrieval approaches. The
data comparison shows general agreement between the two
retrieval approaches. An OLS fit results in y = 0.72x+ 307
with R2

= 0.67.
In practice, when summarizing the results from campaigns

and constructing emission budgets for regions or facilities,
we take persistence-averaged emission rates derived from
multiple overpasses of a facility (e.g., the average emission
rate over multiple observations; Cusworth et al., 2021). Fig-
ure 4b shows the comparison of IMAP-DOAS and CMF after
averaging and applying persistence adjustment to the emis-
sions. Here, the comparison between retrieval approaches
shows very close correspondence, with an OLS fit of y =
0.89x+ 120 and R2

= 0.82. As expected, the variability in
emissions on a plume-by-plume basis gets averaged out in
Fig. 4. As the only difference between CMF- and IMAP-
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Figure 4. Panel (a) is a comparison of instantaneous emission rates for a subset of 2019–2021 plumes in the Permian Basin between
the operational CMF and IMAP-DOAS. Panel (b) is a comparison of CMF and IMAP-DOAS for source-averaged emission rates. Error
bars represent 1σ uncertainties in emissions. In panel (a), the OLS regression fit (plume list with instantaneous emissions) is as follows:
y = 0.72x+ 307 with R2

= 0.67.

DOAS-derived emission rates is the concentration retrievals,
the improved correlation between single-realization plumes
in Fig. 4a and multiple-realization sources in Fig. 4b shows
that much of the retrieval uncertainty from these two ap-
proaches is unbiased because they begin to converge in
agreement with additional sampling.

3.2 Column matched filter sensitivity tests

The results in Figs. 1 and 3 provide evidence that a reduced
flight line length hampers the CMF’s quantitative perfor-
mance; however, the results do not reveal what the appro-
priate line length is to ensure good quantification. In order
to improve results for the 2022 controlled release and to en-
sure that we are able to accurately quantify plumes opera-
tionally, we performed an analysis to determine the mini-
mum line length for good quantification. To do this we iden-
tified eight sources that had at least three flyovers from GAO
and were located in long lines. This resulted in 24 individual
scenes to analyze. These scenes ranged from 125 to 27 km in
length. Using the full flight line lengths, the plumes within
each scene have CMF-derived emission rates between 70.7
and 3980 kg h−1. Scenes were acquired from various cam-
paigns, including the Permian 2021, Denver-Julesburg sum-
mer 2021, North East 2021, California summer 2020, and
Permian fall 2021 (Thorpe et al., 2023; Cusworth et al.,
2022).

Each scene was cropped to 2000 pixels (6–10 km) cen-
tered on the identified plume. This crop was then iteratively
increased in 1000-pixel (3–5 km) increments until the full
scene length was reached. This produced between 6 and 24
cropped images per scene. Each scene crop was processed
through the CMF and an IME algorithm. We used IME over
emission rates because the IME isolated changes in the CH4
retrieval better than a full emission estimate. Additional de-

tails on the methods used in this analysis can be found in
Sect. S3 in the Supplement.

We found that, in general, the IME increases as the pixel
count in each column increases; however, the rate of increase
decreases with pixel count. While not asymptotic, the small
increase in the IME after a certain threshold likely means
that there is an optimal point (or distance) that is sufficient for
quantifying an emission rate. Figure 5a shows the pixel count
vs. the IME for three different images of one CH4 plume. The
IME increases rapidly at the low pixel counts (short lines)
and then levels off as the line gets longer. We determined this
optimal point by calculating the “knee” in the curve (or the
point where the change in IME is minimal compared with
the change in the scene length). We found that, for all the
plumes assessed, the median knee was 7000 pixels (or about
21 km when the aircraft is flown as 3 km). We compared the
IME from the 7000 pixels to the standard scene length IME
and found generally good agreement (Fig. 5b). From this, we
can also conclude that the minimum line length needed to
produce a good quantification with the CMF is about 21 km.
This minimum line length is well within the lengths flown
from previous Permian surveys (Fig. 2).

3.3 The 2022 controlled release

The results in Fig. 5 prompted us to require a minimum flight
line distance of 20 km during the 2022 controlled-release ex-
periment. The estimated airborne emission rates compared to
metered emissions for the 2022 controlled release are shown
in Fig. 6 for both CMF and IMAP-DOAS. The OLS fit be-
tween the CMF results and the metered emissions results in
y = 0.90x+42 and R2

= 0.88. The OLS fit between IMAP-
DOAS and metered emissions results in y = 1.14x− 19 and
R2
= 0.81. These values differ slightly from the values pub-

lished in El Abbadi et al. (2023) due to different quality fil-
ters, but the trends remain the same. The results of the CMF
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Figure 5. Panel (a) shows the scene length (pixels) vs. the IME
from the matched filter for three plumes from a campaign in Octo-
ber 2021. Panel (b) shows the comparison of calculated emission
rate plumes with a scene length of 7000 pixels (or 21 km when
the aircraft is flown at 3 km) compared to the calculated emission
rate for the full scene length (length variable depending on scene).
The agreement is good, indicating that a ∼ 20 km line is a sufficient
length for good quantification.

Figure 6. CMF and IMAP-DOAS comparison to metered emis-
sion rates for the 2022 controlled-release experiment. An OLS fit
to CMF results in y = 0.90x+ 42 with R2

= 0.88. An OLS fit to
IMAP-DOAS results in y = 1.14x− 19 with R2

= 0.81. For both
panels, the solid line represents the 1 : 1 line and the dashed line is
the OLS fit. The error bars represent 1σ uncertainties; there is error
present on the x axis, but the error is too small to visualize.

are much improved from the 2021 controlled release. These
results further highlight the need for appropriately long flight
lines. The improved results provide additional assurance that
previous airborne campaigns, most of which have flight lines
longer than 20 km, do not have a systematic underestimate.

The CMF and IMAP-DOAS produced comparable results
for the 2022 experiment, similar to the results seen from Per-
mian campaigns shown in Fig. 4. However, other features ex-
ist that may corrupt a CMF result, even for long flight lines
that were not explicitly tested during the 2022 controlled-
release experiment. For example, flares or specular reflec-
tions from solar panels often result in saturated or atypical
backscattered radiance spectra. If these spectra are observed
anywhere in a column and not removed, they can enter into
a covariance calculation, causing the CMF results in that
column to be biased. In addition, the presence of too many

dark pixels, like a waterbody, can also negatively affect the
CMF. Although not affected by other pixels, physics-based
retrievals like IMAP-DOAS are also prone to retrieval ar-
tifacts for complicated pixels. Therefore, controlled-release
tests across a host of simple to complex observing environ-
ments will further refine algorithms to quantify concentra-
tions and emissions.

3.4 Detection limits

Although biased by short flight lines, the CMF results from
the 2021 controlled-release experiment performed well with
respect to CH4 plume detection. The CMF ability to detect
emissions has proven insensitive to line length, but these de-
tection limits are strongly influenced by other observing con-
ditions. To determine detection limits, we used logistic re-
gression to build detection models. For the first set of mod-
els (Fig. 7a), we only used the metered emission rates as
the predictor variable and built separate models for the 2021
and 2022 experiments. This allows us to compare the detec-
tion limits under two different observing conditions. We also
made a more general model (Fig. 7b); for this, we combined
both experiments and used wind speed as well as the metered
emission rates as predictor variables. Other factors like solar
zenith angle (SZA) and albedo should also be used as predic-
tor variables; however, for these experiments, there was not
enough variability in albedo to use it as a predictor variable,
and the SZA, in this case driven by time of day, was also cor-
related with the metered release rates and was, therefore, not
used as a predictor variable.

In the 2022 controlled-release experiment, the smallest
plume detected was 8.6 kg h−1 and the 90 % probability of
detection (POD) was 10 kg h−1. However, these were ideal
conditions. The albedo was 42 % in the area surrounding
the controlled-release site, which is considered high, and the
wind speeds were low (mean of 1.78 m s−1). Typical operat-
ing conditions are more challenging, which can lead to higher
minimum detection limits. The 2021 controlled release had
more challenging conditions: the wind speeds were higher
(mean of 2.5 m s−1), although not extreme, and the surface
albedo was 24.5 % and also more varied. In the 2021 exper-
iment, the smallest plume detected was 9.8 kg h−1 and the
90 % POD was 45 kg h−1. It is important to note that the
smallest release rate was also 9.8 kg h−1; thus, for 2021, there
are no data for releases below this value, and our understand-
ing of detection below 9.8 kg h−1 is consequently incom-
plete. When we combine both controlled-release experiments
and add wind as a predictor variable, we can more clearly vi-
sualize how detection limits can change depending on the
conditions. The 90 % POD ranges from 17 to 68 kg h−1 as a
function of wind speed (Fig. 7). These results are consistent
with previous controlled-release results and with other anal-
yses of POD curves that showed an AVIRIS-NG 90 % POD
of 16–33 kg h−1 (Thorpe et al., 2016; Conrad et al., 2023).
The POD is also a function of albedo and SZA, but these
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Figure 7. Probability of detection (POD) for the AVIRIS-NG/GAO instrument using the CMF methane retrieval algorithm. Panel (a) shows
the individual POD curves for the 2021 and 2022 controlled release. The points at zero represent null detections and the points at one
represent positive detections. Panel (b) shows the combined POD contours and includes wind.

controlled-release experiments were not designed to test and
isolate those parameters. In practice, we anticipate the POD
performance to vary across observing regions and seasons
(Gorroño et al., 2023). Specifying and understanding observ-
ing conditions is critical to interpreting POD and minimum
detection results.

4 Conclusion

The nonstandard short flight lines flown during the 2021
controlled-release experiment resulted in an unexpected low
bias in CMF-retrieved CH4 concentrations which propagated
into low emission rates. Here, we tested that hypothesis by
applying the pixel-wise IMAP-DOAS retrieval to the 2021
controlled-release results. We found a much improved result,
with IMAP-DOAS-derived emission rates showing strong
correlation and little bias across the experiment. We subse-
quently flew longer, more representative flight lines in the
2022 controlled-release experiment and eliminated bias in
both the CMF and IMAP-DOAS retrievals. Both experiments
were used to assess the minimum detection limit as well as
the 90 % POD. These experiments highlighted the impor-
tance of observing conditions when evaluating the POD.

Here, we also highlight the various strength and weak-
nesses of the two main retrieval algorithms. The CMF is a
fast and reliable detection algorithm but is sensitive to scene
dynamics, specifically scene length, for quantification. Here,
we show that the 2021 controlled release did not meet the
scene length requirements for good quantification, but we
also show that most Carbon Mapper flight lines meet the
scene length requirement and produce good quantitative re-
sults. IMAP-DOAS, on the other hand, is too slow to run as
a detection algorithm, but it can produce more reliable quan-
tification estimates and does not rely on other aspects of a
scene. However, continuing work is needed to robustly quan-
tify background concentrations over a diverse set of observ-
ing conditions. Ideally, these two algorithms can be used in

tandem: the CMF for rapid detection and IMAP-DOAS after
for a robust quantification.

As we move towards routine and global monitoring with
remote sensing, these results provide confidence in our abil-
ity to accurately quantify CH4 emissions. These results also
highlight the importance of controlled-release testing in or-
der to assess and understand retrieval algorithms. As a larger
constellation of instruments are used to map CH4 (Jacob et
al., 2022), more controlled-release tests will be needed to
fully validate emissions.
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