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Abstract. This study estimated raindrop size distribution
(DSD) and rainfall intensity with an infrared surveillance
camera in dark conditions. Accordingly, rain streaks were ex-
tracted using a k-nearest-neighbor (KNN)-based algorithm.
The rainfall intensity was estimated using DSD based on a
physical optics analysis. The estimated DSD was verified us-
ing a disdrometer for the two rainfall events. The results are
summarized as follows. First, a KNN-based algorithm can
accurately recognize rain streaks from complex backgrounds
captured by the camera. Second, the number concentration of
raindrops obtained through closed-circuit television (CCTV)
images had values between 100 and 1000 mm−1 m−3, and
the root mean square error (RMSE) for the number concen-
tration by CCTV and PARticle SIze and VELocity (PAR-
SIVEL) was 72.3 and 131.6 mm−1 m−3 in the 0.5 to 1.5 mm
section. Third, the maximum raindrop diameter and the num-
ber concentration of 1 mm or less produced similar results
during the period with a high ratio of diameters of 3 mm
or less. Finally, after comparing with the 15 min cumula-
tive PARSIVEL rain rate, the mean absolute percent error
(MAPE) was 49 % and 23 %, respectively. In addition, the
differences according to rain rate are that the MAPE was
36 % at a rain rate of less than 2 mm h−1 and 80 % at a rate
above 2 mm h−1. Also, when the rain rate was greater than
5 mm h−1, MAPE was 33 %. We confirmed the possibility of
estimating an image-based DSD and rain rate obtained based
on low-cost equipment during dark conditions.

1 Introduction

Precipitation data are vital in water resource management,
hydrological research, and global change analysis. The pri-
mary means of measuring precipitation is to use a rain gauge
(Allamano et al., 2015) to collect raindrops from the ground
level. Due to the restrictions in the installation environment
of the rain gauge, it can be difficult to understand the spatial
rainfall distribution in mountains and urban areas (Kidd et
al., 2017). Furthermore, the tipping-bucket-type rain gauge,
which accounts for most rain gauges, has a discrete obser-
vation resolution (0.1 or 0.5 mm) for the discrete time steps,
producing uncertainty in temporal rainfall variation. For this
reason, weighing gauges are used very often nowadays in-
stead of the tipping bucket type. The weighing gauge is a me-
teorological instrument used to observe and analyze various
precipitation, including rainfall and snowfall. Also, the tip-
ping bucket has a large error due to the observation time de-
lay when the rainfall is less than 10 mm h−1 compared to the
weighing gauge. However, when the observation time size
is set to 10 to 15 min, then the relative percentage error has a
very low value of−6.7 % to 2.5 %, resulting in high accuracy
(Colli et al., 2014).

In contrast, it is possible to obtain spatial rainfall infor-
mation on a global scale with remote sensing techniques
(Famiglietti et al., 2015). However, remote sensing tech-
niques provide only indirect measurements that must be con-
tinuously calibrated and verified through ground-level pre-
cipitation measurements (Michaelides et al., 2009). Recently,
a disdrometer capable of investigating the microphysics char-
acteristics of rainfall has been used for observation instead
of the traditional rainfall observation instrument (Kathirav-
elu et al., 2016). However, these devices cannot be widely
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installed because of their high cost and the difficulty in ac-
cessing observational data. Consequently, a high-resolution
and low-cost ground precipitation monitoring network has
not yet been established.

With the advent of the Internet of Things (IoT) era, using
non-traditional sources is attractive for improving the spa-
tiotemporal scale of existing observation networks (McCabe
et al., 2017). In recent years, such cases have been com-
mon in rainfall observation. For example, there have been
attempts to estimate rainfall using sensors to capture sig-
nal attenuation characteristics in commercial cellular com-
munication networks (Overeem et al., 2016), vehicle wipers
(Raibei et al., 2013), and smartphones (Guo et al., 2019). Fur-
thermore, crowdsourcing information has been used to con-
firm the utility of estimating regional rainfall (Haberlandt and
Sester, 2010; Rabiei et al., 2016; Yang and Ng, 2017).

In a similar context, a surveillance camera is a sensor with
high potential. Surveillance cameras are often referred to
as closed-circuit television (CCTV). Compared with other
crowdsourcing methods, the visualization data of surveil-
lance cameras are highly intuitive (Guo et al., 2017). There-
fore, they have been used in various fields (Cai et al., 2017;
Nottle et al., 2017; Hua, 2018). In South Korea, public
surveillance camera installations have been rapidly increas-
ing, from approximately 150 000 in 2008 to 1.34× 106 in
2020 – approximately a public CCTV camera per 0.07 km2.
Thus, the potential for precipitation estimation using camera
sensing is expected to be greater in South Korea.

Recently, various studies have been conducted to estimate
rainfall intensity using the rain streak image obtained from
surveillance camera videos. Many studies attempted to use
artificial intelligence to capture changes in the image cap-
tured by the camera when it rains (Zen et al., 2019; Avanzato
and Beritelli, 2020; Wang et al., 2022). In contrast, some
studies have tried to estimate rainfall intensity using geo-
metrical optics and photographic analyses. Typically, the rain
streak layer is separated from the raw image or video. A rain
streak is the visual appearance of raindrops caused by vi-
sual persistence – raindrops falling because of the blur phe-
nomenon of raindrop movement from the camera’s exposure
time appear as streaks on the image. Garg and Nayar (2007)
made one of the first attempts to measure this rainfall.

These previous studies indeed confirmed the possibility
of rainfall measurement using surveillance cameras. How-
ever, several limitations still prevent the actual expansion
of the measurement systems using surveillance cameras. In
general, most surveillance cameras are installed for moni-
toring purposes, and people’s faces are inevitably captured.
Therefore, it is not easy to disclose the data due to privacy
concerns. Data storage and transmission are also limitations.
Since most surveillance cameras use a hard disk, the data
must be extracted directly. In other words, rainfall estima-
tion cannot be done in real time unless a system is in place
to transmit data over the internet. In addition, the applica-
bility to nighttime is more limited. In the case of general

surveillance cameras in the past, observation is possible only
when sunlight exists. For the observation system to expand,
these various limitations must be addressed, and it seems that
a lot of time and effort are needed. Nevertheless, research
to develop algorithms using surveillance cameras in various
conditions and to confirm applicability can have sufficient
meaning. The case of dark conditions is one of the conditions
worth studying. This is because the recently installed surveil-
lance cameras are equipped with an infrared (IR) recording
function, so most cameras will be able to take videos at night
soon. However, the final purpose of utilizing these devices
and the method is not to replace existing devices. It could be
a supplement to improve the spatiotemporal resolution and
accuracy of existing observation instruments. In particular,
a study on the drop size distribution of rainfall, rather than
simple rainfall estimation, would have more potential appli-
cation value.

Since then, many studies have been conducted to develop
and improve efficient algorithms. Allamano et al. (2015) pro-
posed a framework to estimate the quantitative rainfall in-
tensity using camera images based on physical optics from a
hydrological perspective. Dong et al. (2017) proposed a more
robust approach to identifying raindrops and estimating rain-
fall using a grayscale function, making grayscale subtraction
nonlinear. Jiang et al. (2019) proposed an algorithm that de-
composes rain-containing images into rain streak layers and
rainless background layers using convex optimization algo-
rithms and estimates instantaneous rainfall intensity through
geometric optical analysis.

Some studies (e.g., Dong et al., 2017) have sought to es-
timate the raindrop size distribution (DSD) using a surveil-
lance camera. However, the existing studies have focused
on times when a video can be captured with visible light.
It is impossible to obtain input data without visible light us-
ing the existing image-based rainfall measurement method.
Thus, these methodologies are only applicable in daytime
conditions. However, when recording using infrared rays, it
is possible to obtain a rainfall image even when there is no
sunlight. No study has estimated the rain in dark conditions,
to our knowledge. Furthermore, most previous studies did
not verify the estimated DSD using a disdrometer. In con-
trast, this study estimated DSD with an infrared surveillance
camera in dark conditions, the basis on which rainfall inten-
sity was also estimated. Rain streaks were extracted using a
k-nearest neighbor (KNN)-based algorithm. The DSD was
used to calculate rainfall intensity with physical optics anal-
ysis and verified using a PARticle SIze and VELocity (PAR-
SIVEL) disdrometer (Löffler-Mang and Joss, 2000).
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2 Methodology

2.1 Recording video containing rain streaks using an
infrared surveillance camera

The surveillance camera records video. The video looks con-
tinuous, but it is also composed of discrete still images or so-
called frames. The frequency of recording frames (i.e., acqui-
sition rate) is called frame per second (fps). In other words,
fps is how many images are taken per second when recording
a video. Another important factor in video recording is expo-
sure time. Exposure time, also called shutter speed, refers to
the time the camera sensor is exposed to light to capture a
single frame. The real raindrops are close to a circle, but in
a single image, the raindrops look like a streak. This is be-
cause raindrops move at a high speed during the exposure
time. Therefore, the raindrops that moved during the expo-
sure time are visualized in the rain streaks in a single frame.

Figure 1 shows an example of capturing a raindrop for a
single frame. Here, only the raindrops near the point of focus
are visible, and objects that are more than a certain distance
appear invisible. That is, the point at which the focus is best
is called the focus plane, and there is a range in which it can
be recognized that objects are focused before and after the
focus plane. The closest plane that can be considered to be
in focus is called the near-focus plane, and the farthest plane
is called the far-focus plane. This range is generally called
depth of field (DoF). Ultimately, the rainfall intensity can be
estimated based on the volume and raindrops in the DoF.

In this study, an infrared surveillance camera was consid-
ered under dark conditions. Here, the dark condition refers
to a condition in which raindrops cannot be captured by a
general surveillance camera with visible light. Infrared cam-
eras emit near-infrared rays through an infrared emitter and
receive the reflected light from the objects. Accordingly, it
has the advantage of being able to detect raindrops that are
invisible to the human eye.

2.2 Algorithm for identifying rain streaks and
estimating DSD and rain rate

Image-based rainfall estimation can be divided into two pro-
cesses, i.e., identifying rainfall streaks and estimating DSD.
Figure 2 illustrates these processes in a flowchart. Identify-
ing rain streaks requires an algorithm that separates the mov-
ing rain streaks from the background layer. Next, in estimat-
ing DSD, raindrops are extracted from the image of the rain
streaks, and the overall distribution is obtained.

Most existing algorithms aim to remove raindrops in im-
ages because raindrops are considered noise in object de-
tection and tracking (Duthon et al., 2018). Such algorithms
are categorized into multiple-image-based and single-image-
based approaches (Jiang et al., 2018).

For example, Garg and Nayar (2007) classified the condi-
tions in which the brightness difference between the previ-

ous pixel and that of the next pixel exceeds a specific thresh-
old over time, assuming that the background is fixed. Im-
proved algorithms were then developed, considering the tem-
poral correlation of raindrops (Kim et al., 2015) and chro-
matic properties (Santhaseelan and Asari, 2015). Tripathi and
Mukhopadhyay (2014) proposed a framework to remove rain
that reduces the visibility of the scene to improve the de-
tection performance of image feature information. However,
single-image-based algorithms rely more on the properties
of raindrops (Deng et al., 2018). The central idea of a single-
image-based algorithm is to decompose rain-containing im-
ages into rainless layers (Li et al., 2016; Deng et al., 2018;
Jiang et al., 2018).

An image including grayscale rainfall may be mathemat-
ically expressed in a two-dimensional (2D) matrix in which
each element has a grayscale value. A single image (m× n)
is expressed as follows (Jiang et al., 2018):

O= B+R, (1)

where O ∈ Rm×n, B ∈ Rm×n, and R ∈ Rm×n are the raw im-
age, rain-free background layer, and rain streak layer.

Accordingly, various algorithms are available for rain
streak identification. Different still image and video-based
algorithms have been proposed to eliminate objects such as
moving objects for application to actual surveillance cam-
eras. However, most of these algorithms face optimization
problems because of the vast number of decision variables
(Jiang et al., 2019). This task is not easy to solve or re-
quires excessive computation time. Therefore, existing stud-
ies present techniques suitable for post-analysis rather than
application in real time. The use of complex algorithms can
increase versatility and accuracy, but there is a tradeoff that
reduces computational speed. The time required for such
computing is a critical disadvantage in practical applications
for estimating rainfall intensity.

In this study, a KNN-based segmentation algorithm
(Zivkovic and van der Heijden, 2006), a popular non-
parametrical method for background subtraction, was con-
sidered for segmenting the rain streaks (foreground) and
background layers. KNN is used in classification and re-
gression problems (Bouwmans et al., 2010). The concept
of KNN is that similar things are close – the KNN-based
segmentation algorithm finds the closest k samples (neigh-
bors) to the unknown sample by using the Euclidean dis-
tance to determine the class (i.e., foreground or background).
Thus, the KNN-based segmentation method to detect fore-
ground changes in the video was used to identify rain
streaks by recording infrared videos under conditions with
little background influence. In the algorithm, The KNN sub-
tractor works by updating the parameters of a Gaussian
mixture model for more accurate kernel density estimation
(Trnovszký et al., 2017). KNN is more efficient for local den-
sity estimation (Qasim et al., 2021); therefore, the algorithm
is highly efficient if the number of foreground pixels is low.
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Figure 1. Schematic diagram of the photographed rain streak in the image and the movement of a raindrop during the exposure time.

Table 1. Parameters in KNN background subtractor package in OpenCV.

Parameter Description

history Length of history

dist2Threshold Threshold on the squared distance between the pixel and the sample to decide whether
a pixel is close to that sample. This parameter does not affect the background update.

detectShadows If true, the algorithm will detect shadows and mark them. This decreases the speed
slightly, so if you do not need this feature, then set the parameter to false.

We used the package provided by OpenCV to implement
the KNN-based segmentation algorithm (Zivkovic and van
der Heijden, 2006). Accordingly, three main parameters (his-
tory, dist2Threshold, detectShadows) needed to be set. Ta-
ble 1 presents the description of the parameters used for the
KNN background subtractor package.

It is essential to capture raindrops within the camera’s
depth of field (DoF) to calculate the final DSD and rainfall in-
tensity. Accordingly, this study proposed a novel algorithm to
extract each rain streak from the rain streaks image. First, we
applied a low-pass filter to the rain streaks image to remove
unfocused raindrops that may remain in the image, which
smooths each pixel using a 2D kernel. Videos from infrared
mode have usually a blur effect. Thus, the additional 2D ker-
nel was applied to remove the pixels having blur. Highly de-
tailed parts (e.g., out-of-focus raindrops and some noises) are
erased, leaving some clear rain streaks. A background layer
with a value of 0 and a part not in the image was separated
to extract the rain streaks and labeled one by one to identify
each rain streak from the image.

Because the rain streak observed in the surveillance cam-
era image causes an angle difference (influenced by the
wind), a diameter estimation process considering the angle
of the rain streak (fall angle of a raindrop) is required. If
the angle of the rain streak is considered and converted to
the raindrop diameter through the horizontal pixel size in the

image, then the shape change in the raindrop because of air
buoyancy (i.e., during the falling of the raindrop) may not be
reflected, and overestimation can occur.

Accordingly, the representative angle of each extracted
rain streak was calculated. The border information of each
rain streak was obtained, and the center axis information of
the rain streak was obtained based on the border information
used to calculate the drop angle. Moreover, the rain streak
was rotated to set the long and short axes of the streak at 0
and 90◦, using the angle information.

The size of raindrops in the rain streaks image can be
estimated through the analysis of microphysical character-
istics of the raindrop and geometric optical analysis (Keat-
ing, 2002). The instantaneous velocity of a raindrop on the
ground can be estimated from the exposure time and the size
of the raindrop. However, the distance from the raindrop to
the lens surface (i.e., the object distance) is unknown and
should be inferred. Object distance can be calculated through
physical optics analysis because it causes perspective distor-
tion. Assuming a raindrop is spherical, the length of the tra-
jectory where the raindrop falls when the camera is exposed
and the diameter of the raindrop can be inferred through the
lens equation as follows (Keating, 2002):

L(s)=
df− f

df · f

hs

hp
lps, (2)
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Figure 2. Flowchart of the methodology for estimating DSD and
rainfall intensity.

D(s)=
df− f

df · f

ws

wp
dps, (3)

where s is the distance from the raindrop to the lens plane
(mm). L(s) and D(s) are the length of falling trajectory dur-
ing camera exposure (rain streak) and the raindrop’s diame-
ter. df is the focus distance (mm), and f is the focal length
(mm). hs and ws are the vertical and horizontal sizes of the
active area of the image sensor (mm), and hp and wp are the
vertical and horizontal sizes of the captured image (in the
number of pixels). lp and dp are the length and width of the
rain streaks in the image (in the number of pixels).

It is then possible to infer the falling speed of raindrops,
using the camera’s exposure time (Jiang et al., 2019), as fol-
lows:

v(s)=
L(s)

1000τ
, (4)

where τ is the exposure time of the camera (seconds), and
v(s) is the fall velocity of the raindrop from the image. Fur-
thermore, the fall velocity of a raindrop can be approximated
by an empirical formula for raindrop diameter. The most
frequently used equation is as follows (Atlas et al., 1973;
Friedrich et al., 2013):

v (D)= 9.65− 10.3exp(−0.6D), (5)

where D is the raindrop diameter, and v is the fall velocity
of the raindrop. The actual diameter of raindrops can be ob-
tained by solving the equation with the fall velocity obtained
through the exposure time and Eqs. (4) and (5). Furthermore,
the DoF for the images using the camera’s settings informa-
tion can be calculated, and the effective volume for estimat-
ing the rainfall intensity can be obtained. Details of the pro-
cess are described in previous studies (Allamano et al., 2015;
Jiang et al., 2019).

The control volume must be determined to estimate the
rainfall intensity using the diameter of each raindrop. An un-
derstanding of DoF is required to achieve the volume. The
DoF is simply the range at which the camera can accurately
focus and capture the raindrops. Calculating this range re-
quires obtaining the near- and far-focus planes as follows:

sn =
df · f

2

f 2+N · cp · (df− f )
, (6)

sf =
df · f

2

f 2−N · cp · (df− f )
, (7)

where sn and sf are the distances from the near- and far-focus
planes. cp is the maximum permissible circle of confusion, a
constant determined by the camera manufacturers. N is the
F number of the lens relevant to the aperture diameter. Ac-
cordingly, the theoretical sampling volume (V ; m3) indicates
the truncated rectangular pyramid between the near- and far-
focus planes:

V =
1

3× 109

(
df− f

df · f

)2

wshs

(
s3

f − s
3
n

)
. (8)

Then, we used the gamma distribution equation, Eq. (6), pro-
posed by Ulbrich (1983), to calculate DSD parameters using
data at every 1 min interval.

N(D)=N0D
µ exp(−3D), (9)

whereN(D) (mm−1 m−3) is the number concentration value
per unit volume for each size channel, and N0 (mm−1−µ

m−3) is an intercept parameter representing the number con-
centration when the diameter has 0 value. D (mm) and 3
(mm−1) are the drop diameter and slope parameter. Rain-
drops smaller than 8.0 mm were used to avoid considering
non-weather data such as leaves and bugs (Friedrich et al.,
2013).

The gamma distribution relationship is a function of for-
mulating the number concentration per unit diameter and unit
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volume. It was proposed by Marshall and Palmer (1948) as
an improved model of exponential distribution as a favor-
able form to reflect various rainfall characteristics. By in-
cluding the term containing µ in the distribution function,
the shape of the number concentration distribution for small
drops smaller than 1 mm is improved.

N(D)=N0 exp(−3D). (10)

As the 3 decreases, the slope of the distribution shape de-
creases, and the proportion of the large drops increases. Con-
versely, as the value increases, the distribution slope becomes
steeper, and the weight of the large particles decreases. When
µ has a large value, the distribution is convex upward, and
it has a distribution with a sharp decrease in number con-
centration at small diameters, whereas, when it has a neg-
ative value, the distribution is convex downward with an
increase in the concentration of drops smaller than 1 mm.
In the gamma distribution, the µ is mainly affected by the
difference in concentration of raindrops smaller than 3 mm
(Vivekanandan et al., 2004).

Vivekanandan et al. (2004) explained the reason for using
the gamma distribution as follows. First, it is sufficient to
calculate the rainfall estimation equation using only the first,
third, and fourth moments (Eq. 11) (Smith, 2003). Second,
the long-term raindrop size distribution has an exponential
distribution shape (Yuter and Houze, 1997).

The raindrop size distribution observed from the ground
is the result of the microphysical development of raindrops
falling from precipitation clouds. The drop size distribution
shape is changed during fall by microphysical processes such
as collision, merging, and evaporation, and mainly changes
in the concentration of drops larger than 7.5 mm and small
drops occur. As a result, the drop size distribution observed
on the ground mainly follows the gamma distribution shape
(Ulbrich, 1983; Tokay and Short, 1996). The gamma distri-
bution relationship should be used to analyze the distribution
of raindrops that are actually floating and falling.

Mn =

Dmax∫
Dmin

DnN (D)dD. (11)

Equation (11) indicates a moment expression for the nth or-
der. For example, the second moment is calculated as the
product of the square of the diameter of each channel and
the number concentration and the diameter of each channel.
Each moment value has a different microphysical meaning.
Therefore, the gamma distribution including three dependent
parameters is more advantageous in reflecting the microphys-
ical characteristics of the precipitation system than the ex-
ponential distribution including two dependent parameters.
Equation (11) can be expressed in gamma distribution for-
mat as follows:

Mn =

Dmax∫
Dmin

DnN (D)dD =N03
−(µ+n+1)0(µ+n+1), (12)

where NT (total number concentration; m−3) is the zero-
order moment (M0) and represents the total number concen-
tration of raindrops per unit volume. η was determined for
calculating µ and 3. In this study, a combination of mo-
ments in the ratio of M2, M4, and M6, which accurately
represents the characteristics of small raindrops, was applied
(Vivekanandan et al., 2004):

η =
〈M4〉

2

〈M2〉〈M6〉
=
(µ+ 3)(µ+ 4)
(µ+ 5)(µ+ 6)

. (13)

µ and 3 are calculated as follows:

µ=
(7− 11η)−

[
(7− 11η)2− 4(η− 1)(30η− 12)

]1/2
2(η− 1)

, (14)

3=

[
M20(µ+ 5)
M40(µ+ 3)

]1/2

=

[
M2(µ+ 4)(µ+ 3)

M4

]1/2

. (15)

A larger value of Dm (mm), estimated using Eq. (16), the
diameter of the average mass of raindrops contained in the
unit volume, indicates that predominantly larger drops are
distributed.

Dm =
M4

M3
. (16)

R (mm h−1) is the rain rate calculated using Eq. (17).

R =
6π

104

Dmax∫
Dmin

D3N (D)V (D)dD. (17)

3 Study site and observation equipment

This study used a building’s rooftop as the study site. The
building is the Chung-Ang University Bobst Hall, located in
the central region of Seoul in South Korea. It is located at
37◦30′13′′ N latitude and 126◦57′27′′ E longitude, at an ele-
vation of 42 m. Figure 3 illustrates the CCTV (marked with
a red circle) and PARSIVEL installed at the study site. The
CCTV was used for the main analysis, and PARSIVEL was
considered for verification purposes.

The CCTV model used in this study is DC-T333CHRX,
developed by IDIS Ltd. The camera has a 1/1.7 in. (7.6 mm
by 5.7 mm) complementary metal oxide semiconductor
(CMOS) with a height and width of 5.70 and 7.60 mm. The
focal length is 4.5 mm, and the F number of the lens is
1.6. The shutter speed was set to 1/250 s, and the frames
per second (fps) was set to 30. The infrared ray distance
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Figure 3. Observation measurements considered in this study.

is 50 m. The maximum permissible circle of confusion is
0.005 mm. The camera’s resolution is 1080 pixels for the
height and 1920 pixels for the width, but the cropped images
(640× 640 pixels) were considered for the analysis.

The PARSIVEL is a ground meteorological instrument
that can observe the diameter and fall speed of precipitation
particles (e.g., raindrops, snow particles, and hail). The me-
teorological information, including raindrop size, is used to
estimate the quantitative precipitation amount and reveal the
precipitation system’s microphysical characteristics and de-
velopment mechanism.

The PARSIVEL used in this study is the second version of
the instrument manufactured by OTT in Germany, and it im-
proved the observation accuracy of small particles. The PAR-
SIVEL uses a laser-based optical sensor to send a laser from
the transmitter and continuously receive it from the receiver
(Fig. 4). As the laser beam moves from the transmitter to the
receiver, the precipitation particle passes over the laser beam,
and the size and velocity of the precipitation particle are ob-
served (Nemeth and Hahn, 2005). The diameter and velocity
of the particle are calculated by calculating the time that the
particle passes through the laser and the laser intensity that
decreases during the passage (Fig. 5).

Parameters such as rain rate, reflectivity, and momentum
of raindrops are calculated through particle concentration
values for each diameter, and the falling speed channel is
obtained through PARSIVEL observation. In this study, the
temporal resolution of the observation data was set to 1 min.
The particle diameters from 0.2 to 25 mm (Table A1 in Ap-
pendix) and fall velocity from 0.2 to 20 m s−1 (Table A2 in
Appendix) can be observed by the PARSIVEL. The particle
diameter and the fall speed each have 32 observation chan-
nels, so the number of observed particles for the time reso-
lution set in 1024 channels (32× 32) is observed. The first
and second channels of the diameter are not included in the
observable range of the PARSIVEL and are treated as noise.
Therefore, the observation data of the first and second diam-
eter channels were not considered in the actual analysis. The

Figure 4. Functional principle of the PARSIVEL disdrometer.

detailed information on the specifications of the PARSIVEL
is presented in Table 2.

4 Application result

4.1 Rainfall event

We considered two rainfall events from 19:45 LST (local
standard time) on 25 March 2022 to 06:15 LST on 26 March
2022 (case 1) and 21:00 LST on 5 September 2022 to
03:00 LST on 6 September 2022 (case 2). Figure 6 illustrates
the hyetographs of the rainfall event considered in this study
according to the time resolution. The total rainfall of case 1
and 2 is 19.5 and 48.7 mm, based on the PARSIVEL, re-
spectively. The maximum rain rate is 10.0 and 20.7 mm h−1,
based on the 1 min resolution, and 5.0 and 14.5 mm h−1,
based on the 15 min resolution, for case 1 and case 2.

In order to secure the quantitative reliability of the PAR-
SIVEL observation data, rain gauge observation data were
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Figure 5. (a) Signal changes whenever a particle falls through the beam anywhere within the measurement area. (b) The degree of dimming
is a measure of the particle’s size; together with the duration of the signal, the fall velocity can be derived.

Table 2. Technical information of the PARSIVEL disdrometer.

Wavelength of optical sensor 780 nm
Measuring area 30× 180 mm (54 cm2)
Measuring range Size 0.2–25 mm (32 channel class)

Fall velocity 0.2–20 m s−1 (32 channel class)
Precipitation intensity 0.001–1200 mm h−1

Measurement time interval 10 s–60 min
Instrument dimensions (H×W×D) 670× 600× 114 mm

Table 3. Location information of rain gauge observation sites.

Rain Latitude Longitude Range from
gauge (◦) (◦) PARSIVEL
site site (km)

G1 37.4933 126.9175 3.73
G2 37.5196 126.9763 2.42
G3 37.5249 126.9390 2.87

used to verify the rainfall calculated through the PARSIVEL
observation. The rainfall data used for verification are rain
gauge observation data operated by KMA (Korea Meteo-
rological Administration) installed less than 4 km from the
PARSIVEL observation site (Table 3). The rainfall compar-
ison period is from 14 September 2021 to 4 October 2022,
including the period of the analysis case. Figure 7 shows
scatterplots comparing hourly rain rates from rain gauges
and PARSIVEL. As a result of comparison with the ob-
servation data at three rain gauge sites, it had low MAE
(mean absolute error), RMSE (root mean square error), and
MAPE (mean absolute percent error) values of less than
0.11 mm h−1, 0.6 mm h−1, and 8 %. Also, correlation values
were more than 0.9.

4.2 Identifying rainfall streaks

The rain streaks were distinguished from the original raw im-
ages using the KNN-based algorithm described in Sect. 2.2.
Accordingly, two parameters (history and dist2Threshold)
were set to default values (500 and 400). The other param-
eter (detectShadows) was set to “false”. Figure 8 illustrates
the raw, background, and rain streaks images, for an exam-
ple time image (20:30:57 LST on 25 March 2022), scaled in
yellow to make it easier to verify the visual change.

As confirmed in Fig. 8, adequate background separation
performance can be achieved with the KNN-based method
used in this study. Because it is an infrared camera, and the
camera’s exposure time is 1/250 s, the length of rain streaks
is relatively short. The longer the exposure time, the longer
the raindrops appear on the image (Schmidt et al., 2012; Al-
lamano et al., 2015). If the exposure time is too long, then
some rain streaks may penetrate the image. In this case, it is
difficult to estimate the rain streak length, which is a clue for
estimating raindrop size.

The identification algorithm was implemented, using Ana-
conda Distribution on a workstation with an AMD Ryzen 5
5600X 6-Core Processor and 32 GB RAM. The computing
time for the 15 min video was approximately 50 s, using only
CPU computation. As described previously, the KNN-based
algorithm used in this study has high-speed computing per-
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Figure 6. Hyetograph of PARSIVEL and rain gauge observation data for the rainfall events considered in this study (left panels show the
1 min resolution; right panels show the 15 min resolution).

formance compared with various algorithms based on opti-
mization, so it will likely have an advantage in real-time ap-
plications.

4.3 Estimation of DSD and rain rate

The rain streaks image presented in Fig. 8c was not consid-
ered for the final DSD estimation because of noise and fac-
tors other than rain caused by the sudden brightness change.
As described in Sect. 3, a low-pass filter was first applied to
the rain streaks image.

The 10× 10 kernel was applied considering the total im-
age size (640× 640), and each grid value of the kernel was
set to 0.01. The set kernel was filtered by convolution, pixel
by pixel. Moreover, the convolution was performed once
more using the following 2D kernel [0 1 0; −1 0 1; 0 −1 0]
to highlight the rim of the rain streaks. A background layer
with a value of 0 and a part not in the image were separated
to extract the rain streaks, which were labeled one by one to
identify each rain streak from the image. Figure 9a illustrates
the example result after performing the processes described
above in Fig. 8c. Each rain streak was then separated and
labeled, as in Fig. 9b.

The border information of each rain streak needed to be
obtained. The center axis was calculated by connecting the

center (median) of the minimum pixel and maximum pixel
values of the x axis for each y axis using border information.
The angle of rain streak was obtained from the slope value
obtained by calculating the linear function through the center
axis’s x and y pixel number values. Figure 9c is an example
of the extraction of a rain streak extracted from the image of
Fig. 9b.

The drop angle was then calculated, and the rain streak
was rotated using the angle information. Raindrops can be
broken up by strong wind or collisions between raindrops
during falling. The maximum difference value between the
minimum and maximum pixel number values of the y axis
calculated using border information of the rotated rain streak
was used to calculate the raindrop diameter and exclude the
influence of the distorted shape of the rain streak by the break
up (Fig. 9d; Testik, 2009; Testik and Pei, 2017). Figure 9d
illustrates the result of the final process. If the rain streaks
overlap, then the diameter of the raindrops can be estimated
as large. To reduce the overestimation of raindrop diameter,
this study tried to find the main central axis coordinates of
overlapping rain streaks and set the longest central axis as the
representative value. Then, we estimate the primary diameter
by calculating the distance between each pixel value of the
set central axis and the edge pixels of rain streaks.
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Figure 7. Scatterplot of the rainfall amount every 1 h from the PARSIVEL observation and the rain gauge observation.

Figure 8. Segmentation example of a raw image into background and rain streaks images based on a KNN-based algorithm (20:30:57 LST
on 25 March 2022).

Figure 10 illustrates the time series of the number concen-
tration and Dm obtained from CCTV and PARSIVEL. From
19:45 to 23:50 LST, the maximum number concentration of
lower than 1000 mm−1 m−3 was observed from the PAR-
SIVEL observation, and from 20:00 to 20:10 LST, a number
concentration lower than 100 mm−1 m−3 was observed. At
20:05 LST, large raindrops (of 3.8 mm) were observed, re-
sulting in a sharp increase in Dm above 2 mm. In contrast,
in the results based on CCTV images, the number concentra-
tion of less than 10 000 mm−1 m−3 was continuously demon-

strated during the entire analysis period, and a number con-
centration greater than 5000 mm−1 m−3 was observed before
22:00 LST. Because the proportion of small drops was high,
Dm was predominantly less than 1.5 mm.

From 00:00 to 01:00 LST, both CCTV- and PARSIVEL-
based data had a predominant maximum diameter of about
2.4 mm. At 00:35 LST, raindrops larger than 3.2 mm were
observed in PARSIVEL, but raindrops less than 3 mm were
not observed in CCTV. However, the number concentration
of small diameters of 0.5 mm or less had similar values be-
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Figure 9. Extraction example of rain streaks based on the proposed algorithm.

tween 1000 and 5000 mm−1 m−3. Despite the difference in
the maximum size of the drops, there was no predominant
difference in the Dm because the number concentration of
raindrops smaller than 1 mm had similar values.

From 03:00 to 05:30 LST, number concentrations higher
than 5000 mm−1 m−3 in the raindrops smaller than 1 mm
were observed using PARSIVEL. However, CCTV data re-
vealed that number concentrations less than 5000 mm−1 m−3

were consistently observed. From 05:00 to 05:10 LST, the
CCTV-image-based number concentration consistently ap-
peared to be about 1.2 mm, whereas Dm was smaller than
0.7 mm in PARSIVEL. The cause for the rapid decrease in
Dm of the PARSIVEL was that the CCTV-based maximum
diameter is about 2.4 mm, which was similar to the PAR-
SIVEL observation data, but the number concentration of
0.5 to 0.6 mm raindrops observed by PARSIVEL had a large
value of more than 10 000 mm−1 m−3.

Figure 11 illustrates the average number concentration
versus the diameter of raindrops calculated using the CCTV
image and PARSIVEL observation data from 19:45 LST on
25 March to 06:00 LST on 26 March 2022. The PARSIVEL
disdrometer data have a fixed raindrop diameter channel;

thus, it can differ in number concentration, depending on the
diameter channel setting. Therefore, in this study, the simu-
lated DSD through the gamma model was also analyzed to
compare the distribution of rainfall particles.

For raindrop diameters from 0.7 to 1.5 mm, the simulated
and observed number concentrations produced similar val-
ues. However, above 1.5 mm, the model-based number con-
centration was under-simulated. From these results, in the
precipitation case selected in this study, the gamma model
appears limited for the simulation of the number concentra-
tion of raindrops larger than 3 mm. In diameters from 0.2
to 1.0 mm and above 1.5 mm, the number concentration ob-
tained from CCTV images tended to be higher than that
from the PARSIVEL observation. PARSIVEL observation
data decreased sharply for diameters smaller than 0.3 mm.
In contrast, CCTV gradually increased the number concen-
tration as the diameter decreased.

Rainfall intensity was estimated based on the obtained
number concentration from CCTV images and PARSIVEL.
The near- (sn) and far-focus (sf) planes were calculated as
718 and 1648 mm from Eqs. (8) and (9). The DoF was calcu-
lated as 930 mm. The focal distance was set to 1 m, referring
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Figure 10. Time series of number concentration and Dm (black
line) from (a) the surveillance camera images and (b) the PAR-
SIVEL observation data from 21:45 LST on 25 March to 06:00 LST
on 26 March 2022 (case 1).

Figure 11. Average number concentration versus diameter from the
surveillance camera images and the PARSIVEL (case 1).

to previous studies (Dong et al., 2017; Jiang et al., 2019).
The control volume was 2.9 m−3, applying Eq. (10) with the
variables determined above. Figure 12 illustrates the rain rate
time series calculated using CCTV images and PARSIVEL
observation data. The increase or decrease in rain rate ac-
cording to time change based on CCTV data followed the

Figure 12. The rain rate time series calculated from the surveil-
lance camera images (gray bar) and PARSIVEL observation data
(red line) from 21:45 LST on 25 March to 06:00 LST on 26 March
2022 (case 1).

trend of rainfall intensity change based on PARSIVEL ob-
servation data.

At 20:37 LST, the PARSIVEL-based rain rate was
5.9 mm h−1, but the CCTV-based rain rate was overestimated
to be higher than 10 mm h−1. On the other hand, the CCTV-
based rain rate was underestimated by about 2 mm h−1 more
than the PARSIVEL-based rain rate at 05:14 LST. Quanti-
tative changes in CCTV-based rain rate showed a similar
tendency to increase and decrease the number concentration
of raindrops smaller than 1 mm and the maximum diameter.
From 01:00 to 02:00 LST, when the number concentrations
of CCTV and PARSIVEL had similar values, the rain rate
also showed similar results.

Figure 13 illustrates the scatterplot of the average rain
rate every 15 min from the PARSIVEL observation and the
CCTV images. Uncertainty exists in the resolution of the rain
gauge in the 1 min step. Accordingly, the time step for analy-
sis is set to 15 min. The slope of the regression line was 0.71
because the CCTV-based rain rate tended to be overestimated
at a rain rate of weaker than 2 mm h−1.

The cumulative average rainfall intensity every 15 min
was weaker than 10 mm h−1, concentrated at a rain rate
of less than 6 mm h−1, so the correlation coefficient (CC)
was 0.64. Furthermore, the MAE, RMSE, and MAPE were
0.61 mm h−1, 0.99 mm h−1, and 48 %. Differences according
to rain rate can also be determined. The accuracy is higher at
a rain rate smaller than 2 mm h−1 as a boundary. The MAE,
RMSE, and MAPE were 0.29 mm h−1, 0.72 mm h−1, and
38 % for a rain rate of 2 mm h−1 or less and 0.58 mm h−1,
1.17 mm h−1, and 55 % for a rain rate above 2 mm h−1.

The statistical values of the rain rate and DSD parameters
for the rainfall cases analyzed in this study are summarized
in Table 4. The rain rate and Dm calculated using CCTV im-
ages were 0.459 mm h−1 and 0.025 mm more than the val-
ues calculated using PARSIVEL observation data on aver-
age, respectively. A high rain rate and Dm were caused by
overestimating the number concentration for raindrops larger
than 1.5 mm confirmed in Fig. 10. The number concentration
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Table 4. Statistical values of the rain rate and DSD parameters for case 1.

R Dm log10N0 µ 3

(mm h−1) (mm) (mm−1−µ m−3) (unitless) (mm−1)

PARSIVEL Mean 1.905 1.091 7.379 7.394 11.829
Variance 1.667 0.063 15.170 35.975 88.288
Skewness 1.589 0.551 2.470 2.015 2.714
Kurtosis 5.189 1.233 7.751 5.132 9.165

CCTV Mean 2.364 1.116 4.857 2.131 5.713
Variance 1.998 0.021 0.472 1.680 3.016
Skewness 1.903 0.536 1.109 0.628 1.151
Kurtosis 6.073 1.041 2.188 0.739 2.506

Figure 13. Scatterplot of the average rain rate every 15 min from
the PARSIVEL observation and the surveillance camera images
(case 1). The red line is the linear regression. The scatterplot dis-
plays the correlation coefficient (CC), MAE, RMSE, and MAPE
forR> 0 mm h−1,R< 2 mm h−1, andR≥ 2 mm h−1 (sequentially
from left to right).

for the small diameter (less than 0.3 mm) was higher in the
CCTV data than in the PARSIVEL data. Due to the high con-
centration value of the number concentration of raindrops be-
low 0.5 mm and above 2 mm, the CCTV-based rain rate had
a large value.

In the Dm calculated through the PARSIVEL observation
data, the concentration change in small drops over time was
large, and the variance (0.063 mm) of Dm was large due to
the rapid change in number concentration. The variability in
the maximum diameter was greater in the PARSIVEL ob-
servation data, but the variance in the rain rate was greater
in the CCTV data. The large variability in the concentra-
tion of raindrops below 3 mm affected the change in the rain
rate. Also, due to the high number concentration of small
drops, the skewness of the CCTV-based (1.903) rain rate had
a higher value than that of the PARSIVEL-based (1.589) rain
rate. The low variability (0.063 mm) in the Dm calculated
from CCTV data means that the change in the shape of the

Figure 14. Time series of number concentration and Dm (black
line) from (a) the surveillance camera images and (b) the PAR-
SIVEL observation data from 21:00 LST on 5 September to
03:00 LST on 6 September 2022 (case 2).

raindrop size distribution was small, supported by the low
variance of 3 (3.016 mm−1).

Figure 14 illustrates the time series of the number con-
centration and Dm obtained from CCTV and PARSIVEL for
case 2. In both CCTV and PARSIVEL observation data, the
number concentration for a diameter between 0.5 and 1.5 mm
had a value between 500 to 5000 mm−1 m−3, and there was
no significant change in the number concentration with time.

The maximum diameter also consistently had a value close
to about 3 mm, and the Dm was also similar to about 1.5 mm
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Figure 15. Average number concentration versus diameter from the
surveillance camera images and the PARSIVEL (case 2).

because the maximum diameter and the number concentra-
tion of 1 mm intermediate drop had similar values.

From 01:00 to 02:30 LST, the maximum particle diame-
ter through CCTV was overestimated, resulting in a large
value close to 3.5 mm. As a result, the Dm value increased
significantly to more than 2 mm. PARSIVEL data showed a
sharp decrease in the number concentration of 1 mm drops
at 00:30 LST, and an increase in Dm under the influence of
the decreased number concentration. However, in the case of
CCTV, only raindrops smaller than 1.5 mm were observed
at the time, and there was a similar decrease in Dm (about
1.1 mm).

As clearly shown in Fig. 14, there was no significant dif-
ference in the number concentration according to the time
change. The average number concentration distribution also
showed similar results because the number concentration val-
ues were concentrated at 1000 mm−1 m−3 concentration in
both observation instruments (Fig. 15). As in case 1, PAR-
SIVEL observation data showed a tendency to underestimate
in sections less than 0.5 mm and larger than 2 mm compared
to CCTV data. The diameter section in which CCTV data
are underestimated compared to PARSIVEL data was from
1 mm to 2 mm. Since the number concentration of the CCTV
data was underestimated in this section, the rain rate based
on the number concentration data was also underestimated
compared to the rainfall intensity based on the PARSIVEL
data.

Between 21:00 LST on 5 September and 01:00 LST on
6 September, when the number concentration of about 1 mm
raindrops is similar and the maximum diameter size is simi-
lar, the rain rate time series distribution has a value of about
5 mm h−1 and has a very similar flow. However, between
01:30 and 03:00 LST, which is a period with an overesti-
mation of raindrop diameter in CCTV observation data, the

Figure 16. The rain rate time series calculated from the surveillance
camera images (gray bar) and PARSIVEL observation data (red
line) from 21:00 LST on 5 September to 03:00 LST on 6 Septem-
ber 2022 (case 2).

increase and decrease in rain rate were similar. However,
the magnitude of the increase and decrease in rain rate dif-
fered every 15 min. During that time, the maximum rain rate
was less than 20 mm h−1 in the PARSIVEL observation data,
while strong rainfall of 30 mm h−1 or more was observed in
the CCTV observation data (Fig. 16).

Figure 17 illustrates the scatterplot of the average rain
rate every 15 min from the PARSIVEL observation and the
CCTV images for case 2. Compared to case 1, case 2 was a
strong rainfall case with a rain rate of about 8.94 mm h−1.
Compared to the PARSIVEL observation data, the CCTV
observation data showed a larger Dm by 0.221 mm, while
the log10N0 showed a small feature of 1.1 mm−1−µ m−3. As
the weight of medium and large drops over 1 mm increased,
µ and 3 showed lower values of 4.262 and 5.397 mm−1,
respectively (Table 5). According to the 15 min cumulative
rain rate comparison result, the rain rate based on CCTV
image data tends to be underestimated when it is less than
10 mm h−1. Conversely, there was a tendency to overestimate
the rainfall period of 10 mm h−1 or more. This tendency was
confirmed in case 1, which may be caused by recognizing
overlapping rain streaks as a single big raindrop. MAPE had
a low value of 0.3 % or less, regardless of the rain rate, and
even though the rainfall intensity was relatively large com-
pared to case 1, MAE and RMSE did not significantly in-
crease. This is because there was no abnormally large value
of CCTV rainfall during the rainfall period of case 2 com-
pared to case 1.

5 Conclusion

This study estimated DSD with an infrared surveillance cam-
era, based on which rainfall intensity was also estimated.
Rain streaks were extracted using a KNN-based algorithm.
The rainfall intensity was estimated based on DSD using
physical optics analysis. A rainfall event was selected, and
the applicability of the method in this study was examined.

Atmos. Meas. Tech., 16, 707–725, 2023 https://doi.org/10.5194/amt-16-707-2023



J. Lee et al.: DSD and rain rate estimation with IR surveillance camera in dark conditions 721

Table 5. Statistical values of the rain rate and DSD parameters for case 2.

R Dm log10N0 µ 3

(mm h−1) (mm) (mm−1−µ m−3) (unitless) (mm−1)

PARSIVEL Mean 8.12 1.445 5.900 6.379 7.341
Variance 13.82 0.020 1.160 6.498 5.596
Skewness 0.65 0.447 1.061 0.9467 1.198
Kurtosis −0.13 0.472 2.480 1.818 2.792

CCTV Mean 8.94 1.666 4.813 4.262 5.397
Variance 69.33 0.121 1.185 4.577 6.714
Skewness 2.75 0.355 2.596 1.903 2.640
Kurtosis 11.71 −0.202 8.962 5.714 9.756

Figure 17. Scatterplot of the average rain rate every 15 min from
the PARSIVEL observation and the surveillance camera images
(case 2). The red line is the linear regression. The scatterplot
displays the CC, MAE, RMSE, and MAPE for R> 0 mm h−1,
R< 5 mm h−1, and R≥ 5 mm h−1 (sequentially from left to right).

The estimated DSD was verified using a PARSIVEL. The
results from this study can be summarized as follows.

The KNN-based algorithm illustrates suitable perfor-
mance in separating the rain streaks and background layers.
Furthermore, the possibility of separation for each rain streak
and estimation of DSD was sufficient.

The number concentration of raindrops obtained through
the CCTV images was similar to the actual PARSIVEL ob-
served number concentration in the 0.5 to 1.5 mm section.
In the small raindrops in the section of 0.4 mm or less, the
PARSIVEL observation data underestimate the actual DSD.
However, the CCTV image-based rain rate had an advan-
tage over the raindrop-based data – the number concentration
decreased rapidly as the number concentration gradually in-
creased in the 0.2–0.3 mm diameter section.

The maximum raindrop diameter and number concentra-
tion of less than 1 mm produced similar results during the
period with a high ratio of diameters less than 3 mm. How-
ever, the number concentration was overestimated during
the period when raindrops larger than 3 mm were observed.

The CCTV image-based data revealed that the rain rate was
overestimated because of the overestimation of raindrops
larger than 3 mm. After comparing with the 15 min cumu-
lative PARSIVEL rain rate, the CCs – the MAE, RMSE, and
MAPE of case 1 (case 2) – were 0.61 mm h−1 (1.55 mm h−1),
0.99 mm h−1 (1.43 mm h−1), and 48 % (44 %). The differ-
ences according to rain rate can be identified. The accuracy
is higher at a rain rate smaller than 10 mm h−1 as a boundary.

The rain rate and Dm calculated using CCTV images ex-
hibited similar average values. The overestimated number
concentration of 1.5 mm or larger caused high kurtosis for the
rain rate andDm of CCTV-based data and a low µ value. Be-
cause of the high number concentration for raindrops larger
than 3 mm of CCTV, the PARSIVEL observation data had a
higher 3 value than the result based on the CCTV data.

In this study, DSD was estimated using an infrared surveil-
lance camera; the rain rate was also estimated. Consequently,
we could confirm the possibility of estimating an image-
based DSD and rain rate obtained based on low-cost equip-
ment in dark conditions. Though the infrared surveillance
camera considered in this study will not be able to replace
traditional observation devices, if future studies can be con-
tinued to secure robustness, then it will be an excellent com-
plement to the existing observation system in terms of spa-
tiotemporal resolution and accuracy improvement.
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Appendix A: The diameter and fall velocity information
for each diameter channel class

Table A1. The representative diameter and spread for each diameter channel class.

Class Class average Class spread Class Class average Class spread
number (mm) (mm) number (mm) (mm)

1 0.062 0.125 17 3.250 0.500
2 0.187 0.125 18 3.750 0.500
3 0.312 0.125 19 4.250 0.500
4 0.437 0.125 20 4.750 0.500
5 0.562 0.125 21 5.500 1.000
6 0.687 0.125 22 6.500 1.000
7 0.812 0.125 23 7.500 1.000
8 0.937 0.125 24 8.500 1.000
9 1.062 0.125 25 9.500 1.000
10 1.187 0.125 26 11.000 2.000
11 1.375 0.250 27 13.000 2.000
12 1.625 0.250 28 15.000 2.000
13 1.875 0.250 29 17.000 2.000
14 2.125 0.250 30 19.000 2.000
15 2.375 0.250 31 21.500 3.000
16 2.750 0.500 32 24.500 3.000

Table A2. The representative fall velocity and spread for each diameter channel class.

Class Class average Class spread Class Class average Class spread
number (m s−1) (m s−1) number (m s−1) (m s−1)

1 0.050 0.100 17 2.600 0.400
2 0.150 0.100 18 3.000 0.400
3 0.250 0.100 19 3.400 0.400
4 0.350 0.100 20 3.800 0.400
5 0.450 0.100 21 4.400 0.800
6 0.550 0.100 22 5.200 0.800
7 0.650 0.100 23 6.000 0.800
8 0.750 0.100 24 6.800 0.800
9 0.850 0.100 25 7.600 0.800
10 0.950 0.100 26 8.800 1.600
11 1.100 0.200 27 10.400 1.600
12 1.300 0.200 28 12.000 1.600
13 1.500 0.200 29 13.600 1.600
14 1.700 0.200 30 15.200 1.600
15 1.900 0.200 31 17.600 3.200
16 2.200 0.400 32 20.800 3.200
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