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Abstract. The TROPOspheric Monitoring Instrument
(TROPOMI) on board the Sentinel-5 Precursor satellite
enables the accurate determination of atmospheric methane
(CH4) and carbon monoxide (CO) abundances at high spatial
resolution and global daily sampling. Due to its wide swath
and sampling, the global distribution of both gases can be
determined in unprecedented detail. The scientific retrieval
algorithm Weighting Function Modified Differential Optical
Absorption Spectroscopy (WFMD) has proven valuable in
simultaneously retrieving the atmospheric column-averaged
dry-air mole fractions XCH4 and XCO from TROPOMI’s
radiance measurements in the shortwave infrared (SWIR)
spectral range.

Here we present recent improvements of the algorithm
which have been incorporated into the current version (v1.8)
of the TROPOMI/WFMD product. This includes process-
ing adjustments such as increasing the polynomial degree
to 3 in the fitting procedure to better account for possible
spectral albedo variations within the fitting window and up-
dating the digital elevation model to minimise topography-
related biases. In the post-processing, the machine-learning-
based quality filter has been refined using additional data
when training the random forest classifier to further reduce
scenes with residual cloudiness that are incorrectly classi-
fied as good. In particular, the cloud filtering over the Arc-
tic ocean is considerably improved. Furthermore, the ma-
chine learning calibration, addressing systematic errors due
to simplifications in the forward model or instrumental is-
sues, has been optimised. By including an additional feature
associated with the fitted polynomial when training the cor-
responding random forest regressor, spectral albedo varia-
tions are better accounted for. To remove vertical stripes in

the XCH,4 and XCO data, an efficient orbit-wise destriping
filter based on combined wavelet—Fourier filtering has been
implemented, while optimally preserving the original spatial
trace gas features. The temporal coverage of the data records
has been extended to the end of April 2022, covering a total
length of 4.5 years since the start of the mission, and will be
further extended in the future.

Validation with the ground-based Total Carbon Column
Observing Network (TCCON) demonstrates that the imple-
mented improvements reduce the pseudo-noise component
of the products, resulting in an improved random error. The
XCH4 and XCO products have similar spatial coverage from
year to year including high latitudes and the oceans. The
analysis of annual growth rates reveals accelerated growth of
atmospheric methane during the covered period, in line with
observations at marine surface sites of the Global Monitor-
ing Division of NOAA’s Earth System Research Laboratory,
which reported consecutive annual record increases over the
past 2 years of 2020 and 2021.

1 Introduction

Methane (CHy) is the second most important greenhouse gas
released by anthropogenic activity. Although it is less abun-
dant, it exhibits a significantly larger mass-related global
warming potential than carbon dioxide (CO;), which is re-
sponsible for most of the human-induced radiative forcing
since 1750 (Masson-Delmotte et al., 2021). Comprehensive
knowledge of the source and sink processes of CHy is es-
sential for a reliable prediction of future climate. Since CHy
(with a lifetime of about 9 years) is considerably shorter-
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lived in the atmosphere than CO;, reducing methane emis-
sions offers the opportunity to take advantage of the corre-
sponding short-term climate benefits to come within reach of
the goal of limiting global warming to 1.5°C. In this con-
text, global detection and quantification of methane sources
through satellite remote sensing can contribute to the emis-
sion mitigation efforts by identifying main emitters of an-
thropogenic origin, e.g. from the energy, waste, or agricul-
tural sectors, thus suggesting effective emission reduction
strategies.

Carbon monoxide (CO) is an air contaminant that is re-
leased into the atmosphere during combustion processes and
as a result of the oxidation of hydrocarbons. This occurs
through both natural processes and human activities. CO
has adverse health effects as it impairs the oxygen-carrying
capacity of the blood by directly binding to haemoglobin
(Rose et al., 2015). Due to its lifetime of approximately
1-2 months, it is well suited as a tracer of the long-range
transport of pollutants. In the presence of sufficient NOy,
CO participates in the net production of tropospheric ozone
(Fowler et al., 2008), which is a greenhouse gas known to
be harmful to health. In addition, CO is the main sink for
the hydroxyl radical (OH), reducing the potential of atmo-
spheric self-cleansing because the chemically depleted OH is
no longer available to remove other constituents of the atmo-
sphere, including greenhouse gases such as methane. Conse-
quently, CO is considered an indirect contributor to climate
change.

Continuous global satellite observations of both gases en-
able better insight into atmospheric transport, tropospheric
chemistry, and the climate system. Measurements of the up-
welling radiances in the shortwave infrared (SWIR) spec-
tral region have been exploited for the retrieval of the abun-
dances and distributions of trace gases, such as CO,, CHy,
and CO, because they are sensitive to all atmospheric lay-
ers. The Measurement of Pollution in the Troposphere (MO-
PITT) instrument (Drummond et al., 2010) on board NASA’s
Terra satellite successfully retrieves CO from both the ther-
mal and shortwave infrared and was intended to measure
CH4. The SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY) (Burrows et
al., 1995; Bovensmann et al., 1999) on board the ESA’s
ENVISAT began simultaneous measurements of CO,, CHy,
and CO from space (Buchwitz et al., 2005; Frankenberg et
al., 2006). The Thermal And Near infrared Sensor for car-
bon Observations Fourier Transform Spectrometer (TANSO-
FTS) on board GOSAT (Kuze et al., 2016) observes CO,
and CHy absorption lines, and its successor TANSO-FTS-
2 on board GOSAT-2 (Suto et al., 2021) additionally mea-
sures CO due to an extended spectral range. The previ-
ously existing application areas of satellite data were further
expanded with the TROPOspheric Monitoring Instrument
(TROPOMI), which is considered ground-breaking for de-
termining atmospheric composition, including CH4 and CO,
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from space with respect to combined spatio-temporal cover-
age and data quality.

TROPOMI is the only payload instrument of the ESA
Sentinel-5 Precursor mission launched in October 2017
(Veefkind et al., 2012). It is a push-broom imaging spectrom-
eter measuring radiances in eight spectral bands from the ul-
traviolet (UV) to the shortwave infrared (SWIR), allowing
the retrieval of various atmospheric constituents. TROPOMI
has the unique ability to combine observations at high spa-
tial resolution with global coverage on a daily basis due to its
large 2600 km swath consisting of individual measurements
with a footprint size of 5.5 x 7 km? at nadir (7 x 7 km? before
6 August 2019) in the SWIR bands (7 and 8) relevant for
methane and carbon monoxide retrieval. As a consequence,
both gases can be detected worldwide in unprecedented de-
tail. If desired, the globally available TROPOMI data may be
complemented in a symbiotic way by targeted remote sens-
ing data from aircraft or satellites with higher spatial reso-
lution but limited coverage, e.g. from GHGSat (Cusworth et
al., 2021), to detect and identify significant emitters.

In addition to the operational TROPOMI products for CHy
(Hu et al., 2016; Hasekamp et al., 2022) and CO (Landgraf
et al., 2016, 2022), there is also a scientific methane product
based on the same algorithm as the operational product but
with optimised settings (Lorente et al., 2021, 2022), as well
as the scientific WFMD product providing both gases simul-
taneously retrieved from the same fitting window (Schneis-
ing et al., 2019; Schneising, 2022a). The scientific products
have turned out to be valuable in verifying or improving the
operational products and in assessing the robustness of re-
sults by analysing the extent to which specific results are sen-
sitive to the details of the algorithm setup.

Here we introduce the recent changes incorporated in the
latest product version of TROPOMI/WFMD. After a short
review of the basics of the retrieval algorithm including the
machine learning quality filter and bias correction, the fol-
lowing sections describe the improvements implemented in
the current version in detail and demonstrate their benefits.
Finally, an overview of the new improved products is pro-
vided including a discussion of atmospheric annual growth
rates and validation results compared to previous product
versions.

2 TROPOMI/WFMD retrieval algorithm

The scientific retrieval algorithm Weighting Function Modi-
fied DOAS (WFMD) for simultaneously retrieving the atmo-
spheric column-averaged dry-air mole fractions of methane
(XCHy) and carbon monoxide (XCO) from radiance mea-
surements in the SWIR of TROPOMI on board the Sentinel-
5 Precursor satellite (S5P) is described in detail in Schneis-
ing et al. (2019). It is a least-squares procedure using scaling
(or shifting) of previously selected atmospheric vertical pro-
files (Buchwitz et al., 2007; Schneising et al., 2011). The lin-
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earised radiative transfer model (based on the tabulation of
radiances and associated derivatives obtained from the radia-
tive transfer model SCIATRAN in pseudo-spherical atmo-
sphere mode; Rozanov et al., 2002, 2014) is fitted together
with a low-degree polynomial to the logarithm of the mea-
sured sun-normalised radiance. The look-up table enables a
fast retrieval of the vertical columns of the targeted species
and contains various reference spectra characterising a va-
riety of typical atmospheric conditions covering combina-
tions of different solar zenith angles, altitudes, albedos, water
vapour contents, and temperatures.

Given the number m € N of spectral points to be fitted and
the number n € N of state vector elements (with m > n), the
best fit of the linearised model to the observed radiance is
obtained by minimising

) 2
fo=Wiy-ax)| =0 -a0Wo-an M)

with respect to the difference x € R" of the state vector
and the multidimensional linearisation point. Here y € R™ is
the corresponding difference vector of measurement and lin-
earised model, A € R™*" is the Jacobian (matrix of weight-
ing functions, i.e. derivatives at the linearisation point, and
polynomial basis functions as columns), and W = C;l the
matrix of weights defined as the inverse of the measurement
noise covariance matrix Cy = diag(olz, - a,fl) e RM*M ag-
sociated with uncorrelated measurement noise o; at the
different spectral points. This minimisation yields the so-

lution x = CxATWy of the inverse problem, with C, =

(ATWA)_1 being the covariance matrix of solution £.

In post-processing, the retrieved vertical columns are con-
verted to column-averaged dry-air mole fractions (denoted
XCHy and XCO) by dividing them by the dry-air columns
obtained from European Centre for Medium-Range Weather
Forecasts (ECMWF) data. To adopt the high spatial resolu-
tion of the TROPOMI data, the ECMWF dry-air columns
are adjusted for the actual elevation of the individual satellite
scenes by accounting for the mismatch to the mean altitude
of the coarser model grid.

As the look-up table is confined to specific atmospheric
conditions such as cloud-free scenes, an efficient machine
learning quality filtering procedure based on a random for-
est classifier (Schneising et al., 2019) is trained using quasi-
simultaneous cloud information from the Visible Infrared
Imaging Radiometer Suite (VIIRS) on board Suomi NPP
(Hutchison and Cracknell, 2005) flying in a constellation
3.5min ahead of the Sentinel-5 Precursor. Due to the strict
quality requirements for retrieving atmospheric methane,
a shallow learning random forest regressor (here, shallow
refers to the number of leaves in each decision tree being
small compared to the cardinality of the training dataset)
is trained to reduce the remaining systematic coarse-scaled
methane dependencies on other parameters such as albedo
after quality filtering. This is done by assuming the Sim-
ple cLImatological Model for atmospheric CH4 (SLIMCH4)

https://doi.org/10.5194/amt-16-669-2023

v2021 (Noél et al., 2022) without interpolation as a sound
low-resolution (6° x 4°) approximation of truth. This correc-
tion only compensates for gross statistical discrepancies re-
garding the considered features (mainly albedo-related), as
the tree growing is limited and the training is restricted to
a subperiod of time and a few small regions, which are se-
lected to cover the whole range of albedo values and all pos-
sible viewing geometries. Therefore, the training dataset is
considered representative of the entire globe with respect to
albedo-related biases, ensuring a reliable global correction.
The additional pruning of the decision trees is performed to
keep the correction as simple, fast, and shallow as possible to
be certain that potential specifics of the climatology are not
over-learned. A similar calibration of XCO is not necessary
to achieve the mission requirements since a potential albedo-
induced bias of the same percentage magnitude as for XCHy
would not be significant due to the considerably higher vari-
ability of XCO.

3 Algorithm improvements

Since version 1.2 (Schneising et al., 2019), several changes
have been implemented in the WFMD algorithm, which are
described in this section and summarised in Table 1. There
are rather straightforward adjustments, such as increasing the
resolution of the gridding used of the underlying topography
database from 0.05 to 0.025° and using the ECMWF Reanal-
ysis v5 (ERAS, with resolution 0.25° x 0.25° x 1h) (Hers-
bach et al., 2020) instead of the ECMWF analysis (0.75° x
0.75° x 6h) in the post-processing since v1.5. The theoretical
improvement due to the better temporal and spatial resolu-
tion of the meteorological data is difficult to demonstrate and
typically small because a noticeable impact is only expected
when conditions change significantly on a small scale and/or
in the short term. The more comprehensive and distinct im-
provements are described in the following subsections.

3.1 Polynomial fit parameters

In the original settings a quadratic function (polynomial
of degree 2) was used in the minimisation procedure of
Eq. (1) to take broadband effects into account when fit-
ting the linearised radiative transfer model to the observed
radiance. Although surface albedo has been addressed as
a potential source of biases from the beginning in the
TROPOMI/WFMD algorithm, residual suspect signals were
retrieved in rare cases even in v1.5 over areas exhibiting spe-
cial surface characteristics. This finding was attributed to
the variability of spectral albedo within the fitting window
around 2.3 um for specific soil types depending on their exact
chemical composition. Potential interferences in this spectral
range could be, for example, spectral features due to OH-
metal bend and OH stretch combinations (Tayebi et al., 2017)
or features caused by combination tones of certain salts and
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Table 1. Overview of the different TROPOMI/WFMD versions and the respective differences in the setup. For details see the main text.

vi2 | v1.5

‘ v1.6 ‘ v1.7 ‘ v1.8

Meteorological data ECMWF analysis

0.75° x 0.75° x 6h

ECMWF Reanalysis v5 (ERAS)
0.25° x 0.25° x 1h

Polynomial degree 2 3

(Sect. 3.1)

Digital elevation model GMTED2010 GMTED2010 GMTED2010 + ICESat-2 Greenland | Copernicus GLO-90
(Sect. 3.2) 0.05° x 0.05° 0.025° x 0.025° 0.025° x 0.025° 0.025° x 0.025°

Random forest classifier
Training with 16 d and 25 features

Quality filter
(Sect. 3.3.1)

Random forest classifier
Training with 30d
and 26 features
(as before + surface roughness)
+ three-step filter

as previous version
+ ocean refinement

Methane calibration Random forest regressor,

Random forest regressor,

as previous version, but 10 000 leaf nodes

(Sect. 3.3.2) five features in training: six features in training: Training limited to SZA < 80°
albedo, SZA, rc1d, LsH,0> facr as before +p
500 leaf nodes 5000 leaf nodes
Training limited to SZA < 75° Training limited to SZA < 75°
Destriping No Yes
(Sect. 3.4)
Reference Schneising et al. (2019) Schneising (2022a) ‘ - Hachmeister et al. (2022) presented here

gypsum (Moreira et al., 2014). Therefore, the polynomial de-
gree in the fitting procedure was increased to 3 since v1.6 to
better account for possible spectral albedo variations within
the fitting window.

Concurrent with our analysis, Lorente et al. (2022) also in-
vestigated the impact of the polynomial degree on their sci-
entific TROPOMI methane product, which is based on the
RemoTeC algorithm just like the operational product, finding
significant improvements for several regions when increasing
the polynomial degree from 2 to 3. However, the impact of
this modification on their product is quite different both qual-
itatively and quantitatively than for TROPOMI/WFMD due
to the alternative algorithm setup, e.g. with differing fitting
windows and bias correction schemes. An example of this is
the artefact in the northern Siberian Taymyr region that oc-
curs in the operational product (Barré et al., 2021), which
was also misinterpreted as genuine large methane emissions
from carbonate rock formations (Froitzheim et al., 2021).
While Lorente et al. (2022) demonstrate that the original
strong enhancement in the operational and RemoTeC sci-
entific product is not reproduced when using a cubic poly-
nomial, a corresponding distinct enhancement in this mag-
nitude is not observed in the TROPOMI/WFMD products,
even in the previous setup with a quadratic polynomial (see
Fig. 1).

Overall, the changes due to the adjustment of the
polynomial degree seem to be less significant for
TROPOMI/WFMD than for RemoTeC. The lower sus-
ceptibility of TROPOMI/WFMD to some of the observed
spectral albedo bias features is primarily attributed to the
narrower spectral fitting windows in comparison to the
RemoTeC retrievals, which cover a wider spectral range. If
the spectral range is sufficiently small, it is easier to approx-
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imate albedo-induced structures in the spectral baseline by
lower-degree polynomials. To retrieve CHy and CO simul-
taneously as accurately as possible, the TROPOMI/WFMD
spectral fitting windows were optimised based on an error
analysis of simulated measurements (also including spectral
albedo scenarios of typical surface types) resulting in the
windows 2311-2315.5 and 2320-2338 nm (Schneising et al.,
2019). For instance, it was identified that it is beneficial with
regard to systematic errors to exclude the strong methane
absorption lines between the two fitting windows, although
the associated loss of spectral information may lead to a
slightly increased random error.

The global differences resulting from the adjustment of the
polynomial degree are depicted in Fig. 2 before and after ap-
plication of the machine learning calibration. Both versions
shown (v1.5 and v1.6) only differ by the polynomial degree
used in the fitting procedure according to Table 1. The qual-
ity filter and calibration are then performed individually for
both versions but with the same settings in each case (e.g.
the list of features available for selection for the random for-
est regressor). Figure 2a demonstrates the direct impact of
using a cubic polynomial instead of a quadratic one. The
largest impact is observed over the Etosha Pan in Namibia.
Further notable differences appear in northern Africa and on
the Arabian peninsula. Figure 2b allows identifying which
of the occurring differences are alternatively resolved by the
subsequent calibration when using a quadratic polynomial:
this is the case when a localised pattern appearing in the up-
per panel is mitigated in the lower panel. Thus, the changes
due to the cubic polynomial in northern Africa and on the
Arabian peninsula were achieved by the machine learning
calibration in earlier versions and there is no or only a small
effective impact in the final product for these regions. Nev-
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Figure 1. Comparison of the XCHy distribution in July—September 2020 over the northern Siberian Taymyr region for (a) the operational
product and (b-d) different TROPOMI/WEFMD versions (v1.2 and v1.5 use a quadratic polynomial, while v1.8 uses a cubic polynomial).
The strong artificial enhancement in the operational product, which is largely reduced when using a cubic polynomial (Lorente et al., 2022),
is hardly visible at all in the TROPOMI/WFMD products even if using a quadratic polynomial.

ertheless, the overall calibration has the potential to work
somewhat better in the cubic case, since the aforementioned
specific regional spectral albedo features do not need to be
explicitly addressed any more and other statistical coher-
ences may then be better identified. In contrast, however, the
differences over the Etosha Pan cannot be entirely achieved
through calibration, justifying the implementation of the in-
creased polynomial degree. This is even more true for XCO,
which shows similar regional changes through the increase
in polynomial degree but is not calibrated due to higher vari-
ability and weaker requirements compared to XCHjy.

As the Etosha Pan is also the region where the most promi-
nent potential bias in previous versions was observed, we
analyse the improvement due to the increase in the polyno-
mial degree for this special case in more detail. The Etosha
Pan is a large endorheic salt pan in Namibia. It exhibits in-
termittent shallow inundation and is therefore considered a
wetland and thus a potential methane source. After the in-
filtrated water has evaporated again, a salt crust remains on
the ground. According to Beugler-Bell and Buch (1997),
the soils of the Etosha Pan are calci-sodic Solonchaks to
sali-calcic Solonetzs derived from Andoni sandstone or silt-
stone, which may result in an overestimation of the detected
methane enhancement if the fitted quadratic polynomial is
not able to approximate the spectral albedo of this specific
soil type sufficiently well. As a result of the increase in poly-
nomial degree to 3, the enhancement over the Etosha Pan is
significantly reduced (see Fig. 3). As the other spatial fea-
tures are preserved, the modification of the polynomial de-
gree is considered a general improvement, with positive ef-
fects in the presence of specific soil types and otherwise no
significant changes compared to previous product versions.
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Figure 2. Global differences in XCH4 (2018-2020) when changing
the polynomial degree from 2 to 3 (a) before and (b) after appli-
cation of the machine learning calibration. The largest differences
are observed over the Etosha Pan. The differences in northern Africa
and on the Arabian peninsula are largely resolved via the calibration
when using a quadratic polynomial as these features are mitigated
in the lower panel.

The comparison with v1.2 in Fig. 3 also confirms the finding
of Fig. 2 that some of the enhancement can be resolved by
the calibration, which has been improved compared to v1.2
by adding the polynomial parameter pq as a feature (see Ta-
ble 1) to take spectral albedo variability at least partially into
account.
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Figure 3. Comparison of the XCHy4 distribution over southern Africa for (a) v1.2, (b) v1.5 (both using a quadratic polynomial), and (c) v1.8
using a polynomial of degree 3 instead in the fitting procedure to better account for potential variability of spectral albedo within the fitting
window. As a consequence, the enhancement over the Etosha Pan in Namibia is significantly reduced and considered more realistic (see
main text for details). The differences in coverage over the ocean are due to the stricter quality filter in v1.8 (see Sect. 3.3). There is already
a noticeable improvement from v1.2 to v1.5 due to the improved calibration taking spectral albedo variability at least partially into account

by adding the polynomial parameter p( as a feature.

The interpretation that the distribution over the pan is
more realistic when using a cubic polynomial is based on
the fact that the shape of the retrieved enhancement for sin-
gle overpasses is more variable. While the enhancement re-
flects the extent of the pan virtually always in the case of
a quadric polynomial, it changes with meteorological con-
ditions in the cubic case. For instance, the link between in-
undation and methane enhancement appears more evident in
the latest product version. Instead of a fixed shape, the en-
hancement is now more pronounced when parts of the pan
are shallowly flooded, as opposed to days with utter drainage.
This is demonstrated in Fig. 4 by comparison with a VIIRS
false colour band combination (red: M3, 478-498 nm; green:
13, 1580-1640 nm; blue: M11, 2225-2275 nm) distinguish-
ing different water states and thus enabling flood mapping.
In this band combination, vegetation appears in green, bare
soil or deserts in bright cyan, and liquid water on the ground
or sediments in water will appear dark. The figure compares
days from the dry seasons in 2019 and 2020, which differ
significantly in terms of flooding. Due to abundant rainfall
in the second half of the wet season (December 2019-March
2020) the eastern part of the pan stayed inundated until end
of July in the year 2020, well into the dry season. In con-
trast, the pan was entirely drained during the dry season of
2019. Consistent with this, there is a methane enhancement
over the eastern pan in 2020 that is not observed in 2019 in
the TROPOMI/WFMD v1.8 product. For comparison, Fig. 4
also shows the operational product, which, however, has vir-
tually no data over the Etosha Pan on the analysed days.
Thereby, like in all other comparisons with the operational
product, only data with a quality assurance level larger than
the recommended value (qa_value > 0.5) are shown.

The improvement due to the increased polynomial degree
is also reflected in an improved fit quality. Figure 5 shows fits
for two example scenes inside and outside the Etosha Pan as
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well as maps of the region demonstrating the fit quality for
quadratic and cubic polynomials from the day in the dry sea-
son in 2019 depicted in Fig. 4, where the pan was utterly
drained. As can be seen, the fit quality improves significantly
over the pan when increasing the polynomial degree from 2
to 3, and the root mean square of the fit residual €, becomes
comparable to the surroundings of the pan, while there is no
significant change outside the pan. In addition to the map of
the root mean square (rms) of the fit residuals, the associated
XCO map is also much more homogeneous and the outlines
of the pan are no longer visible when using a cubic polyno-
mial. The sample XCHy4 values of the two analysed scenes
converge to a common value inside and outside the pan in
both the raw and calibrated data. The respective bias in the
quadratic case of the calibrated data of about 24 ppb virtu-
ally vanishes. Based on the analyses in this section and due
to the identified homogeneity in maps of XCHy, XCO, and
fit quality, the retrieved values over the identified main prob-
lem area Etosha Pan (and everywhere else in the world) are
considered realistic when using a cubic polynomial.

3.2 Digital elevation model

The previously used digital elevation model (DEM),
Global Multi-Resolution Terrain Elevation Data 2010
(GMTED2010) (United States Geological Survey, 2018),
was replaced in WFMD v1.8 as significant local inaccuracies
were identified over Greenland compared to ICESat-2 data
(Hachmeister et al., 2022). The associated analysis con-
firmed the expected linear correlation between Ah and
AXCHy. Thereby, an error of 1% in the assumed surface
pressure approximately corresponds to an error of 1% in
retrieved XCHy. As a universally consistent current DEM
is preferable in the case of a global satellite dataset and
inaccuracies of GMTED2010 also affect other regions of
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Figure 4. Comparison of a (a—b) VIIRS false colour band combination distinguishing different water states (taken from the NASA Worldview
application) with the XCHy distribution over the Etosha Pan for (c-d) the operational product, (e-f) TROPOMI/WFMD v1.5, and (g-
h) TROPOMI/WFMD v1.8 on two different days (a, c, e, g) without and (b, d, f, h) with shallow inundation of parts of the pan, which appear
dark in the VIIRS false colour image. In the latter case there is a perceivable enhancement in the swamped portion for v1.8, which does not
arise on the drained day. Please note that for v1.8 an additional destriping algorithm has been applied (see Sect. 3.4).

the globe, the Copernicus GLO-90 DEM (European Space
Agency, Sinergise, 2021) was utilised in the updated pro-
duct (instead of the ICESat-2 data used in Hachmeister et al.,
2022, for the Greenland case study) to minimise topography-
related biases in the TROPOMI/WFMD XCH4 and XCO
data globally.

The freely available Copernicus GLO-90 DEM is based
on radar satellite data collected between 2011 and 2015 dur-
ing the TanDEM-X Mission and represents the full global
landmass including buildings, infrastructure, and vegetation
at a resolution of 90m. A global validation with ICESat-1
data provides an average vertical accuracy of 2.17 m at 90 %
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confidence level (Airbus, 2020). In this global assessment,
Greenland and Antarctica were excluded from the statistics
due to the additional uncertainties associated with snow and
ice cover. Broken down by ecoregion, the accuracy for most
surface types is better than 2 m, while tundra, boreal forests,
and woodlands have the lowest accuracy levels compared
to other regions. This lower accuracy is expected because
the penetration depths of radar and lidar differ for regions
covered with conifers. A similar penetration depth issue ex-
ists for dry firm snow, hampering a direct comparison with
ICESat-1 data for regions with permanent snow or ice cover
and leading to lower accuracy levels in these regions. Con-
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Figure 5. Example fits for two scenes (a) inside and (b) outside the Etosha Pan. The spectral TROPOMI measurements are shown as grey
dots, and the respective models (and fit residuals) are shown in yellow and red for using a quadratic or cubic polynomial in the fitting
procedure. Also shown are maps for a single satellite overpass of (c—d) the root mean square of the fit residuals (with the two example scenes
being highlighted by a black border) and (e—f) XCO. The maps (d, f) associated with a cubic polynomial (v1.8) are much more homogeneous
and the extent of the pan is no longer visible. Please note that for v1.8 XCO an additional destriping algorithm has been applied (see Sect. 3.4).

sequently, the obtained vertical accuracies for Greenland and
Antarctica are about 3 times higher than for the global as-
sessment (7.26 and 6.38 m at 90 % confidence level).

To get an idea of the impact of the DEM change, Fig. 6
shows the average difference in XCHy4 when substituting
GMTED2010 with GLO-90. As can be seen, the differ-
ences are rather small for most regions of the world but
can become large at individual locations, e.g. in Arctic re-
gions (parts of Greenland and Spitsbergen) or Antarctica,
where biases associated with singular DEM inaccuracies of
a few hundred metres could exceed 100 ppb before the DEM
change. There is also an increase in the inhomogeneity of
the difference with a discontinuous appearance at high lat-
itudes above 60° N, in particular in Eurasia, which can be
attributed to the GMTED2010 data. This is a known limi-
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tation of GMTED2010, as the DEM is composed of vari-
ous datasets and the main dataset used in GMTED2010, the
Digital Terrain Elevation Data v2 (DTED 2), is only avail-
able for latitudes between 60° N and 56° S (Danielson and
Gesch, 2011). The topography information at higher latitudes
is based on older data with lower spatial resolution. That the
high-latitude difference pattern is an issue of GMTED2010
and not of GLO-90 can also be seen in Fig. 1 showing the
methane distribution for several TROPOMI/WFMD prod-
ucts over northern Siberia, demonstrating that v1.8, which is
based on GLO-90, exhibits the most homogeneous methane
distribution in this region. The inference that the updated pro-
duct features a more consistent and realistic methane dis-
tribution is also evident over Greenland, where issues of
GMTED2010 have already been identified by Hachmeister

https://doi.org/10.5194/amt-16-669-2023



0. Schneising et al.: Advances in retrieving XCHy4 and XCO from Sentinel-5 Precursor 677

TROPOMI/WFMD AXCH,4 (GLO-90—-GMTED2010)

(@ < g
- > ¢, N

AXCHs (ppb)

-20 —15 -10 -5 0 5 10 15 20
®) (©
{
AXCHq (ppb)
—60 —40 -20 0 20 40 60

Figure 6. Global differences (a) in XCH4 when substituting the
GMTED2010 digital elevation model with GLO-90. The largest
differences are in the (b) Arctic, in particular Greenland, and
(¢) Antarctica.

et al. (2022) using ICESat-2 data. The improvement through
the use of GLO-90 is demonstrated in Fig. 7. With respect
to the TROPOMI data, a similar improvement is obtained
over Greenland when using GLO-90 or ICESat-2 instead of
GMTED2010. The added value of GLO-90 is its global con-
sistency, which additionally permits resolving further poten-
tial DEM inaccuracies and related retrieval biases elsewhere.

Regarding biases induced by DEM issues, there are similar
percentage improvements for the latest XCO product, but the
previous inaccuracies were less significant due to the higher
variability of XCO and the lower requirements on the product
compared to XCHy.

3.3 Quality filter and posterior correction

The TROPOMI/WFMD algorithm uses machine learning in
the post-processing to predict low-quality scenes and to cali-
brate the methane retrievals by learning statistical relation-
ships. In addition to the dedicated changes to the settings
in the machine learning framework described in this section
and summarised in Table 1, further effective improvements
may arise if the actual underlying systematic dependencies
are better teased out due to the other refinements, such as
improved topography or updated polynomial degree.
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3.3.1 Machine learning quality filter

For the fastest possible Level 1 to Level 2 processing, the
look-up table of radiances and their derivatives with respect
to the state vector elements should be kept appropriately
small. As a consequence, some assumptions and simplifica-
tions concerning atmospheric conditions have to be made,
resulting in the need to exclude measurements that are not
adequately represented by the forward model. This primar-
ily applies to cloudy scenes, which have to be rigorously fil-
tered out, as the look-up table is limited to cloud-free con-
ditions. To this end, a random forest classifier based on ma-
chine learning was implemented in the post-processing, ex-
ploiting concurrent cloud information from the VIIRS instru-
ment (Schneising et al., 2019). After the initial training, the
algorithm is independent of the availability or consistency of
the VIIRS data, as the classification is then entirely driven by
intrinsic parameters available from or used in the preceding
processing excluding the primary retrieval parameters XCHy
and XCO.

To optimise coverage and quality of the products, the
dataset used in the training of the random forest quality
screening was extended to 30 randomly chosen days from
the end of April 2018 until the end of 2019 since v1.5 (com-
pared to the original 16d). A total of 5 million measure-
ments are selected for each day including all land data, all
inland water data, and all ocean data passing the quality fil-
ter; the remaining amount is randomly sampled with bad-
quality ocean scenes. Furthermore, surface roughness (deter-
mined from the respective DEM by using the standard devi-
ation of the high-resolution data within the considered grid
boxes) was included as an additional feature of the classi-
fier to potentially allow better identification of scenes that
may have quality deficits due to the simplifications of the for-
ward model. These changes result in fewer residual outliers
remaining after quality filtering.

Residual outliers due to issues not explicitly considered in
the training of the quality filter are addressed by a heuristi-
cal three-step quality filter that was additionally implemented
(since v1.5) after application of the random forest classifier:
(1) retrievals whose shift and squeeze parameters exceed the
30 range centred around the respective daily mean values
are discarded. (2) An empirical filter with respect to the root
mean square of the fit residual €.y is applied depending on
the sun-normalised radiance in a spectral range with negligi-
ble absorption Iy at the edge of the fitting window. The qual-
ity is considered bad if €, > 0.027 or €rmps > a- (I +b)_l +
¢ with parameters a = 0.0019, b =0.075, and ¢ =0.007,
which are adjusted for scenes over ocean and inland water
(i.e. with land fraction zero) to a = 0.00063, b = 0.015, and
¢ = 0.009. These parameters were determined empirically to
distinguish between typical values of e€;ms(lp) and outliers.
This filter step serves to exclude exceptional scenes with re-
duced fit quality relative to scenes with similar radiance for
whatever reason such as specific scenes with intense aerosol
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Figure 7. Comparison of the XCH, distribution over Greenland for (a) v1.5 based on GMTED2010 and (b) v1.8 using updated topography.
The suspicious features, which are correlated with the topography-related differences shown in Fig. 6, disappear when using the GLO-90
digital elevation model. The differences in coverage over the ocean are due to the stricter quality filter in v1.8 (see Sect. 3.3).

exposure. (3) Unsupervised outlier detection is applied to
daily data based on the comparison of the local density of
a sample with the local densities of its neighbours. This is
done by assigning a degree of being an outlier to each ob-
ject in multidimensional space, called the local outlier factor
(LOF) (Breunig et al., 2000). It is local in the sense that the
LOF depends on how isolated an object is from its surround-
ings, with LOF being close to 1 for objects inside a clus-
ter. Here we use the three-dimensional (latitude, longitude,
XCHy4) space and the standard Euclidean metric to measure
the spatial distance. Thereby, any upward outliers regarding
XCHy are not filtered out to avoid incorrectly excluding gen-
uine emission point sources. The full three-step procedure
removes a further 3.5 % of the scenes that pass the random
forest classifier quality screening algorithm, with about 3 %
of the data filtered out by the shift-squeeze—ey filter and
about 0.5 % by the LOF outlier detection. Since this post-
random-forest filter is only about remaining outliers it is im-
practical to identify and explicitly consider all conceivable
issues in the training of the random forest classifier, and this
heuristic approach seems to be a satisfactory solution.

In v1.8, the quality filter is further improved using 18 mil-
lion additional (bad-quality) ocean scenes equally distributed
over the 30 randomly chosen days when training the ran-
dom forest classifier. This reduces scenes with residual cloud
cover, especially concerning overcast conditions over the
Arctic Ocean in summer, which were not always reliably
detected in previous product versions. The improvement is
demonstrated by the example of July 2018 in Fig. 8, showing
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the precision of the quality filter for cloud-free retrievals. The
better the precision, the lower the false discovery rate of class
0, i.e. the fraction of scenes that are classified as good but
should in fact be discarded according to VIIRS cloud infor-
mation. Overall, the percentage of actually cloud-free scenes
(defined via the condition that the fraction of VIIRS sub-
scenes classified as confidently cloudy has to be smaller than
< 0.1) in the quality-filtered product is already very high in
v1.5 (> 95 %). However, if restricted to the small subset of
measurements at high latitudes over water, it turns out that a
significant portion of measurements is misclassified. As this
subset only accounts for about 1 % of the total measurements,
the eminent overall performance of the quality filter is not
significantly affected. But for analyses that focus exclusively
on high latitudes, the high false discovery rate for this small
subgroup may adversely affect conclusive results, e.g. con-
cerning Arctic methane trends. For this reason, the quality
filter has been specifically made more stringent in v1.8 so
that cloudiness is also detected with sufficient reliability for
this challenging subgroup. Figure 9 demonstrates on an ex-
ample day how the rare cases of cloudy scenes passing the
quality filter over the Arctic ocean still visible in v1.5 virtu-
ally disappear in v1.8.

The implemented tightening of the quality filter not only
increases the precision of class 0, but also decreases the asso-
ciated recall, i.e. the percentage of all the good measurements
that correctly pass the quality filter. The corresponding rela-
tive data loss is measured by the complement of the ratio
of the respective recalls (v1.8 relative to v1.5) and is also
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Figure 8. Percentage of actually cloud-free scenes according to
VIIRS among all scenes passing the quality filter for July 2018
shown in green and yellow for v1.8 and v1.5, respectively. The
corresponding relative data loss of good measurements passing the
quality filter due to the more stringent filtering in v1.8 compared to
v1.5 is highlighted by the red bars.

shown in Fig. 8. The largest loss of good data is observed
for the Arctic Ocean (where the precision increase is also
largest) with recall being about 40 % lower for the updated
v1.8 compared to v1.5. It was taken into account that not
all cloud-free scenes necessarily result in good retrievals and
that the quality filter has also learned to additionally exclude
retrievals with obvious methane biases (without using the pri-
mary retrieval parameters XCHy4 and XCO as features in the
prediction of the quality) (Schneising et al., 2019), e.g. mea-
surements with extremely low albedo such as ocean scenes
beyond sun glint or glitter. The trade-off between precision
and recall is well justified because precision is much more
important than recall in the presented setup. In other words,
measurements predicted to be good that should actually be
excluded are more critical than cloud-free scenes that are ex-
cluded. In the first case, likely biased retrievals are preserved,
while in the second case potentially good data are lost, but
data quality is not negatively affected for the proportion that
passes the filter.

3.3.2 Machine learning calibration for methane

Even after quality filtering some systematic errors may still
be present in the remaining data due to approximations in
the forward model or instrumental issues. As experience has
shown, issues related to the surface reflectance and its spec-
tral variability are of particular concern. Thereby, one has
to distinguish between two fundamentally different issues:
(1) biases due to low signals (likely an instrumental issue
as the significantly different RemoTeC algorithm shows very
similar behaviour), which were addressed by the calibra-
tion of the TROPOMI/WFMD algorithm from the start, and
(2) issues due to the variability of spectral albedo within the
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fitting window (independent of the magnitude of the signal).
To address this second-order effect at least partially, the fit-
ted polynomial coefficient of degree zero pg is fed into the
random forest regressor machine learning calibration as an
additional feature since v1.5. This increases the number of
features to six, which are subsequently listed in order of im-
portance: retrieved apparent albedo, across-track dimension
index, solar zenith angle, polynomial coefficient pg, cloud
parameter r.q (ratio of measured to reference radiance for
selected strong H>O absorption lines as described in Schneis-
ing et al., 2019), and strong H,O absorption radiance. As
the shallow calibration is not always sufficient to resolve all
issues of type (2), the third-degree baseline fit described in
Sect. 3.1 is needed in addition to resolve rare issues with very
specific surface types such as the Etosha Pan.

Moreover, the training regions and calibration offsets are
updated in accordance with Fig. 10 to further improve global
representativity. The regions are selected to cover the whole
range of albedo values and all possible viewing geometries,
as these are important features used in the calibration as
listed above. Furthermore, the tree growing is extended to
5000 leaves since v1.5. Up to and including v1.5, the training
dataset was limited to scenes with solar zenith angles smaller
than 75°. In v1.8, the learning cut-off threshold is raised to
80° to get a better correction for high latitudes. Although de-
manding conditions with solar zenith angles of more than 75°
are still excluded in the standard product as they may be sub-
ject to scattering and saturation-related issues, this yields the
possibility to analyse such scenes in an experimental setup if
needed. Due to this learning augmentation, the tree growth
was further increased to 10000 leaf nodes. However, com-
pared to the total of about 70 million harvested scenes, the
depth of the involved decision trees is still considered shal-
low. It was explicitly confirmed by recursive feature elimina-
tion with cross-validation and reservation of 20 % of the data
for testing purposes that there is no overfitting with regard to
the number of features or the depth of the decision trees in the
random forest, which is demonstrated in Fig. 11. This figure
also motivates the choice of the limit of tree growth that was
implemented in v1.8, namely the maximum of 10 000 leaves.

The calibration is performed against the Simple cLIma-
tological Model for atmospheric CHy4 (SLIMCH4) v2021 in
nearest-neighbour mode without interpolation, whose vali-
dation with the Total Carbon Column Observing Network
(TCCON) (Wunch et al., 2011) confirmed good quality and
indicated that the greatest discrepancies occur in the Arctic
(Noél et al., 2022). The biases at the Arctic sites are con-
sistently positive, ranging from about 10 to 20 ppb. There-
fore, the values of the climatology in the Arctic region are
slightly modified by subtracting a compromise value of 5 ppb
before learning to account for the systematic positive bias in
the Arctic, while avoiding potential overcompensation, since
typical biases at other sites are in the range of about &5 ppb.
TCCON measurements are only used as a validation source
for the climatology, and the calibration is otherwise inde-
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Figure 9. Comparison of the implemented quality filter (QUAL, 1: excluded) with the VIIRS cloud classification (1: cloudy) over the Arctic
for (a) v1.5 and (b) v1.8. Matching classifications are shown in white and green. The quality filter is generally stricter than the VIIRS cloud
flag (additionally excluded scenes in blue), e.g. for measurements with extremely low albedo such as ocean scenes beyond sun glint. The
rare instances of measurements classified as cloudy by VIIRS but still passing the quality filter (cyan) over the Arctic ocean in v1.5 virtually

disappear in v1.8.

Figure 10. [llustration of the updated regions used in the training of the machine learning regressor, namely the Arctic (ARC), western United
States (WUS), central Europe (CEU), Japan (JAP), Sahara (SAH), South Atlantic (ATL), and Australia (AUS). Also given are the respective
corrections in parts per billion (ppb) for each region applied to the low-resolution methane climatology prior to learning.

pendent of TCCON. Due to the proximity of the regions
to TCCON sites used in the validation of the climatology,
the validity of the low-resolution estimate of the true atmo-
spheric state is ensured, allowing the best possible identifica-
tion and correction of the coarse-scale interrelationships with
other parameters.

The climatology is only used as a coarse approximation
of the background to determine the statistical discrepancies
regarding the considered (mainly albedo-related) features.
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After learning of the respective statistical relationships on
a temporally and spatially limited dataset in training (July
2018 until the end of 2019 within the regions of Fig. 10),
the climatology is not explicitly used anymore and the cal-
ibration is performed using only the six intrinsic parame-
ters of the retrieval listed above, in particular the retrieved
apparent albedo. As a consequence, the corresponding cali-
bration shown globally in Fig. 12 and seasonally resolved in
Fig. 13 mainly reflects albedo features. The average global
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Figure 11. Coefficient of determination R? of the prediction as a
function of the number of leaves of the decision trees in the random
forest calibration. Since RZ of the test dataset increases monotoni-
cally with the number of leaves, there is no overfitting with regard to
the depth of the decision trees in the random forest. The sweet spot
of shallowness is considered to be the number of leaves at which the
prediction score functions of training and test data begin to diverge,
i.e. about 10000 leaves, which is used as the limit of tree growth in
v1.8.

correction amounts to (154 12) ppb (1o), which is similar in
magnitude to the correction applied in the RemoTeC product
(Lorente et al., 2021), although the detailed spatial patterns
of the correction are somewhat different. The corresponding
standard deviation of the correction is well below the natural
methane variability on a global scale, e.g. due to latitudinal
gradients.

3.4 Wavelet decomposition and destriping

There is striping in the flight direction in the TROPOMI
XCH4 and XCO data, presumably due to different offsets
and gains of pixels of the detector array used for the star-
ing push-broom concept (Borsdorff et al., 2019; Schneising
et al., 2019). The inclusion of the across-track index in the
calibration accounts for recurring systematics, e.g. potential
smooth biases induced by viewing zenith angle or tempo-
rally constant striping patterns. As a result, striping is im-
proved to some extent, but complete destriping, in particular
with respect to temporally variable striping patterns, cannot
be entirely achieved by a shallow calibration. Therefore, the
remaining vertical stripes in the satellite data after calibra-
tion are efficiently removed orbit-wise in v1.8 by combined
wavelet—Fourier filtering while optimally preserving all other
spatial information (Miinch et al., 2009). The basic procedure
for gapless data is described in the following subsection.
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3.4.1 Basic procedure

First a 2D multilevel wavelet decomposition with symmet-
ric boundary conditions is performed orbit-wise separating
horizontal, vertical, and diagonal details. More specifically,
a wavelet decomposition of level L divides the 2D signal
f(x,y) into a low-frequency approximation (represented by
a scaling function @ and coefficients a; ), which still con-
tains the self-similar complete signal information at lower
resolution, and high-frequency detail bands (represented by
wavelet functions W; and coefficients 4;, v;, and d; for differ-
entscales/ € {1,..., L}). The set of coefficients representing
the wavelet representation W of f(x,y) allows the lossless
reconstruction of the original information:

fx,y)= ZaL,m,n <I)L,m,n(x» y)

m,n
L

+ Z Zzbl,m,nqu,l,m,n(xvy) 2)

befh,v,d} =1 m,n
fa,y) = W={ar, hj,v.d|l €{1,....L}} (3)

The 2D wavelet decomposition of an image with vertical
stripes is demonstrated in Fig. 14. The striping information
is concentrated in the corresponding horizontal detail bands
hy.

In the following, only the fractions of the detail bands af-
fected by stripes are Fourier-filtered, while the other bands
remain unchanged. Using fast Fourier transformation (FFT),
the stripe information in the affected detail bands #4; is fur-
ther condensed around Y = 0 in the frequency domain and
attenuated by multiplication of the Fourier coefficients with
a Gaussian function

_y?
gX.Y)=1—-exp| -— “)
(=)
In the case of imperfect stripes with offset variability in the
stripe direction, the attenuation parameter o has to be chosen
to be larger than for ideal stripes to enable efficient destrip-
ing. However, o should be as small as possible because orig-
inal image information is also increasingly removed when o
becomes too large. The optimal choice of o depends on the
image and the characteristics of the striping artefacts.
Attenuation with g(X,Y) and subsequent inverse FFT re-
sult in updated wavelet coefficients h;. Reconstruction us-
ing these refined coefficients together with the original co-
efficients for the other bands results in the destriped signal

So.L(x,y):
fur(x,y) <= W={ar, hj,v.dll €{l,...,L} } (5)

Combined wavelet—Fourier filtering has a better destriping
performance than Fourier filtering alone because the major-
ity of the coefficients remain entirely unchanged, ensuring
that the structural features outside the detail bands affected
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Figure 12. Global XCH4 data (a) after and (b) before calibration. Panel (c¢) shows the calibration A (defined via XCHy = XCHE‘aW +A)

after correcting for the global mean difference of 15 ppb.

by stripes are preserved (Miinch et al., 2009). The destriping
performance is demonstrated in Fig. 15 using coiflets, which
are near-symmetric, compactly supported wavelets that are
useful in signal processing due to the high number of vanish-
ing moments for both the scaling and the wavelet functions
(Monzén et al., 1999). The scaling and wavelet functions of
coiflets are illustrated in Fig. Al.

3.4.2 Application to satellite data

Before the combined wavelet—Fourier destriping algorithm
can be applied to satellite orbits f(x,y), data missing from
quality filtering must be filled in suitably. Initially, rows with-
out data at all are filled with the median of f. For rows with
data, the gaps in each row are filled with the row-wise median
value, and a stripe function sy (x) is determined by subtract-
ing the median value from the original row y. A fitted cu-
bic polynomial is also subtracted on the support of the origi-
nal data to remove smooth horizontal gradients of s. After-
wards, the column-wise median of the previously calculated
stripe functions is computed for all columns to add the me-
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dian striping to the filled gaps. This results in F(x,y) with
the completely filled domain and extended stripes in the ver-
tical direction meeting the requirements for wavelet—Fourier
filtering. After destriping of F, the function is restricted to
the original support. The whole procedure,

f—F— Fy — fyu=Fy |SUPP(f) g ©®)

is illustrated in Fig. 16, demonstrating that the original true
distribution is very well reconstructed by the destriping al-
gorithm. In the case of the TROPOMI/WFMD products,
coiflets of order 16 (coifl6), 0 =2, and L =7 proved to be
suitable choices for the wavelet family, the attenuation pa-
rameter, and the wavelet decomposition level.

The performance of the destriping filter is shown in
Figs. 17 and 18 for genuine TROPOMI data using two ex-
ample scenes in Turkmenistan and the United States known
for large methane emissions from the oil and gas industry as
well as two example scenes in India and central Europe with
carbon monoxide emissions from the steel industry. Just as
in Figs. 4 and 5 for the Etosha Pan, it is immediately ap-
parent that the striping decreases significantly in the latest
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Figure 13. The global calibration as in Fig. 12 but for the different seasons.
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Figure 14. 2D wavelet decomposition of an image with vertical stripes for different decomposition levels. The low-pass approximation
coefficients g; still contain the self-similar complete signal information at a lower resolution; the other bands contain the details to reconstruct
the higher-resolution image. The striping information is concentrated in the detail bands represented by the coefficients A;.

product version for both XCH4 and XCO. For comparison, analysis as for TROPOMI/WFMD. A destriping approach
the figures also include the operational products, which also for a pre-operational version of the operational TROPOMI
exhibit striping artefacts. As the operational carbon monox- CO retrieval was introduced (Borsdorff et al., 2019) and im-
ide product only includes total columns, XCO is computed plemented in the operational processing of offline (OFFL)
using dry-air columns obtained from the ECMWF ERAS re- data for orbits since July 2021.
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Figure 15. Performance of the combined wavelet—Fourier filter using coiflet wavelets (coif16), o = 2, and different decomposition levels L.

4 Overview of the products

The improved XCHy4 and XCO products currently cover a pe-
riod of 4.5 years, starting at mission launch in autumn 2017
up to and including April 2022, and will be regularly up-
dated. Global yearly distributions from 2018 to 2021 of both
products are shown in Figs. 19 and 20, respectively. As can
be seen, the quality-filtered datasets have similar coverage
from year to year including high latitudes and the oceans.
For both gases the interhemispheric gradient and increments
over major source regions, such as those related to anthro-
pogenic emissions in China, India, and Southeast Asia, are
clearly detected. In the XCO case, source regions associated
with biomass burning (tropical Africa and South America)
and wildfires (Canada and Siberia) are also visible. While
there is accelerating growth of atmospheric methane for the
considered time period, the annual mean increase in XCO
is decelerating with almost stable mean values in 2020 and
2021, which are slightly larger than in the previous 2 years,
presumably due to stronger wildfire activity in the boreal
zone.

To further investigate the annual increase in the prod-
ucts, time series of globally averaged monthly gridded data
(0.1° x 0.1°, weighted by area) are decomposed into a sea-
sonal and a trend component using locally estimated scat-
terplot smoothing (LOESS) (Cleveland et al., 1990). LOESS
smoothes a function of variables by local polynomial regres-
sion using a smoothing kernel based on the tricube weight
function with compact support. The kernel width can be ad-
justed separately for the different components by specifying
related smoothing parameters. To get a decomposition that is
robust to outliers, two recursive procedures are performed:
an inner loop updating the seasonal and trend components
nested inside an outer loop computing robustness weights to
be used in the next run of the inner loop. The seasonal and
trend decomposition using LOESS (STL) has several advan-
tages over simpler separation methods such as using a 12-
month running mean: (1) the trend is computed for the entire
data record including both ends of the time series, (2) the

Atmos. Meas. Tech., 16, 669-694, 2023

smoothness of the components can be controlled by the user,
and (3) the component estimates are not affected by occa-
sional outliers in the robust estimation. STL has six different
parameters to specify: the periodicity of the sequence np, the
smoothing parameters nj, n, and ng for the low-pass filter,
trend, and seasonal component, and the number of passes
through the inner and outer loop, n; and n,. There is also
a generalisation called MSTL to support multiple seasonali-
ties by applying the STL procedure iteratively to seamlessly
separate the different seasonal cycles (Bandara et al., 2021).

We follow the original implementation of Cleveland et
al. (1990) using n; =5 and n, =0, as the robust estimation
of seasonal and trend components is not needed: n, =12
for monthly data, nj = [nplodd = 13, and ne = [1.5-n,/(1 —
1.5/n¢)7odd- According to these settings the only free param-
eter is ng, which then also determines n by the formula given
above. We choose ng = 27 as a compromise between the mu-
tually dependent smoothnesses of the seasonal and the trend
component. We restrict this analysis to data since April 2018
because the data density during the previous commissioning
phase of TROPOMI is significantly reduced. Empirical re-
sults from both marine surface and TROPOMI satellite data
have shown that the residual component decreases signifi-
cantly when adding an extra seasonality n; =9 to the de-
composition. Therefore, we perform a corresponding MSTL
with 100 iterations to separate the two seasonalities n, and
n ;. After decomposition, the annual increase in a given year
is defined as the increase in the abundance of the trend com-
ponent from the January mean value in that year to the Jan-
uary mean value of the next year. The monthly means and the
components are shown in Fig. 21.

As TROPOMI is a passive spectrometer, the latitudinal
coverage of quality-filtered data differs with season as a con-
sequence of the different illumination conditions; e.g. there
are no good data at high latitudes during polar night. Al-
though these regional seasonal gaps may limit the indepen-
dent trend analysis for small latitude bands in polar regions,
the presented analysis of annual increases based on globally
averaged monthly data is not severely affected because there

https://doi.org/10.5194/amt-16-669-2023
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Figure 16. Illustration of the performance of combined wavelet—Fourier filtering for a synthetic orbit with significant gaps using coiflets
(coif16), o =2, and L = 7. Thereby, firue is the true distribution, fmeas is the distribution as measured by the instrument (with stripes),
Fimeas is the distribution after filling, Fyy is the filter result of Feas, and fy is the final destriped result after restriction to the original
support. The other two columns show the respective differences of the measured and destriped distribution to the truth.
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Figure 17. Performance of the destriping filter for the XCHy product for two example scenes in (a—c¢) Turkmenistan and (d—f) the United
States with enhancements due to emissions from the oil and gas industry. Panels (b) and (e) show the previous WFEMD version, and panels (c)
and (f) show the improved version with destriping. The operational product also exhibiting striping is shown in panels (a) and (d) for
comparison.
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Figure 18. Performance of the destriping filter for the XCO product for two example scenes in India (a—c) and central Europe (d—f) with
enhancements due to emissions from the steel industry. Panels (b) and (e) show the previous WFMD version, and panels (c¢) and (f) show the
improved version with destriping. The operational product also exhibiting striping is shown in panels (a) and (d) for comparison.
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Figure 19. Yearly averages of TROPOMI/WFMD v1.8 XCHy shown on a 0.1° x 0.1° grid.

are no gaps in the global time series and the seasonal sam- nj, and the different seasonal sampling is taken into account
pling of the temporally consistent TROPOMI/WFMD prod- in the uncertainty analysis.
ucts is similar from year to year. The impact of the choice of The resulting annual increases corroborate the acceler-

the seasonal smoothing parameter ng, the extra seasonality ated growth of XCHy4 (2019: 7.9 ppb, 2020: 15.0 ppb, 2021:
17.5 ppb) and the decelerated growth of XCO (2019: 4.5 ppb,
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Figure 21. Time series of globally averaged monthly gridded TROPOMI/WFMD v1.8 data. The underlying area-weighted monthly means
are shown as green dots with the associated standard deviation as bars in lighter green. The season—trend decomposition used to derive the

annual increase is done using locally estimated scatterplot smoothing
trend and seasonal component is shown in purple.

2020: 0.1 ppb, 2021: 1.2 ppb) during the covered period al-
ready indicated in the annual averages of Figs. 19 and 20. The
uncertainties of the annual increases are estimated by 2 times
the root sum square of four components: the standard devi-
ation of a set of increases induced by (1) bootstrap resam-
pling of the global grid boxes contributing to the monthly

https://doi.org/10.5194/amt-16-669-2023

(LOESS). The trend component is shown in blue, and the sum of the

means, (2) randomly modifying the data to take the uncer-
tainties of the retrieved column-averaged mole fractions into
account, (3) randomly modifying the seasonal smoothing pa-
rameter ng as well as randomly including or excluding high
latitudes (|| lat || > 70°) and the additional seasonality 7 ; in-
dependently of each other, and (4) randomly shifting the time
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Figure 22. Comparison of the annual globally averaged increases in
TROPOMI/WFMD v1.8 XCHy4 (blue) and NOAA marine surface
CHy (red) as reported by Lan et al. (2022). The hatched red bar is
a consistency check illustrating the results when using the method
presented here to determine the increases in the globally averaged
monthly means provided by NOAA (Lan et al., 2022).

series by zero or %1 time step(s). The corresponding sam-
ple size in the estimation of all uncertainty components is
5000; i.e. 5000 alternative increases are calculated per year
and component to be included in the analysis.

As can be seen from the comparison in Fig. 22, the de-
rived temporal development of the annual global methane in-
creases is consistent with the trends determined from marine
surface sites of the Global Monitoring Division of NOAA’s
Earth System Research Laboratory (Lan et al., 2022) with
two consecutive annual record growth rates in 2020 and
2021.

To compare the performance of the different
TROPOMI/WFMD versions, the products are validated
with the ground-based Total Carbon Column Observing
Network (TCCON) (Wunch et al., 2011), which uses similar
Fourier transform spectrometer (FTS) instrumentation
and a common retrieval algorithm network-wide. Table 2
compares the most important figures of merit obtained by
validation with the GGG2014 version of TCCON data at 26
sites (see Table B1) using the well-established validation
procedure described in detail in Schneising et al. (2019).
The values for v1.2 are somewhat different from the results
in Schneising et al. (2019) because there are five additional
TCCON sites involved in the present validation and the vali-
dation time period is also extended by 1 year. In addition to
the spatial systematic error, defined as the standard deviation
of the local offsets relative to TCCON at the individual sites,
the seasonal systematic error is also taken into account,
which is defined as the standard deviation of the four overall
seasonal offsets using all TCCON sites combined. The total

Atmos. Meas. Tech., 16, 669-694, 2023

(spatio-temporal) systematic error is then determined by
the root sum square of the spatial and seasonal systematic
errors. We use the TCCON GGG2014 version instead of
the newer GGG2020 product because not all sites have
been reprocessed at the time of submission. The analysis of
regional biases based on GGG2014 is therefore more robust
due to the larger number of regions covered.

To ensure comparability of the results for the different ver-
sions, the comparison was consistently restricted to a match
period ending in 2020. Since the derived systematic errors
of the satellite products are comparable in magnitude to the
station-to-station 1o accuracy of the TCCON, which are esti-
mated to be 2 ppb for XCO and 3.5 ppb for XCH4 (Wunch et
al., 2010), all TROPOMI/WFMD products are equivalent in
terms of systematic error, although there are small deviations
(in the range of tenths of parts per billion) for the different
versions. Since the precision of TCCON is appreciably bet-
ter compared to the satellite data, the improvement in the ran-
dom error is considered significant, in particular in the case
of methane, and is ascribed to the reduction of the pseudo-
noise component due to the algorithm improvements, e.g. the
efficient destriping algorithm and the optimised quality filter
reducing the number of outliers.

5 Conclusions

We have introduced the changes implemented in the latest
version (v1.8) of the combined scientific TROPOMI/WFMD
XCH4 and XCO product, which currently covers 4.5 years
of data from mission start until the end of April 2022 and
will be further extended in the future. It was demonstrated
that the performance of the updated retrieval algorithm was
further improved, for example with respect to striping in the
flight direction for single overpasses due to a dedicated de-
striping algorithm, which simultaneously preserves the ac-
tual spatial trace gas features. Together with the other ad-
vancements, such as an optimised quality filter reducing the
number of outliers and the usage of an improved digital ele-
vation model, this reduces the pseudo-noise component, re-
sulting in an improved random error estimated by validation
with the Total Carbon Column Observing Network.

Due to the machine-learning-based quality filter, current
cloud information is no longer required after the initial su-
pervised learning process is completed. As a consequence,
the algorithm is independent of the availability or consis-
tency of cloud products, such as VIIRS, as the algorithm has
learned to classify good-quality measurements entirely by in-
trinsic parameters available from or used in the preceding
processing excluding the primary retrieval parameters XCHy
and XCO. The resulting consistent data products with similar
spatial coverage from year to year are not only generally use-
ful for detecting and quantifying emission sources, but also
enable long-term applications such as trend determination. In
the case of methane, the derived global annual increases are
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Table 2. Comparisons of the most important figures of merit for the different TROPOMI/WEFMD product versions obtained by validation
with the GGG2014 version of TCCON data at 26 sites (see Table B1). The random error is measured by the scatter of the satellite data
relative to the TCCON, and the systematic error is a combination of the spatial station-to-station bias and the seasonal bias. N is the total
number of collocations for all sites together.

Data product Random error (ppb) ‘ Systematic error (ppb) ‘ N
vi2  vl5 w8 [ vli2 v15  vi8 | w12 v15 v1.8
Methane (XCHy) 142 128 124 | 5.0 5.1 52

Carbon monoxide (XCO) 5.3 53 5.1 2.4 2.3 2.6 615435 649041 614469

consistent with the trends determined from marine surface Appendix A: Coiflet wavelets

sites of the Global Monitoring Division of NOAA’s Earth

System Research Laboratory, exhibiting accelerated growth

for the period covered by the TROPOMI data with two con- coif1 coif2 coif3

secutive annual record growth rates in 2020 and 2021.
Although the natural and anthropogenic source and sink
processes for CH4 and CO are known, it is still a challenge
0 5

to identify the exact contributions of the different processes

to the observed annual growth rate variations. Especially for 0 woo 7
methane, this lack of detailed understanding is critical as it coif4 coif16
complicates climate projections and the specification of ef-
fective emission mitigation strategies. A better estimate of \/vk cooe
the source and sink budget can be inferred by exploiting
a comprehensive monitoring system, which compiles com- Scaling function @

0 23— Wavelet function v 0 95

plementary information from accurate local in situ measure-
ments and satellite observations of ample coverage, within an Figure Al. Scaling and wavelet functions for the coiflet wavelet
inverse modelling framework. High-quality TROPOMI prod- family.

ucts with their unique combination of high precision, spatio-

temporal resolution, and global coverage offer a valuable op-

portunity in this context.

https://doi.org/10.5194/amt-16-669-2023 Atmos. Meas. Tech., 16, 669-694, 2023



690

Appendix B: List of TCCON sites
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Table B1. TCCON sites used in the validation sorted by latitude from north to south.

Station Latitude Longitude Altitude Reference

©) ®) (km)
Eureka 80.05 —86.42 0.61 Strong et al. (2019)
Ny-f\lesund 78.92 11.92 0.02 Notholt et al. (2014b)
Sodankyld 67.37 26.63 0.19 Kivi et al. (2014)
East Trout Lake 54.35 —104.99 0.50 Waunch et al. (2018)
Biatystok 53.23 23.03 0.19 Deutscher et al. (2015)
Bremen 53.10 8.85 0.03 Notholt et al. (2014a)
Karlsruhe 49.10 8.44 0.11 Hase et al. (2015)
Paris 48.85 2.36 0.06 Té et al. (2014)
Orléans 47.97 2.11 0.13 Warneke et al. (2014)
Garmisch 47.48 11.06 0.75 Sussmann and Rettinger (2018)
Park Falls 45.94 —-90.27 0.44 Wennberg et al. (2017)
Rikubetsu 43.46 143.77 0.38 Morino et al. (2018c¢)
Lamont 36.60 —-97.49 0.32 Wennberg et al. (2016b)
Anmeyondo 36.54 126.33 0.03 Goo et al. (2014)
Tsukuba 36.05 140.12 0.03 Morino et al. (2018a)
Nicosia 35.14 33.38 0.19 Petri et al. (2020)
Edwards 34.96 —117.88 0.70 Iraci et al. (2016)
JPL 34.20 —118.18 0.39 Wennberg et al. (2016a)
Caltech 34.14 —118.13 0.24 Wennberg et al. (2015)
Saga 33.24 130.29 0.01 Kawakami et al. (2014)
Burgos 18.53 120.65 0.04 Morino et al. (2018b)
Ascension Island —7.92 —14.33 0.03 Feist et al. (2017)
Darwin —12.46 130.93 0.04 Griffith et al. (2014a)
Réunion —20.90 55.49 0.09 De Maziere et al. (2017)
Wollongong —34.41 150.88 0.03 Griffith et al. (2014b)
Lauder —45.04 169.68 0.37 Sherlock et al. (2014)
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