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Abstract. The use of meteorological radars to study snow-
fall microphysical properties and processes is well estab-
lished, in particular via a few distinct techniques: the use of
radar polarimetry, of multi-frequency radar measurements,
and of the radar Doppler spectra. We propose a novel ap-
proach to retrieve snowfall properties by combining the lat-
ter two techniques, while relaxing some assumptions on, e.g.,
beam alignment and non-turbulent atmosphere.

The method relies on a two-step deep-learning frame-
work inspired from data compression techniques: an encoder
model maps a high-dimensional signal to a low-dimensional
latent space, while the decoder reconstructs the original sig-
nal from this latent space. Here, Doppler spectrograms at two
frequencies constitute the high-dimensional input, while the
latent features are constrained to represent the snowfall prop-
erties of interest. The decoder network is first trained to em-
ulate Doppler spectra from a set of microphysical variables,
using simulations from the Passive and Active Microwave
radiative TRAnsfer model (PAMTRA) as training data. In a
second step, the encoder network learns the inverse mapping,
from real measured dual-frequency spectrograms to the mi-
crophysical latent space; in doing so, it leverages with a con-
volutional structure the spatial consistency of the measure-
ments to mitigate the ill-posedness of the problem.

The method was implemented on X- and W-band data
from the ICE GENESIS campaign that took place in the
Swiss Jura Mountains in January 2021. An in-depth assess-
ment of the retrieval accuracy was performed through com-
parisons with colocated aircraft in situ measurements col-
lected during three precipitation events. The agreement is

overall good and opens up possibilities for acute characteri-
zation of snowfall microphysics on larger datasets. A discus-
sion of the sensitivity and limitations of the method is also
conducted.

The main contribution of this work is, on the one hand, the
theoretical framework itself, which can be applied to other
remote-sensing retrieval applications and is thus possibly of
interest to a broad audience across atmospheric sciences. On
the other hand, the seven retrieved microphysical descriptors
provide relevant insights into snowfall processes.

1 Introduction

Solid precipitation is a phenomenon of extraordinary com-
plexity, whose better understanding and modeling remains a
key challenge in atmospheric science. A more accurate repre-
sentation of snowfall microphysical processes is crucial not
only to improve weather forecast models and precipitation
quantification (e.g., Khain et al., 2015; Morrison et al., 2020),
but also to reduce current uncertainties in cloud radiative
properties, with in turn sizable impacts on climate-oriented
research (e.g., Curry et al., 1996; Matus and L’Ecuyer, 2017).
From a different perspective, snowfall microphysics is also
relevant to a wide range of socio-economical fields, includ-
ing the aviation industry, for which ensuring flight safety in
snowfall conditions is critical (Rasmussen et al., 2000; Cao
et al., 2018; Taszarek et al., 2020).

However, the quantification of snowfall properties, such
as particle size, mass, bulk density, and geometry, is not

Published by Copernicus Publications on behalf of the European Geosciences Union.



912 A.-C. Billault-Roux et al.: Dual-frequency spectral retrieval of snowfall microphysics

a straightforward task. In situ snow particle measurements,
whether ground-based or airborne, are highly valuable but
are typically sparse and often insufficient to capture the com-
plex spatiotemporal evolution of the particles. Besides, cer-
tain quantities like particle mass are particularly difficult to
measure and usually available only for small sets of parti-
cles, although recent technical and methodological develop-
ments open up the possibility for automatized estimations
(Leinonen et al., 2021; Rees et al., 2021).

Alternatively, remote-sensing instruments, such as mete-
orological radars, provide measurements related to the scat-
tering of an electromagnetic signal by an ensemble of hy-
drometeors over a vertical column of the atmosphere for pro-
filing radars or full 3D regions for scanning ones. Yet, such
measurements are indirect, and there is no known analytical
expression to derive snowfall microphysical descriptors di-
rectly from radar measurements. Due to the large variability
of snow crystal geometrical and scattering properties, simpli-
fications of the radiative calculations that are too strong may
yield erroneous results (Leinonen et al., 2012). Recent re-
search efforts in this direction have brought about significant
improvements in scattering models (e.g., Kuo et al., 2016; Lu
et al., 2016; Hogan et al., 2017; Ori et al., 2020). Neverthe-
less, the estimation of microphysical properties from radar
measurements often remains an ill-posed problem and is fur-
ther hindered by measurement uncertainty, for example, re-
lated to instrument miscalibration or attenuation along the
radar path.

Radar retrievals and analyses of snowfall microphysics
have been successfully conducted using distinct approaches.
On the one hand, the use of multi-frequency measurements
has become quite popular: this approach relies on the fact
that large snow particles transition to non-Rayleigh scatter-
ing regimes at millimeter wavelengths, while they remain
Rayleigh scatterers at larger wavelengths. Combining mea-
surements from a shorter and a longer wavelength radar (e.g.,
W and X band), the dual-frequency ratio of radar equiva-
lent reflectivity factors (DFR= ZeX−ZeW, in dB) can thus
be used to identify populations of snow particles with a
larger size or with a higher degree of riming (e.g., Matrosov
et al., 1992; Matrosov, 1998; Szyrmer and Zawadzki, 2014;
Liao et al., 2016; Battaglia et al., 2020), thus indicating re-
gions of enhanced snowfall growth. With three well-chosen
radar frequencies, studies were able to identify distinct sig-
natures for riming and aggregation mechanisms, and they
were able to even retrieve estimates of fractal dimension
during some parts of snowfall events (e.g., Kneifel et al.,
2011; Kulie et al., 2014; Leinonen et al., 2018a), which were
later confirmed through comparison with in situ airborne data
(Nguyen et al., 2022). Similar retrievals, focusing on snow
particle density, were achieved using only two frequencies
but leveraging information contained in the mean Doppler
velocity in addition to radar reflectivity (Mason et al., 2018).
Bringing this a step further, Mroz et al. (2021b) were re-
cently able to retrieve from triple-frequency radar reflectivity

and Doppler velocity accurate estimates of ice water content
and snow particle characteristic size, as well as an estimate
of riming degree. In the case of scanning radars, additional
polarimetric information can be included, which opens up
possibilities for the geometrical characterization of ice-phase
hydrometeors (e.g., Bukovčić et al., 2018; Matrosov et al.,
2020; or Tetoni et al., 2022; Oue et al., 2021, where po-
larimetric and multi-frequency measurements are combined).
Most of the cited studies, however, rely on certain hypothe-
ses, for example, on the mass–size relation, with assumptions
ranging from the use of a strict parameterization to more flex-
ible yet still constraining models like the “filling-in” hypoth-
esis (Mroz et al., 2021b).

On the other hand, more qualitative studies have been con-
ducted relying not solely on radar moments (e.g., reflectiv-
ity, Ze, or mean Doppler velocity, MDV) but rather on the
full Doppler spectrum, which allows separating the contri-
bution of slow-falling (typically small) vs. fast-falling (typ-
ically large or dense) particles to the total reflectivity. In-
deed, the full Doppler spectrum encloses more information
on microphysical properties and the particle size distribution
(PSD) than scalar moments like Ze or MDV. By observing
wider, more skewed, or even multi-modal spectra, signatures
of specific microphysical processes such as riming or aggre-
gation can be identified (e.g., Shupe et al., 2004; Kalesse
et al., 2016).

Combining multi-frequency and Doppler spectral tech-
niques appears like a promising way to go, possibly allowing
us to reduce the number of required assumptions for a micro-
physical retrieval, as investigated by Kneifel et al. (2016) and
Barrett et al. (2019). The transition of the scattering regime at
higher frequencies is visible in dual-frequency Doppler spec-
tra with the following signature: slow-falling particles are
typically Rayleigh scatterers and contribute to similar reflec-
tivity at both wavelengths, while larger, fast-falling particles
are no longer Rayleigh scatterers for the higher frequency,
with thus smaller spectral reflectivity than for the lower fre-
quency. This means that the Doppler spectra at both frequen-
cies should match on the low-velocity side and diverge for
large velocities. However, using this principle to perform a
direct inversion like Barrett et al. (2019) is only rarely possi-
ble. Difficulties related to imperfect measurements are sub-
stantial: not only should the different radars be well cross-
calibrated in reflectivity, but they should also be well aligned
vertically to avoid contamination by horizontal wind. The ad-
ditional issue of non-uniform beam filling is all the more
problematic when the radars have different beam widths or
range resolutions: this would hinder the retrieval, especially
when turbulent broadening is observed or when the particle
populations in the sampled volumes are too heterogeneous.
Differential attenuation of the two frequencies is yet another
significant challenge, for which some workarounds were pro-
posed (e.g., Li and Moisseev, 2019) but are not always possi-
ble to implement. In such cases, a direct computation of the
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dual-frequency spectral ratio is difficult to interpret and may
be dominated by these artifacts.

In this work, we propose an approach to retrieve snowfall
microphysics from dual-frequency Doppler spectra, while
partly relaxing these constraints on turbulence or beam align-
ment, as well as reducing the number of prior assumptions on
snowfall microphysical properties. Whereas many retrievals
in atmospheric sciences rely on classical Bayesian frame-
works (e.g., Rodgers, 2000), we opt here for an alternative
machine-learning-based method: some cutting-edge devel-
opments achieved in the past decade have outlined the strong
potential of such statistical methods in atmospheric science
(Bauer et al., 2021; Chantry et al., 2021) and weather radar
applications (Geng et al., 2021), especially to tackle retrieval
problems (Vogl et al., 2022; Chase et al., 2021).

Exploiting recent advances in deep-learning research, we
introduce a physics-driven inversion framework, which is
partly inspired from auto-encoder models. The auto-encoder
is a neural network architecture originally designed for di-
mension reduction purposes, and it is sometimes referred to
as a nonlinear principal component analysis variant (Kramer,
1991; Hinton and Salakhutdinov, 2006): an encoder neu-
ral network maps a high-dimensional signal to a low-
dimensional latent or feature space, while the decoder neu-
ral network learns to recover the original signal from this
latent space. In our case, dual-frequency Doppler spectro-
grams constitute the high-dimensional signal, while the di-
mensions of the latent space are implicitly constrained to
represent the snowfall properties which we seek to retrieve.
In a first step, the decoder is trained to emulate a radiative
transfer model, i.e., to reconstruct dual-frequency Doppler
spectrograms given (latent) snowfall descriptors. The en-
coder is trained in a second step: it consists of an advanced
deep-learning architecture that ingests the radar data (dual-
frequency Doppler spectrograms), and it is optimized to
retrieve the latent snowfall properties which, when passed
through the decoder, minimize the reconstruction error with
respect to the input data. An important peculiarity of the
encoder’s architecture is its ability to leverage the spatial
consistency of the radar variables, which reduces the ill-
posedness of the inversion problem. By training not only one
but several deep-learning models with different random ini-
tializations, we gain additional insight into the uncertainty of
the retrieval.

The proposed framework is implemented on data from
the ICE GENESIS campaign that took place in the Swiss
Jura Mountains in January 2021. The setup included, in par-
ticular, X- and W-band Doppler spectral profilers on the
ground, complemented with overpasses of a scientific aircraft
equipped with microphysical probes. This offers the possibil-
ity to validate the retrieval against in situ measurements.

A general overview of the retrieval framework and its the-
oretical foundation is presented in Sect. 2. Section 3 is ded-
icated to the presentation of the synthetic and real datasets
used to train and evaluate the inversion model. In Sect. 4, we

detail the technical implementation of the framework. Re-
sults are then presented in Sect. 5, with a particular focus
on the comparison of the retrieval outputs to in situ aircraft
measurements. The discussion of the results is taken a step
further in Sect. 6, with a focus on the current limitations of
the method and its sensitivity to certain key assumptions.

2 Theoretical framework

This section introduces the theoretical components required
to understand the proposed retrieval framework and provides
an overview of its general structure.

2.1 Doppler spectra: forward model

Radar Doppler spectra, computed through the Fourier trans-
form of the radar return signal (Doviak and Zrnic, 1993),
feature the reflectivity-weighted distribution of the targets’
Doppler velocity in a given radar volume. From here on,
Doppler spectrum (plural: Doppler spectra) refers to the
measurement at a given time and range gate, and the vertical
stack of spectra at a certain time is referred to as the Doppler
spectrogram. Note that this name convention is used here for
clarity, but it may not be universal.

In the case of a vertically pointing profiler, the shape of the
Doppler spectrum in snowfall results from a combination of
several factors (e.g., Doviak and Zrnic, 1993; Kollias et al.,
2002; Luke and Kollias, 2013; Kneifel et al., 2016). It is pri-
marily defined by the snowfall PSD and the microphysical
properties of the snow particles (e.g., bulk density and geom-
etry), which determine their backscattering cross-section and
terminal velocity. In reality, this purely microphysical spec-
trum is affected by atmospheric dynamic conditions – tur-
bulence, horizontal wind, and vertical wind – in a way that
depends on the settings and parameters of the radar itself –
sensitivity and beam width. The actual measured spectrum
is additionally perturbed by instrument noise, the effect of
which is mitigated through temporal averaging of the spec-
tra, at the risk of smearing out underlying microphysical sig-
natures (e.g Acquistapace et al., 2017). Understanding how
those parameters (microphysical, environmental, instrumen-
tal) translate into a measured Doppler spectrum is delicate:
it involves complex radiative transfer models to compute the
radar backscatter of snow particles, and it also requires an
understanding of snowfall aerodynamic properties, e.g., for
the parameterization of the particle velocity–size relations.

Efforts have been devoted to the construction of increas-
ingly accurate forward models, for instance, through compu-
tationally costly discrete dipole approximation (DDA) calcu-
lations (e.g., Draine and Flatau, 1994; Liu, 2004; Kuo et al.,
2016; Lu et al., 2016) and through simulations based on the
self-similar Rayleigh–Gans approximation (SSRGA), which
are tuned to represent accurately the scattering of various par-
ticle types (Hogan and Westbrook, 2014; Hogan et al., 2017;
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Ori et al., 2020). In this work, we use the radiative transfer
code PAMTRA (Mech et al., 2020) as a forward model, as it
is particularly suited to simulate full Doppler spectra and pro-
vides an implementation of several scattering models. Details
on how PAMTRA is used and parameterized in this study are
presented in Sect. 3.1.1.

2.2 Approach to the inverse problem

Assuming a forward model, denoted f , is known – which,
given a set of properties x, outputs realistic Doppler spectra
y – the aim of the retrieval is to solve the following inverse
problem: from real observed spectra yr, estimate the underly-
ing microphysical properties xr (see, e.g., Maahn et al., 2020,
for a discussion on inverse problems). Here the subscript “r”
denotes real values as opposed to synthetic or modeled quan-
tities.

In a mathematical language, this means estimating g =
f−1. This is, in general, not possible, as f is usually not an
invertible mapping. Workarounds can be developed in cer-
tain cases, for example, through lookup tables (e.g Leinonen
et al., 2018b). Alternatively, one can seek xr as the min-
imizing argument of a cost function (e.g.,

∥∥yr− f (x)
∥∥2),

which can also include a regularization term (e.g., Mason
et al., 2018); this minimization problem can then be solved
iteratively with, for instance, a gradient descent algorithm.
From a Bayesian perspective and under additional assump-
tions (Gaussian probability distributions), this corresponds
to the popular optimal estimation (OE) framework (Rodgers,
2000; Maahn et al., 2020), which is widely used across atmo-
spheric science to solve moderately linear inverse problems.
Although this alleviates some requirements of f , it can only
be implemented if f is differentiable and if the computation
of its gradient is tractable, either analytically or numerically.

This classical Bayesian approach faces some limitations,
which include but are not limited to the need to linearize the
forward operator in order to compute its Jacobian or to ex-
plicitly assume prior values for x.

Machine-learning techniques offer the possibility to tackle
inverse problems in a different way, with a statistical
rather than an analytical approach. Note that, as pointed
out by Geer (2021), the overarching framework in both
cases ultimately remains that of Bayesian probabilities,
viewed through different prisms. The typical machine-
learning route to solve an inverse problem (e.g., Chase
et al., 2021) has the following structure: the available for-
ward model is first used to create a large synthetic dataset{(

xs ,k,ys ,k = f
(
xs ,k

))
, k = 1. . .N

}
, with the “s” sub-

script denoting synthetic values andN the size of the dataset.
Then, a machine-learning model is trained on this dataset to
learn a statistical relation between y and x, i.e., an approxi-
mation of the inverse mapping g̃. Ultimately, this produces a
gate-to-gate inversion of the problem which can be imple-
mented on real data. This approach has been successfully
used for atmospheric retrievals, for example, by Piontek et al.

(2021) to detect volcanic ash clouds, by Vogl et al. (2022) to
estimate riming occurrences from radar measurements, or by
Chase et al. (2021) to retrieve snowfall properties from air-
borne or satellite radars.

One major limitation of this direct gate-to-gate method is
when the problem itself is ill-posed, e.g., when several values
of x may yield similar outputs y (f is not injective): in such
cases, the retrieval may yield arbitrary outputs.

The proposed approach, illustrated in Fig. 1, can miti-
gate this issue. It is inspired from auto-encoder architectures
(Kramer, 1991; Hinton and Salakhutdinov, 2006), which use
neural networks to perform powerful nonlinear dimension re-
ductions: an encoder network maps a high-dimension signal
to a low-dimension latent space, while the decoder network
learns to reconstruct an approximation of the original signal
from the latent space. Such tools are relevant for atmospheric
sciences and in particular in the context of climate studies,
which handle complex, high-dimensional signals (Behrens
et al., 2022). In our case, the aim is to constrain the dimen-
sions of the latent space to contain microphysical descriptors
of snowfall: the originality of the approach presented here
is thus that it incorporates physical knowledge by using a
physics-informed decoder.

– In a first step, a neural network is trained on a synthetic
dataset of

(
xs,ys = f (xs)

)
. Instead of learning an in-

verse mapping, it simply learns to emulate the forward
model: taking microphysical and atmospheric (i.e., la-
tent) variables (xs) as input, it outputs Doppler spectra
(ys). This model, which we refer to as the decoder and
denote as f̃ , is thus a differentiable emulator of PAM-
TRA. When applied not to a single set of microphysi-
cal descriptors but to a stack (of multiple range gates)
at once, it is denoted with uppercase F̃ . The synthetic
dataset should include a wide range of realistic parame-
ters, to not induce bias in the further steps.

– In a second step, we shift our attention to a real (i.e.,
not synthetic) dataset of full dual-frequency Doppler
spectrograms Y r ; the aim is to retrieve the underlying
profiles of latent variables Xr . The capital letter de-
notes that, e.g., Y r is a vertical stack of yr. A second
neural network, the encoder G̃, is trained on this real
dataset: it takes as input the spectrograms Y r , and its
output X = G̃(Y r) has the same dimension as the num-
ber of latent features times the number of range gates.
X is passed on to the decoder F̃ , which outputs a recon-
structed spectrogram Y . Training is performed by opti-
mizing G̃ in order to minimize the reconstruction error
‖Y −Y r‖

2.

At the end of the training, i.e., when the pipeline has con-
verged, F̃ ◦ G̃(Y r)≈ Y r and the output of the encoder X̂r =

G̃(Y r) should be close to the true profile of microphysical
descriptors Xr .
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Figure 1. Schematic illustration of the method. The notations are those of Sect. 2.2. The upper right box illustrates that the decoder neural
network (NN) is trained to emulate a forward radiative transfer model. The lower box shows the full pipeline where the pretrained decoder
is used to reconstruct full spectrograms based on the microphysical properties output by the encoder NN.

The architecture of the decoder and encoder will be de-
tailed in the following (Sect. 4), but one key property should
already be underlined. The retrieval operates on the full dual-
frequency Doppler spectrograms at once, rather than on each
gate independently: the idea is to synergistically make use of
the spatial structure of the measurements to reduce the ill-
posedness of the inverse problem. By “spatial structure” or
“spatial consistency”, we refer to the fact that the spectro-
gram might be continuous, smooth (i.e., spectra at nearby
ranges are similar), or on the contrary have some abrupt
changes (e.g., in the case of high shear, where neighboring
spectra might be very different). By constraining the retrieval
to output a profile of microphysical variables with a similar
spatial structure, we restrain the number of degrees of free-
dom.

In practice, this is handled by the architecture of the en-
coder network, which contains convolution kernels: thanks
to this feature, the model can capture the vertical structure of
the Doppler spectrograms and propagate this information in
a way that the output profiles are themselves spatially consis-
tent. Note that while the issue of ill-posedness is mitigated,
it is not entirely resolved, as there may remain an intrinsic
under-determination. Nevertheless, we believe that this im-
plicit use of the measurements’ spatial features in the re-

trieval is a key contribution of this work. To support this,
a brief discussion of alternative methods is proposed in the
following (Sect. 6.5).

To conclude this overview of the framework, we high-
light that while it was presented for the specific case of
Doppler spectrograms and snowfall microphysics, its struc-
ture is generic and could potentially be applied to other re-
trieval problems with similar properties: a complex forward
model that is not directly invertible, with slightly ill-posed
features that hamper pointwise retrievals. One intrinsic lim-
itation which should be highlighted is that the method is
trained directly on the data of interest and cannot be directly
used on any given measurements.

3 Data

3.1 Synthetic dataset

As mentioned above (Sect. 2), the first step of the framework
consists in training a neural network on a synthetic dataset
containing sets of microphysical and atmospheric variables
and the corresponding spectra. The focus of this section is
the generation of this dataset.

https://doi.org/10.5194/amt-16-911-2023 Atmos. Meas. Tech., 16, 911–940, 2023



916 A.-C. Billault-Roux et al.: Dual-frequency spectral retrieval of snowfall microphysics

3.1.1 Forward model assumptions

To generate this synthetic dataset, PAMTRA is run by pre-
scribing snowfall microphysics through several parameters.
These parameters are the snowfall properties that the algo-
rithm will then learn to retrieve.

The definitions of the microphysical parameters are sum-
marized in Table 1. The PSD is assumed to be a neg-
ative exponential distribution (N(D)=N0 exp(−D/D0),
e.g., Straka, 2009), whose size parameter D0 is prescribed;
here and in the following, the size or diameter of a parti-
cle is defined as its maximum dimension: D =Dmax. For an
exponential PSD, D0 is equal to the number-concentration-
weighted mean diameter (shortened as “mean diameter”);
the effective diameter (ratio of the third to second moment
of the PSD), often relevant for radiative transfer models, is
Deff = 3D0. The choice of an exponential shape for the PSD
was made to limit the degrees of freedom of the retrieval and
keep the computational expense tractable; it is nonetheless
a strong underlying hypothesis of the framework in its cur-
rent version (discussed in Sect. 6.4). Mass–size and area–
size relations are considered to be power laws, whose prefac-
tors and exponents are prescribed (m= amD

bm ,A= αaD
βa ).

The aspect ratio Ar is then specified, defined here as equal to
the particle’s dimension along the direction of radar beam
(here, vertical) divided by maximum dimension (Ori et al.,
2020), which implies Ar ≤ 1. The particles are considered to
be oriented with their maximum dimension in the horizon-
tal plane. The ice water content (IWC) is finally assigned.
Note that the particle number concentration is implicitly pre-
scribed through the definition of IWC, D0, and am and bm.
In addition, the noise level is specified, since it is required
to simulate realistic Doppler spectra; in practice, it only de-
pends on the range and on the radar properties and is not
related to other microphysical or atmospheric quantities. The
velocity–size relation is the one proposed by Heymsfield and
Westbrook (2010) and relies on the aforementioned mass–
size and area–size relations.

Individual spectra are simulated through PAMTRA for
an altitude of 1000 m a.s.l., using a standard (PAMTRA de-
fault) atmospheric profile with a temperature randomly cho-
sen in [−20 ◦C, 1 ◦C]. Spectra are then simulated at the X
and W band independently. The radar settings for these sim-
ulations (frequency, beamwidth, velocity resolution, velocity
range, sensitivity) should have the same values as those of the
radars on which the retrieval is implemented (see Sect. 3.2
and Table 2). In the current version of the algorithm, attenu-
ation is not taken into account in the PAMTRA simulations.

Scattering calculations are performed using the SSRGA,
with coefficients from Ori et al. (2020); more detail on this
is provided in Appendix B2. These assumptions on scatter-
ing properties are not flawless and constitute a bottleneck in
our method, as in virtually any attempt at radar-based re-
trievals. In particular, the current implementation of PAM-
TRA (28 March 2022) allows for the parameterization of

Table 1. Microphysical, atmospheric, and radar parameters.

Name Description

IWC Ice water content
D0 Mean diameter (assuming exponential PSD)
bm Exponent of the mass–size power law
am Prefactor of the mass–size power law
βa Exponent of the area–size power law
αa Prefactor of the area–size power law
Ar Aspect ratio (see Sect. 3.1.3)
TurbX Broadening X band
TurbW Broadening W band
WindX Radial wind X band
WindW Radial wind W band
LnoiseX Noise level at the X band
LnoiseW Noise level at the W band

only two coefficients of the SSRGA (κSSRG, βSSRG), while
current literature suggests that more coefficients should be
used (γSSRG and ζSSRG; see Hogan et al., 2017, for details
on the coefficients); furthermore, the variability of the scat-
tering parameters shown, for instance, in Ori et al. (2020) or
in Fig. 5 of Leinonen et al. (2018a) was neglected when the
parameters were sampled (see Appendix B2). It should also
be kept in mind that the SSRGA would fail to represent large
graupel particles, although Ori et al. (2020) suggests that its
validity extends to particles with a relatively high riming de-
gree. These assumptions can thus naturally be questioned.
We, however, believe that it was reasonable to use the sim-
plest possible parameterization for the initial development
of the method and, in particular, to use a common SSRGA
framework for all scattering calculations, leaving possible
improvements of the forward model to future work.

3.1.2 Forward model inputs

When generating this training set, a trade-off has to be de-
fined: if the dataset is too narrow, that is, if it does not cover
a large enough range of values and combinations for the mi-
crophysical descriptors, this will cause a bias in the retrieval;
conversely, if the range of values is much too large, this will
hinder the training process, for it will include non-realistic
values. It was therefore chosen to parameterize PAMTRA by
sampling the microphysical properties using a large obser-
vational dataset collected using the Multi-Angle Snowflake
Camera (MASC) during 10 field deployments. These data
were organized into a database, MASCDB, in Grazioli et al.
(2022). We follow the method presented in this study (Grazi-
oli et al., 2022, Sect. “Technical Validation”) to derive from
the database the microphysical parameters required in the
forward model (Sect. 3.1, Table 1). Four categories of parti-
cles are used: aggregates, planar crystals, columnar crystals,
and graupel. For each type of particle and for each parameter,
a distribution is fitted to the empirical histogram calculated
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Table 2. Parameters of ROXI and WProf radars during the ICE GENESIS deployment. WProf range and time resolution (as well as Nyquist
velocity) are defined in three chirps. The lower chirp ranges from 100 to 900 m, the second one from 900 to 3900 m, and the higher one from
3900 to 9000 m.

Radar properties ROXI WProf

chirp 0 chirp 1 chirp 2

Frequency (GHz) 9.48 – 94 –
Beamwidth (◦) 1.8 – 0.53 –
Time resolution (s) 3.5 – 5 –
Range resolution (m) 50 7.5 16 32
Velocity resolution (m s−1) 0.1 0.02 0.014 0.013
Nyquist velocity (m s−1) 11 10.8 6.92 3.3
Sensitivity (dBZ) (at range, km) −19 (2) −45 (0.5) −41 (2) −39 (5)

from the database. We refer to Appendix B1 for more de-
tail. When generating the training set, parameters are then
randomly sampled from those distributions. It is worth high-
lighting that all parameters are sampled independently, with
the exception of am and αa. Indeed, as pointed out in Grazi-
oli et al. (2022), a strong correlation exists between am and
bm, and between αa and βa; thus, empirical fits are used from
which am (respectively αa) is sampled for a given bm (respec-
tively βa), with the addition of randomness using the mean
squared error of the fit. The definition of aspect ratio Ar is
slightly different between the MASC dataset and the SSRGA
parameterization: in the former, it is equal to the ratio of mi-
nor axis length to major axis length (Garrett et al., 2015),
while in the latter – as mentioned above – it is equal to the
particle’s dimension along the direction of the radar beam, di-
vided by maximum dimension. After some empirical explo-
ration, it was decided to use nonetheless the histograms from
MASCDB, given that the distributions were quite broad, in-
dicating that this difference in definition should not bias the
retrieval. Ice water content is the only parameter for which
MASCDB does not provide estimates; therefore, it was em-
pirically decided, based on the literature (Noh et al., 2013)
and preliminary analyses of aircraft in situ measurements
during the ICE GENESIS campaign (see Sect. 3.2), to sam-
ple it from a negative exponential distribution with a mean of
0.5 g m−3.

3.1.3 Generation of the training set

Each item of the dataset is generated through the following
procedure.

1. A particle type is randomly sampled among the four
aforementioned types. Given the large variety that
exists within the aggregate category, as observed in
MASCDB, it is given more weight in the sampling pro-
cedure (aggregates: 40 %; planar crystals: 20 %; grau-
pel: 20 %; columnar crystals: 20 %).

2. Microphysical descriptors are randomly sampled using
the MASC-based distributions.

3. PAMTRA is run on these descriptors, under the previ-
ously stated assumptions. The corresponding Doppler
spectra are computed for 9.48 and 94 GHz (frequency
of the radars used in this study; see Sect. 3.2), with 512
bins and a Nyquist velocity of 6.92 m s−1.

4. Then, turbulent broadening and spectrum shift due to
radial wind are added, with randomly sampled values,
different for the X band and for the W band. Including
these variables will allow the retrieval to handle possi-
ble velocity offsets in the X- and W-band spectra caused
by beam misalignment or differences in spectral broad-
ening due to the different beam widths of the radars.
While these could be computed directly in PAMTRA, it
was more computationally efficient to implement them
in post-processing in a vectorized way.

– The radial wind parameter includes the velocity
shift of the spectrum that could be caused by verti-
cal wind and beam misalignment, among others. It
is randomly sampled within [−2,+2] m s−1, i.e., in
the typical range of vertical wind in non-convective
precipitation.

– The broadening parameter is the size of the Gaus-
sian broadening kernel and includes the effect of
turbulent eddies but also accounts for all other
possible broadening causes (e.g., horizontal wind,
beam width). It is computed by randomly sam-
pling a value of atmospheric turbulence, repre-
sented by the eddy dissipation rate (sampled from a
negative exponential distribution with 10−3 m2 s−3

mean, consistent with some literature standards,
e.g., Sharman et al., 2014). The resulting broaden-
ing is derived following Shupe et al. (2008, Eq. 4);
the radar settings (e.g., beam width) used in these
equations are those of the W- and X-band radars
used in this study, described in Sect. 3.2.

5. Finally, for computational reasons, X- and W-band
spectra are both reduced to 256 points through bin aver-
aging.
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Ultimately, each item of the synthetic dataset contains an
input vector with 13 dimensions (see Table 1) and the cor-
responding simulated Doppler spectra (X and W band) with
256 bins each. We underline that the synthetic dataset con-
tains information only at the scale of the radar sampling vol-
ume at a given range gate, i.e., not a full spectrogram.

3.2 X- and W-band Doppler spectrograms

In this section, we present the experimental dataset used
for the implementation of the second part of the pipeline.
Measurements were collected during the 2021 ICE GENE-
SIS campaign, a joint ground-based and airborne field ex-
periment that was conducted in the Swiss Jura Mountains
in January 2021 and is fully described in Billault-Roux et
al. (2023). Data from X- and W-band vertically pointing
Doppler radars, which were located at Les Éplatures Airport,
are used. The X-band radar, in the following referred to as
ROXI (Viltard et al., 2019, Rain Observation with an X-band
Instrument), is a high-sensitivity 9.48 GHz Doppler spectral
profiler with 1.8◦, 3 dB beam width. It was deployed next to
a dual-polarization W-band 94 GHz Doppler spectral profiler
(WProf, Küchler et al., 2017) with 0.53◦ beam width. The
properties and settings of both radars are summarized in Ta-
ble 2. As preprocessing steps, the radars are cross-calibrated
and an attenuation correction is implemented at the W band
(similarly to Kneifel et al., 2015), as detailed in Appendix A.

Then, the spectrograms of both radars are remapped to
a common grid, by averaging in time (with a resolution
of 20 s), interpolating in range (resolution of 50 m), and
average-binning the velocity to the same bins as the syn-
thetic dataset, i.e., with 256 bins and a velocity cutoff vNyq =

6.92 m s−1. Only time frames with detectable signal in both
frequencies are used, leading to a total of ∼ 9000 profiles
corresponding to around 50 h of measurements, collected be-
tween 16 and 28 January.

3.3 Data for model evaluation

3.3.1 Polarimetric radar

MXPol (Schneebeli et al., 2013) is a polarimetric X-band
scanning radar that was deployed 4.8 km away from the
main site and performed routine range-height indicator (RHI)
scans in direction of the X- and W-band profilers during pre-
cipitation. Hydrometeor classification with demixing (Besic
et al., 2016, 2018) was performed on these data to estimate
from the polarimetric variables the proportions of hydrome-
teor types in the sampled volume. From the RHIs, remapped
to a Cartesian grid, profiles are extracted over the main site
with a horizontal δx =±500 m, using only elevation angles
below 45◦. The time series of hydrometeor classification ex-
tracted in this manner will be used qualitatively as an inde-
pendent verification tool to assess the performance of our mi-
crophysical retrieval.

3.3.2 Aircraft in situ measurements

In addition to the ground-based measurements, the ICE
GENESIS campaign included scientific aircraft overpasses
with remote-sensing and in situ instruments. The airborne in
situ data are particularly valuable for the quantitative evalua-
tion of the microphysical retrieval, presented in Sect. 5. Air-
borne measurements used in this work were collected during
three flights of the Safire ATR 42 (22, 23, and 27 January) as
the aircraft was performing overpasses over the ground site,
with data from several probes.

First, the counterflow virtual impactor (CVI, Anderson
et al., 1994; Schwarzenboeck et al., 2000) provides a mea-
surement of total water content (TWC), and the Cloud
Droplet Probe (CDP) provides a measurement of liquid wa-
ter content (LWC); from those measurements, an estimate of
IWC can be obtained as IWC= TWC−LWC. Two imag-
ing probes are also used, the 2D-S Stereo Probe (2D-S) and
the Precipitation Imaging Probe (PIP), sampling respectively
from 10 µm to 1.28 mm and 100 µm to 6.4 mm (Baumgard-
ner et al., 2017; McFarquhar et al., 2017, for a complete
reference). From the images of these probes, the method of
Leroy et al. (2016) is used to compute the PSD and derive
the following microphysical descriptors: mean aspect ratio,
mass–size power law coefficients, and area–size power law
coefficients. In order to estimate the D0 parameter, an ex-
ponential distribution is fitted to the PSD (leaving out small
particles withDmax < 800 µm, since it was empirically noted
that these did not follow this exponential behavior); instances
when the assumption of an exponential tail is invalid can be
identified by filtering the correlation coefficient of this fit.
This approach was chosen rather than computing moments
from the in situ PSDs, as those could potentially be affected
by the size cutoff at 6.4 mm, while the slope of the distri-
bution is expected to be a more robust indicator. For the
mass–size parameters, in addition to the CVI closure method
proposed by Leroy et al. (2016), another method is used
for particle-by-particle mass reconstruction based on Lawson
and Baker (2006); the methods are respectively denoted as
CVI and BL. All aircraft-based microphysical descriptors are
computed using 5 s running averages of the measurements.

3.3.3 Airborne radar retrieval

The aircraft was also equipped with an upward-looking W-
band radar (RASTA, Plana-Fattori et al., 2010) from which
values of IWC were derived (Delanoë et al., 2007), denoted
with the RASTA subscript. In order to compare IWCRASTA
to the in situ measurements, the closest valid radar gates are
used, which correspond to a vertical distance of 150 to 250 m
above the aircraft. For a fair comparison between airborne
RASTA retrievals and our inversion model, only time steps
when the aircraft overpasses the ground site are used – when
the aircraft is within a 1 km horizontal distance to the ground
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site (distance chosen to allow a sufficient number of points
for the comparison).

4 Deep-learning inversion framework

This section addresses the detail of the implementation of the
two-step framework outlined in Sect. 2. For designing and
training both the decoder and the encoder part of the model,
the PyTorch library is used (Paszke et al., 2019).

4.1 The decoder: a differentiable emulator of
PAMTRA

The first part of the framework consists in developing a
differentiable emulator of PAMTRA by designing a deep-
learning model and training it on the synthetic dataset
(Sect. 3.1). If viewed in perspective with the technique of
auto-encoders, this consists in learning the decoder, which
maps the latent space – containing the physical variables –
to the high-dimensional measurement space – the spectra. It
was chosen to train the X-band and W-band decoders sepa-
rately rather than use a single algorithm emulating both si-
multaneously; indeed, the two frequencies may have slightly
different smoothness or amplitude features, which justifies
the use of distinct architectures. Each decoder takes as input
a vector of dimension 10 containing IWC, D0, bm, am, βa,
αa, Ar, TurbF , WindF , and LnoiseF , where F is either X or
W. They output Doppler spectra with 256 points.

4.1.1 Decoder architecture

The model, whose architecture is illustrated in Fig. 2a, is de-
signed as a neural network (NN) with a first part composed of
fully connected layers and a second part composed of convo-
lutional layers. More precisely, since the aim of this decoder
is to increase dimensionality (from 10 to 256), we use one-
dimensional transposed convolutions which are well suited
for this purpose (Zeiler et al., 2010). Since using only trans-
posed convolutions can create artifacts, they are combined
with another type of layer that ensures a smooth output – a
linear upsampling layer followed by a standard convolution.
In order to improve the training of the model, residual blocks
(He et al., 2015) are used: these blocks contain skip con-
nections and batch normalization steps (Ioffe and Szegedy,
2015) and are quite popular in deep-learning applications. In
a nutshell, these techniques help mitigate issues caused by
the depth of the model: they do not per se improve the ex-
pressiveness of the neural network, but they strongly facili-
tate the training process. For instance, the skip connections
(illustrated in Fig. 2) propagate information from earlier lay-
ers to further stages of the neural network, and this reduces
the risk of gradients vanishing to zero during training (Bal-
duzzi et al., 2017).

Figure 2. Architecture of the decoder (a) and encoder (b) neural
networks. For the decoder, the architecture for the W band is shown;
that of the X band is extremely similar, with only slightly different
kernel widths. Skip connections indicate that the output of a given
layer is kept and added to the output of a residual block. Color cod-
ing indicates the type of each layer. The size of each layer is indi-
cated; when not stated, the layer is the same size as the previous one.
Note that for display reasons the velocity dimension is along the
vertical in panel (a) and along the horizontal direction in panel (b).

4.1.2 Decoder training

The synthetic dataset described in Sect. 3.1 is split into train-
ing, validation, and testing sets (80 %–10 %–10 %). The NN
is trained on the training set, while the validation set is used
to tune the architecture of the NN, and the testing set is used
for a final assessment of its performance (Sect. 5.1.1). The in-
put is normalized using the statistics of the training dataset,
with the mean and standard deviation of each variable. For
certain variables, the natural logarithm is used instead of the
original value, in order to have more homogeneously spread
distributions: this is the case for IWC, am, and αa. The net-
work is trained using the Adam optimizer (Kingma and Ba,
2015), with mean square error (MSE) as a loss metric and
with Xavier normal initialization of weights and biases (Glo-
rot and Bengio, 2010); in addition, the learning rate is period-
ically decreased with a scheduler. The network and training
hyperparameters are summarized in Table 3. It was observed
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Table 3. Hyperparameters of the encoder and decoder neural net-
works.

Hyperparameter Decoder Encoder

Activation ReLU ReLU
Range of kernel sizes 1× (2− 7) 3× (3− 7)
Number of input channels 1 2
Number of inner channels 30 30
Number of linear layers 3 0
Number of neurons in linear layers 60 –
Total number of parameters 35 000 150 000
Padding mode replicate replicate
Loss MSE MSE
Optimizer Adam Adam
Batch size 250 15
Number of epochs 3 200
Learning rate (initial) 1× 10−3 1× 10−3

Optimizer epsilon 1× 10−8 1× 10−6

Scheduler step/rate 0.6/0.2 90/0.5
Parameter initialization Xavier Xavier

that the spectra output by the NN could have a tendency to
slightly underestimate the peak values, because of a flatten-
ing effect common in such methods that use MSE as a loss
metric. Hence, we add to the main loss a secondary loss cal-
culated as the MSE computed only on the part of the spec-
trum close to its peak (above 50 % of its amplitude).

4.2 The encoder: retrieving a profile of latent variables

In the second part of the framework, a second deep neural
network, the encoder, is used to learn the inverse mapping.
Taking as input dual-frequency spectrograms (i.e., an array
of shape Nrg×256×2, with Nrg the number of range gates),
it outputs vectors in the latent space, of shape Nrg× 13, with
13 being the total number of latent dimensions retrieved, as
detailed in Table 1. In this section, we refer to the first di-
mension as the “range” dimension, to the second one as the
“feature” dimension, and to the last one as the “channel” di-
mension.

4.2.1 Encoder architecture

The neural network designed for this part uses two-
dimensional convolutions, which allow us to reduce the fea-
ture dimension from 256 to 13. In order to keep the range
dimension constant (equal to Nrg), padding is used, which
means artificially increasing the size of the array – by repli-
cating the items on each side, respectively in the first and last
position – before performing the convolution. Similar to the
decoder architecture, residual blocks with skip connections
and batch normalization steps are used. Additionally, aver-
age pooling along the feature dimension is performed after
each residual block. The size of the convolution kernels along
the range dimension gives a sense of the scale at which we

can expect meaningful spatial correlation – both in the latent
space and in the measured spectrograms. It is, however, not
directly interpretable: as the NN contains stacks of convo-
lution layers, the field of view progressively increases with
model depth; the output of the NN at a given range gate is
influenced not only by its closest neighbors but also by range
gates which are further away. The full architecture of the en-
coder is displayed in Fig. 2b.

4.2.2 Encoder training

The encoder is trained using the radar data presented in
Sect. 3.2. The spectrograms are normalized using the same
statistics as in the decoder part (means and standard devi-
ations of the synthetic spectra). Rather than using the en-
tire Doppler spectrograms (Nrg = 100) as one training item,
chunks of the spectrograms are used with Nrg = 25 and are
sampled in the following way: the first chunk corresponds
to irg = 0. . .24, the second chunk to irg = 5. . .29, the third
to irg = 10. . .34, etc., with irg being the range gate index.
The dataset is then randomly shuffled at each epoch during
training. Rearranging the dataset in this way makes train-
ing both more tractable, thanks to the smaller size of each
item, and more robust, due to the data augmentation, which
helps avoid local minima during the training process. Dur-
ing training, the encoder output is passed as input to the X-
and W-band decoders, which then output reconstructed spec-
trograms. The reconstruction loss is the MSE between the
reconstructed (S̃W, S̃X) and the original spectrograms (SW,
SX): Loss= (S̃X−SX)

2
+(S̃W−SW)

2). The encoder param-
eters are then updated at each step to minimize this loss, here
with the Adam optimizer. Training parameters are reviewed
in Table 3. It is important to note that the decoders’ parame-
ters are frozen at this step: only the encoder is being learned;
this differs from classical auto-encoder models, for which the
decoder and encoder are trained simultaneously.

Estimates of the latent features are then obtained from
the encoder’s output, after inverse normalization and expo-
nential transform for those variables whose logarithm was
used as input to the decoder (see Sect. 4.1.2). To prevent
occasional convergence toward unrealistic values in the la-
tent space (e.g., D0 < 0), an additional constraint was in-
corporated to the loss term to penalize latent values out-
side of a manually defined range: for a given feature x with
realistic bounds xmin and xmax, this secondary loss reads
Lsec(x)= 1(x<xmin)× (x− xmin)

2
+ 1(x>xmax)× (x− xmax)

2.
Here 1(x<xmin) denotes the function which is equal to 1 when
x < xmin and to 0 otherwise.

4.3 Ensemble approach for uncertainty quantification

In order to estimate the uncertainty of the retrieval, an en-
semble approach is used: several runs are performed for both
of the decoders and the encoder, each trained independently
with random weight and bias initialization. In the end, a to-

Atmos. Meas. Tech., 16, 911–940, 2023 https://doi.org/10.5194/amt-16-911-2023



A.-C. Billault-Roux et al.: Dual-frequency spectral retrieval of snowfall microphysics 921

Figure 3. Examples of results of the synthetic testing set of the
decoders, showing the decoder output (dashed red) and the tar-
get PAMTRA-generated spectrum (black line) at the (a) W band
and (b) X band. The examples were chosen to reflect some of
the typical behaviors and possible artifacts that were observed; the
X- and W-band examples do not correspond to the same micro-
physical properties. Units of spectral reflectivity are used, defined
as 1 dBsZ= 10log10 (1 mm6 m−3 (m s−1)−1). Doppler velocity is
positive for downward motion.

tal number of 50 runs is used to compute mean values and
standard deviations for each retrieved variable. This both en-
sures a greater robustness of the retrieved values, which are
less likely to reflect local minima, and provides an uncer-
tainty estimate for the retrieval. This is especially relevant
given the under-determination of the problem: with this en-
semble approach, we can illustrate the uncertainty related to
the remaining intrinsic ill-posedness of the model. On the
downside, this implies a lengthier process since training is
a computationally demanding task that typically takes a few
hours on a standard GPU.

5 Results

5.1 Training convergence and accuracy

This section is dedicated to the evaluation of the pipeline and
the verification of its convergence, which is a necessary step
before examining the retrieved latent variables themselves.

5.1.1 Decoder

The training of the decoder networks was successful, with
the loss function decreasing with the number of epochs un-
til it plateaus. It was verified that increasing the training set
size did not result in a change of this plateau value, mean-
ing that the training dataset was large enough for the chosen
NN complexity. Examples of model outputs on the synthetic
testing set are shown in Fig. 3.

Since the loss function (MSE on normalized spectra) is not
easily interpretable to assess the model’s performance, the

following metric was defined to quantify the overlap of two

spectra: O(S, S̃)= 0.5

[ ∫
min

(
S∗,S̃∗

)
∫
S∗

+

∫
min

(
S∗,S̃∗

)
∫
S̃∗

]
, where

S∗ = S−min(S) and S̃∗ = S̃−min(S); O(S, S̃) is equal to
1 (or 100 %) when the spectra are perfectly identical and to
0 if they are disjoint. A detailed illustration of this metric is
provided in Appendix D.

On the synthetic testing set, the overlap for the X band
(respectively W band) is of 90.7 % (respectively 94.8 %), as
an average over five different runs with random initialization.
This reflects a good, although not perfect, performance of the
algorithm. Looking at a few examples of individual spectra,
it comes across that the model has a slight tendency to un-
derestimate the peak of the spectrum (see, for example, the
X-band spectrum chosen in Fig. 3), despite the secondary
loss that was used; however, the rather good overall agree-
ment between target and output spectra suggests this is not
a critical issue. Additionally, we observe that performance is
slightly worse for X-band spectra than for W-band spectra,
in spite of some efforts to adjust the neural network architec-
tures independently to improve each model’s accuracy. This
could be related to the fact that W-band spectra have a lower
noise level, meaning the actual signal – the peak – occupies a
larger part of the spectrum than for the X band, which could
in turn facilitate learning.

5.1.2 Encoder

Training of the encoder is also successful: the full pipeline
is able to reconstruct original spectrograms in a satisfactory
manner, as is visible in Fig. 4. Only W-band spectrograms are
shown, but results are visually very similar at the X band. The
overlap metrics are slightly below the ones of the decoder
alone (86 % and 91 % for X- and W-band spectrograms, re-
spectively); this slight decrease can be expected for several
reasons: first, the real spectrograms include high-shear re-
gions with significant turbulent broadening (which can be vi-
sually identified as regions with suddenly much wider spec-
tra, along with variable velocity, e.g., in Fig. 4 below 500 m),
which the model cannot be expected to resolve perfectly.
Then, some time steps include bimodal spectra (e.g., 2.5–
3.5 km), which the model in its current state is unable to
replicate. When looking only at spectrograms with moderate
apparent turbulence (e.g., 0.5–1.5 km) and strict unimodal-
ity, the overlap metrics are similar to the decoder. Finally,
it is also empirically observed that in some cases (Fig. 4e)
the model can slightly underestimate the peak of the spectro-
grams, which is a propagation of the decoder behavior. As
a safety check, it was also verified that running PAMTRA
on the latent variables also led to spectrograms close to the
original ones, as displayed in Fig. 4c.

Let us point out at this stage that unlike most machine-
learning models, which are trained on a dedicated dataset
and then implemented on independent data, the encoder is
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Figure 4. Examples of W-band spectrograms: (a) measured, (b) reconstructed through the pipeline, and (c) reconstructed in PAMTRA from
the learned latent features. Corresponding spectra from selected altitudes are displayed in panels (e), (f), and (g); they are indicated with
dashed white lines in the spectrograms. The reconstruction of X-band spectrograms (not shown) is of similar quality. (d) IWC and D0
profiles retrieved from these spectrograms.

here trained directly on the data of interest. Indeed, the aim is
not to create a generic model that can be used to retrieve mi-
crophysical variables from any dual-frequency spectrogram:
the aim is to find the latent variables which minimize the re-
construction error on specific measurements; the encoder can
learn any relevant feature from the input data to achieve this
goal. In that sense, overfitting the data, which can be an issue
in usual machine-learning problems, is not a concern when
training the encoder. It is, however, preferable to train the
model on a large enough dataset rather than just a few spec-
trograms: this reduces the risk of converging toward local
minima that would correspond to non-physical combinations
of microphysical parameters.

5.2 Qualitative assessment of the retrieval

5.2.1 Microphysical parameters

This section presents a qualitative perspective on the retrieval
results, based on a snowfall event that took place on 23 Ja-
nuary 2021. Figure 5 features time series of some relevant
radar measurements (left column) and retrieved microphys-
ical variables (right). The radar data include ZeX, the dual-
frequency reflectivity ratio (DFRXW), Doppler velocity and
spectral width (at the W band), and the hydrometeor clas-
sification from MXPol (see Sect. 3). Let us highlight that
the latter classification, derived from polarimetric variables,
is completely independent from WProf and ROXI spectro-
grams. The microphysical variables included are IWC, D0,
bm, βa, and Ar. The variables am and αa, not shown, are
highly correlated to respectively bm and βa (see, e.g., Figs. 10
and B4).

A first general observation from the retrieval time series
is the persistence of spatiotemporal structures visible in the
radar data, like the fall streaks. While the pipeline explic-
itly took into account the spatial consistency of the measure-
ments – through the use of convolutions – the temporal fea-
tures are never used in the training of the model. It is thus
reassuring that the full spatiotemporal features are well cap-
tured by the retrieval method.

The retrieved values are also fairly consistent with the
physical interpretation that stems from the radar measure-
ments. IWC correlates quite strongly with ZeX values; i.e.,
large IWC values are retrieved for strong reflectivity mea-
surements (e.g., around 15:10 and 15:50 UTC). The size pa-
rameter D0 also matches the intuition, with small diameters
near cloud top and some localized pockets with large values,
e.g., around 15:10 UTC between 1 and 2 km range, which
correspond to regions of large dual-frequency ratio. The D0
time series also agrees seemingly well with the hydrome-
teor classification that tends to identify aggregates in regions
where D0 is larger (with, for example, the same fall streak
around 15:10 UTC).

The βa exponent of the area–size relation features smaller
values when ZeX and DFR are low, which is compatible with
small non-disk-like particles such as columnar crystals, while
larger values could indicate aggregates or rimed snowflakes.

Somewhat more noisy are the mass–size exponent bm and
the aspect ratio Ar, although their values and spatial trends
still seem reasonable. They are rather correlated, which is not
unrealistic: particles with an aspect ratio near 1 are rounder
and thus closer to spheres, which in turn have a bm close
to 3. Indications of riming in the hydrometeor classification
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Figure 5. Height–time plots of radar measurements and microphysical retrievals. The left panels contain radar data: (a) ZeX; (b) DFRXW;
(c) W-band mean Doppler velocity; (d) W-band spectral width; and (e) time series of hydrometeor classification with demixing showing
the proportion of the three main particle types identified – here, aggregates, rimed particles, and crystals (see Sect. 3.3). The right panels
feature microphysical retrievals: (f) ice water content, (g) size parameterD0, (h) area–size exponent βa, (i) aspect ratio Ar, and (j) mass–size
exponent bm.

(visible as yellowish-red regions) roughly correspond to re-
gions with larger Ar and bm, as expected from rimed parti-
cles (e.g., 15:10 UTC between 0.5 and 1 km, 15:50 UTC be-
tween 0 and 1.5 km, and 16:00 UTC around 1 km). Addition-
ally, small values of bm and Ar are retrieved near cloud top,
consistent with crystal-like particles, while fall streaks where
high D0 values point to aggregation (15:00 to 15:20 UTC)
also have medium-high bm and Ar. A few time steps stand
out with large values of Ar and bm, coinciding with regions
where large spectral width and variable Doppler velocity
suggest strong turbulence (16:00 UTC, 1 km). In such high-
turbulence cases, the retrieval cannot be expected to perform
perfectly since the shape of the spectra is then largely domi-
nated by turbulent broadening.

Let us add a few words about correlations between cer-
tain variables. As mentioned before, some expected consis-

tent behaviors are observed in the retrieval, like the apparent
correlation between bm and Ar or betweenD0 and βa. This is
not in any way enforced by the pipeline, since those variables
are prescribed independently when generating the training
set. The correlations between am and bm (and αa and βa),
which are also expected, are slightly different: when building
the training set (see Sect. 3.1 and Appendix B1), these vari-
ables were sampled in a correlated way – with some noise
included – to avoid completely unrealistic combinations, and
this may therefore influence the retrieval; however, the vari-
ables are not explicitly constrained during the training of the
encoder: it is therefore reassuring to see that the model output
still follows the expected correlations.
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5.2.2 Other retrieved variables

In addition to the microphysical descriptors, the latent fea-
tures comprise other quantities which are required by the
pipeline in order to reconstruct the spectrograms (see Ta-
ble 1). These are not designed to serve a proper physical in-
terpretation, but their behavior should still be assessed.

The noise level is only related to instrument properties and
range gate, and in no way is it related to microphysical or at-
mospheric processes. As visible in Fig. 6a and b, the noise
level estimates are exactly what could be expected and re-
flect the evolution of the radars’ sensitivity with range. At
the W band, the abrupt change of sensitivity around 900 m
range is due to the change of chirp table. Some artifacts are
also visible (Fig. 6b, 16:00 UTC at 1 km) in the same regions
of Fig. 5, where the other retrieved values visually also ap-
peared less reliable. This is again possibly related to the pres-
ence of strong turbulence in these areas – as suggested by en-
hanced spectral width and varying mean Doppler velocity –
which can indeed be expected to affect the retrieval accuracy.

The radial wind estimates serve to artificially correct for
shifts of the Doppler spectra caused either by vertical wind
(up- or downdrafts), contamination by horizontal wind in
the case of imperfectly vertical radar beams, or by biases in
the velocity–size relation of the forward model. Their inter-
pretation as a physical atmospheric quantity should thus be
avoided. However, it is rather reassuring to see in Fig. 6c
and d that the X and W band are not too far off and es-
pecially that their cofluctuation is satisfactory: the opposite
would be a problem since the Doppler velocity time series
of both radars are rather similar (not shown). Likewise, the
broadening parameters are similar in the X and W band and
also somewhat follow the spectral width (Fig. 5d). We recall
that the broadening parameters are not expressed in physi-
cal units but as the size of the Gaussian kernel that results
in the observed broadening. This is kept as such to high-
light that these variables include all the broadening causes
(not just turbulence, but possibly also horizontal wind) and
are rather a side product of our retrieval than descriptors
of actual atmospheric dynamics. A reasonable agreement is
found (not shown) when comparing these values to broad-
ening estimates derived through classical methods (Borque
et al., 2016; Shupe et al., 2008), which rely on the variability
of mean Doppler velocity and on wind profiles.

5.3 Comparison to in situ data

In this section, we take a step further in the evaluation of the
retrieval by performing quantitative comparisons with air-
borne in situ measurements.

5.3.1 Ice water content

Figure 7 illustrates retrieval results of ice water content
in comparison with in situ estimates, computed as IWC=

TWC−LWC (see Sect. 3.3). Figure 7a and b show the time
series of ice water content – first as a time–height plot to
which the aircraft trajectory is added and then along the air-
craft trajectory to which retrieval outputs are overlaid at time
steps of overpasses. The comparison is overall good, with
satisfactory cofluctuations as well as reasonable agreement
in the values themselves. For reference, the IWC retrieved
from RASTA measurements is also displayed (Delanoë et al.,
2007, see Sect. 3.3), which appears slightly more variable. In
Fig. 8a, the scatterplot of retrieved to measured IWC com-
bines the results from the three flights; the points are color-
coded with ZeX to illustrate that large IWC corresponds to
large reflectivity, as expected and already noted in the quali-
tative analysis. The error bars illustrate the ensemble spread
(standard deviation) of the retrieval realizations as described
in Sect. 4.3. This scatterplot confirms the robustness of the
retrieval results and their good correlation to the measured
IWC (R = 0.87 in logarithmic scale), with, however, the ex-
istence of a slight bias toward low values (−0.19 in logarith-
mic scale). Surely, the spread of the values remains substan-
tial, sometimes within orders of magnitudes, but it should
be kept in mind that, even at times of overpasses, the air-
craft is not perfectly colocated with the radar measurements
and that the sampled volumes are not identical; additionally,
the single-frequency RASTA retrieval seems to have an even
larger variability than our retrieval.

5.3.2 Size parameter D0

Aircraft measurements do not provide a variable that can di-
rectly be compared to the D0 retrieved through our method.
Hence, we use the values ofD0 derived from the exponential
fit of the in situ PSDs (see Sect. 3.3, Fig. 9a). In order to mon-
itor the validity of this approach, the correlation coefficients
of the fits are also included in the time series and are typically
very high (often R > 0.9). Our retrieval is superimposed to
the time series and compared to the in situ values in Fig. 8b
using all available flights. While this was not perceptible in
the qualitative analysis, D0 retrievals actually show a strong
bias (+1.3 mm) when compared to aircraft measurements,
leading to an overestimation of particle size. An investigation
of possible causes for this behavior is proposed in Sect. 6.
This being noted, the cofluctuation between retrieved and in
situ D0 is nonetheless good (R = 0.74), which gives confi-
dence that the retrieval is still highly relevant for process-
oriented studies: there, even more than the actual values, the
changes and evolution of particle size can indicate the occur-
rence of specific snowfall growth or decay mechanisms.

5.3.3 Mass–size and area–size relations

Mass–size and area–size power law coefficients are explic-
itly computed from the aircraft measurements and can there-
fore be compared to our retrieval. However, the time se-
ries of these aircraft quantities are highly noisy, and thus
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Figure 6. Time–height plot of additional retrieved variables: (a) (respectively b) noise level at the X (respectively W) band; (c) (respectively
d) radial wind at the X (respectively W) band; (e) (respectively f) broadening at the X (respectively W) band.

Figure 7. (a) Time–height plot of IWC retrieval, to which the aircraft trajectory is overlaid as altitude as a function of time; aircraft IWC
values at time steps of aircraft overpasses (horizontal distance smaller than 1 km) are shown as scattered points. Dashed vertical lines indicate
when the aircraft is within 500 m of horizontal distance to the radars. (b) Time series of water content measured by the aircraft (TWC and
TWC−LWC) and overlaid radar retrieval.

point-to-point comparisons did not appear meaningful; it was
therefore preferred to perform a statistical analysis. For each
flight, we compare the histogram of bm (respectively βa)
sampled by the aircraft during its entire flight (except for
the part of the flight to and from the campaign location) to
the histogram of retrieved bm (respectively βa) above the
radars, during the time frame of the flight and in the alti-
tude range sample by the aircraft, which excludes, for in-
stance, regions near cloud top. The histograms of bm agree
rather well (Fig. 10a), with a similar mode around 2.2, al-
though fewer values below 2 are retrieved. In Fig. 10b, the

histograms again have relatively close peak values (around
1.6 for the retrieval and 1.7 for the aircraft). There, however,
and for bm to a lesser extent, the retrieved value histogram
is much narrower than the aircraft one. This is not too sur-
prising, given how noisy the aircraft measurements are and
considering that the volume sampled by the PIP and 2DS
probes is much smaller than the radar volume – which au-
tomatically increases the variability and flattens the distri-
bution. With this in mind, these histograms support a rather
good consistency of the retrieval with the aircraft measure-
ments.
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Figure 8. Scatter plots of retrieved vs. aircraft measurement of
(a) IWC and (b) size parameter D0. Each point corresponds to a
time step when the aircraft is within 1 km horizontal distance to the
radars. Three flights are used (22, 23, and 27 January). Color indi-
cates corresponding (a) ZeX and (b) DFR. The black vertical lines
indicate the standard deviation of the retrieval.

In addition, we verify that the relations between am and bm
(respectively αa–βa), retrieved and measured, are consistent:
this is visible in Fig. 10c (respectively d), where the scatter-
plots of am vs. bm (respectively αa vs. βa) are overlaid. Al-
though not perfect, the match is reasonable. Let us highlight
that, once again, retrieved βa values are narrower, consistent
with the histograms.

5.3.4 Aspect ratio

The last microphysical variable for which we can perform a
comparison is the mean aspect ratio: similarly to the mass–
size exponent, Fig. 11a displays the histogram of retrieved
and aircraft values. A significant difference is visible in the
modes, with the aircraft values around 0.45 and the retrieval
mode around 0.6; this, however, is consistent with the differ-
ence in the definitions of aspect ratio in each case. The aspect
ratio retrieved through our pipeline is Ar,v, defined as the ra-
tio of particle dimension along the vertical to maximum di-
mension, whereas the aircraft measurement is Ar,⊥, which is
the ratio of minor axis length to maximum dimension. Relat-
ing both quantities is not directly possible without having ad-
ditional information on particle orientation, but an intuition
can be gained from Fig. 11b, where the relation between Ar,v
and Ar,⊥ is shown for particles randomly oriented within a

certain angle (90◦ corresponds to completely random orien-
tation). Using the relations of Fig. 11b, a transformed his-
togram is included in Fig. 11a, showing the equivalent air-
craft Ar,v assuming ellipsoidal particles with random orien-
tation within 75◦: it fits rather well with the retrieval. While
this is not per se rigorous, it gives a qualitative understanding
of the observed discrepancy. Note that the aspect ratio val-
ues derived from the in situ images are themselves prone to
some bias, as discussed in Jiang et al. (2017), due to the pro-
jection of three-dimensional particles in a two-dimensional
space. This bias would, however, be opposite to what is ob-
served here and is likely not dominant in our study. Another
element to consider is that aspect ratio is assumed to be the
same across the particle size distribution, which may well
be an oversimplification; in particular, smaller particles may
have smaller aspect ratios which would affect the aircraft-
derived quantity differently than the radar-based estimate.

6 Discussion

While the results are overall encouraging, the previous sec-
tion highlighted some points that call for further discussion.
This section investigates the sensitivity of the pipeline to cer-
tain key hypotheses and provides some insight into possible
causes for the bias in D0.

6.1 Sensitivity to miscalibration and differential
attenuation

One limitation of our framework is that it requires a good cal-
ibration of the radars – both absolute and relative – as well
as an independent correction of attenuation. As detailed in
Appendix A, the issue of attenuation was here tackled by
implementing a correction of W-band reflectivity based on
estimates of gaseous, snowfall, and liquid water attenuation.
This correction method is, however, error-prone, and we can-
not exclude that reflectivity biases are present in the measure-
ment dataset. The presence of supercooled liquid water cloud
layers or wet snow can be particularly difficult to identify
and diagnose, while it can strongly attenuate the millimeter-
wavelength signal (with, e.g., path-integrated attenuation up
to 5 dB for liquid water paths of 500 g m−2; Kneifel et al.,
2015). To assess the possible importance of inaccurate cal-
ibration or attenuation correction on the retrieval, we inves-
tigate its sensitivity to reflectivity offsets, both absolute and
relative.

Figure 12 shows the mean bias of retrieved IWC and D0,
computed as the mean difference between retrieved values
and aircraft measurements, when a constant offset in reflec-
tivity is added to the input X- and W-band spectrograms. The
following behavior is observed, in accordance with previous
qualitative observations: IWC is especially sensitive to X-
band reflectivity (as illustrated in Fig. 12b and by the rather
horizontal color gradient in Fig. 12a). Rather, D0 is more
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Figure 9. As for Fig. 7 but for D0.

Figure 10. Histograms of (a) mass–size and (b) area–size exponents. Scatter plots of (c) mass–size and (d) area–size exponent to prefactor,
from retrieval and aircraft measurements (see Sect. 3.3).

sensitive to differential offset, i.e., to changes in the DFR (as
illustrated in Fig. 12d and by the rather diagonal color gradi-
ent in Fig. 12c).

While this Ze calibration is undoubtedly a key factor in
the uncertainty of the algorithm, it does not appear to cause
extreme divergence in the retrieval: the changes in D0 and
IWC shown in Fig. 12, while not negligible, are also not mas-
sive. In particular, Ze miscalibration solely could not explain
the observed D0 discrepancy: changing the DFR of −6 dB –

which is substantial – only brings down the bias from 1.3 mm
to around 1.0 mm.

We note (not shown) that shifting the spectra by constant
or relative velocity offsets, to mimic one of the effects of
radar mispointing, only minimally affects the retrieval of mi-
crophysical properties and mostly translates into changes in
the retrieved radial wind.
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Figure 11. (a) Histogram of retrieved and aircraft-measured aspect ratio. (b) Illustration of the relation between Ar,⊥ and Ar,v for particles
with random orientation within a given angle θ ; the various quantities are sketched in the bottom right of panel (b).

Figure 12. (a) Heat map of IWC bias as a function of X- and W-band reflectivity offset; the bias is computed using the aircraft values as
reference. (b) Different visualization showing IWC bias as a function of ZeX offset. (c) As for panel (a) but for D0. (d) As for panel (b) but
for D0 and offset in the dual-frequency ratio.

6.2 Training set limitations

Another aspect of our framework which could cause a bias
in the retrieval is if the training set is too narrow. While spe-
cial attention was paid to this potential issue as the micro-
physical parameters were sampled from the MASC database,
there is likely still room for improvement. In particular, the
size cutoff for good-quality images in the MASC is quite
high, and very few particles with a diameter below 0.5 mm
are accurately captured. For reference, Fig. 13 illustrates the
histogram of D0 derived from MASC measurements (Grazi-
oli et al., 2022) and by the aircraft 2D-S and PIP probes
during the ICE GENESIS campaign. The limitation is ap-
parent: the aircraft is able to capture much smaller particles
but not beyond a certain size, while the MASC can detect
large snowflakes but very few small particles. The framework

would thus probably benefit from training the decoder on a
larger dataset that would include a better representation of
this smaller particle range. It is yet unlikely that this would
entirely resolve the size bias, for there is still an overlap be-
tween the aircraft-measured size range and that on which the
model was trained.

6.3 Scattering model

Surely one of the strongest hypotheses on which the pipeline
was built is the parameterization of the scattering model in
forward simulations. As explained in Sect. 3.1.1 and Ap-
pendix B2, the default version of PAMTRA was used, which
to this date (28 June 2021) assumes constant values for cer-
tain parameters of the SSRGA and allows us to change two
coefficients (κ and β; see Hogan and Westbrook, 2014, and
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Figure 13. Histogram of D0 from aircraft measurements (PIP and
2D-S) during ICE GENESIS (red) and from MASC measurements
(MASCDB).

online documentation; Mech et al., 2023). Several studies
suggest, however, that more parameters are needed and more-
over that their values can vary significantly (e.g., Leinonen
et al., 2018a; Ori et al., 2020) depending on particle type and
shape, among others.

To get an empirical sense of how this could affect the re-
trieval, the approach described hereafter was followed. First,
a few time and range gates were randomly selected from the
dataset. The corresponding retrieved values were then modi-
fied by adding aD0 offset ranging from−1.5 to+2 mm, and
PAMTRA simulations were run on the microphysical param-
eters obtained, using the same settings as in Sect. 3.1.1. Par-
allel to that, slight modifications of the PAMTRA code were
conducted to allow for modification of the four literature co-
efficients of the self-similar Rayleigh–Gans approximation
(κSSRG, βSSRG, γSSRG, ζSSRG); new simulations were run for
the selected time and range gates, keeping the retrieved mi-
crophysics unchanged but randomly changing the SSRGA
parameters within ±10 % of their original values. As seen in
Appendix B2, this is well within the typical variability of the
coefficients calculated from simulating various types of parti-
cles (e.g., Leinonen et al., 2018a, Fig. 5). A visual inspection
suggests that changes in D0 and changes in SSRGA coeffi-
cients mostly affected the amplitude of the spectra: hence,
the influence of these changes was measured by the change
in the scalar total reflectivity at the X and W band and then in
the dual-frequency ratio. The obtained results are illustrated
in Fig. 14 (details in the caption): they suggest that moder-
ate changes in the SSRGA parameters could have an impact
similar to varying the size parameter by approximately 1 mm
(−0.6 to +1.5 mm), which is a significant change. Taking
this investigation a step further, the influence of each of the
four parameters can be computed independently by follow-
ing the same steps but changing only one coefficient: it ap-
pears that the output is most sensitive to βSSRG and γSSRG,
which each cause amplitude changes corresponding to 1D0
of at least ±0.4 mm. Obviously, this empirical analysis can-
not be directly translated into a quantitative interpretation,
yet it highlights that the scattering model can have a sub-

Figure 14. Colored lines with scattered points: 1SDFR caused by
adding a diameter offset 1D0 on microphysical descriptors of se-
lected (time, range) gates. Horizontal lines: for each of these (time,
range) gates, maximum 1DFR (positive and negative) caused by
a modification of the SSRGA coefficients within ±10 %. For each
selected (time, range) gate, the intersection of the horizontal and
colored lines gives a 1D0 value which causes the same change in
DFR as a change in SSRGA coefficients (worst case). Dashed ver-
tical lines show the mean of these 1D0 values.

stantial influence on the retrieval. This leads us to believe
that the D0 bias observed when comparing our retrieval to
aircraft measurements is partly caused by an inaccurate or
insufficient parameterization of the radiative transfer model.
In order to remedy this effect, a forward model with a more
subtle parameterization is likely required when designing the
decoder training set.

6.4 Shape of the particle size distribution

Another underlying hypothesis that was made when design-
ing the pipeline and defining the set of microphysical de-
scriptors was to consider only exponential particle size distri-
butions. This choice was made to keep a minimal number of
retrieved parameters at this stage. It is, however, known that
multi-frequency signatures, on the one hand, and Doppler
spectra, on the other hand, are both affected by PSD shape
(e.g., Mason et al., 2019; Barrett et al., 2019, respectively).
Here, we conduct a similar analysis as in the previous sub-
section: this time, as changes in the PSD shape mostly in-
fluence the shape of the spectrum, we focus on the skew-
ness of the W-band spectrum (instead of the DFR) as a met-
ric to understand how changing the shape of the PSD could
influence the retrieval. A gamma distribution was assumed
(N(D)=N0D

µ exp(−D/D1), e.g., Petty and Huang, 2011),
constraining D1 by keeping the effective diameter constant
(Deff = 3D0) and varying the shape parameter µ in the range
[−2, +5] as observed in snowfall (Mason et al., 2019). Fig-
ure 15 illustrates that changes in the PSD shape may have a
similar effect on W-band spectrum shape as varying D0 of
approximately 1 mm (−0.9 to +1.5 mm). Here, again, this
observation is mainly qualitative and cannot be directly used
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Figure 15. Colored lines with scattered points: relative change in
W-band skewness γW (1γW/γW) caused by adding a diameter
offset 1D0 on microphysical descriptors of selected (time, range)
gates, if assuming an exponential PSD. Horizontal lines: for each
of these (time, range) gates, maximum relative change in skewness
caused by a modification of the PSD shape (assumed a gamma dis-
tribution, µ in the range [−2, +5]); the maximum increase (respec-
tively decrease) in skewness, solid line (respectively dashed line),
is consistently obtained for µ= 5 (respectively µ=−2). For each
selected (time, range) gate, the intersection of the horizontal and
colored lines gives a 1D0 value which causes the same relative
change in skewness as a change in PSD shape (worst case). Dashed
vertical lines show the mean of these 1D0 values.

to quantify the influence of PSD shape on the retrieved mi-
crophysical descriptors, but it does underline that considering
more complex distributions would be necessary to further re-
fine the framework and that the assumption of an exponential
behavior may also have a role in the observed D0 bias.

In addition to these important hypotheses – SSRGA scat-
tering model and assumption of exponential size distributions
– we recall that other modeling choices were made during
the design of the synthetic dataset and the underlying physi-
cal framework, such as assumptions on particle orientation
and velocity–size relation, among others (see Sect. 3.1.3),
which are inevitably a simplification of the physical real-
ity and may thus also influence the retrieval. Another point
should be briefly mentioned regarding small particles, which
are Rayleigh scatterers at both the X band and W band. This
means that if a population is composed entirely of small
particles, the influence of particle size and number concen-
tration is hardly distinguishable in the spectrograms. The
ill-posedness of the problem is reinforced, and the retrieval
could be expected to have a reduced accuracy, even if the
training set and scattering model were improved.

6.5 Comparison to other frameworks

In this section, we discuss more broadly the pipeline that was
developed, in comparison with other possible approaches. As
argued in Sect. 2, we believe that the framework introduced
here is a key aspect of this work.

In order to support this point, a direct deep-learning in-
version model was also designed: it essentially consists in
learning the inverse of our decoder, similar to the approach
of Chase et al. (2021). It is presented in Appendix C, and the
results show that, although still respectable, this direct re-
trieval is noisier and less accurate than our model due to the
ill-posedness of the problem. For instance, when comparing
retrieved values to in situ measurements of IWC, the cor-
relation coefficient drops from R = 0.87 (with the proposed
method) to R = 0.59 (with this direct inversion). Similar be-
haviors are observed for the other retrieved variables.

Let us mention an alternative approach that could be used,
which lies halfway between classical OE and the proposed
method. The notations used here are those of Sect. 2. Once a
differentiable approximation of the forward model is known
(f̃ ), another way to look for Xr is to find the minimizing

argument of
∥∥∥F̃ (X)−Y r

∥∥∥2
using gradient descent; a regu-

larizing term can be added to ensure, for instance, the spatial
continuity of X or to enforce some degree of spatiotempo-
ral smoothness. This requires only one deep-learning model
instead of two and could thus seem more appealing, but the
first approach was preferred. Indeed, by actually learning an
approximation of the inverse mapping G̃ and doing so on
a large dataset, the risk of reaching a local minimum in X

is reduced. Our method also does not require any explicit
prior assumption on X or on any property of the latent space,
like spatial smoothness; rather, it is constrained by the spatial
structure of the observed signal itself.

7 Conclusion

In this work, we proposed a new method for the retrieval
of seven microphysical properties of snowfall from dual-
frequency Doppler radar spectrograms. To our knowledge,
no previous method allowed for the joint retrieval of these de-
scriptors and with this high spatial and temporal resolution.
Some typical challenges of Doppler spectral retrievals were
overcome, like the need for perfectly vertical beam align-
ment or the requirement of very low turbulence, thus allow-
ing for microphysical retrievals in a larger range of atmo-
spheric conditions. The approach relies on a two-step deep-
learning framework: a decoder network serves as a differ-
entiable gate-to-gate emulator of a known radiative transfer
model, while the encoder network learns to map the Doppler
spectrograms to full profiles of microphysical variables. The
algorithm could be assessed thoroughly by comparing the
retrieved quantities to in situ aircraft measurements which
were conducted during the 2021 ICE GENESIS campaign.
Overall, the comparisons with in situ data are highly en-
couraging and support the validity of the framework: good
cofluctuations and similar statistics are reported. Certain dis-
crepancies were nonetheless observed: in particular, the re-
trieved values of the size parameters are affected by a bias,
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for which possible explanations were proposed. They point to
limitations in the training set itself (in which small particles
are under-represented) and to assumptions in the scattering
model (which relies on the SSRGA) or the parameterization
of the PSD (as an exponential distribution). These analyses
open up for possible improvements of the retrieval, partic-
ularly along the line of radiative transfer modeling. Mean-
while, in spite of these limitations, the method can provide
relevant insights into snowfall properties in the perspective
of process-oriented studies whose focus is typically the rel-
ative spatial and temporal evolution of microphysical vari-
ables rather than their exact numerical values.

We highlight that one drawback of the algorithm in its cur-
rent state is that it relies on attenuation-corrected data. Fur-
ther improvements of the method could include the retrieval
of an attenuation profile, used to correct the spectrograms
within the pipeline itself in a recursive way.

The approach could potentially be extended to include
other variables and further alleviate the baseline microphys-
ical assumptions. For instance, the restrictive hypothesis
of exponential PSDs, whose limitations were discussed in
Sect. 6.4, could be relaxed by considering gamma or modi-
fied gamma distributions and retrieving their additional shape
parameter(s). A retrieval of the scattering coefficients them-
selves could also be considered. It should be kept in mind that
the addition of new parameters increases the computational
cost of the algorithm but also its ill-posedness and that two-
frequency Doppler spectrograms may not be sufficient to re-
solve it. Given the convincing results obtained recently with
triple-frequency data (e.g., the retrieval of snowfall proper-
ties from triple-frequency radar moments proposed in Mroz
et al., 2021b, or studies of Mróz et al., 2021a, and von Terzi
et al., 2022, where triple-frequency spectra are used to study
the melting and dendritic growth layers, respectively), it is
likely that our method would gain in robustness and precision
with the inclusion of an additional frequency. Further exten-
sions could include the use of spectral polarimetric variables,
which could help retrieve more accurately geometrical prop-
erties of hydrometeors.

Adapting the method to study rainfall microphysics from
multi-frequency radar Doppler spectra would be feasible
with a minimal number of changes in the retrieved variables
– for instance, some geometrical descriptors could be sim-
plified (e.g., mass–size power law coefficients), while more
care ought to be devoted to the parameterization of the size
distribution and the correction of attenuation.

The theoretical pipeline itself is an important contribution
of this work, for it can be implemented in other settings and
for different types of inverse problems. One fundamental dif-
ficulty of such problems is often their ill-posedness: several
combinations of physical parameters can yield similar ob-
servations. The proposed approach mitigates this by learning
information from the spatial structure of the data thanks to
convolutional neural networks.

Appendix A: Radar calibration and W-band
attenuation correction

In this Appendix, we detail the preprocessing that was per-
formed to ensure a proper cross-calibration of the X- and
W-band data used and to correct for the attenuation of the
W-band measurements.

A1 X-band calibration drift

A first issue that was encountered was that ROXI’s calibra-
tion was found to be time variable, for a reason that is not
fully clarified yet – possibly related to a hardware artifact
causing either the output power or received secondary wave
trains to fluctuate; the investigation of this issue is beyond
the scope of this work. In addition to these calibration fluctu-
ations, occasional presence of wet snow on the antenna was
found to affect the measurements, despite frequent manual
removal. In order to correct for this, we used reflectivity pro-
files of MXPol (over ROXI) as a reference. Although these
are collected at a lower time resolution, they were sufficient
to correct for these calibration fluctuations and wet snow an-
tenna attenuation.

A2 W-band attenuation correction

Once the X-band data are considered reliable enough, we fo-
cus on the correction of W-band attenuation by following the
method described in Kneifel et al. (2015).

– Gaseous attenuation. Atmospheric profiles are taken
from COSMO-1 analyses (Consortium for Small-scale
Modeling, 2017), and the corresponding profile of
gaseous attenuation is computed using PAMTRA.

– Snowfall attenuation. We use a baseline Ze,X–IWC re-
lation (IWC= 0.015Z0.44

e,X ; linear units; Kneifel et al.,
2015; Boudala et al., 2006) to estimate the profile
of snowfall content, and the corresponding attenuation
profile is obtained considering that ice attenuates around
0.9 dB km−1 (g m−3)−1.

– Supercooled liquid water attenuation. This is the most-
error-prone step, considering that no measurements of
the profile of liquid water content (LWC) are avail-
able. We make use of liquid water path (LWP) estimates
based on radiometer measurements (Billault-Roux and
Berne, 2021) and assume a uniform LWC profile in the
cloud/precipitation column. The corresponding attenua-
tion profile is then computed with PAMTRA.

The mean path-integrated attenuation for each of these cat-
egories is respectively 0.3, 0.4, and 1.7 dB on the entire
dataset. W-band reflectivity and Doppler spectrograms are
then corrected using these attenuation profiles. In a final step,
as in Dias Neto et al. (2019), the reflectivity values at the X
and W band are cross-corrected by selecting areas close to
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cloud top and with low reflectivity and by correcting WProf
with the mean reflectivity offset in these regions (regions
within 1 km of cloud top and Ze,X <−3 dBZ were used; if
lower Ze values were to be used, not enough points would be
available). This relies on the assumption that near cloud top,
small ice crystals (with low reflectivity) are Rayleigh scatter-
ers at both frequencies, for which the DFR is 0 dB.

A further note should be added regarding one event in
the dataset (22 January) which featured rain at ground level
during a few hours before a transition to snowfall in the
evening. Here, step 3 of the method described could not be
conducted because LWP retrieval is dominated by the lower-
level rain. The other steps were performed similarly, and only
data above the melting layer were used for the retrieval.

Overall, this allows us to mitigate attenuation-related is-
sues but cannot eliminate them. In particular, the presence
of supercooled liquid water is difficult to assess and correct
accurately. This should be considered as a limitation of our
method at its current stage, and it motivated the discussion in
Sect. 6.1 about the sensitivity of the retrieval to reflectivity
offsets.

Appendix B: Training set

B1 Distributions

Figure B1 illustrates the distributions of microphysical pa-
rameters in the MASC database (Grazioli et al., 2022) from
which the decoder training set is sampled. The particles were
grouped into four large categories: aggregates, planar crys-
tals, columnar crystals, and graupel, using the classification
output of Praz et al. (2017). To generate the training set, D0,
bm, and βa are sampled using skewnorm fits of these distri-
butions; am and αa are sampled using their relation to bm and
βa, as illustrated in Figs. B3 and B4. The histograms of other
variables in the decoder training set are in Fig. B2.

B2 Self-similar Rayleigh–Gans approximation

The coefficients of the SSRGA made available by Ori et al.
(2020) through the snowScatt model were grouped by types
of particles in order to match the four main categories used
to sample the training set: planar crystals, columnar crystals,
aggregates, and graupel. The SSRGA in general and here the
simulations of Ori et al. (2020) are mostly targeted on aggre-
gates, so it was decided to include, e.g., columnar aggregates
in the columnar category, with the reasoning that when the
size regime is that of columnar crystals, the scattering prop-
erties would approach those of the individual particles. While
this rationale could be debated, it would most likely not trig-
ger diverging results since the SSRGA collapses to Rayleigh
scattering for small particles, meaning the exact values of co-
efficients have little impact. After grouping the particles into
the different categories, the coefficients κSSRG and βSSRG are
then averaged within each group, for each size bin, as shown

Figure B1. Histograms of the microphysical parameters in the
MASC database. PC: planar crystals; AG: aggregates; CC: colum-
nar crystals; GR: graupel.

with the black lines in Fig. B5. In addition to the limitations
already discussed in this study, mostly focused on the use
of only two parameters and on the reduction of complexity
by averaging, an additional point can be noted. It is strictly
speaking not valid to assume a single set of scattering coef-
ficients in SSRGA computations for an entire particle size
distribution, since the coefficients are size-dependent. How-
ever, as underlined in Ori et al. (2020), the coefficients do
not change significantly for large particles, while for small
particles, it was already noted that the SSRGA simplifies
to Rayleigh scattering regardless of the coefficient values,
which makes this assumption altogether reasonable.
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Figure B2. Same as Fig. B1 but for the other microphysical descriptors, which are not provided in MASCDB.

Figure B3. Relation between exponent and prefactor of mass–size relations for different particle types, computed using MASCDB; see
Grazioli et al. (2022) and acronyms therein.
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Figure B4. Same as Fig. B3 but for area–size relation.

Figure B5. Colored lines: coefficient of the SSRGA computed in
Ori et al. (2020) for a given particle type (as a function of Dmax)
for (a) κSSRG and (b) βSSRG. Black lines: average coefficient when
grouping by particle type, used for sampling the training set.

Appendix C: Alternative deep-learning method

One of the motivations for using the architecture proposed
in this work is the ill-posedness of the problem, which is ar-
guably an obstacle for direct inversion methods. Nonetheless,
such an inversion was also implemented, through a deep-
learning framework trained on the same synthetic dataset as
the one used to train the decoder. This time, the input consists
of dual-frequency spectra, and the output is the set of micro-
physical and atmospheric descriptors (same as Table 1). The
architecture, not detailed here, is virtually the same as the
encoder (see Fig. 2b), except that two-dimensional convolu-
tions are now 1D: the neural network is not trained on full
spectrograms but on single-gate spectra; thus the range di-
mension is equal to 1. After training and tuning, the model
is applied to the ICE GENESIS dataset. Figure C1 shows
the same variables as in the left panels of Fig. 5, retrieved
through this direct inversion. Overall, the order of magni-
tude of the variables is similar to that obtained with the new
pipeline, and the very general spatiotemporal structure is also
visible. This is reassuring since it suggests that the train-
ing dataset was appropriate and indeed captured the scope of
possibly observed spectra. However, it is also apparent that
the retrieved variables are substantially noisier than through
our method, reflecting the ill-posedness issue. When compar-
ing these retrieved results with aircraft in situ measurements,
as done in Sect. 3.3, we obtain, for example, R = 0.59 for
IWC (instead of R = 0.87). Some variables also reach unre-
alistic values, e.g., aspect ratio close to 0 or even negative
values of D0.
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Figure C1. Comparison of time series for three examples of variables (IWC, D0, and Ar) retrieved through the proposed framework (a–c)
or a direct deep-learning retrieval (d–f). Note that the color bars may differ (adjusted to reflect at best the variability in each field).

Appendix D: Overlap metric

We recall the definition of the overlap metric used to eval-
uate the reconstruction of the spectra: O(S, S̃) is equal to 1
(100 %) when the spectra are identical and to 0 when they are
completely disjoint. In this equation, vmin and vmax are the
negative and positive cutoff velocities of the Doppler spectra
(±6.9 m s−1).

O(S, S̃)= 0.5

∫ vmax
vmin

min
(
S∗, S̃∗

)
∫ vmax
vmin

S∗
+

∫ vmax
vmin

min
(
S∗, S̃∗

)
∫ vmax
vmin

S̃∗

 (D1)

Figure D1 can be helpful to understand this definition (note
that the spectra are not real ones; they were drawn for a
purely illustrative purpose).

1. Here, S is the reference spectrum (target), and S̃ is the
model output (whose quality we want to assess).

2. S and S̃ are offset as S∗ = S−min(S) and S̃∗ = S̃−
min(S); i.e., we subtract the minimum of S to both
S and S̃. S∗ and S̃∗ are introduced to bring the base
level of the target spectrum to 0; otherwise, the integrals
would be dominated by the noise rather than the signal,
as logarithmic values are used. Note that both spectra
are offset with the same value (min(S)), which allows
us to identify discrepancies in the absolute reflectivity.

3. The first term of the sum in O(S, S̃) is the hatched
area divided by the blue area (see Fig. D1); the second
term is the hatched area divided by the pink area. Both
terms are needed to account for cases when S̃ would
be broader than S (i.e., when S̃ would overlap S com-
pletely) and when S̃ would be narrower than S (i.e.,
when S̃ would be completely overlapped by S).

4. In this example, the value of the overlap metric is 0.65
(65 %).

Figure D1. Illustration of the overlap metric. The spectra were cre-
ated for illustration purposes and are not part of the dataset.

Code availability. The code developed in this study for
generating the training set using PAMTRA and for train-
ing the decoder and encoder models is available at
https://doi.org/10.5281/zenodo.7638756 (Billault-Roux, 2023;
latest version is available at: https://github.com/annecbroux/
DeepSpectralRetrieval, last access: 15 February 2023).
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Data availability. The data of the ICE GENESIS campaign are
available on the AERIS platform (https://ice-genesis.aeris-data.fr/
catalogue/, last access: 13 February 2023; Billault-Roux et al.,
2023).

Author contributions. ACBR and AB designed the study, with in-
put from GG in the conception of the retrieval framework. ACBR
implemented the deep-learning pipeline with contributions from
GG. The radar data were prepared by AM, NV, and ACBR. Air-
craft in situ measurements were processed by LJ. Comparisons of
retrieved to in situ values, as well as sensitivity analyses, were
conducted by ACBR with input from AB. ACBR prepared the
manuscript with contributions from GG and AB and supervision
from AB. All authors have read and agreed to the published version
of the paper.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of Atmospheric Measurement Techniques. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Airborne data were obtained using the aircraft
managed by Safire, the French facility for airborne research, an in-
frastructure of the French National Centre for Scientific Research
(CNRS), Météo-France, and the French National Centre for Space
Studies (CNES). Most of the microphysical in situ data were col-
lected using instruments from the French Airborne Measurement
Platform, a facility partially funded by the National Institute of Sci-
ences of the Universe (INSU) of CNRS and CNES. We thank Da-
vide Ori for his help in the initial parameterization of PAMTRA,
and we are grateful to Julien Delanoë and Susana Jorquera for pro-
viding the ice water content retrieved from airborne RASTA radar
measurements. Finally, we thank Stefan Kneifel and Florian Ewald
for their constructive and helpful comments on the manuscript.

Financial support. This project has received support from the Eu-
ropean Union’s Horizon 2020 research and innovation program un-
der grant agreement no. 824310 (ICE GENESIS project).

Review statement. This paper was edited by Markus Rapp and re-
viewed by Stefan Kneifel and Florian Ewald.

References

Acquistapace, C., Kneifel, S., Löhnert, U., Kollias, P., Maahn,
M., and Bauer-Pfundstein, M.: Optimizing observations of driz-
zle onset with millimeter-wavelength radars, Atmos. Meas.

Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-
2017, 2017.

Anderson, T. L., Covert, D. S., and Charlson, R. J.: Cloud droplet
number studies with a counterflow virtual impactor, J. Geophys.
Res., 99, 8249–8256, https://doi.org/10.1029/93JD03522, 1994.

Balduzzi, D., Frean, M., Leary, L., Lewis, J., Wan-Duo Ma, K., and
Mcwilliams, B.: Shattered Gradients, Proceedings of the 34th In-
ternational Conference on Machine Learning, Sydney, Australia
6–11 August 2017, https://doi.org/10.48550/arXiv.1702.08591,
342–350, 2017.

Barrett, A. I., Westbrook, C. D., Nicol, J. C., and Stein,
T. H. M.: Rapid ice aggregation process revealed through
triple-wavelength Doppler spectrum radar analysis, Atmos.
Chem. Phys., 19, 5753–5769, https://doi.org/10.5194/acp-19-
5753-2019, 2019.

Battaglia, A., Tanelli, S., Tridon, F., Kneifel, S., Leinonen, J., and
Kollias, P.: Triple-Frequency Radar Retrievals, Springer Interna-
tional Publishing, Cham, 211–229, https://doi.org/10.1007/978-
3-030-24568-9_13, 2020.

Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess,
T. C., and Wedi, N. P.: The digital revolution of Earth-
system science, Nature Computational Science, 1, 104–113,
https://doi.org/10.1038/s43588-021-00023-0, 2021.

Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J.,
Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer,
M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.:
Cloud Ice Properties: In Situ Measurement Challenges, Meteor.
Mon., 58, 9.1–9.23, https://doi.org/10.1175/amsmonographs-d-
16-0011.1, 2017.

Behrens, G., Beucler, T., Gentine, P., Iglesias-Suarez, F., Pritchard,
M., and Eyring, V.: Non-Linear Dimensionality Reduction With
a Variational Encoder Decoder to Understand Convective Pro-
cesses in Climate Models, J. Adv. Model. Earth Sy., 14, 1–23,
https://doi.org/10.1029/2022MS003130, 2022.

Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Ger-
mann, U., and Berne, A.: Hydrometeor classification through
statistical clustering of polarimetric radar measurements: a
semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445,
https://doi.org/10.5194/amt-9-4425-2016, 2016.

Besic, N., Gehring, J., Praz, C., Figueras i Ventura, J., Grazi-
oli, J., Gabella, M., Germann, U., and Berne, A.: Unraveling
hydrometeor mixtures in polarimetric radar measurements, At-
mos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-
11-4847-2018, 2018.

Billault-Roux, A.-C.: annecbroux/DeepSpectralRetrieval: v1.0.0-
DeepSpectralRetrieval, Version v1.0.0 v1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.7638756, 2023.

Billault-Roux, A.-C. and Berne, A.: Integrated water vapor and liq-
uid water path retrieval using a single-channel radiometer, At-
mos. Meas. Tech., 14, 2749–2769, https://doi.org/10.5194/amt-
14-2749-2021, 2021.

Billault-Roux, A.-C., Grazioli, J., Delanoë, J., Jorquera, S.,
Pauwels, N., Viltard, N., Martini, A., Mariage, V., Le Gac, C.,
Caudoux, C., Aubry, C., Bertrand, F., Schwarzenboeck, A., Jaf-
feux, L., Coutris, P., Febvre, G., Pichon, J. M., Dezitter, F.,
Gehring, J., Untersee, A., Calas, C., Figueras i Ventura, J., Vie,
B., Peyrat, A., Curat, V., Rebouissoux, S., and Berne, A.: ICE
GENESIS: data catalogue, AERIS [data set], https://ice-genesis.
aeris-data.fr/catalogue/, last access: 13 February 2023.

Atmos. Meas. Tech., 16, 911–940, 2023 https://doi.org/10.5194/amt-16-911-2023

https://ice-genesis.aeris-data.fr/catalogue/
https://ice-genesis.aeris-data.fr/catalogue/
https://doi.org/10.5194/amt-10-1783-2017
https://doi.org/10.5194/amt-10-1783-2017
https://doi.org/10.1029/93JD03522
https://doi.org/10.48550/arXiv.1702.08591
https://doi.org/10.5194/acp-19-5753-2019
https://doi.org/10.5194/acp-19-5753-2019
https://doi.org/10.1007/978-3-030-24568-9_13
https://doi.org/10.1007/978-3-030-24568-9_13
https://doi.org/10.1038/s43588-021-00023-0
https://doi.org/10.1175/amsmonographs-d-16-0011.1
https://doi.org/10.1175/amsmonographs-d-16-0011.1
https://doi.org/10.1029/2022MS003130
https://doi.org/10.5194/amt-9-4425-2016
https://doi.org/10.5194/amt-11-4847-2018
https://doi.org/10.5194/amt-11-4847-2018
https://doi.org/10.5281/zenodo.7638756
https://doi.org/10.5194/amt-14-2749-2021
https://doi.org/10.5194/amt-14-2749-2021
https://ice-genesis.aeris-data.fr/catalogue/
https://ice-genesis.aeris-data.fr/catalogue/


A.-C. Billault-Roux et al.: Dual-frequency spectral retrieval of snowfall microphysics 937

Borque, P., Luke, E., and Kollias, P.: On the unified estima-
tion of turbulence eddy dissipation rate using Doppler cloud
radars and lidars, J. Geophys. Res.-Atmos., 120, 5972–5989,
https://doi.org/10.1038/175238c0, 2016.

Boudala, F. S., Isaac, G. A., and Hudak, D.: Ice water content
and precipitation rate as a function of equivalent radar reflec-
tivity and temperature based on in situ observations, J. Geophys.
Res.-Atmos., 111, 1–13, https://doi.org/10.1029/2005JD006499,
2006.
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