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Abstract. The Geostationary Carbon Cycle Observatory
(GeoCarb) was selected as NASA’s second Earth Venture
Mission (EVM-2). The scientific objectives of GeoCarb were
to advance our knowledge of the carbon cycle, in particular,
land–atmosphere fluxes of the greenhouse gases carbon diox-
ide (CO2) and methane (CH4) and the effects of these fluxes
on the Earth’s radiation budget. GeoCarb would retrieve
column-integrated dry-air mole fractions of CO2 (XCO2 ),
CH4 (XCH4 ) and CO (XCO), important for understanding tro-
pospheric chemistry), in addition to solar-induced fluores-
cence (SIF), from hyperspectral resolution measurements in
the O2 A-band at 0.76 µm, the weak CO2 band at 1.6 µm, the
strong CO2 band at 2.06 µm, and a CH4/CO band at 2.32 µm.
Unlike its predecessors (OCO-2/3, GOSAT-1/2, TROPOMI),
GeoCarb would be in a geostationary orbit with a sub-
satellite point centered over the Americas. This orbital con-
figuration combined with its high-spatial-resolution imaging
capabilities would provide an unprecedented view of these
quantities on spatial and temporal scales accurate enough to
resolve sources and sinks to improve land–atmosphere CO2
and CH4 flux calculations and reduce the uncertainty of these
fluxes.

This paper will present a description of the GeoCarb in-
strument and the L2 retrieval algorithms which will be fol-
lowed by simulation experiments to determine an error bud-
get for each target gas. Several sources of uncertainty will
be explored, including that from the instrument calibration
parameters for radiometric gain, the instrument line shape
(ILS), the polarization, and the geolocation pointing, in ad-
dition to forward model parameters including meteorology

and spectroscopy, although there are some other instrument-
related sources of uncertainty that are left out for this study,
including that from “smile”, the keystone effect, stray light,
detector persistence, and scene inhomogeneity. The results
indicate that the errors (1σ ) are less than the instrument’s
multi-sounding precision requirements of 1.2 ppm, 10 ppb,
and 12 ppb (10 %), for XCO2 , XCH4 , and XCO, respectively.
In particular, when considering the sources of uncertainty
separately and in combination (all sources included), we find
overall RMSEs of 1.06 ppm for XCO2 , 8.2 ppb for XCH4 , and
2.5 ppb for XCO, respectively. Additionally, we find that, as
expected, errors in XCO2 and XCH4 are dominated by for-
ward model and other systematic errors, while errors in XCO
are dominated by measurement noise.

It is important to note that the GeoCarb mission was can-
celed by NASA; however, the instrument is still in develop-
ment and will be delivered to NASA, in full, with the hope
that it will eventually be adopted in a future mission proposal.

1 Introduction

Carbon dioxide (CO2) is the dominant anthropologically pro-
duced greenhouse gas (GHG) in the atmosphere. Its rapid in-
crease in the last 170 years, due primarily to the use of fossil
fuels, is changing the Earth’s radiation budget leading to an
increase in the mean temperature of the Earth’s surface and
resulting in secondary changes to the Earth’s climate, includ-
ing changes in weather and surface processes (Intergovern-
mental Panel on Climate Change (IPCC), 2021). Methane
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(CH4) is the second most important anthropologically pro-
duced GHG with several sources, including oil and gas min-
ing, agriculture, coal mines, and municipal waste. Finally,
measuring carbon monoxide (CO) in the atmosphere is im-
portant for our understanding of tropospheric chemistry as a
precursor to ozone (O3), which is a pollutant in the tropo-
sphere (Granier et al., 1999; Bergamaschi et al., 2000), and
is the primary sink for the hydroxyl radical (OH) (Crutzen,
1973; Logan et al., 1981), the concentration of which is im-
portant in estimating the oxidizing capacity of the atmo-
sphere and ultimately the ability of the atmosphere to re-
move CH4. Anthropogenic sources of CO include fossil fuel
combustion and biomass burning (Kanakidou and Crutzen,
1999).

It is vital to make measurements of the these gases, on
spatial and temporal resolutions accurate enough to resolve
sources and sinks, whether natural or anthropogenic (Rayner
and O’Brien, 2001; Shindell et al., 2006; Miller et al., 2007;
Baker et al., 2010). These measurements are then used in
GHG flux inversion models (Bergamaschi et al., 2009; Crow-
ell et al., 2018; Nassar et al., 2017; Sellers et al., 2018) to
improve our understanding of GHG fluxes between the at-
mosphere and surface and, ultimately, in Earth system mod-
els to understand the many complex climate feedbacks that
lead to climate change (Sellers et al., 2018). Accurate mea-
surements can be made from ground-based networks (Wunch
et al., 2011a, 2017), but these surface-based measurements
lack sufficient global coverage to estimate sources and sinks
for all regions of the globe, especially in the poorly sampled
tropics (Gurney et al., 2003). Measurements of GHG con-
centrations from space have been shown to help fill this gap
and provide measurements on spatial scales that can resolve
sources and sinks, therefore reducing uncertainty in climate
model predictions (Hakkarainen et al., 2016; Jacob et al.,
2016; Buchwitz et al., 2017).

In the last few decades, many satellite-based missions ded-
icated to measuring greenhouse gas concentrations have been
successfully implemented, almost all of which are still cur-
rently acquiring data, and there are several that are planned
for the future. The common objective of these missions is
to measure the column-integrated dry-air mole fractions of
CO2, CH4, and/or CO identified as XCO2 , XCH4 , and XCO,
respectively, with the goal of resolving sources and sinks
of these gases. The Atmospheric Infrared Sounder (AIRS)
is one of the first sensors that demonstrated the ability to
measure CO2 concentration (Chevallier et al., 2005), and the
Measurement of Pollution in the Troposphere (MOPITT) in-
strument was the first instrument to demonstrate the ability
to measure CO (Deeter et al., 2003; Edwards et al., 2004) in
the atmosphere in the NIR.

It turns out that there is more signal to make measure-
ments to estimate greenhouse gas surface fluxes in the near-
infrared (NIR) when observed at a high spectral resolution in
the so-called “weak” CO2 band at 1.61 µm and the “strong”
CO2 band at 2.1 µm. Combined with the 0.76 µm O2 A-band,

the three bands provide sensitivity to other atmospheric char-
acteristics, including surface pressure, temperature, aerosols
and clouds, and the surface, that must be resolved to retrieve
Xgas at the accuracy required to constrain sources and sinks.
There have been many successfully implemented polar or-
biting missions, led by countries across the world, that are
partially or completely dedicated to measuring greenhouse
gases by using hyperspectral measurements in these bands.
These include SCIAMACHY (Bovensmann et al., 1999);
TROPOMI (Veefkind et al., 2012); GOSAT (Kuze et al.,
2009) and GOSAT-2 (Suto et al., 2021), using a Fourier trans-
form spectrometer; OCO-2 (Crisp et al., 2004) and OCO-3
(Eldering et al., 2019), with very similar measurement spec-
tra compared to the GOSAT’s but using a grating spectrome-
ter; and, finally, TanSat (Yang et al., 2018), which is similar
in design to the OCOs. Future missions include the third of
the GOSAT series GOSAT-GW (Matsunaga and Tanimoto,
2022), Microcarb (Pascal et al., 2017), Sentinel-5/UVNS
(Irizar et al., 2019), TanSat-2 (Wu et al., 2023), and the very
ambitious constellation pair of satellites for CO2M (Sierk
et al., 2021). All of these missions vary in spatial coverage,
spatial resolution, and spectral resolution. The one attribute
that they have in common is that they are all on polar orbiting
platforms, which unfortunately limits their temporal resolu-
tion.

In addition, the 0.76 µm O2 A-band measurements made
by these instruments include Fraunhofer lines from which
solar-induced fluorescence (SIF) can be retrieved (Joiner
et al., 2012; Frankenberg et al., 2014; Somkuti et al., 2021)
which is proportional to the photosynthetic activity of vege-
tation while considering several other factors including vege-
tation type and temporal variations. Subsequently, the rate of
photosynthesis affects the rate of the uptake of CO2. These
measurements of SIF can then be used to improve carbon
flux inversion model results.

The planned Geostationary Carbon Cycle Observatory
(GeoCarb) differs from the polar orbiting missions in that it
is in a geostationary orbit centered over the American conti-
nents (Moore III et al., 2018). This approach has also been
proposed before (Xi et al., 2015). In a geostationary con-
figuration, GeoCarb will have the temporal resolution to re-
solve carbon cycle characteristics that can be more difficult
with polar orbiters. The mission concept has been investi-
gated including an initial investigation of the projected per-
formance (Polonsky et al., 2014); a study of polarization de-
pendence (O’Brien et al., 2015); and, finally, an investigation
of the ability of a geostationary mission like GeoCarb to re-
solve greenhouse gas emissions on a shorter temporal scale
(O’Brien et al., 2016; Rayner et al., 2002).

Of course, radiometric measurements need to be converted
to measurements of the physical quantities of interest us-
ing a retrieval algorithm, which is essentially the inversion
of a forward model. In this case, column-integrated dry-air
mole fractions (Xgas) are the L2 products of use to the wider
scientific community. In almost all the missions described
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above, a form of an optimal estimation (OE)-based algo-
rithm for use in atmospheric retrievals is used, the applica-
tion of which was formally presented by Rodgers (2004),
although some of these inversions employ alternative ap-
proaches. Most of these methods are identified as so-called
full-physics approaches in which the forward model approx-
imates the physics as closely as practicably possible. The
methods for these problems include linear methods such as
the Weighting Function Modified Differential Optical Ab-
sorption Spectroscopy approach (WFM_DOAS) (Buchwitz
et al., 2000) or nonlinear methods based on Newtonian it-
eration with some form of numerical regularization (Doicu
et al., 2010). WFM_DOAS has been shown to be viable
for SCIAMACHY, TROPOMI, GOSAT, and OCO-2 mea-
surements for all three gases of interest (Buchwitz et al.,
2005, 2006, 2017) and in a modified form with Full Spectral
Initiation (FSI) to deal with pressure and temperature depen-
dence of absorption lines (Frankenberg et al., 2005; Barkley
et al., 2006). Other algorithms have been presented to deal
with the photon path length extension by aerosols (Bril et al.,
2007; Butz et al., 2009) and to deal with the computational
burdens of accounting for these aerosols (Reuter et al., 2017).
Nonlinear approaches, although more computationally inten-
sive, are being used for the same selection of instruments
(Buchwitz et al., 2017) in order to obtain as much informa-
tion as possible in what is a largely an unconstrained opti-
mal inversion. This is especially true in the case of resolving
aerosol/cloud properties (Reuter et al., 2010). There are sev-
eral OE algorithms for the retrieval of XCO2 , XCH4 , and/or
XCO applied to measurements from instruments including
AIRS (Chevallier et al., 2005), with measurements in the IR
or in the NIR: SCIAMACHY (Butz et al., 2010), TROPOMI
(Hu et al., 2016; Landgraf et al., 2016), GOSAT-1/2 (Yokota
et al., 2009; Yoshida et al., 2011), and OCO-2/3 (Connor
et al., 2008; O’Dell et al., 2012; Crisp et al., 2012; O’Dell
et al., 2018). In some cases, due to the convenient gener-
ality of OE, the algorithms can be applied to a number of
instruments, including the use of the Atmospheric Concen-
trations from Space (ACOS) algorithm (O’Dell et al., 2012;
Crisp et al., 2012) and the RemoTeC algorithm (Butz et al.,
2009, 2010). As first proposed in Polonsky et al. (2014),
for GeoCarb we use the heritage from the ACOS retrieval
algorithm, currently used for OCO-2, OCO-3, and GOSAT
L2 products, to simultaneously retrieve XCO2 , XCH4 , and/or
XCO from GeoCarb measurements.

In this paper we formally present the GeoCarb L2 OE al-
gorithm and build on previous research with simulation ex-
periments to determine an error budget for each target gas.
SIF measurements from GeoCarb have been previously dis-
cussed in Somkuti et al. (2021) and are not further discussed
here unless otherwise noted. In Sect. 2 the GeoCarb mission
is discussed including its orbital configuration, the instru-
ment characteristics, and the current challenges faced. Sec-
tion 3 discusses the details of the GeoCarb L2 retrieval algo-
rithm including the inversion methodology, forward model,

state vector, and both pre- and post-processing. Section 4 de-
scribes the analysis setup including the scan strategy used,
the details of the measurement data simulations, and the de-
tails of the individual perturbation experiments. In Sect. 5 the
results of the perturbation experiments are presented, along
with an error budget table derived from the results. Finally, in
Sect. 6, some concluding remarks are given, including some
points to take away from the research and an outlook of fu-
ture work.

It is important to note that this study has similarities with
Polonsky et al. (2014) and O’Brien et al. (2015), hereafter
referred to as P2014 and O2015, respectively. These simi-
larities include that the same four bands are used. The same
three gases are retrieved (CO2, CH4, and CO). The simula-
tion of synthetic radiances is performed with effectively the
same code base. Finally, our meteorology and polarization
tests are similar to those performed in P2014 and O2015, re-
spectively.

Differences with P2014 and O2015 include that there are
theoretical instrument model updates that reflect the current
design vs. that used in P2014 and O2015, including the radio-
metric calibration, instrument line shape, and polarization.
Our L2FP algorithm builds off of a more recent version of
the ACOS L2FP algorithm. The previous publications simu-
late whole global, polar orbits. We use a real geostationary
observation strategy similar to that envisioned for GeoCarb.
The previous publications discuss “descope” options in terms
of using less bands. We do not, as these were no longer con-
sidered at the time. We retrieved profiles of CH4 and CO con-
centrations rather than profile scaling factors and calculated
averaging kernels (AKs) for these gases from those profile
retrievals. P2014 and O2015 did not test sensitivities to any
instrument errors. We test sensitivities to radiometric calibra-
tion, instrument line shape, polarization, and pointing. How-
ever, as noted later, there are other instrument errors that are
left for future studies. Finally, we include sensitivity to spec-
troscopic errors such as that explored by Connor et al. (2016)
for OCO-2 in the context of XCO2 retrievals.

Finally, it is also important to note that the GeoCarb mis-
sion was canceled by NASA; however, the instrument is still
in development and will be delivered to NASA, in full, with
the hope that it will eventually be adopted in a future mission
proposal.

2 GeoCarb mission and instrument

GeoCarb (Moore III et al., 2018) was selected as the NASA’s
second Earth Venture Mission (EVM-2). The scientific ob-
jectives of GeoCarb are to advance our knowledge of the
carbon cycle, in particular land–atmosphere fluxes of carbon
dioxide (CO2) and methane (CH4). This requires measure-
ments of column-integrated dry-air mole fractions of CO2,
CH4, and CO, in addition to SIF, at urban to continental
scales and at spatial and temporal resolutions that are suffi-
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Table 1. GeoCarb multi-sounding precision requirements for the
primary target trace gases.

Gas Relative Absolute

XCO2 0.3 % 1.2 ppm
XCH4 0.6 % 10 ppb
XCO 10 % 12 ppb

cient enough to significantly improve land–atmosphere CO2
and CH4 flux estimates and reduce the uncertainty of these
fluxes.

To meet its scientific objectives, the GeoCarb mission is
developing a multi-band, hyperspectral, Littrow grating map-
ping spectrometer (GMS) which will be hosted on a satellite
in a geostationary orbit with a sub-satellite point (SSP) that
is currently set to be 103◦ west longitude, although the SSP
may change when the host platform is finalized. GeoCarb
will measure reflected sunlight in four absorption bands and
retrieve column-integrated dry-air mole fractions of CO2,
CH4, and CO known as XCO2 , XCH4 , and XCO, respectively,
defined by

Xgas =

∫
∞

0 ugas(z)Nd(z)dz∫
∞

0 Nd(z)dz
, (1)

where ugas(z) is the gas mole fraction with respect to dry air
at altitude z, and Nd(z) is the total molecular number den-
sity of dry air at altitude z. The relative and absolute mission
precision requirements for Xgas are listed in Table 1. These
requirements are specifically for a multi-sounding precision
of at least 100 aerosol- and cloud-free soundings (vertically
integrated AOT+COT< 0.3, where AOT is aerosol optical
thickness, and COT is cloud optical thickness), as determined
against colocated Total Carbon Column Observing Network
(TCCON) observations (Wunch et al., 2017).

The four GeoCarb bands, listed in Table 2 and plotted in
Fig. 1, include the O2 A-band at 0.765 µm, the weak CO2
band at 1.606 µm, the strong CO2 band at 2.065 µm, and a
CH4/CO band at 2.323 µm (referred to as the CH4 band here-
after). The four bands have spectral resolutions 1λ, defined
as the full width at half maximum (FWHM) of the instrument
line shape (ILS), of 0.044, 0.091, 0.114, and 0.129 nm, with
resolving powers (λ/δλ) of roughly 17 400, 17 600, 18 100,
and 18 000, respectively. The required signal-to-noise ratios
are listed in Table 2 for each band along with the relative ref-
erence radiance levels. The O2 A-band provides information
on surface pressure, clouds, and aerosols. In addition, the O2
A-band includes Fraunhofer lines from which SIF can be re-
trieved. The weak CO2 band and the strong CO2 band pro-
vide information on column CO2 fractions and clouds and
aerosols, while the strong CO2 band also provides informa-
tion on H2O concentration. These first three bands are sim-
ilar in spectral range and resolution to those on OCO-2 and
OCO-3. The fourth band adds the ability to retrieve CH4 and

Figure 1. Sample spectra of observed radiance from a typical air
mass scenario. Panels include, from (a) to (d), the O2 A, weak CO2,
strong CO2, and CH4 bands, respectively.

CO and also provides information on H2O and hydrogen–
deuterium oxide (HDO).

The current set of satellite missions capable of measuring
atmospheric greenhouse gas concentrations, including OCO-
2, OCO-3, GOSAT-1, GOSAT-2, and TROPOMI, are all in
polar orbits that cover most or all of the Earth’s surface but
only with a limited temporal sampling. GeoCarb was the first
planned geostationary Earth observation mission for mea-
suring greenhouse gases and SIF, distinguishing it from the
current suite of polar orbiting GHG missions. In a geosyn-
chronous orbit, with its configurable imaging/mapping capa-
bility, it will be able to measure XCO2 , XCH4 , and XCO at
the urban to continental scales and at the spatial and tem-
poral resolutions that are sufficient enough to resolve emis-
sion sources and significantly improve land–atmosphere CO2
and CH4 flux calculations and reduce the uncertainty of these
fluxes. Hence, GeoCarb is capable of acquiring multiple ob-
servations of the same location per day for most of the west-
ern Hemisphere. Since GeoCarb is not configured to make
ocean glint observations regularly, retrievals over ocean will
not be made operationally.

The GeoCarb scan strategy will include a set of scan
blocks that cover most of the land surfaces of North, South,
and Central America, up to three times a day. The scan strat-
egy will minimize overlap between blocks and observations
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Table 2. GeoCarb spectrometer parameters as stated in the mission requirements.

Band Band Band Spectral Channel Spectral Reference
number name wavelength range spacing resolution SNR radiance

(µm) (nm) (nm) 1λ (nm) (W m−2 sr−1 µm−1)

1 O2 A 0.765 756.5–771.7 0.015 0.044 395 71
2 CO2, weak 1.606 1591.5–1622.8 0.031 0.091 389 14
3 CO2, strong 2.065 2044.3–2087.1 0.042 0.114 302 5.0
4 CH4 2.323 2299.3–2347.8 0.048 0.129 254 2.7

over ocean and will be optimized for signal-to-noise ratio
(SNR) with respect to solar zenith angle and air mass factor.
The scan blocks are configurable in location, size, and fre-
quency. This allows GeoCarb to alter its scan strategy to in-
tensively scan smaller regions of particular interest or uncer-
tainty many times a day, for detailed emission estimates, for
calibration and validation, or for transient events in a cam-
paign mode. The scan strategy has yet to be formalized, al-
though proposed strategies have been published in the litera-
ture (Nivitanont et al., 2019b; Somkuti et al., 2021).

GeoCarb is equipped with a four-band spectrometer with
two arms. The shortwave (SW) arm covers the O2 A-band
(0.765 µm) and the weak CO2 band (1.606 µm), and the long-
wave (LW) arm covers the strong CO2 band (2.065 µm)
and the CH4/CO band (2.323 µm). Light is first incident
on two orthogonally oriented scan mirrors used for point-
ing. This light is then transmitted to a three mirror anastig-
mat telescope with a 54 mm entrance aperture and a 4.3◦

field of view (FOV), forming a well-corrected image on an
18 mm× 0.042 mm spectrometer entrance slit. Following the
slit, a dichroic beamsplitter separates the SW and LW chan-
nels to the two arms of the spectrometer, each with a sin-
gle echelle grating used in two orders. Additional dichroic
beamsplitters direct the light to one of the focal plane assem-
blies (FPAs) specific to each band with a narrowband order
sorter filter ahead of the FPAs. The FPAs are HgCdTe detec-
tors with 1016× 1016 active pixels, with the spatial direction
along columns and the dispersion direction along rows.

The slit is projected on the Earth with the spatial dimen-
sion oriented north–south (N–S). The angular size of the slit
is 4.3◦ in the along-slit direction and 0.00833◦ in the across-
slit direction. At the SSP, this is 25◦ in latitude or 2800 km N–
S on the surface of the Earth. Given the 18 mm× 0.042 mm
size of the slit and the 1016 samples of the FPA distributed
along-slit, the angular resolution for a single footprint is ap-
proximately 123 µrad along-slit at nadir. At the geostationary
altitude of 35 786 km, this results in a footprint size of ap-
proximately 2.7 km along-slit (at the slit center, increasing
by 2.4 % toward the slit ends because of Earth curvature) and
5.4 km across-slit at nadir. The slit is pointed utilizing the two
orthogonally oriented scan mirrors, a N–S scan mirror that
can be rotated a total of±3.55◦ and an E–W scan mirror that
can be rotated a total of ±5.00◦. These mirrors are capable

of pointing the slit over a range of 20◦ in the N–S direction
and 18.5◦ in the E–W direction, respectively, which covers
the Earth disc with a diameter of 17.4◦ viewed from the geo-
stationary orbit. For each scan block the E–W scan mirror
will move in equiangular steps in a step-and-stare mode with
0.3825 s per step and 9.0 s per stare (integration time). The
E–W scan rate is 2.7 km per 4.4625 s= 2178 km h−1, so that
continental width scans are completed in 1.5 to 3 h.

Due to GeoCarb’s step-and-stare scanning method and
high spectral resolution, the instrument is sensitive to across-
slit scene inhomogeneity. In the context of greenhouse gas
measurements, this has been discussed by several authors
(Landgraf et al., 2016; Meister et al., 2017; Nivitanont et al.,
2019a). In particular, the effective instrument ILS will vary
across a FOV depending on the scene brightness inhomo-
geneity within the FOV. One method of mitigating this effect
is by installing a slit homogenizer into the optical assembly
effectively smearing out the inhomogeneity across the FOV.
Due to schedule constraints during instrument assembly, the
decision was made to remove the homogenizer and replace
it with an air slit. Another mitigation method, and currently
planned for GeoCarb, is to fit for an ILS scaling factor for
each band in the L2 retrieval, effectively scaling the FWHM,
which will either stretch or squash the ILS making it broader
or narrower, therefore optimizing the ILS for each FOV.

There are several other instrument-related uncertainties
that occur in the GeoCarb instrument that are under investi-
gation to understand their effects and to develop rectification
methods for those effects in either the measured radiances or
in the retrievals. These include “smile”, the keystone effect,
stray light, and detector persistence.

Calibrated, spectrally resolved radiances for each of the
four bands will be distributed in level-1B (L1B) files which
also contain the measurement’s geolocation, solar and satel-
lite geometry, instrument characteristics, and other parame-
ters normally required to make use of the measurements. In
addition, each L1B file will be distributed with a “Met” file
that contains meteorological information required for the L2
retrievals.
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3 Level-2 retrieval algorithm

The GeoCarb L2 retrieval algorithm code, also known as L2
full–physics (L2FP), is a fork of the L2FP code developed
at the NASA Jet Propulsion Laboratory (JPL) since 2004
for OCO and then subsequently for GOSAT (2009), OCO-
2 (2014), and OCO-3 (2019) (Connor et al., 2008; O’Dell
et al., 2012; Crisp et al., 2012; O’Dell et al., 2018). Develop-
ment of the GeoCarb fork maintains backward compatibility
with the OCO-2/3 base, which means that not only can it be
used for the same instruments as the JPL code base but also
that improvements made to the JPL code are merged into the
GeoCarb code base. In this section an overview of the re-
trieval algorithm is given, with a focus on changes made to
the GeoCarb code base relative to the OCO-2/3 code base in
detail.

3.1 Inversion

The inversion methodology used in the GeoCarb L2FP re-
trieval is based on the OE approach for atmospheric inverse
problems described by Rodgers (2004) in which input pa-
rameters to a forward model are optimized to obtain the best
match between real measurements and simulated measure-
ments output from a forward model while being constrained
by a priori knowledge of the input parameters. This relation-
ship is given by

y = F(x,b)+ ε, (2)

where F is the forward model, x is the n element input state
vector containing the input parameters to be optimized, y is
the m element measurement vector containing the calibrated
radiance spectra for all four bands (m= 4×1016), b is the set
of all other assumed model parameters not in the state vec-
tor x, and ε represents the measurement and forward model
error. The inverse solution for the optimized state vector x̂
is obtained by minimizing a cost function which can be ex-
pressed as a χ2 distribution given by

χ2
=
[
y−F(x,b)

]TS−1
ε

[
y−F(x,b)

]
+ (x− xa)

TS−1
a (x− xa), (3)

where Sε is the measurement and forward model error co-
variance matrix, xa is the a priori state vector, and Sa is the
a priori error covariance matrix. xa and Sa denote the best
guess of the state before the measurement is made and the
uncertainty of this guess, respectively.

The retrieval problem is ill-posed leading to non-existence,
non-uniqueness (due to discretization of the problem), and/or
ill-conditioning (due to amplification of errors in x due
to errors in y). It is for this reason that an a priori con-
straint is required. The fact that the problem is nonlinear re-
quires an iterative method. Finally, in order to perform the
iteration efficiently, while maintaining a stable step size, a

form of regularization is required. To satisfy these require-
ments the Levenberg–Marquardt (Levenberg, 1944; Mar-
quardt, 1963) method is applied to Gauss–Newton iteration
(Rodgers, 2004; Connor et al., 2008).

After successful convergence an estimate of the a posteri-
ori covariance matrix Ŝ is computed. Several other informa-
tion and diagnostic quantities are also produced and included
in the L2FP product, including the averaging kernel matrix A
and the number of degrees of freedom for signal ds. See Con-
nor et al. (2008) for a full description of the quantities.

3.2 Forward model

The forward model y = F(x,b) simulates the measurements
in y and analytically computes the derivatives in the matrix
K with respect to the state vector parameters. Most of the
current forward model has been described in detail by O’Dell
et al. (2012, 2018) in the context of the OCO-2 mission and
is only described briefly in this section. However, there are
some instrument model changes specific to GeoCarb which
include noise, polarization, and the ILS.

The forward model can be broken down into several sub-
models: an atmospheric model; a gas absorption model; an
aerosol model; a surface model; a solar model; a radiative
transfer (RT) model; and, finally, an instrument model. The
atmospheric model discretizes the atmosphere into 20 lay-
ers using a sigma-pressure level system where the pressure
levels scale with surface pressure and the topmost level is
at 0.01 hPa. Parameters including temperature and humidity,
trace gas concentrations, and aerosol/cloud concentrations
are defined on each level by their various models from which
the wavelength-dependent layer quantities required for the
RT computations are computed along with a layer at the bot-
tom for the atmosphere for surface reflectance. All but the in-
strument model are explained in detail in the references cited
and will not be reiterated here. Here we will focus on the
instrument model in the context of GeoCarb.

3.2.1 Instrument model

The instrument model consists of three components: (1) a po-
larimetric model, (2) an instrument line shape (ILS), and (3) a
noise model which are described below. Note that the other
instrument effects discussed in Sect. 2 are not accounted for
in the instrument model presented and therefore are ignored
in this study.

Polarimetric model

The polarimetric model predicts the intensity that is eventu-
ally incident on the detectors after being transmitted through
the scan mirrors, telescope, beam splitter, and gratings. The
polarization effects of each of the optical components can
be linearly combined into a single-wavelength-dependent
Mueller matrix, as shown in O2015. The intensity is com-
puted with a simple matrix transformation on the Stokes
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vector S(λ)= [I (λ),Q(λ),U(λ),V (λ)] incident on the scan
mirrors by the 4×4 Mueller matrix M(λ) for which the wave-
length dependence is linear across each band:

Ib,i =Mb,0Sb,i +Mb,1Sb,i(λi − λ0), (4)

where Ib,i is the radiance for band b, at the high resolution
grid point i; Mb,j is the 1× 4 Mueller matrix for band b and
linear dependence order j = 0,1; and Sb,i is the Stokes vec-
tor. The four elements of the Mueller matrix, often called the
Stokes coefficients, are m00,b,j , m01,b,j , m02,b,j , and m03,b,j
and are determined during pre-flight polarimetric calibration.
It should be noted the last element of the Stokes vector is
typically small as the surface and atmosphere generate very
little circular polarization; therefore, to save processing time,
the RT is computed using only the first three elements of the
Stokes vector and a 1× 3 Mueller matrix. Finally, we note
that for GeoCarb, Eq. (4) can be written in a simplified form
as
Ib,i = I (λi)+ [c0+ c1(λi − λ0)]

×
(
Q(λi)cos2φp−U(λi)sin2φp

)
, (5)

where c0 and c1 are primarily functions of the grating ef-
ficiency as a function of wavelength in each band, and φp
represents the angle between the axis of vertical polarization
(with respect to the grating) and the reference plane for po-
larization. Both Stokes components Q and U also depend
upon the chosen reference plane for polarization. We follow
the OCO-2/3 convention and choose the local meridian plane
to be this reference plane for polarization, which is the plane
containing the local normal unit vector and the vector point-
ing from the target FOV to the satellite. For further details,
see O2015.

ILS convolution

The radiance measured in each of the 1016 spectral chan-
nels, of each of the four bands, for each of the 1016 foot-
prints along the slit, is the result of the convolution of inten-
sity computed on a high-spectral-resolution (0.01 µm) spec-
tral grid with an instrument spectral response function:

If,b,c =

∞∫
λ0

If,b,iILSf,b,c(λ)dλ, (6)

where If,b,c is the radiance for footprint “f”, band “b”, and
channel “c”; If,b,i is the radiance for footprint “f”, band
“b”, and high-resolution grid point “i”; and ILSf,b,c(λ) is the
footprint-, band-, and channel-dependent ILS as a function of
wavelength λ. In practice, the integration is performed over
a limited range centered on each channel of 0.00082, 0.0022,
0.0028, and 0.0025 cm1 for bands 1, 2, 3, and 4 respectively.

Radiometric noise model

The instrument noise model is used to build the measure-
ment and forward model error covariance matrix Sε . In ad-

Table 3. GeoCarb noise coefficients used in this study, in units of
W m−2 sr−1 µm−1.

Band n0 n1

1 2.291× 10−2 1.953× 10−4

2 5.023× 10−3 4.282× 10−5

3 3.224× 10−3 2.646× 10−5

4 3.472× 10−3 2.094× 10−5

dition, for the retrieval simulation experiments presented in
Sect. 4, the noise model is used to add synthetic noise to the
simulated measurements. The noise model will ultimately be
based on laboratory measurements, although for this study
the model (of the same form) is based on theory, but we ex-
pect that the outcome of the experiments presented will not
change significantly with the final noise model based on mea-
surements. The standard deviation of noise σIb,c for band “b”
and channel “c” is given by

σIb,c =

√
n2

0,b,c+ n1,b,cIb,c, (7)

where n2
0,b,c is the background noise coefficient, n1,b,c is the

coefficient for noise proportional to the radiance (shot noise)
Ib,c, and the radiance and the coefficients are in units of
W m−2 sr−1 µm−1. Unlike the ILS, the instrument noise is
independent of the footprint “f” along the slit but does vary
(roughly quadratically) with wavelength in each band. Ta-
ble 3 gives the mean noise coefficients for each band used in
this study. Like the other instrument parameters, noise coef-
ficients will be determined during preflight calibration.

3.3 State vector and a priori

The state vector x contains the parameters that are optimized
during the inversion process. The parameters include values
that are used to compute the retrieval values of XCO2 , XCH4 ,
and XCO, in addition to other parameters that are sensitive to
the measurements but are not known perfectly, such as me-
teorological, aerosol/cloud, surface, and instrument-related
parameters. Much of the state vector is described in detail
by O’Dell et al. (2012, 2018). Here the state vector elements
are discussed focusing in detail on elements added for Geo-
Carb. In total there are n= 78 fitted parameters in the state
vector. The prior values used for these parameters are also
described, as are their associated error covariances. Table 4
presents the state vector, along with the priors and associated
1σ uncertainties.

CO2 is represented in the state vector as a profile of dry-
air mole fraction on the forward model’s 20 sigma-pressure
levels. CH4 and CO profile retrievals are typically limited to
∼ 1 degree of freedom for signal ds, so for GeoCarb a scaling
retrieval is performed for these gases, where the prior profile
is scaled by a single retrieved parameter with a prior value of
unity. The prior CO2, CH4, and CO profiles are nearly identi-
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cal to those used in the GGG2020 TCCON retrieval (Wunch
et al., 2017) produced as described in Laughner et al. (2023).
The CO2 prior covariance matrix is constructed such that the
total prior uncertainty of XCO2 is 12 ppm, a value somewhat
larger than natural variability, that gives more weight to the
measurements relative to the prior. The prior uncertainties for
the CH4 and CO scale factors are both set to 0.5.

Meteorological quantities included in the state vector are
surface pressure, a temperature profile offset, and a water va-
por profile multiplier. Surface pressure is included to account
for path length modification effects and other systematic er-
rors common to the absorption bands used in the retrieval.
The temperature and water vapor profiles both affect trace
gas absorption, while water vapor is in itself an important ab-
sorber across all four bands. The prior surface pressure and
temperature and water vapor profiles are obtained from the
Goddard Earth Observing System Data Assimilation System
(GEOS-5) Forward Processing for Instrument Teams (FP-IT)
forecast (Rienecker et al., 2008; Lucchesi, 2013). The prior
uncertainties of surface pressure, the temperature profile off-
set, and the water vapor scale are set to 4 hPa, 5 K, and 0.5,
respectively.

For particles, two tropospheric aerosol types, liquid water
cloud and ice cloud, and a stratospheric aerosol are included
in the state vector including their density x0, the 1σ profile
width σa, and the natural logarithm of the optical thickness
(OT) at 0.755 µm ln(OT0.755). For each sounding the two tro-
pospheric aerosol types with the highest values of OT0.755
based on the GEOS-5 FP-IT aerosol forecast are chosen.

The surface bidirectional reflectance distribution func-
tion (BRDF) amplitude weight, weight slope, and weight
quadratic terms are included in the state vector for each band.
The prior weight values are estimated directly from the level
of the continuum in the observed spectrum of each band,
assuming a clear-sky, absorption-free atmosphere, and prior
slopes and quadratic parameters are set to zero. The corre-
sponding prior uncertainties are set to sufficiently large val-
ues so that the amplitude parameters are essentially uncon-
strained.

The dispersion scale and offset coefficients are included in
the state vector for each band. The prior values are simply set
to zero and 1, respectively, of the dispersion polynomial for
each band. The prior uncertainties for the offset are set to 0.4
times the FWHM for each band and for the scale are set to
10−6 for each band.

To mitigate the effects of the scene inhomogeneity on the
ILS across the scene, an ILS scaling factor is fitted for each
band effectively scaling the FWHM. The prior scaling is set
to unity with a prior uncertainty of 0.032 for each band.

Spectral residuals, the difference between the measured
radiance and the modeled radiance from the retrieved state
vector, contain systematic structure due to unknown spec-
troscopic errors, solar model errors, and instrument charac-
teristics. To account for these residuals, empirical orthogo-
nal functions (EOFs) are created from a clear-sky training

dataset to represent the spectral patterns, for which ampli-
tude factors are included in the state vector and fitted for per
band and per EOF. The prior amplitude factors for each band
are set to zero, with prior uncertainties of 10.0 each.

To account for the effects of SIF emission from the vegeta-
tion on the surface two SIF parameters are fitted for: a mean
and a slope across the O2 A-band. It is important to note that
the SIF parameters in the state vector are not the official Geo-
Carb SIF product which is produced by the Generic Algo-
rithm for the Single Band Acquisition of Gases (GASBAG)
briefly introduced in Sect. 3.5.2 and discussed in detail by
Somkuti et al. (2021). The prior SIF mean is set to zero and
the prior slope is set to 0.0018 1/cm−1 while the associated
uncertainties are set to 0.02 and 7−7 1/cm−1, respectively.

3.4 Measurement vector and error covariance

The measurement vector y contains the radiance measure-
ments with length m= 4 bands × 1016 channels. For the
m×mmeasurement and forward model error covariance ma-
trix Sε , it is assumed that there is no error correlation between
channels, so as a result it is diagonal, such that Sε,b,c,c = σ 2

Ib,c
,

where σIb,c is from the noise model given by Eq. (7). In the
GeoCarb retrieval, as is common in many retrievals, the for-
ward model error is not included due to the difficulty of char-
acterizing this error, which is assumed to be significantly less
than the measurement error.

3.5 Pre-screening

Soundings that are unlikely to produce reliable L2FP results
are filtered out. This is important since, due to the large num-
ber of channels per sounding (4× 1016= 4096 total chan-
nels), the L2FP algorithm is rather computationally intensive.
This, combined with the relatively large number of observa-
tions made on a daily basis, results in a significant computa-
tional burden. Therefore it is advantageous to avoid running
it on soundings unnecessarily.

The first step in pre-screening is to of course skip sound-
ings that are flagged as having radiances or supporting fields
that are missing due to instrumental anomalies or L1B pro-
cessing issues. Since the signal from soundings over ocean
surfaces is too low to perform a successful retrieval and
GeoCarb does not have a operational sun-glint mode, these
scenes will not be processed. Ocean surfaces are identified
using the land/water mask contained in the L1B file which
is populated using the International Geosphere–Biosphere
Programme (IGBP) land classification database (Townshend,
1992). Finally, soundings with aerosols and clouds that are
too thick to produce a useful retrieval are filtered out. Aerosol
and cloud filtering is performed using results from the A-
band preprocessor (ABP) and the Generic Algorithm for the
Single Band Acquisition of Gases (GASBAG), each dis-
cussed in the next two sections, respectively. The filtering
is conservative, so that inevitably there will be scenes where
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Table 4. GeoCarb state vector and a prior (see Table 2 in O’Dell et al., 2018, for a full description of the parameters and comparison to the
OCO-2/OCO-3 state vector).

Parameter Length A priori A priori uncertainty (1σ ) Notes

CO2 profile 20 GGG2020 TCCON Fixed covariance matrix Defined on σ pressure levels,
mole fraction w.r.t. dry air

CH4 scaling factor 1 1.0 0.5 Multiplier on prior profile
from GGG2020 TCCON

CO scaling factor 1 1.0 0.5 Multiplier on prior profile
from GGG2020 TCCON

Surface pressure 1 From GEOS-5 4.0 hPa
Temperature offset 1 0 K 5 K Added to prior profile
H2O scaling factor 1 1.0 0.5 Multiplier on prior profile
Aerosol 1 OT0.755 1 From GEOS-5 ± factor of 7.39
Aerosol 1 x0 1 0.9 0.2 Units of relative pressure
Aerosol 1 σa 1 0.05 0.01 Units of relative pressure
Aerosol 2 OT0.755 1 From GEOS-5 ± factor of 7.39
Aerosol 2 x0 1 0.9 0.2 Units of relative pressure
Aerosol 2 σa 1 0.05 0.01 Units of relative pressure
Water cloud OT0.755 1 0.0125 ± factor of 6.05
Water cloud x0 1 0.75 0.4 Units of relative pressure
Water cloud σa 1 0.1 0.01 Units of relative pressure
Ice cloud OD0.755 1 0.0125 ± factor of 6.05
Ice cloud x0 1 Just below tropopause 0.2 Units of relative pressure
Ice cloud σa 1 0.04 0.01 Units of relative pressure
Strat. aerosol OD0.755 1 0.006 1.8
Strat. aerosol x0 1 0.03 0.0001 Units of relative pressure
Strat. aerosol σa 1 0.04 0.01 Units of relative pressure
BRDF weight 1 per band From band continuum 5.0 From the continuum level per band
BRDF weight slope 1 per band 0.0 1/cm−1 0.001 1/cm−1

BRDF weight quadratic 1 per band 0.0 1/cm−2 0.000005 1/cm−2

Dispersion offset 1 per band From dispersion (µm) 0.4 of FWHM (µm) Coef. 0 of dispersion polynomial
Dispersion scale 1 per band From dispersion 0.000001 Coef. 1 of dispersion polynomial
ILS scale factor 1 per band 1.0 0.032 Multiplier on ILS 1λ
EOF amplitudes 3 per band 0.0 10.0 Multiplier on EOF spectral pattern
SIF mean 1 0.0 0.02 Not the official SIF retrieval
SIF slope 1 0.0018 1/cm−1 0.0000007 1/cm−1 Not the official SIF retrieval

the aerosol/cloud still might be too thick to yield a useful
retrieval that will most likely be filtered out in the post-
processing filtering discussed in Sect. 3.6.

3.5.1 A-band preprocessor

The A-band preprocessor (Taylor et al., 2012) performs an
O2 A-band retrieval using a fast forward model and assuming
no aerosol or cloud, only molecular scattering. The spectrum
is fit to the clear-sky model with five free parameters: sur-
face pressure Ps, an offset to the meteorological temperature
profile, a spectral dispersion offset, and the surface albedo
at the two band endpoints. Two quantities are then defined
upon which to filter: 1Ps,cld is the retrieved minus a priori
surface pressure, and χ2

R is the ratio of the fit χ2, relative to
the minimum χ2 value possible at that same SNR. Scenes
with |1Ps,cld|> 40 hPa or χ2

R > 2.3 are flagged as cloudy.

The thresholds are set to be loose to filter only scenes where
the aerosol/cloud is obviously too thick.

3.5.2 Generic Algorithm for Single-Band Acquisition
of Gases

The Generic Algorithm for Single-Band Acquisition of
Gases (Somkuti et al., 2021) performs retrievals of SIF and is
the main processor for the GeoCarb operational SIF product
L2GSB. In addition, it produces the so-called ratio retrievals
which are used for aerosol and cloud screening, where inde-
pendent single-band retrievals ofXCO2 andXH2O, in both the
weak CO2 and strong CO2 bands, are obtained by retrieving
scaling coefficients of the prior gas profiles for both CO2 and
H2O gases. Calculating the ratio of XCO2 and XH2O between
the values retrieved in both bands yields a value for each
gas. In a completely cloud- and aerosol-free atmosphere, the
value will be close to unity. When aerosols and clouds are
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Table 5. Scan blocks that are used in the retrieval simulation experiments. Fields include the scan block number, name, size in the x and y
directions Nx and Ny , the total number of soundings, minimum and maximum latitude/longitude at the middle of the scan block in the x/y
directions, and the UTC times associated with the start and the end of the east–west scan of the north–south-oriented slit.

Number Name Nx Ny Total no. Start/end lat Start/end long Start UTC End UTC

0 South America 2 241 1016 244 856 −24.22/ 3.12 −33.39/−53.15 14:45:00 15:19:00
1 South America 3 465 1016 472 440 −41.93/−11.31 −46.36/−76.64 15:19:08 16:24:52
2 South America 1 601 1016 610 616 −12.71/12.71 −48.92/−82.18 16:25:01 17:50:01
3 North America 801 1016 813 816 19.18/54.99 −69.31/−121.51 17:50:09 19:43:29
4 Central America 601 1016 610 616 7.00/35.01 −78.24/−110.72 19:43:38 21:08:38

Table 6. The experimental runs with or without aerosol/cloud (a/c), with or without noise, and with the given perturbations (pert.) applied on
the baseline run.

Run no. Run name Perturbation No. of runs Notes

1 No a/c None 1 Aerosol and cloud not included in L1B simulation.
2 With (W) a/c None 1 The standard run for comparison.
3 W. a/c, with noise + Radiance noise 1 Gaussian noise added using the GeoCarb noise model.
4 W. a/c, pert. rad. cal. ×1.05 4 Multiplicative factor on radiance, each band separately and all bands.
5 W. a/c, pert. ILS ×1.01 4 Multiplicative factor on ILS 1λ, each band separately and all bands.
6 W. a/c, pert. polarization No polarization 4 All elements of the retrieval Mueller matrix zeroed except (1,1),

each band separately and all bands.
7 W. a/c, pert. pointing Target shift 1 Shift the SSP resulting in a 1 km shift westward of the

center of each observation.
8 W. a/c, pert. meteorology Dif. met forecast 1 GEOS-5 instead of ECMWF.
9 W. a/c, pert. spectroscopy Old spectroscopy 1 Old spectroscopy tables, HITRAN-2008 instead of HITRAN-2016.
10 W. a/c, pert. kit. sink Perts.: 4, 5, 6, 8, 9 1 All perturbations together and for all bands, except no. 7.
11 W. a/c, pert. kit. sink, with noise Perts.: 4, 5, 6, 8, 9 1 All perturbations together and for all bands, except no. 7.

introduced, the photon path length can be different between
the retrieval bands, as they are separated by roughly 0.4 µm.
Since the retrieval approach is non-scattering, the only way
for the forward model to adjust to the scattering-induced
change in observed line depths is to scale the gas profiles,
which ends up changing the ratio to be different from unity.
Thus, the gas ratio provides an indicator for cloud and aerosol
contamination in a measurement. The minimum and maxi-
mum ratio thresholds are currently set to 0.8 and 1.5, respec-
tively, for both gases.

3.6 Post-processing

The pre-screening filters out soundings with aerosols and
clouds that are too thick from which to yield a useful re-
trieval but is aerosol/cloud-conservative, so there will be
some soundings that still contain a small amount of aerosol
and cloud. Of the soundings that pass the pre-screening and
are processed with L2FP, some fail to converge. This could
be due to the presence of thinner aerosols and clouds, lim-
itations in the forward model to model the observed radi-
ances with sufficient accuracy, and/or the fact that the in-
version problem is ill-posed and nonlinear by nature, mak-
ing it difficult sometimes to optimally minimize χ2. Subse-
quently, there will be retrievals with Xgas results that have
errors larger than expected compared to the 1σ a posterior
uncertainty from the retrieval due to scatter and/or systematic

bias. A quality filtering procedure attempts to remove these
problematic soundings. This is followed by a linear bias cor-
rection of systematic errors to remove spurious dependencies
in some variables on the retrieval. Both the filtering and bias
correction steps essentially follow the methods described in
O’Dell et al. (2018).

3.6.1 Filtering

Building filters is accomplished by selecting a training
dataset and finding the variables that have the largest influ-
ence on the dataset by evaluating

1Xgas =Xgas,ret−Xgas,true, (8)

where Xgas,ret is the retrieved Xgas, and Xgas,true is what is
considered the true Xgas. For an operational instrument the
truth is obtained from one or more truth proxies which can
be ground-based observations, such as TCCON, or carbon
flux inversion models. For a simulation study such as this
one, the truth is computed from the measurement simula-
tion inputs themselves, after applying the averaging kernel
correction. The filtering is performed for XCO2 , XCH4 , and
XCO together, ensuring a consistent set of filtered soundings
for each gas. Variables from L2FP, ABP, and GASBAG are
all subject to being used in a filter threshold and include not
only state vector variables but variables derived from the re-
trievals. It is important to note that the optimal filter is not
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static. Changes in L2FP inputs, such as radiances (due to cal-
ibration changes), spectroscopic updates, updates in the me-
teorological modeling, and changes to the L2FP algorithm
itself, will most likely require the production of a new set of
filters. This burden will subsequently be shown in this paper
including the fact that this process can be a bit tedious but,
as it turns out, that the process conveniently lends itself to
machine learning techniques which are under investigation
(Keely et al., 2021).

3.6.2 Bias correction

The bias correction contains two terms: a parametric bias cor-
rection and a global bias correction. The bias correction for
a particular sounding i is given as

Xi,gas,flt,bc =Xi,gas,flt−Cp−Cg, (9)

where Xi,gas,flt is the filtered Xgas for sounding i, Cp is the
parametric correction term, and Cg is the global correction
term. The parametric bias correction has the form of a multi-
ple linear regression following Wunch et al. (2011b):

Cp =

n∑
j

cj (pj −pi,ref), (10)

where cj are the regression coefficients, pj are the selected
parameters, and pi,ref are the parameter reference values. The
parameters used are those that remove greater than 5 % of
the variance relative to the global mean of the same truth
proxies used to construct the filters. As with the filters, for
this study the simulation inputs are used as the truth, after the
averaging kernel correction is applied. The set of parameters
identified may be different with Xgas. It is important to note
that, just as with the filters, the optimal set of parameters used
for the parametric bias correction is not static and changes
with changes in the input data and the algorithm. The global
bias correction is simply the median difference between a
sample set of filtered Xgas results and a matching sample set
of true Xgas values from the truth proxy:

Cg =median(Xgas,flt−Xgas,true), (11)

where Xgas,flt and Xgas,true are vectors whose elements are
the set of samples.

4 Retrieval simulations and perturbation analysis

Up to this point, we have described the instrument, retrieval
algorithm, pre- and post-filtering, and bias correction strat-
egy of the retrieval approach. These are elements common to
most other retrievals for GHGs and more generally remotely
sensed variables. In this section, we apply it to GeoCarb more
specifically, to investigate how imperfect knowledge of sev-
eral important parameters affects the L2 retrievals. To this
end, bottom-up retrieval simulations with perturbations on

those parameters were performed. We start by describing our
scan strategy in Sect. 4.1, which yields a set of scenes that
covers most of the Americas at the peak of each season. We
then describe the Colorado State University (CSU) simulator
in Sect. 4.2, which produces the L1B and Met files used in
our retrieval experiments. Finally, the setup for each L2 re-
trieval experiment is described in Sect. 4.3, including details
that are common to each experiment and, for each individual
experiment, the perturbations made on the retrieval system
inputs and other relevant details specific to the experiment.

4.1 Simulation scan strategy

Since a formal GeoCarb scan strategy has yet to be deter-
mined, for these retrieval experiments a simple strategy was
created that consists of five scan blocks that cover the land in
the full disc that will most likely be covered by GeoCarb. The
SSP is set to 87◦ west longitude, which gives good coverage
of both North and South America. In total, 4 d of five scan
blocks is included, 21 March, 21 June, 21 September, and
21 December 2016, each corresponding approximately to a
seasonal equinox or solstice, for a total of 20 scan blocks.
They cover most of the Americas with a highest and low-
est latitudes at approximately 60 and−42◦, respectively. The
scan blocks are listed in Table 5, in the order in which they
are scanned, including their number, name, size in the x and
y directions, the total number of soundings, minimum and
maximum latitude/longitude at the middle of the scan block
in the x/y directions, and the UTC times associated with the
start and the end of the east–west scan of the north–south-
oriented slit. The scan start times were picked to minimize
the overall mean solar zenith angle and air mass for all five
blocks together.

The scan blocks are illustrated in Figs. 2 and 3 for the
21 June and 21 December 2016 cases, respectively. Three
maps of the Earth disc visible by GeoCarb at an SSP of 87◦

west (marked by the thick black “X”) are shown. From left
to right, the first shows the satellite zenith angle θ . It is clear
that the satellite zenith angle increases radially away from
the SSP or towards the outside of the Earth disc, which is
inherent in a geostationary orbital configuration and a distin-
guishing characteristic from nadir-looking instruments such
as OCO-2/3. This is important because the plane parallel
assumption used in the RT in the retrieval forward model
breaks down as the satellite zenith angle increases. The satel-
lite zenith angles for scenes over land used in this study
range from 7.54 to 78.06◦. It is expected that, depending on
other scene characteristics, aerosol optical thickness, and air
mass path, scenes with larger satellite zenith angles will more
likely be candidates to be filtered.

Analogously, large solar zenith angles are also problematic
in the RT calculations. The solar zenith angle for GeoCarb
scenes will depend on a combination of location and time,
with earlier or later local observation times having larger so-
lar zenith angles. It is important that the finalized scan strat-
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Figure 2. Maps of three key retrieval input variables for 21 June 2016 plotted in the five scan blocks used for the retrieval simulation
experiments. The “X” at the center of the geostationary projection shows the GeoCarb sub-satellite point at 87◦ west.

Figure 3. Same as Fig. 2 but for 21 December 2016.

egy is optimized by minimizing the mean solar zenith angle.
In contrast, since OCO-2 is in a sun-synchronous orbit, the
solar zenith angles for OCO-2 observations are usually rela-
tively low and consistent.

The second map from the left shows the single-scattering
phase angle 2 of single-scattered photons reaching the in-
strument, which, by the spherical law of cosines, is given by
the following relation:

cos2=− [cosθ0 cosθ + sinθ0 sinθ cos(φ−φ0)] , (12)

where θ0 and θ are the solar and satellite zenith angles, and
φ0 and φ are the solar and satellite azimuth angles, both
clockwise from north. The single-scattering phase angle is
the input to the single-scattering phase function P(2), which
is the distribution of scattering from a molecule or parti-
cle such that 2= 0◦ is forward scattering and 2= 180◦

is backscattering. In the backscattering case, the instrument
would be viewing the so-called “hotspot”, but for GeoCarb,
with the SSP over ocean (both at the currently planned 103◦

west longitude and the 87◦ used for this study), hotspot ge-
ometry will not be encountered for soundings over land. The
phase angles for scenes over land used in this study range
from 106.6 to 176.8◦ and depend not only on location due to
the satellite zenith angle but also on the observation time due
to the solar zenith angle, which is apparent in the variation in
phase angle with scan blocks scanned at different times.

Finally, the third map from the left shows the air mass fac-
tor mair in a plane-parallel atmosphere given by

mair =
1

cosθ0
+

1
cosθ

. (13)

The air mass factor is the direct optical path length of solar
radiation incident at the top of the atmosphere (TOA) that is
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scattered once in the atmosphere or at the surface into a direct
path back to TOA and measured by an instrument sensor, rel-
ative to the optical path for vertically incident and vertically
scattered radiation, i.e., when cosθ0 = 0 and cosθ = 0. The
air mass factor is important from a RT perspective in that as it
increases, the plane-parallel assumption starts to break down
increasing error in the forward model, while also the amount
of aerosols and clouds in the direct path will increase, which
increases the contribution of light reflected from aerosol/-
cloud in the upper troposphere relative to light reflected from
the ground. This makes it less likely that the inversion will
produce a useful retrieval passing the post-processing filters.
In fact, the air mass factor itself is used as a filter variable
(see Fig. 8) with a maximum threshold of 4.2. The air mass
factors for the land scenes used in this study range from 2.01
to 13.00, indicating that at least some retrievals will not meet
the maximum air mass factor threshold.

Due to the number of retrieval experiments performed, the
current GeoCarb spatial resolution of 2.7 km N–S and 5.4 km
E–W would be computationally prohibitive, so the resolution
was down-sampled by a factor of 20 N–S× 10 E–W, ∼ 0.5◦.
Our goal is to study the retrieval system over a wide range of
conditions, and we are not concerned about spatial coherence
between neighboring pixels. Since the geographic range of
our dataset covers that which GeoCarb would have sampled,
we believe that even with the downsampling, our dataset
will cover an adequate range of conditions. After downsam-
pling, the number of soundings per season is 13 812 for a
total of 55 248 soundings for all four seasons, which can be
compared to the original numbers before downsampling of
2 752 344 per season for a total of 11 009 376 soundings.

4.2 CSU simulator

As input, the CSU simulator takes meteorological, trace gas,
cloud and aerosol, and surface parameters for each individual
scene based on location and time, along with instrument pa-
rameters, and produces L1B files which include synthetic ra-
diometric measurements along with their time, geolocation,
solar/satellite geometry, instrument characteristics, and other
parameters associated with the measurements. In addition,
the simulator produces Met files associated with each scene,
which contain meteorological prior parameters that are used
in the L2 retrievals. The simulator was originally developed
for OCO-1, while support for OCO-2/3 and GOSAT was
subsequently added, followed by support for GeoCarb. The
simulator is discussed in detail in various references such as
O’Brien et al. (2009) or P2014 and will only be summarized
here.

The simulation process can essentially be divided into
three steps:

1. Produce the geolocation and solar/satellite geometry for
each scene based on scan block definitions including
the starting epoch, SSP, target (scan block center) lat-
itude/longitude, number of north–south (currently fixed

at 1016 footprints along slit) and east–west FOVs, and
north–south/east–west sample increment.

2. For each scene, from various sources, collect and inter-
polate the trace gas, meteorological, aerosol/cloud, and
surface parameters for input into step three, referred to
as the scene input, to produce “truth” Met files.

3. Take the information produced in steps one and two
along with scene-independent instrument characteris-
tics such as the Stokes coefficients, the ILS table, and
noise coefficients to run the forward model that pro-
duces synthetic radiance measurements.

The simulator is well documented in O’Brien et al. (2009)
and P2014. Changes relative to those references include up-
dates discussed in Sect. 1 including the instrument model de-
tails discussed in Sect. 3.2.1. We would like to refer the inter-
ested readers to these references for further details. It should
be noted that the simulator does not account for the other in-
strument effects discussed in Sect. 2. In addition, the effects
of scene inhomogeneity are also not taken into account, and
therefore ILS variation across the scene is ignored. In the end
these effects will be important to rectify, for which there is
ongoing research.

4.3 Experimental setup

In this section perturbation analysis experiments are pre-
sented, where perturbations are made on several key inputs
to the L2 retrieval system. These perturbations will affect
the entire system, including pre-processing (ABP and GAS-
BAG), L2FP, and post-processing, and allow us to construct
an error budget for GeoCarb given the uncertainties investi-
gated (unmodeled effects notwithstanding). The following is
an outline of the steps involved in producing results for each
experiment.

1. Produce baseline L1B input with the CSU simulator on
the full set of scenes that result from the scan strat-
egy described in Sect. 4.1. This occurs before pre-
processing so it includes scenes over ocean and scenes
that will have too much aerosol/cloud to produce a reli-
able L2FP retrieval.

2. For each experiment perform the following steps:

a. If required, perturb one or more variables in the
L1B input as appropriate.

b. Run pre-processing including filtering out scenes
over ocean and running ABP and GASBAG and
subsequently screening for clouds. Note that ABP
and GASBAG results will also be used for the post-
process filtering.

c. Run the L2FP retrieval with the perturbed inputs.
Depending on the experiment, the perturbed in-
puts may be the L1B input and/or the spectroscopy
and/or meteorology inputs.
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d. Tailor and apply the post-process filtering and bias
correction to the L2FP Xgas results.

e. Apply the averaging kernel correction to the truth
for comparison to each experiment’s results. The
truth comes from the scene input to the RT com-
ponent of the simulator.

f. Analyze the differences in Xgas between the truth
and that retrieved by L2FP.

Since GeoCarb was not meant to perform retrievals over
ocean, all soundings over ocean are filtered out for the L2
retrievals as discussed in Sect. 3.5. This process results in a
reduction of the number of soundings to simulate to 8278 for
each season for a total of 33 111 soundings. Since all but one
of our experiments are performed with an atmosphere con-
taining aerosols and clouds, the aerosol and cloud screening
discussed in Sect. 3.5 is performed on all simulated sound-
ings over land. This results in a further reduction in the num-
ber of soundings to perform retrievals on for each season to
3104 for a total of 12 520 soundings. Note that after the re-
trieval is performed, there will be an additional reduction in
the number of retrievals used in the analysis due to the post-
filtering discussed in Sect. 3.6.

There are a few differences in the L2FP runs for the exper-
iments compared to the planned mission configuration pre-
sented in Sect. 3. At the time of this writing, the GeoCarb
instrument has yet to undergo a formal instrument charac-
terization of polarization, the ILS, or noise characteristics,
so for the experiments in this study the Mueller matrix, the
ILS, and the noise coefficients are based on known charac-
teristics of the optical components and optical model calcu-
lations of the instrument as a whole. These make them partic-
ularly different from the truth fields, and hence the retrieval is
truly challenged in this regard. For aerosol, the same aerosol
types are used but the aerosol optical thickness prior comes
from the aerosol climatology of the Modern-Era Retrospec-
tive analysis for Research and Applications (MERRA) (Rie-
necker et al., 2011). For the surface BRDF, the quadratic term
is not included. Since the L1B simulations only include a lin-
ear variation in wavelength, leaving the quadratic term out in
the L2FP retrievals will not affect the outcome of the experi-
mental results. Finally, it was judged not to include EOFs for
these experiments since for the baseline both the L1B sim-
ulations and the L2FP retrievals use the same spectroscopic
tables, solar model, and instrument characteristics, and the
effects of the perturbations applied in the experiments would
be easier to decipher without the effects of applying EOFs.
Therefore, we expect our results to be conservative, in that
EOFs should only serve to reduce systematic errors (O’Dell
et al., 2018).

4.3.1 Baseline experiments

To establish a “baseline” for comparison, we ran the retrieval
system with nothing perturbed, i.e., with perfect knowledge

of the experimental inputs. In this case, both the L1B simu-
lations and the ABP, GASBAG, and L2FP retrievals use the
same set of input parameters of interest. Even though these
input parameters are the same, there are still differences in
the simulator and L2FP that will result in Xgas retrieval er-
rors relative to the “truth” computed from the simulator in-
puts. The differences include different aerosol/cloud models;
different surface BRDF models; different SIF models; differ-
ences between the prior and truth profiles of CO2, CH4, and
CO; differences in the layer discretization of the atmosphere;
and subtle differences in the forward model RT. Errors rel-
ative to truth also arise from the OE inversion including the
choice of additional priors and algorithmic controls and the
ability for the algorithm to minimize the differences between
the measurements and the forward model since the inversion
problem is ill-posed and nonlinear by nature.

In addition to the baseline test described above, we per-
formed two other tests with modifications to the baseline.
First, the L1B simulator is ran without aerosols and clouds
included. Although unrealistic, this test shows the effects of
aerosols and clouds on the baseline test and on post-process
filtering. In addition, baseline L1B files with synthetic noise
added are produced, for the case including aerosols and
clouds. This does not require a separate simulator run as
synthetic noise can simply be added to the radiances in the
L1B files. Using the GeoCarb noise model and assuming a
Gaussian noise distribution, the radiance with noise IN,b,c
for band b and channel c can be written as

IN,b,c = Ib,c+ σIb,c ×RN(µ,σ ), (14)

where Ib,c is the radiance without noise, σIb,c is the standard
deviation of the noise given by Eq. (7), and RN(µ,σ ) re-
turns a random sample from a “standard normal” distribution
with a mean µ= 0 and standard deviation σ = 1. For the rest
of the experiments random noise is not included as includ-
ing random noise simply widens the bias distribution by the
width of the random uncertainty.

4.3.2 Perturbation experiments

We performed seven different experiments, each introducing
imperfect knowledge relative to the baseline run of one or
more parameters. The experiments include imperfect knowl-
edge of radiometric calibration, ILS, polarization, pointing,
spectroscopy, and meteorology and an imperfect knowledge
of all the parameters. These tests along with the baseline runs
described above are summarized in Table 6.

1. Radiometric calibration of the instrument, i.e., radio-
metric gain, is the factor applied to the measured volt-
ages to convert them to absolute physical units. This is a
per-channel scale and offset that should not be confused
with random noise in the measurements. For GeoCarb,
the absolute radiometric performance requirement of all
spatial samples across the full FOV and across the full
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spectral range of the four channels is an uncertainty that
is no larger than 5 % (GeoCarb MDRA, 2020) so that for
the radiometric calibration experiment we introduced
imperfect knowledge simply by scaling the radiances
in the L1B files by a factor of 1.05. We performed this
experiment for each band separately and for all bands
together in an attempt to reveal differences in the sensi-
tivity to radiometric calibration between bands.

2. We introduced imperfect knowledge of the ILS by mod-
ifying the ILS given in the L1B files. The ILS is pro-
vided for each footprint, band, and channel as a table of
n points as a function of delta wavelength 1λ from the
center of the ILS ranging from −1λ to 1λ. By multi-
plying the 1λ vector by a scale factor, effectively scal-
ing the FWHM, the ILS is either stretched or squashed
making it broader or narrower, respectively. For this we
used a scale factor of 1.002 which results in a pertur-
bation that matches the current FWHM uncertainty re-
quirement of 0.2 % (GeoCarb MDRA, 2020). We per-
formed this experiment for each band separately and for
all bands together. It should be noted that for this per-
turbation experiment, we took the per-band ILS scaling
factor out of the retrieval state vector.

3. For polarization, we introduced imperfect knowledge of
the polarization sensitivity of the instrument by having
the L2 retrieval simply assume that there is no polariza-
tion, i.e., S(λ)= [I,0,0,0]. Eliminating the polariza-
tion knowledge can be done by setting all but the (1,1)
element of the Mueller matrix M in Eq. (4) to zero so
therefore the Q, U , and V components of the Stokes
vector S are ignored in the forward model RT calcu-
lations. We performed this experiment for each band
separately and for all bands together. This test is actu-
ally a repeat of the same test performed in O2015 but
using our updated simulation/retrieval framework and
GeoCarb instrument model.

4. Instrument pointing errors, caused by errors in the
knowledge of spacecraft attitude and/or the orientation
of the optical scan mirrors, result in errors in the ge-
olocation, solar/satellite geometry, and polarization ro-
tation, associated with the measurements. Knowledge
of the geolocation is important for determining atmo-
spheric and surface priors that are a function of loca-
tion including surface pressure which is subsequently
dependent on a particular location’s elevation. In addi-
tion, knowledge of the solar/satellite geometry and po-
larization rotation is used for the RT calculations in the
forward model. The pointing perturbation was accom-
plished simply by shifting the SSP 0.009579 ◦W in lon-
gitude (from 87 to 87.009579 ◦W longitude), which has
the effect of inducing a roughly 1 km westward shift of
the center of each 2.7× 5.4 km footprint.

5. For meteorology we introduced imperfect knowledge
by using meteorology from a different forecast model.
As a reminder, for the baseline simulations we used the
ECMWF forecast described in Sect. 4.2. For this ex-
periment we used meteorology from the GEOS-5 FP-IT
forecast. This is the source for meteorology planned for
the operational GeoCarb L2FP retrieval as described in
Sect. 3.2. It is assumed that the variations between these
two different models will represent a theoretical ensem-
ble uncertainty in model results, whether from different
models or different versions of those models.

6. We introduced imperfect knowledge of spectroscopy by
using an older version of the spectroscopic reference
tables than that used for the baseline L1B simulation
and the baseline L2FP retrieval. The older O2 and CO2
spectroscopic data come from the same research for the
OCO-2/3 projects as discussed in Sect. 3.2 but signifi-
cantly pre-date those used for the current L2FP retrieval.
The data for H2O, CH4, and CO are based on HITRAN-
2008 (Rothman et al., 2009) rather than HITRAN-2016.
We believe that this table replacement is sufficient to in-
troduce imperfect knowledge due to spectroscopic pa-
rameters such as line strength, air broadening, temper-
ature dependence, collision-induced absorption, H2O
broadening, pressure shift, line mixing, and speed de-
pendence, since it is these parameters that continually
get improved with on going spectroscopic research.

7. The “kitchen sink” includes all perturbations 1–6 above
except for the single day of pointing perturbation.

4.3.3 Averaging kernel correction

In order to properly compare the retrieved Xgas to the true
value, the averaging kernel matrix from the retrieval is used
to construct a gas profile ugas,ak that is comparable to the
retrieved profile in that it contains influence from both the
true profile and the prior profile in the same proportions as
the retrieved profile:

ugas,ak = Agasugas,true+ (I−Agas)ugas,ap, (15)

where Agas is the averaging kernel matrix for a particular gas;
ugas,true is the true gas profile, which in this case is from the
simulation scene input from step 2 in the simulation process;
ugas,ap is the prior gas profile; and I is the identity matrix. We
then convert this to the column-integrated fraction as

Xgas,ak = h
Tugas,ak (16)

=Xgas,true+ (h− agas)
T(ugas,ap−ugas,true),

where agas = h
TAgas is the (un-normalized) averaging kernel

vector for the gas in question, and the pressure weighting
function h is defined by the pressure level intervals in the
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Figure 4. Normalized averaging kernel vectors aN for XCO2 , XCH4 , and XCO for all soundings passing our quality flag (Sect. 5.1), colored
by air mass factor.

Figure 5. Baseline retrieval error results without clouds and aerosols (clear-sky) for three cases: unfiltered (raw), filtered, and filtered and
bias corrected (BC). Statistics include the number of soundings n, the average error µ, and the standard deviation of the errors σ .

profile normalized by the surface pressure. TheXgas retrieval
error is then given simply by

1Xgas = X̂gas−Xgas,ak, (17)

where X̂gas is the retrieved gas-column-integrated fraction.
The averaging kernel matrix Agas, prior profile ugas,ap, and
pressure weighting function h are all obtained from the L2FP
output at 20 levels and are then interpolated to the 72 levels of
the true profile ugas,true. Unless otherwise stated, this is how
the errors are determined in the various retrieval experiments.

A brief discussion on this “AK correction” is warranted.
The averaging kernel vector agas quantifies the response of
the retrieved Xgas to changes in the true gas profile, which
can be written as

agas,j =
∂Xgas

∂ugas,true,j
, j = 1. . .n, (18)

where n is the number of vertical levels. This quantity is
straightforward to derive from the full retrieval averaging
kernel matrix A and several other quantities (see, e.g., Con-
nor et al., 2008). It is common to normalize this quantity with
respect to the pressure weighting function:

aN,gas,j =
agas,j

hj
. (19)

This normalized averaging kernel vector can have values
from below 0 to greater than 1. A value of unity means that
a given change in the true gas profile causes a fully propor-
tional change in the retrieved gas column fraction; i.e., there
is no influence from the prior. For a perfect retrieval with
perfect sensitivity, the values would all be unity.

Figure 4 shows the normalized averaging kernel vectors
for XCO2 , XCH4 , and XCO for our GeoCarb simulations,
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taken for all soundings that pass the post-retrieval quality
flag in the baseline experiments (Sect. 5.1). From the figures
it can be seen that the sensitivity to CO2 and CH4 is larger
closer to the Earth’s surface and is generally a function of air
mass. This is as expected and optimal for the GeoCarb mis-
sion due sensitivity to sources and sinks at the surface. On
the other hand, there is generally a slight increase in sensitiv-
ity to XCO with altitude. These AKs are very similar to their
up-looking counterparts from TCCON (e.g., Wunch et al.,
2011a, Fig. 4)

5 Results

In this section, results are presented for each experiment in
the order listed in Table 6. Though the GeoCarb mission
requirements have no formal requirement on accuracy, we
will take the multi-sounding precision requirements to sim-
ilarly apply to accuracy. That is, we will typically evaluate
the mean and standard deviation of the error for a given gas
column fraction and require both to be less than the require-
ments given in Table 1.

There are two important details about the sounding selec-
tion process in the presentation:

– There will be a certain number of soundings that did not
converge in the inversion process discussed in Sect. 3.1
which are not included in the analysis. These soundings
did not converge, either due to too much aerosol and/or
cloud and did not get filtered out in the pre-screening
process or have other physical attributes that are not ad-
equately represented in the forward model.

– The results presented are the intersection of the set of
baseline results with the set of results of the particular
experiment. This means that only soundings that con-
verged in both cases are shown. As a result, the pre-
sentation of the baseline results will contain the highest
number of soundings, and all other cases will contain as
many as or fewer than the baseline results.

Results are shown for three cases: unfiltered (“Raw”), fil-
tered (“Filtered”), and filtered and bias corrected (“Filtered+
BC”). The statistics presented include the number of sound-
ings n in the plot, the mean error µ, and the standard devia-
tion of the errors σ .

5.1 Baseline

Figures 5 and 6 present histograms of retrieval errors for
XCO2 , XCH4 , and XCO for the baseline case, i.e., perfect
knowledge of all variables investigated, for the special case
with aerosols and clouds artificially removed (clear-sky) and
for the case with aerosols and clouds included (all-sky), re-
spectively. It is clear that the errors in the clear-sky case are
significantly fewer compared to the all-sky case. This is as

expected and is really a sanity check for the simulation sys-
tem. The percentage of soundings making it through the fil-
ters in the clear-sky case (95.4 %) is significantly higher than
in the all-sky case (68.1 %). This is consistent with what we
have already discussed in Sect. 3.6 in that the filtering pro-
cess is designed to remove retrievals that are not reliable due
to the presence of aerosols and clouds.

It is not surprising that the filtered and bias-corrected clear-
sky retrievals meet the mission precision requirements listed
in Table 1 (even the raw unfiltered results meet the require-
ments), but the all-sky filtered and bias-corrected results also
meet the precision requirements with RMSEs of 0.66 ppm,
6.4 ppb, and 2.4 ppb for XCO2 , XCH4 , and XCO, respectively.
These are of course the results for the case of perfect knowl-
edge of the variables investigated and with no random noise
added. It is apparent from the plots that the retrievals of
XCO2 , and especially XCH4 , are driven primarily by system-
atic errors, which is clearly not the case for XCO. The large
median bias inXCH4 of−6.59 ppb is curious and may be due
to a significant bias in the XCH4 prior (mean bias ∼ 40 ppb).
Any mean biases for these gas columns are largely removed
by the bias correction.

Maps of the all-sky baseline results are shown in Fig. 7
for the filtered and bias-corrected case. Features include pos-
itive biases in XCO2 and XCO at larger satellite zenith angles.
Negative biases are apparent in XCH4 over high-altitude ar-
eas due to difficulty retrieving in these areas, although it is
unclear why this is only apparent for methane. Finally, small
negative biases in XCO of order −1 ppb are prevalent over
the Amazon, likely due to persistent cloud cover that either
has not been pre-screened out or caught by the filtering.

5.1.1 Quality filtering

The post-retrieval filtering approach is demonstrated in
Fig. 8, which shows XCO2 vs. the filtering parameters with
the simulation inputs as the truth proxy. The top-12 most im-
portant filters are shown sorted by importance from left to
right and then from top to bottom. Table 7 summarizes the
results for all three gases. It is apparent that just a few vari-
ables do the bulk of the filtering and that overall the filter
variables are almost always associated with negative biases
in XCO2 and positive biases in XCH4 .

The variable with the largest filtering effect (∼ 21 % of
the soundings filtered out) is the H2O ratio from GASBAG
which filters out scenes with too much cloud and aerosol con-
tamination. The CO2 ratio is also a filter variable that indi-
cates cloud and aerosol contamination but has much less of
an effect than the H2O ratio. Another important filter variable
is 1P = P̂ −Ptrue, where P̂ is the retrieved surface pressure
from either the L2FP retrieval or the ABP retrieval. The im-
portance of this variable is most likely due to photon-path-
length-related effects from aerosols and clouds and the re-
trieval adjusting 1P to compensate. The retrieved aerosol
optical thickness (AOT) is also an important filter variable,
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Figure 6. Same as Fig. 5 but with clouds and aerosols (all-sky).

Figure 7. Maps of same results shown in Fig. 6 for the filtered and bias-corrected case.

specifically for the larger aerosol types including dust (DU)
and ice cloud (ice) and the total AOT for all aerosols and
clouds. Large values of dust AOT are particularly associated
with large negative biases in XCO2 due to the increased sen-
sitivity to large particles in the CO2 bands relative to that
to smaller particles. In contrast, ice crystal particles become
a more important filter for large XCH4 and XCO biases (not
shown) due to a larger sensitivity of the XCH4 band to ice
crystals. The XCH4 -retrieved uncertainty filters out retrievals
with significant scatter, although any specific source of this
scatter is unknown. The CO2 vertical gradient delta is defined
as the difference in retrieved XCO2 between the surface and
the retrieval pressure level at 0.7 times the surface pressure
minus the same quantity for the prior given by

co2_grad_del= [c(1)− c(0.7)]− [ca(1)− ca(0.7)] , (20)

where c(x) and ca(x) are the retrieved and a priori CO2 dry
air mole fraction, respectively, at relative pressure x. Sound-
ing altitude is a filter variable which may normally be at-

tributed to pointing errors, but since knowledge of the point-
ing in the baseline results is “perfect”, the altitude may be
a proxy for difficulties in making retrievals at high altitudes,
including errors in the prior surface pressure, broken clouds,
and/or the presence of snow/ice. The band 2 ILS scaling fil-
ter most likely indicates the case where an effect is not ac-
counted for in the forward model with the ILS scaling com-
pensating for it. The filtering finishes off with the air mass
factor mair, which is influenced by both the solar and satel-
lite zenith angles, where large angles result in an increase in
scattering effects and associated larger RT errors.

It must be noted that new filters usually need to be re-
built when changes are made to the retrieval system. These
changes include changes made to the radiances (due to cal-
ibration changes), spectroscopy, prior inputs, and finally the
forward model physics. In the past, for OCO-2/3, new filters
have been produced with each release of the L2FP product
(O’Dell et al., 2011, 2018), and it is planned that new filters
will be rebuilt for each GeoCarb release. For the experiments
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Figure 8. The top-12 most important filters in the post-processing filtering algorithm applied cumulatively and sorted by importance from
left to right and then from top to bottom. Background histograms show the distribution of the filter variable values; the black dots show mean
values of the difference between retrieved XCO2 and true XCO2 for each histogram bin (left axis), the blue dots show the standard deviation
of the XCO2 differences for each histogram bin (right axis), and the green dots show the mean XCO2 differences for each bin after filtering
and bias correction (left axis). The filter thresholds are shown as vertical dashed lines. The percentage of retrievals that pass the filter and
RMSE of the results after the filter’s application are also given for each variable.

in this paper, filters were built for the baseline, and it was
determined that these filters were sufficient for the radiomet-
ric calibration, ILS, polarization, and pointing experiments,
although it was determined that new filters were required
for the baseline with noise, spectroscopy, meteorology, and
kitchen sink experiments (a specific set of filters for each).

5.1.2 Bias correction

Table 8 shows the bias correction parameters for the three
target gases for the baseline experiment. 1P explains the
most variability in XCO2 , followed by the AOT from large

aerosols (dust, liquid water cloud, and sea salt) as well as
the fine-mode aerosol (sulfate+ organic carbon). These vari-
ables are all important in the operational OCO-2 XCO2 bias
correction (O’Dell et al., 2018), so their selection is not sur-
prising. However, we see1P is also important forXCH4 , but
even more important is the retrieved ice cloud AOT, explain-
ing 31 % of the variance in retrievedXCH4 . And, even though
XCO is mostly dominated by random error, the bias correc-
tion still reduces the systematic error from 0.8 to 0.5 ppb.
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Table 7. Baseline filters applied cumulatively along with the thresholds and the percentage of retrievals that pass the filter and, for each gas,
the mean error, standard deviation of the error, and the RMSE of Xgas after the filter’s application. (The units are ppm, ppb, and ppb for
XCO2 , XCH4 , and XCO.)

No. Name Threshold % pass XCO2 XCH4 XCO

µ σ RMSE µ σ RMSE µ σ RMSE

Raw, no BC −0.35 2.48 2.51 16.47 27.41 31.97 −0.45 1.64 1.70

1 H2O ratio (from GASBAG) [0.90, 1.11] 78.59 −0.16 1.40 1.41 1.41 10.02 10.12 −0.02 0.96 0.96
2 1P (hPa, from L2) [−5.00, 6.00] 72.89 −0.08 0.94 0.95 1.65 8.49 8.65 0.01 0.90 0.90
3 1P (hPa, from ABP) [−20.00, 2.00] 68.46 −0.08 0.90 0.91 1.46 8.07 8.20 −0.01 0.86 0.86
4 AOT: DU <= 0.05 66.77 −0.05 0.84 0.84 1.47 8.05 8.19 −0.01 0.85 0.85
5 Total AOT <= 0.30 65.44 −0.06 0.81 0.82 1.33 7.81 7.92 −0.01 0.84 0.84
6 AOT: ice <= 0.10 64.29 −0.07 0.78 0.78 1.11 7.41 7.49 −0.03 0.81 0.81
7 XCH4 uncert. (ppb) <= 5.50 63.60 −0.07 0.77 0.78 1.01 7.05 7.12 −0.03 0.80 0.81
8 CO2 ratio (from GASBAG) [0.98, 1.08] 62.99 −0.06 0.75 0.75 1.01 6.75 6.82 −0.02 0.79 0.79
9 CO2 grad. delta (ppm) [−55.00, 60.00] 62.60 −0.06 0.72 0.72 1.04 6.68 6.76 −0.02 0.79 0.79
10 ILS scale factor (band 2) [1.00, 2.00] 62.44 −0.05 0.70 0.70 1.06 6.63 6.71 −0.02 0.79 0.79
11 Number of iterations <= 9.50 62.38 −0.05 0.70 0.70 1.08 6.60 6.69 −0.02 0.79 0.79
12 Air mass factor mair <= 4.50 62.35 −0.05 0.70 0.70 1.08 6.59 6.68 −0.02 0.79 0.79

Figure 9. Baseline retrieval actual errors in target gas column fractions plotted vs. the posterior uncertainty. Shown are the noiseless errors
with bias correction (black), with noise without bias correction (red), and with noise with bias correction (blue).

5.1.3 Posterior uncertainty

The posterior estimate of uncertainty of Xgas for the baseline
run (with aerosol/cloud and without noise added) is shown in
Fig. 9. The posterior uncertainty for Xgas is given by

σXgas =

√
hTŜgash, (21)

where Ŝgas is the portion of the posterior covariance ma-
trix that is for either the CO2, CH4, or CO retrieved pro-
files. While these error estimates should generally be a com-
bination of instrument noise and forward model errors, for
simplicity our input error estimates only include instrument
noise, smoothing error (related to the prior covariance), and

interference errors with unrelated state vector elements. Our
posterior error estimates do not include forward model er-
rors (such as those due to spectroscopy, aerosol assumptions,
surface characterization, and RT assumptions).

Figure 9 compares the RMSEs in the retrieved gas col-
umn fractions with the estimated posterior uncertainty de-
scribed above. Shown are the baseline case including bias
correction (black) and the baseline case with noise without
(red) bias correction and with (blue) bias correction. The grey
histograms indicate the distribution of the posterior uncer-
tainties for each gas. The mean posterior (i.e., noise-driven)
uncertainties are 0.53 ppm, 2.7 ppb, and 2.2 ppb for XCO2 ,
XCH4 , and XCO, respectively. As expected, there is an under-
estimation of the error for both XCO2 and XCH4 due to the
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Figure 10. Same as Fig. 6 but with synthetic Gaussian noise added.

Figure 11. Same as Fig. 6 but for the case of imperfect knowledge of radiometric calibration for all bands.

Table 8. Bias correction parameters. Aerosol types include the fol-
lowing: “wat”, liquid water particles; “ice”, ice crystals; “DU”,
desert dust; “SS”, sea salt; “SU”, sulfate; and “OC”, organic car-
bon.

Parameter Coefficient % Variance

XCO2
1P (hPa, from L2) −0.22 29 %
AOT: DU + wat + SS −4.9 4.2 %
AOT: SU + OC 11 9.4 %
Total (σraw = 0.87→ σbc = 0.66 ppm) 43 %

XCH4
1P (hPa, from L2) −1.7 17 %
AOT: ice 270 31 %
XCH4 uncert. (ppb) 3.1 6.2 %
Air mass factor 4.2 2.3 %
Total (σraw = 9.2→ σbc = 6.0 ppb) 57 %

XCO
ILS scale factor (band 4) 272 37 %
AOT: ice 17 15 %
Total (σraw = 0.79→ σbc = 0.50 ppb) 59 %

impact of systematic errors. This impact is largest for XCH4 ,
indicating the importance of bias correction for that quan-
tity. For XCO (as well as SIF; see Somkuti et al., 2021), the
uncertainties are more consistent with the actual errors, an
indication that XCO errors are driven less by systematic er-
rors than XCO2 and XCH4 , primarily due to less XCO signal
compared to the other gases. Relative to the noise-driven un-
certainty, systematic errors inXCO are almost negligible (less
than 1 ppb).

5.2 Baseline with noise

The results when Gaussian noise is added to the baseline ra-
diances are shown in Fig. 10. As already mentioned, a new
filter was built specifically for this experiment. The results
indicate that the precision requirements are met by the fil-
tered and bias-corrected results with RMSEs of 0.72 ppm,
6.4 ppb, and 2.4 ppb for XCO2 , XCH4 , and XCO, respectively.
The filtering throughput of 7388 soundings (61 %) is, as ex-
pected, slightly less than that for the baseline (7544 sound-
ings, 62 %). These relatively small impacts of the synthetic
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Figure 12. Same as Fig. 6 but with imperfect knowledge of the ILS.

Figure 13. Same as Fig. 6 but with imperfect knowledge of polarization.

noise indicate that the retrievals ofXCO2 andXCH4 are driven
primarily by systematic errors, as we pointed out above. In
contrast, the retrieval of XCO is significantly affected by the
addition of noise, supporting our previous observation that
the XCO retrieval is driven more by instrument noise. It is
worth noting that in many applications the Xgas results will
be averaged spatially and/or temporally, in which case it is
expected that the random error will decrease proportionally
to
√
n, where n is the number of soundings to be averaged.

5.3 Radiometric calibration

Results for the radiometric calibration perturbation exper-
iment are shown in Fig. 11. In this experiment all chan-
nels were perturbed together by a scale factor of 1.05. From
the figure it is apparent that even with the perturbation to
the radiometric calibration, the filtered and bias-corrected
Xgas results meet the precision requirements with RMSEs of
0.64 ppm, 5.8 ppb, and 0.5 ppb forXCO2 ,XCH4 , andXCO, re-
spectively, and a filter throughput of 7532 soundings (62 %).
These results are very similar to the baseline results, indicat-

ing that the retrieval is not particularly sensitive to an offset
in the overall (multiplicative) radiometric calibration. As a
test we performed this perturbation experiment with a 0.95
scale factor to make sure that the perturbation outcome is ac-
ceptably symmetric, which the results (not shown) indicate.
The results for each band perturbed individually (not shown),
a total of four additional tests, show only a small improve-
ment when each is compared to the results, with all bands
perturbed while compared to each other there is little notice-
able differences between bands.

5.4 ILS

Results for the ILS perturbation experiment are shown
in Fig. 12. The filtered and bias-corrected results all fall
within the precision requirements with RMSEs of 0.67 ppm,
6.3 ppb, and 0.6 ppb for XCO2 , XCH4 , and XCO, respectively,
and a filter throughput of 7594 soundings (62 %). Again, per-
turbation symmetry was tested for this experiment with in-
significant differences between perturbation directions. The
results (with no bias correction) for each band perturbed indi-
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Figure 14. Same as Fig. 6 but with imperfect knowledge of the instrument pointing.

Figure 15. Same as Fig. 6 but with imperfect knowledge of meteorology.

vidually (not shown) show a significantly larger bias inXCO2

results for bands 2 and 3 compared to bands 1 and 4. Clearly
this is an indication of the sensitivity to CO2 in these bands
relative to the others. There are three state vector parame-
ters that affect these results: to a small degree the dispersion
scale and offset and, more importantly, the ILS scaling, all
of which amount to a total of 12 parameters, three for each
band. As mentioned before, we specifically removed the ILS
scale factor from the state vector for this test and as it turns
out (results not shown) including the ILS scale factor in the
state vector fits for the perturbation error down to a negligible
error for XCO2 and XCH4 and just to a small error compared
to the baseline run for XCO, most likely due to the smaller
sensitivity to XCO compared to the other gases. Regardless,
it is still instructive to apply this perturbation without the ILS
scaling in the state vector, to show that the bias correction can
still largely correct for this error. It is worth noting that the
simulations for these experiments do not include scene inho-
mogeneity, which can strongly perturb the ILS. This effect is
described in Crowell et al. (2023).

5.5 Polarization

The results for the imperfect polarization experiment,
wherein the retrievals assume the instrument is only sensi-
tive to total intensity, when the simulations include a realis-
tic polarization sensitivity, are shown in Fig. 13. The filtered
and bias-corrected results all fall within the precision require-
ments with RMSEs of 0.65 ppm, 6.0 ppb, and 0.5 ppb for
XCO2 , XCH4 , and XCO, respectively, and a filter throughput
of 7562 soundings (62 %). The per-band results (not shown)
indicate the that there is no significant distinction per band.
These findings are largely consistent with the earlier work in
O2015 and indicate that a moderate knowledge of the instru-
ment polarization response is sufficient to meet our require-
ments.

5.6 Pointing

The results for the experiment with a perturbation in point-
ing are shown in Fig. 14. In this case we were limited to
the single day of 21 March 2016 without the 3 other days.
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Figure 16. Same as Fig. 6 but with imperfect knowledge of spectroscopy.

Figure 17. Same as Fig. 6 but for the kitchen sink experiment.

We believe in this experiment that this reduced dataset will
have little impact on the results. For this case, the filtered
and bias-corrected results all fall within the precision require-
ments and are actually very close to the corresponding base-
line results, with RMSEs of 0.67 ppm, 5.8 ppb, and 0.5 ppb
forXCO2 ,XCH4 , andXCO, respectively. The throughput frac-
tion of 65 % is marginally higher than that of the baseline
(62 %), likely due to this particular day having slightly less
cloud contamination.

5.7 Meteorology

The results for the meteorological perturbation experiment
are shown in Fig. 15. The filtered and bias-corrected results
meet the precision requirements with RMSEs of 0.74 ppm,
6.5 ppb, and 0.6 ppb for XCO2 , XCH4 , and XCO, respectively.
The errors are similar to the baseline, though with its own
filter. This is at the cost of less filter throughput, with only
53 % soundings passing the quality filter versus 62 % for the
baseline. Several parameters change significantly, in partic-
ular 1P and co2_grad_del, which will affect the filtering.

Finally, these filters were hand-tuned for simplicity, so some
of the loss may simply be an imperfect filter.

5.8 Spectroscopy

The results for the spectroscopy perturbation experiment are
shown in Fig. 16. The filtered and bias-corrected results
all fall within the precision requirements, with RMSEs of
0.84 ppm, 7.5 ppb, and 0.6 ppb for XCO2 , XCH4 , and XCO,
respectively. As already mentioned, a new filter (not shown)
was built for this experiment, but this was at the cost of sig-
nificantly less filter throughput compared to the baseline with
only 6290 soundings passing (52 %), similar to the meteorol-
ogy perturbation experiment. Except for aerosols and clouds,
error due to spectroscopy represents the largest single sys-
tematic error source we studied in this work. This is con-
sistent with previous error analysis done for OCO-2 XCO2

retrievals (Connor et al., 2016; Hobbs et al., 2020).
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Figure 18. Same as Fig. 6 but for the kitchen sink with noise experiment.

Table 9. Final error budget for each experiment, filtered and bias-corrected, including the total error and the component error (the error
caused by the experiment’s perturbation alone). Nproc is the number of soundings processed after pre-screening, Nconv is the number of
soundings that converged, and Ngood is the number of soundings that passed the filtering.

Run name Total error Component error Nconv/Nproc Ngood (%)

XCO2 XCH4 XCO XCO2 XCH4 XCO
ppm ppb ppb ppm ppb ppb

With aerosols and clouds (a/c) 0.66 6.0 0.5 0.66 6.0 0.5 12 018/12 101 7544 (62 %)
W. a/c, with noise 0.72 6.4 2.4 0.29 2.2 2.3 12 011/12 096 7388 (61 %)
W. a/c, pert. rad. cal. 0.64 5.8 0.5 0 0 0 12 006/12 086 7532 (62 %)
W. a/c, pert. ILS 0.67 6.3 0.6 0.1 2.0 0.4 12 153/12 246 7594 (62 %)
W. a/c, pert. polarization 0.65 6.0 0.5 0 0 0 12 019/12 106 7562 (62 %)
W. a/c, pert. pointing 0.71 6.5 0.9 0.1 0 0.1 3000/3016 1972 (65 %)
W. a/c, pert. meteorology 0.74 6.5 0.6 0.35 2.4 0.3 12 020/12 110 6431 (53 %)
W. a/c, pert. spectroscopy 0.84 7.5 0.6 0.53 4.4 0.4 11 978/12 119 6290 (52 %)
W. a/c, pert. kit. sink 1.00 7.3 0.8 – – – 11898/12 040 6375 (53 %)
W. a/c, pert. kit. sink, with noise 1.06 8.2 2.5 – – – 11 897/12 040 6279 (52 %)

5.9 Kitchen sink

The results for the kitchen sink experiment, which simulta-
neously includes all the individually discussed error sources
above, are shown in Fig. 17. The errors for XCO2 meet the
precision requirements for all three target gases, with RMSEs
of 0.84 ppm, 7.5 ppb, and 0.6 ppb for XCO2 , XCH4 , and XCO,
respectively. In addition, the same experiment was done with
Gaussian noise added to the radiances. All three target gas
species still meet our mission requirements after filtering and
bias correction. The results from XCO2 and XCH4 are simi-
lar to those from radiances without noise, while the largest
effect of adding noise was for XCO. The quadratic differ-
ences of these are another estimate of the pure-noise-driven
error or precision of our measurements, which are roughly
0.3 ppm, 3.6 ppb, and 2.3 ppb for XCO2 , XCH4 , and XCO, re-
spectively. These values are roughly consistent with results
from the baseline experiment with noise added. The fraction
passing the quality filter, 53 % without noise and 52 % with

noise, is significantly less than the baseline and is primarily
driven by the spectroscopy and meteorological errors.

5.10 Error budget

Table 9 attempts to provide an approximate overall error bud-
get for the target gases analyzed here. The errors are for fil-
tered and bias-corrected results. The error for each experi-
ment is listed including the total error for eachXgas (standard
deviation σ given in the corresponding error histograms) and
the component error, i.e., the error caused by the experi-
ment’s perturbation alone relative to the baseline. The com-
ponent errors were calculated by assuming they are indepen-
dent of the systematic errors in the baseline “with aerosols
and clouds (a/c)” run, which thus add in quadrature. So, for
component j ,

Xgas,j =

√
X2

gas,j −X
2
a/c. (22)
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All experiments pass our precision and accuracy require-
ments given in Table 1. The component errors are estimates
only and do not always add quadratically when combined.
These errors are therefore only best guesses based upon the
assumptions we have made. The dominant sources of sys-
tematic errors are, unsurprisingly, aerosols and clouds, me-
teorological errors, and spectroscopic errors. XCO errors are
dominated by random noise, whileXCO2 andXCH4 are domi-
nated by systematic errors. We can see that with perfect spec-
troscopy, typically 62 % of soundings pass the quality filters
over land, but spectroscopic errors reduce this to∼ 52 %. For
XCO2 , these results are surprisingly consistent with baseline
errors and fractions seen by OCO-2 (O’Dell et al., 2018; Kiel
et al., 2019).

6 Conclusions

The goal of this paper is to describe the GeoCarb L2FP algo-
rithm and to present a study of the sensitivity of L2FP and the
retrieved XCO2 , XCH4 , and XCO to sources of uncertainty in
several perturbation experiments using measurements simu-
lated with the CSU L1B simulator. A description of the Geo-
Carb mission is given, and details of the L2FP algorithm are
discussed. A description of the experimental dataset includ-
ing the scan strategy is presented, the CSU simulator is de-
scribed, and the individual experiments were described. The
results were presented and discussed, and, finally, an error
budget was presented in tabular form.

There are several key points that can be taken away from
this study which are listed below:

– Retrievals errors ofXCO2 andXCH4 are driven primarily
by systematic errors.

– Retrievals errors of XCO are primarily driven by ran-
dom error, though these errors (∼ 2.5 ppb) are much
smaller than the mission requirement of 12 ppb, sug-
gesting GeoCarb will do better than expected with this
important gas.

– The filtered and bias-corrected retrievals of XCO2 ,
XCH4 , and XCO meet the mission precision require-
ments for all error sources, alone and in combination.

– Aerosols and spectroscopy form the majority of the sys-
tematic errors for all three gases.

– EOFs have not been included, and it is unclear what
their effects will be, especially for the spectroscopy per-
turbation.

– The spectroscopic error experiments cause an additional
∼ 10 % of soundings to be filtered out. It is possible that
by including EOFs in the retrieval, this effect could be
mitigated.

– The calibration-related errors (radiometric gain, ILS,
and polarization) do not account for a significant por-
tion of the error in the results, but the calibration errors
are not exhaustive. As mentioned before, this study does
not account for other instrument effects such as smile,
keystone, stray light, gain nonlinearity, and detector per-
sistence. In addition, the effects of scene inhomogeneity
are also not taken into account, and therefore ILS varia-
tion across the scene is ignored. These effects could end
up being significant and will be treated in forthcoming
papers.

– The filtering was trained for XCO2 for simplicity, al-
though, given the larger errors for XCH4 , it will most
likely require more filtering and therefore its own fil-
ter. In contrast, XCO will require less filtering. This will
be addressed as the GeoCarb L2FP product is improved
over time.

There are several next steps related to this study that are
in progress or planned. As the instrument model develops,
retrieval simulations will have to take into account the in-
strument effects, such as the effects of scene inhomogeneity
and the other effects mentioned previously, that are ignored
in this study. This will require modifications to the CSU sim-
ulator and the L2FP code. In addition, EOFs will be produced
and their effects on the retrieval investigated. Finally, modi-
fications to the filtering process to fine-tune the filtering for
each gas separately are also planned. These next steps are on-
going or planned and will be addressed in subsequent papers.
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