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Abstract. Carbon dioxide (CO2) is the most important an-
thropogenic greenhouse gas. Its atmospheric concentration
has increased by almost 50 % since the beginning of the in-
dustrial era, causing climate change. Fossil fuel combustion
is responsible for most of the atmospheric CO2 increase,
which originates to a large extent from localized sources
such as power stations. Independent estimates of the emis-
sions from these sources are key to tracking the effectiveness
of implemented climate policies to mitigate climate change.
We developed an automatic procedure to quantify CO2 emis-
sions from localized sources based on a cross-sectional mass-
balance approach and applied it to infer CO2 emissions from
the Bełchatów Power Station (Poland) using atmospheric ob-
servations from the Orbiting Carbon Observatory 3 (OCO-3)
in its snapshot area map (SAM) mode. As a result of the
challenge of identifying CO2 emission plumes from satel-
lite data with adequate accuracy, we located and constrained
the shape of emission plumes using TROPOspheric Monitor-
ing Instrument (TROPOMI) NO2 column densities. We auto-
matically analysed all available OCO-3 overpasses over the
Bełchatów Power Station from July 2019 to November 2022
and found a total of nine that were suitable for the estimation
of CO2 emissions using our method. The mean uncertainty in
the obtained estimates was 5.8 Mt CO2 yr−1 (22.0 %), mainly
driven by the dispersion of the cross-sectional fluxes down-
wind of the source, e.g. due to turbulence. This dispersion
uncertainty was characterized using a semivariogram, made
possible by the OCO-3 imaging capability over a target re-
gion in SAM mode, which provides observations containing
plume information up to several tens of kilometres down-
wind of the source. A bottom-up emission estimate was com-
puted based on the hourly power-plant-generated power and

emission factors to validate the satellite-based estimates. We
found that the two independent estimates agree within their
1σ uncertainty in eight out of nine analysed overpasses and
have a high Pearson’s correlation coefficient of 0.92. Our re-
sults confirm the potential to monitor large localized CO2
emission sources from space-based observations and the use-
fulness of NO2 estimates for plume detection. They also il-
lustrate the potential to improve CO2 monitoring capabilities
with the planned Copernicus Anthropogenic CO2 Monitor-
ing (CO2M) satellite constellation, which will provide simul-
taneously retrieved XCO2 and NO2 maps.

1 Introduction

CO2 is the most important anthropogenic greenhouse gas,
and its cumulative atmospheric concentration increase plays
a major role in global warming and climate change (Chen
et al., 2021). In 2015, the Paris Agreement was adopted to
limit global warming to well below 2 ◦C and pursue “ef-
forts to limit the temperature increase to 1.5 ◦C above pre-
industrial levels” (UNFCCC, 2015). To meet these objec-
tives, net greenhouse gas emissions need to be rapidly re-
duced (IPCC, 2023; Rockström et al., 2017). Under this
agreement and as part of the mitigation strategy, the par-
ties report their national greenhouse gas inventories, usually
computed using bottom-up methods based on statistical ac-
tivity data and emission factors (IPCC, 2006). Top-down ap-
proaches, based on atmospheric observations, can comple-
ment these inventories and verify their accuracy (Bergam-
aschi et al., 2018).
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Most of the CO2 emissions result from the combustion of
fossil fuels. About one-third of the total fossil fuel emissions
happen at localized sources, such as power plants (Oda and
Maksyutov, 2011; IEA, 2019; Crippa et al., 2022). There-
fore, monitoring the CO2 emissions from these targets is
key to tracking the correct application and effectiveness of
the reduction policies and supporting the assessment of the
global stocktake implemented by the United Nations. Satel-
lite observations have the advantages of providing periodi-
cal data and having potential global coverage. Furthermore,
as initially proposed by Bovensmann et al. (2010) and Ve-
lazco et al. (2011), analysis of space-based observations of
XCO2, the column-averaged dry-air mole fraction of CO2,
provides independent estimates of CO2 emissions from lo-
calized sources like power plants (e.g. Reuter et al., 2019;
Nassar et al., 2017, 2022.

The detection of CO2 emission plumes from localized
sources is challenging due to the small anomaly in XCO2
due to these emissions in the atmosphere, which are typi-
cally in the order of 1 ppm and of the same order of mag-
nitude as the instrument noise (Bovensmann et al., 2010).
As net atmospheric CO2 has a long lifetime, ranging from
years to millennia (e.g. Ciais et al., 2013), and large fluxes
of natural origin, these enhancements are also much smaller
than CO2 background values and natural variability. There-
fore, to quantify the CO2 emission plumes from localized
sources, further assumptions are usually needed, e.g. a Gaus-
sian plume shape considering steady state (e.g. Nassar et al.,
2017).

Nitric oxide (NO) is co-emitted with CO2 during the com-
bustion of fossil fuels. It rapidly reacts with ozone (O3) to
form nitrogen dioxide (NO2). During the day, NO2 is pho-
tolysed to produce NO and atomic oxygen. Therefore, NO
and NO2 are coupled during the daytime, and their sum is
referred to as NOx . Unlike CO2, NOx has a lifetime in the
order of hours in the daytime boundary layer. As a result,
NO2 vertical column densities in plumes released from fossil
fuel combustion exceed background values and sensor noise,
typically by orders of magnitude. This makes NO2 a suit-
able tracer for recently emitted CO2. The approach of us-
ing NO2 as a proxy for recent CO2 emissions for the com-
bustion of fossil fuels has been successfully used previously,
both to estimate the CO2 emissions from NOx-to-CO2 emis-
sion ratios (e.g. Reuter et al., 2014; Hakkarainen et al., 2021)
and to detect and constrain the spatial extent of the emission
plume, using observed data (e.g. Reuter et al., 2019) as well
as synthetic observations (e.g. Kuhlmann et al., 2019, 2021).
The use of NO2 as a proxy for CO2 profits from less-noisy
data at the expense of required knowledge about the source-
dependent NOx-to-CO2 emission ratios as well as about the
NO2-to-NOx ratios, which are determined by the chemistry
of NOx within the plume. A more cautious approach is the
use of NO2 to constrain the spatial extent of the emission
plume, e.g. fitting simultaneously observations of NO2 and
CO2 along a plume cross section, so that the width (and pos-

sibly the location) of the CO2 is constrained by that of NO2
(Reuter et al., 2019; Hakkarainen et al., 2023; Kuhlmann
et al., 2021). This latter approach profits from simultane-
ous observations of both gases for an increased correlation
in the spatial structures and is, therefore, less applicable in
the case of significant changes in the meteorological condi-
tions in the time between the CO2 and NO2 measurements.
We investigated a technique based on NO2 data to constrain
the region containing the CO2 emission plume without si-
multaneously fitting both datasets. We used currently avail-
able observations of XCO2 and column densities of NO2,
retrieved from the Orbiting Carbon Observatory 3 (OCO-3)
and the TROPOspheric Monitoring Instrument (TROPOMI),
respectively. This is partly in preparation for the planned ex-
tensive exploitation of this approach to observations from
the upcoming Copernicus Anthropogenic CO2 Monitoring
(CO2M) mission, which aims to quantify anthropogenic CO2
emissions and will simultaneously retrieve XCO2 and NO2
column densities (Bézy et al., 2019). The CO2M builds on
the heritage of the preparatory work undertaken in the Car-
bonSat concept studies (Buchwitz et al., 2013; Bovensmann
et al., 2010) and the SCanning Imaging Absorption spec-
troMeter for Atmospheric CHartographY (SCIAMACHY)
observations (Burrows et al., 1995; Bovensmann et al., 1999)
on the European Space Agency (ESA) Environmental Satel-
lite (ENVISAT), the Thermal And Near infrared Sensor
for carbon Observations – Fourier Transform Spectrometer
(TANSO-FTS) observations on the Greenhouse Gases Ob-
serving Satellite (GOSAT) (Kuze et al., 2009, 2016), and
the Orbiting Carbon Observatory observations (Crisp et al.,
2004; Eldering et al., 2019).

Several methods exist to quantify the emissions from lo-
calized sources using satellite data, as described by studies
such as Varon et al. (2018). The Gaussian plume inversion
method, based on the simulation of a Gaussian plume which
is then fitted to the observations, has been used to quantify
power plant emissions from both OCO-2 and OCO-3 data
(Nassar et al., 2022, 2017; Chevallier et al., 2022). The Gaus-
sian model describes a plume in steady state; therefore, it
does not account for eddies but rather relies on the assump-
tion that their effects are negligible for multi-kilometre spa-
tial scales. We have used a mass-balance cross-sectional flux
method on XCO2 retrievals from OCO-3. The cross-sectional
flux method, along with the imaging capabilities of OCO-
3, allowed us to analyse plume structures and estimate the
magnitude of random errors affecting the computed emission
rate. A cross-sectional method was also used by Hakkarainen
et al. (2023) to derive CO2 emissions of localized sources
in the South African Highveld from OCO-3 data. We fo-
cused on the Bełchatów Power Station (Poland), which is
among the power plants with the highest CO2 emissions in
the world. This power station was also the object of the study
by Nassar et al. (2022), who quantified its emissions using
OCO-3 data.
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This paper is structured as follows. Our cross-sectional
flux method for the top-down quantification of the CO2 emis-
sions from localized sources is described in Sect. 2. The
datasets used are presented in Sect. 2.1. The plume detection
and characterization algorithm, based on TROPOMI NO2
data, is described in Sect. 2.2.1. Section 2.2.2 describes the
processing of the XCO2 data to estimate the emission rate, as
detailed in Sect. 2.2.3. The estimation of the uncertainties is
explained in Sect. 2.3. We briefly describe the scene selection
procedure (Sect. 2.5) and the method to compute bottom-up
emission estimates (Sect. 2.6) to verify the top-down com-
puted emission rates. Finally, the results are shown in Sect. 3
and discussed in Sect. 4 along with the conclusions.

2 Datasets and methods

2.1 Datasets

2.1.1 XCO2

NASA’s OCO-3 XCO2 retrievals were the main input data
used to derive the CO2 emissions. NASA’s OCO-3 instru-
ment, located on board the International Space Station (ISS)
since May 2019, measures reflected sunlight in three bands,
centred on the molecular oxygen-A band at 0.76 µm and the
two CO2 bands at 1.6 and 2.0 µm. The instrument has eight
footprints, each of 1.6 km, and it sweeps about 2.2 km in the
0.33 s integration time. As a result of the ISS precessing or-
bit, the local overpass time of OCO-3 varies each day and it
views latitudes between approximately ±52◦. In its snapshot
area map (SAM) mode, it can scan almost adjacent swaths
over CO2 emission hotspots and other targets. These SAMs
are scans of a region of about 80 km× 80 km, taken in ap-
proximately 2 min (Eldering et al., 2019; Payne et al., 2022).

We utilized observations taken in SAM mode from the
Level-2 Lite XCO2 OCO-3 product (Taylor et al., 2023;
O’Dell et al., 2018) in its version 10.4r, based on the Atmo-
spheric Carbon Observations from Space (ACOS) retrieval
algorithm (O’Dell et al., 2012; Crisp et al., 2012). These
XCO2 estimates are geolocated, bias-corrected and contain
a quality flag, which we have used to filter out estimates that
are less likely to be accurate. This quality filtering is derived
from thresholds on single retrieval variables that are identi-
fied to cause the largest differences in the retrieved XCO2
compared with truth proxies (Payne et al., 2022; O’Dell et
al., 2018).

2.1.2 NO2

We used TROPOMI NO2 retrievals to detect the shape and
location of the NO2 enhancement due to the power plant
emission plume. TROPOMI, on board the ESA Sentinel-
5 Precursor (S5P) satellite, provides observations on NO2,
among other atmospheric constituents (Veefkind et al.,
2012). It has a swath of approximately 2600 km across

the track of the satellite, divided into 450 ground pix-
els of about 5.6 km (along the track)× 3.6 km (across the
track) at nadir. It has a nadir-viewing grating spectrome-
ter with four detectors for the different spectral bands: UV
and VIS (ultraviolet and visible, respectively, 270–500 nm),
NIR (near-infrared, 710–770 nm), and SWIR (short-wave in-
frared, 2314–2382 nm) (Eskes et al., 2022). S5P has a sun-
synchronous orbit with a mean local solar time at the ascend-
ing node of 13:30. It performs 14 orbits per day with a repeat
cycle of 16 d, and its revisit time is approximately 1 d.

We used slant column densities (SCDs) obtained with a
differential optical absorption spectroscopy (DOAS) retrieval
in the region from 425 to 497 nm (Richter et al., 2011). The
SCD of a trace gas is a measure of its density along the aver-
age light path from the Sun to the instrument after reflection
at the Earth’s surface. Consequently, it depends on the view-
ing and solar geometry, as well as on other factors like the
presence of clouds and aerosols. The vertical column den-
sities (VCDs) are related to SCDs via the air mass factor,
AMF, as follows: VCD= SCD

AMF . The accuracy of the abso-
lute VCDs is less relevant for our application, as we do not
use them for emission quantification but rather for detecting
enhanced anomalies with respect to background values and,
thus, quantifying the spatial extent of the emission plume
from a localized source. Therefore, we neglected multiple
scattering in the atmosphere by the electromagnetic radiation
in the spectral region used for the retrieval and approximated
the VCDs considering a geometrical AMF from the viewing
zenith angle (θv) and the solar zenith angle (θs) as follows:
AMF= secθv+ secθs.

2.1.3 Meteorological data

We obtained meteorological information from the ERA5
dataset, the fifth-generation atmospheric reanalysis of the
global climate covering the period from 1940 to present
(Hersbach et al., 2017, 2020), produced by the European
Centre for Medium Range Weather Forecast (ECMWF) and
provided by the Copernicus Climate Change Service (C3S).
We used instantaneous hourly estimates of a number of at-
mospheric variables in a 0.25◦× 0.25◦ grid and at 137 hybrid
sigma-pressure vertical levels.

From ERA5, we obtained, for the different vertical lay-
ers, the horizontal wind speed components, u and v. We also
computed the number of dry-air molecules in the vertical col-
umn from meteorological profiles. Assuming that the emis-
sion plume is well mixed within the boundary layer, we com-
puted, at each location and time, an average of each wind
component within the boundary layer weighted by the num-
ber of dry-air molecules in the corresponding vertical layer.
Brunner et al. (2023) found, with their simulations over the
Bełchatów and Jänschwalde power plants in May and June
2018 and in consistency with flight observations, that this as-
sumption of a well-mixed emission plume within the bound-
ary layer is a good approximation during the daytime.
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Figure 1. Sketch of the cross-sectional flux method. The location of
the emission source is marked using a black cross. Several CSs are
depicted using blue lines.

2.2 Top-down CO2 emission quantification method

We estimated the net emission rate, f , from a localized
source using a cross-sectional flux method. This method is
based on mass balance so that f is the flux through any cross
section (CS) downwind of the source.

Let ρ (kg m−2) be a map of the CO2 vertical column mass
density at each spatial pixel and ρbg be the CO2 vertical col-
umn mass density map for the background, i.e. the corre-
sponding ρ in the absence of the source under analysis. The
anomaly in the vertical column mass density, 1ρ, resulting
from the emissions of the source with emission rate f , is
given by 1ρ = ρ− ρbg at each spatial pixel. Let w = (u,v)

(m s−1) be the horizontal wind vector field at plume height
and let us consider a CS of infinite length (or whose length is
larger than or equal to the plume width) through this map and
downwind of the source, as sketched in Fig. 1. The normal
vector to the CS, n, forms an angle θ with w. The mass flux
density field is then given by F = w1ρ. Let us also consider
a positively oriented closed curve C enclosing the emission
source (and no other sources), with normal vector nC at each
point and with one side coincident to the CS. Under station-
ary conditions and assuming that all of the emitted CO2 mass
was transported downwind, the only non-zero flux through
this curve is given by the flux through the CS, which is, by
mass balance, a measure of the net emission rate:

f =

∮
C

FnCdl =

+∞∫
−∞

Fndl =

+∞∫
−∞

w⊥1ρdl, (1)

where dl is a length differential along the CS and w⊥ =
w cosθ is the projection of w onto the direction of n.

The CO2 quantity retrieved by the OCO-3 instru-
ment, XCO2 (ppm), is transformed to vertical column
mass density (kg m−2) using the following formula:
1ρ =

MCO2
NA

1XCO2nd, where MCO2 is the molar mass
of CO2 (44.009 g mol−1), NA is the Avogadro number
(6.02214076× 1023 mol−1) and nd is the number of dry-air

molecules per unit area (estimated from ERA5 meteorologi-
cal vertical profiles). We then discretized the flux integral in
Eq. (1) as the sum over each spatial pixel i along the CS.
With this, we rewrote the expression for the cross-sectional
flux as follows:

f =
MCO2

NA

∑
i

w⊥,i 1XCO2,i nd,i1li, (2)

where 1li stands for the length of each spatial pixel along a
given CS.

The steps carried out to quantify the emission rate with our
cross-sectional flux method are outlined in Fig. 2, and each
of the three main blocks is detailed below. The described
analysis was carried out automatically. It used the mentioned
datasets, as illustrated in Fig. 2. The emission source coor-
dinates were considered to be known and taken as an input.
Additionally, a set of predefined parameters (explained be-
low along with the method) were used. The potential plume
detection uses TROPOMI NO2 column densities to iden-
tify a region containing the emission plume. The XCO2 pro-
cessing initially comprises the determination of the XCO2
anomaly and a second step that refines the shape of the emis-
sion plume. Subsequently, for the emission rate estimation, a
set of cross-sectional fluxes is computed to estimate the mean
emission rate and its uncertainty.

2.2.1 Potential CO2 plume detection using NO2 data

The potential CO2 plume detection algorithm essentially de-
fines a region in space that contains the detected NO2 emis-
sion plume and is expected to enclose the CO2 emission
plume from the source of interest. The algorithm, sketched
in the left block in Fig. 2, relies on the TROPOMI NO2 VCD
(described in Sect. 2.1.2), co-located with the OCO-3 SAM
under analysis, and on a time difference between the S5P and
OCO-3 overpasses of less than 5 h. For the potential plume
detection, we also need horizontal wind data (Sect. 2.1.3).

The spatial extent of the scene is defined using the OCO-3
SAM. We defined the SAM region as the rectangle enclosing
the SAM observations, with a cut-off in latitude and longi-
tude at 2◦ from the coordinates of the source. This is shown
as a dashed grey line in Fig. 3a. We also considered a frame
of 0.75◦ around this SAM region. Due to the larger swath of
TROPOMI compared with that of OCO-3, the NO2 VCD im-
age allows us to inspect the surroundings of the XCO2 SAM
and identify other potential sources of CO2 around the SAM,
thereby excluding sources other than that targeted in the anal-
ysis.

We first smoothed the NO2 data to reduce random noise
by means of a two-dimensional convolution with a binary
kernel. This kernel has the shape of a von Neumann neigh-
bourhood, consisting of the pixel itself and its four nearest
neighbouring pixels. In the TROPOMI spatial resolution, this
neighbourhood size is often similar to the width of the emis-
sion plume close to the source. Its result is essentially the
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Figure 2. Diagram sketching the main steps in the top-down emission quantification algorithm. Each coloured block corresponds to a distinct
step, whose output is shown in a grey box at the bottom. The input data points to the steps where they are used. Sub-steps are numbered and
shown in boxes within the parent step. For details, the reader is referred to Sect. 2.2.1 for step “Potential plume detection”, Sect. 2.2.2 for
“XCO2 processing” and Sect. 2.2.3 for “Emission rate estimation”.

replacement of the VCD in each pixel by the average over a
neighbourhood around it, similar to the approach suggested
by Kuhlmann et al. (2019) and Varon et al. (2018).

For the background (bg) subtraction, we first defined the
NO2 background region (i.e. a sector of the scene expected
to contain a representative sample of background observa-
tions within the SAM area and no signal due to the NO2
emissions). After taking the averaged horizontal wind speed
components at the centre of each TROPOMI pixel within the
SAM region at the time of the S5P overpass, we defined a
wedge centred along this horizontal wind direction, with its
centre slightly displaced upwind of the source, an angular
amplitude of 90◦ and a radius long enough to cover the scene.
The NO2 background region is the area containing the obser-
vations within the SAM region that lie outside this wedge.
An example is shown in Fig. 3a as the region enclosed by the
solid red line.

Emission plumes reside in the troposphere, while the VCD
refers to the whole vertical column. To remove the strato-
spheric component of the VCD as well as large-scale tro-
pospheric background patterns, we assumed that these VCD
components exhibit smooth variations within the scene com-
pared with the portion resulting from anthropogenic emis-
sions from localized sources (Leue et al., 2001). Therefore,
to model the background, we fitted the VCD values within
the background region to a linear function of longitude and
latitude. We subtracted this modelled background from the

VCD to obtain the vertical column anomaly, 1VCD. Fig-
ure 3b shows an example of the modelled background; the
corresponding 1VCD is displayed in Fig. 3c.

Using a one-tailed Welch test, we selected the observations
with an enhanced 1VCD with respect to the background.
The null hypothesis is the equality of the background and
1VCD means. The combined standard error of the mean was
computed for each pixel from the background standard devi-
ation and the reported NO2 uncertainty. The observations for
which the null hypothesis was rejected at a significance level,
p, of 5 % were marked as enhancements, enclosed by orange
boundaries in Fig. 3c. These enhancements were clustered
by Moore neighbourhoods. The NO2 plume is the cluster lo-
cated closest to the source location, depicted as a dashed red
line in Fig. 3c.

The time difference between the S5P and OCO-3 retrievals
leads to a decreased correlation in the spatial structures (Lei
et al., 2022; Hakkarainen et al., 2023). In that time between
overpasses, the atmospheric conditions can vary, which can
cause displacements in the emission plume or alter its shape,
disrupting the congruence and overlap between the detected
NO2 plume shape and the CO2 plume. This congruence
might be further disrupted by the different spatial resolu-
tion of OCO-3 and TROPOMI. To obtain a detected po-
tential plume that encloses the CO2 plume, we performed
a spatial extension of the NO2 plume mask by binary dila-
tion. For that, we re-gridded the TROPOMI pixels to a high-
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Figure 3. Steps in the potential plume detection method using TROPOMI NO2 data for a SAM over the Bełchatów Power Plant on 10 April
2020. The times (in local time) refer to the beginning of the overpass for both OCO-3 and S5P. The location of the source is marked using a
black cross. The black arrows show the mean horizontal wind direction within the potential plume at the OCO-3 overpass time. The borders
of the SAM footprints are depicted using white polygons. Panel (a) displays the smoothed NO2 VCD. The SAM region is depicted using
a dashed grey line and the solid red line encloses the background region. Panel (b) shows the modelled background. Panel (c) presents the
vertical column density anomaly, 1VCD. The observations with enhanced 1VCD, as obtained from the significance test, are enclosed by
orange polygons. The dashed red line surrounds the cluster closest to the source and the solid red line stands for the potential plume.

resolution 0.001◦× 0.001◦ grid. The magnitude of this ex-
tension was computed as proportional to the time difference
between overpasses, with a minimum of 0.03◦ in the case
of simultaneous overpasses and 0.08◦ for a time difference
of 5 h. This extension increases the likelihood of the CO2
plume being contained within the potential plume. However,
the CO2 plume might extend beyond the borders of the po-
tential plume if the wind was highly variable in the time be-
tween overpasses. The extended plume, whose boundary is
shown as a solid red line in Fig. 3c, is the detected poten-
tial plume, which is expected to contain the signal due to the
CO2 emissions as well as a fraction of the background obser-
vations.

2.2.2 XCO2 processing

The processing of the XCO2 to later estimate the emission
rate is sketched in the middle block of Fig. 2. We first esti-
mated the XCO2 anomaly,1XCO2, from the quality-filtered
OCO-3 XCO2 data. We defined a CO2 background region us-
ing an extension of the potential plume by binary dilation by
about 0.35◦ and excluding the potential plume. This region
is depicted in Fig. 4a enclosed by a solid black line and out-
side the potential plume (solid red contour). We modelled the
OCO-3 background as a fit of the XCO2 observations within
the background region to a linear function of longitude, λ,
and latitude, φ. Some SAMs have been observed to present
biases between adjacent swaths, likely arising from an inter-
play between viewing geometry and the presence of aerosols
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(Bell et al., 2023). This swath bias was accounted for in the
linear background model by including an extra term in the
equation, sj , for each swath j = 1,2, . . .,n− 1, where n is
the number of swaths of the SAM, so that the XCO2 back-
ground model is a follows:

bj = a0+ a1λ+ a2φ+ sj , (3)

having a total of n− 1 equations. An example of a modelled
background is shown in Fig. 4b. For each observation, the
corresponding background value from the model was sub-
tracted to obtain the XCO2 anomalies, 1XCO2, shown in
Fig. 4c.

The horizontal wind components and the number of dry-
air molecules were obtained, as described in Sect. 2.1.3,
at the centre of each OCO-3 footprint within the potential
plume at the time of the overpass. The resulting averaged
wind vector is shown in Figs. 3 and 4 as a black arrow. We
re-gridded the 1XCO2 values and the meteorological infor-
mation to the same high-resolution 0.001◦× 0.001◦ grid as
for NO2 and filled in the missing 1XCO2 footprints in the
grid using inverse squared-distance weighting interpolation
for observations within a region of radius 0.05◦ centred on
each missing footprint.

This method relies on the spatial correlation between the
NO2 and CO2 emission plumes, which is typically not per-
fect, mainly due to changes in the meteorological conditions
and, consequently, also in the plume shape and location in the
time between the S5P and OCO-3 overpasses. The plume ex-
tension performed as the last step in the potential plume de-
tection considers possible mismatches between the detected
NO2 plume and the CO2 plume due to these changes at the
expense of a larger potential plume, which includes more
background observations. This is, in theory, not critical be-
cause the 1XCO2 within the potential plume should contain
only the signal due to the emission plume and random noise
that averages out to zero. However, in cases where the back-
ground has small-scale structures that have not been charac-
terized by our background model, the background observa-
tions within the potential plume might not average to zero,
thus adding a bias. To minimize this bias, we performed a
refinement of the potential plume following a similar ap-
proach to the plume detection described in Sect. 2.2.1. We
first masked the footprints with enhanced 1XCO2 values
with respect to the background by means of a one-tailed z test
with a p value of 5 %. After a binary closing operation that
merges any enhancements separated by less than about 0.06◦

to obtain a coherent mask, we clustered the enhancements.
These clusters are shown within dashed orange boundaries in
Fig. 4c. Any isolated cluster of about the size of an OCO-3
footprint or less (disregarding any filled data) was neglected,
as it is most likely to be the result of random noise in the
1XCO2. With a second binary closing operation, we merged
clusters separated by less than about 0.14◦. This second clos-
ing operation provides us with a coherent mask, even if there
are relatively large blocks of missing observations within the

potential plume. We selected the cluster closest to the source
and extended it by 0.015◦ (about the shortest side of an OCO-
3 footprint) via binary dilation, thereby obtaining the refined
plume, shown enclosed by a solid orange line in Fig. 4c.

2.2.3 Emission rate estimation

From the refined plume shape and the XCO2 anomalies, we
estimated the mean CO2 emission rate following the steps
outlined in the right-hand block in Fig. 2.

We first transformed the high-resolution grid to the local
tangent plane (LTP) at the location of the source consider-
ing the Earth’s geometry to be a World Geodetic System
1984 (WGS84) ellipsoid. For the footprints within the refined
plume, we carried out a linear regression of their coordinates
to define the plume track, shown as a red straight line travers-
ing the refined plume and passing through the source coordi-
nates in Fig. 4c. Along this track and perpendicular to it, we
defined a number N of equidistant CSs separated by a dis-
tance, 1x, of approximately 0.2 km. This track, along with
its perpendicular CSs on the LTP, spans a new coordinate sys-
tem, hereinafter referred to as the “track coordinate system”,
whose resolution is determined by the distance between con-
secutive CSs on the x axis (along the plume track) and is set
to about 0.1 km along the given CS on the y axis. The trans-
formation between the high-resolution grid and the track co-
ordinate system comprises a rotation of the coordinate axes
followed by an undersampling procedure, where only the
footprints that are crossed by a CS are taken into account.
This undersampling with respect to the high-resolution grid
does not lead to a loss of information, as the resolution of the
track coordinate system is still about 1 order of magnitude
higher than the original OCO-3 resolution. In this transfor-
mation, the refined plume mask was slightly modified inso-
far that, if the mask has any hole along a CS, it is filled. The
resulting1XCO2 data transformed to this coordinate system
are shown in Fig. 5a.

We accepted only the subset of CSs at distances downwind
of the source larger than 5 km and smaller than 35 km. We
refer to the span in between as the plume range. The lower
threshold avoids errors due to both the OCO-3 product ge-
olocation error, typically of less than 1 km and reaching up
to 3 km for a fraction of the data (Payne et al., 2022), and
due to the exact location of the stacks, which can be about
1 km apart. Furthermore, it accounts for the fact that the as-
sumption of good vertical mixing of the plume within the
boundary layer is realistic only after about the height of the
boundary layer downwind of the source, typically in the or-
der of 1–2 km (Matheou and Bowman, 2016). For larger dis-
tances downwind of the source, diffusion causes the dilution
of the plume, reducing the XCO2 enhancement, which can
lead to the detection of only a fraction of the plume extent
and, therefore, an underestimation of the computed cross-
sectional fluxes. This was avoided with the upper limit of
the plume range.
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Figure 4. Steps in the XCO2 processing for the flux computation for an OCO-3 SAM over the Bełchatów Power Plant on 10 April 2020. The
location of the source is marked using a black cross. The black arrows show the mean wind direction within the potential plume at the OCO-3
overpass time. The potential plume is enclosed by a solid red line. Panel (a) displays the XCO2 footprints (colour-coded) over the NO2 VDC
in the background (greyscale). The dashed purple line delimits the SAM region. The XCO2 background area is enclosed by the black line
and outside the potential plume. The dashed red line encircles the NO2 detected plume. Panel (b) shows the modelled XCO2 background
according to Eq. (3). Panel (c) presents the1XCO2. The refined plume is enclosed by the solid orange line within the potential plume. Other
clusters with enhanced 1XCO2 are enclosed by dashed orange boundaries. A number of valid CSs along the track are shown as grey lines.
The straight red line that traverses the potential plume is the computed plume track.
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Figure 5. Example of the emission rate estimation procedure, as explained in Sect. 2.2.3, for the scene on 10 April 2020. The x axis represents
the distance of the CSs from the source (at the origin) along the plume track. Panel (a) displays 1XCO2 within the refined plume in the
track coordinate system. The black arrow shows the mean horizontal wind direction within the potential plume. The red lines denote valid
CSs and the grey lines denote invalid CSs. The filled 1XCO2 gaps are shown together with the observations. Panel (b) shows the estimated
fluxes across each valid CS along the plume track. The blue dots account for the cross-sectional fluxes used for the estimation of the mean
emission rate, shown as a solid blue line. The standard deviation of the data is shown as a pink area on both sides of the mean line, and
the 1σ error, calculated as described in Sect. 2.3, appears as a light-blue area. The vertical bars on each dot account for the propagation
uncertainty (see Sect. 2.3.2). The fluxes through valid CSs at distances from the source outside the plume range are plotted using blue
crosses. Panel (c) presents the semivariogram used to compute the dispersion uncertainty (see Sect. 2.3.1). The dots stand for the empirical
semivariogram, computed using Eq. (5). The model resulting from the exponential fit (Eq. 6) is depicted using a solid line.

In addition, we filtered out CSs that are likely to yield bi-
ased estimates of the emission rate. We considered the CSs
to be valid if they fulfilled all of the following conditions:
(a) less than 40 % of the XCO2 observations within the re-
fined plume along the CS are missing, to avoid considering
CSs with too many interpolated data added to fill gaps, and
(b) the width of the refined plume along the CS is larger
than 4 km, which ensures that the CS spans over more than
one SAM footprint. After filtering out CSs outside the plume
range and applying conditions (a) and (b), we are left with a
subset of n′ CSs.

With this, we computed, using Eq. (2), a set of values
{
fj
}
,

for j = 1,2, . . .,N , corresponding to the CO2 flux through
each CS at distance, xj , from the source along the plume
track, where only a subset of n′ valid CSs was considered.
An example of these cross-sectional fluxes is shown as scat-
tered blue dots along the plume track in Fig. 5b. We expect

the obtained cross-sectional fluxes to vary along the track of
the plume. These fluctuations partly originated from the ex-
perimental error in the quantities used in Eq. (2) but were
also due to the turbulent nature of the process.

In addition, the CO2 molecules observed in the SAM were
released at different times. The farther away the CS is from
the source, the longer the CO2 molecules were released be-
fore the OCO-3 overpass time. Let us define the “plume
characteristic time”, 1t , as the time that the CO2 molecules
would have needed to travel, at the mean horizontal wind
speed within the potential plume, the distance between the
source and the valid CS within the plume range situated the
farthest away from the source. If the power plant emissions
vary within this 1t , they will add another source of fluctua-
tions to the cross-sectional fluxes. We calculated this plume
characteristic time and rounded it to the nearest hour integer.
For a typical plume length along its track of about 30 km, the
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characteristic time ranges from approximately 1 to 3 h for
wind speeds between 3 and 7 m s−1.

To describe the process leading to the flux fluctuations, we
took a stochastic approach. Let each fj be a realization of a
random variable F(xj ) at points xj ,j = 1,2, . . .,N along the
plume track. To characterize F , we assume second-order or
weak stationarity (WS), which means that (a) the mean of F
is constant for all xj , which allows us to estimate the mean
of the process by treating the fj at different locations as re-
alizations of the same random variable. This assumption is
realistic as long as both the emissions from the power plant
and the wind vector have no significant trend within the char-
acteristic time interval. Furthermore, WS means that (b) the
covariance, Cov

(
F(xj ),F (xj+δ)

)
, of the random variables

at points xj and xj+δ , where ∀δ = 0,1,2, . . .,N−1, depends
only on the distance between two points along the plume
track, d =

∣∣xj+δ − xj ∣∣, not on their absolute positions. As
all of the xj are equally spaced, the distance between any
pair of consecutive locations will be constant and given by
1x = xj+1− xj . Therefore, we can write the lag distance
as d = δ1x, where δ is the “lag index” and, consequently,
Cov

(
F(xj ),F (xj+δ)

)
= C(δ), where C is the covariance

function. On account of the first assumption, we can esti-
mate the mean emission rate, f , from the mean of the com-
puted cross-sectional fluxes. The obtained results are detailed
in Sect. 3.2 and Table 1. With the second assumption, we can
also estimate its uncertainty.

2.3 Uncertainty

To estimate the uncertainty in the obtained mean emission
rate, we considered three contributions:

1. The dispersion uncertainty, sdisp, includes all random
effects that cause cross-sectional fluxes to oscillate
about their mean. These effects have different origins,
such as the inherent variability in the cross-sectional
fluxes due to turbulence, variations in the emissions
within the plume characteristic time or random errors
in the quantities used to compute the cross-sectional
fluxes.

2. The wind uncertainty, swind, refers to the impact on the
emission rate estimate of a possible bias in the horizon-
tal wind speed.

3. The sensitivity uncertainty, ssens, includes the effect of
different choices of the analysis parameters on the emis-
sion estimate.

Considering that all three sources of uncertainty are uncorre-
lated, the standard error (1σ ) of the mean emission rate, s(f ),
is therefore given by s2(f )= s2

disp+s
2
wind+s

2
sens. Each of the

aforementioned contributions to the uncertainty is explained
below, and the corresponding results are shown in Table 1.

We did not explicitly consider an XCO2 measurement er-
ror under the assumption that, at the relatively small spatial

scales of the analysed scenes, any bias in the XCO2 data is
corrected for when subtracting the background. Random er-
rors in the XCO2 values are included in the dispersion uncer-
tainty.

2.3.1 Dispersion uncertainty

The dispersion uncertainty is given by the variance of the
mean:

s2
disp = Var(f )=

1
n2

n∑
j=1

n∑
k=1

Cov
(
F(xj ),F (xk)

)
=
WS

1
n

(
C(0)+ 2

∑n−1
δ=1

(
1−

δ

n

)
C(δ)

)
, (4)

where the last term is the explicit sum over the elements of
the covariance matrix for a weakly stationary process divided
by n2 (Storch and Zwiers, 1999). Thus, we can compute the
dispersion uncertainty provided that we have knowledge of
the shape of the covariance function.

For uncorrelated data, C(δ)= 0 for δ ≥ 1; thus, Eq. (4)
reduces to s2

disp =
1
n
C(0). However, the cross-sectional fluxes

are spatially correlated, especially due to the close spacing
between consecutive CSs compared with the OCO-3 spatial
resolution. As the effective number of independent CSs is
unknown, we performed a correlation analysis to estimate
the covariance function, C(δ), which we used to estimate the
dispersion uncertainty using Eq. (4).

We used a semivariogram, defined as γ (xj − xk)=
1
2 Var

[
F(xj )−F(xk)

]
, to estimate the covariance function.

For a weakly stationary process, it can be written as γ (δ)=
1
2 Var

[
F(xj+δ)−F(xj )

]
and fulfils that γ (δ)= C(0)−C(δ),

showing, in this case, the equivalence between the semivari-
ogram and the covariogram. When estimated from the data,
the semivariogram is preferred because it does not require
knowledge of the mean and is, therefore, an unbiased esti-
mator (Montero et al., 2015). We can empirically estimate
the semivariogram as follows:

γ̂ (δ)=
1

2m(δ)

m(δ)∑
j=1

(
fj+δ − fj

)2
, (5)

where m(δ) is the number of pairs of data,
{
fj+δ,fj

}
, used

for the estimation. For a pair to be taken into account, both
fj+δ and fj must correspond to valid CSs. Therefore, m de-
creases for larger lags, δ, and depends on the number and
distribution of valid CSs.

The empirical semivariogram is only defined for a subset
of the total N lags and might exhibit an erratic behaviour. A
widely used solution is to use a model to fit the estimated
semivariogram. A suitable model should represent some ba-
sic features, like a monotonic increase with increasing lag,
which shows a decreasing correlation until the sill (horizontal
asymptote) is reached, and a positive intercept that accounts
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for the “nugget effect”, i.e. a discontinuity at the origin (Web-
ster and Oliver, 2007). We use an exponential model of the
shape:

γ (δ)= C(0)
(

1− e−δ1x/l
)
, (6)

where C(0) is the variance of the process. The parameter l is
a measure of the correlation length and the only free parame-
ter to be determined by the fit. This model assumes that there
is no nugget effect because we expect a smooth variation in
the semivariances due to the close spacing between CSs. As
the estimation of the empirical semivariances is less reliable
for larger lag distances and smaller numbers of pairs,m, used
for the computation, we considered only the empirical semi-
variances computed from a number of pairs m≥ 10.

With the modelled semivariogram, we computed the co-
variance function for each lag, δ, as C(δ)= C(0)− γ (δ),
which we used to compute the dispersion uncertainty mak-
ing use of Eq. (4).

The effective number of independent CSs within the plume
range was estimated as follows:

n′eff =
C(0)
s2

disp
. (7)

For a typical plume range of 30 km and an approximate 2 km
footprint width, we would expect a maximum of about 15 in-
dependent CSs. Further correlation among CSs derived from
spatial structures would lead to n′eff ≤ 15. Therefore, n′ pro-
vides us with an intuitive check of the computed dispersion
uncertainty. It is worth noting that n′eff is independent of the
number, n′, of valid CSs within the plume range, provided n′

was large enough to perform the correlation analysis.

2.3.2 Wind uncertainty

The wind uncertainty, swind, includes the effect of a possi-
ble bias in the horizontal wind used to compute the cross-
sectional fluxes on the estimated emission rate. This is a
purely systematic component, as any fluctuations in the wind
along the plume track are accounted for in the dispersion un-
certainty.

We considered an uncertainty in the horizontal wind speed
perpendicular to the CSs of s(w⊥)= 0.5 m s−1. This value
is representative of the ERA5 ensemble spread zonal wind
component close to the surface (Hersbach et al., 2020). A
different approach was taken by e.g. Nassar et al. (2017), who
obtained the uncertainty in the horizontal wind speed from a
comparison between MERRA-2 (Modern-Era Retrospective
Analysis for Research and Applications-2) and ERA5 data.
However, an ensemble approach of only two methods might
be insufficient to determine the wind speed uncertainty, as it
would be affected by random errors from both data products.

Using Eq. (2) and substituting w⊥ by its uncertainty,
we obtain a value of the effect of the wind uncertainty on
each cross-sectional flux, bw,j . These uncertainties (bw,j ) are

shown as blue bars about the flux estimates in Fig. 5b. The
wind uncertainty is the mean effect of the wind bias on the
emission rate estimate, i.e. the mean of bw,j .

2.3.3 Uncertainty from sensitivity

The sensitivity uncertainty, ssens, is a measure of the effect of
different choices of the parameters used for the analysis on
the emission estimate.

We estimated a measure of this uncertainty contribution
from the variation in a number of parameters used for the
analysis of each scene within plausible ranges:

1. the p values for the detection of the potential plume and
plume refinement, in both cases ranging from 0.03 to
0.1;

2. the radius of the circle and power of the inverse dis-
tance to fill the SAM gaps within the refined plume –
the radius varied from 0.05 to 0.1◦ for inverse distance
weighting and from 0.05 to 0.2◦ for inverse squared-
distance weighting;

3. the limits of the plume range, for which we varied the
lower limit from 3 to 10 km and the upper limit from 30
to 40 km from the source;

4. the function used to fit the background, for which we
considered three cases – linear dependence on longitude
and latitude with a possible swath bias (given by Eq. 3),
an analogous model also allowing for a possible foot-
print bias (fk for k = 1,2, . . .,7), and a model consider-
ing only the linear dependence on longitude and latitude
(i.e. setting sj = 0 ∀j in Eq. 3).

For each parameter, we computed the standard deviation
of the emission estimates for each scene and took its mean
as a measure of the sensitivity uncertainty for that parameter.
Assuming uncorrelated errors, we added them quadratically
to compute an estimate of ssens.

2.4 Sensitivity tests

In addition to the sensitivity analysis performed to obtain
an uncertainty estimate, we have performed other sensitivity
tests. These tests are explained in the following, and the re-
sults are presented in Sect. 3.3. The modifications evaluated
in these tests have been shown to either have no significant
influence on the results or lead to biased emission estimates.
Therefore, we have not included the outcome of these tests
in the sensitivity uncertainty. These sensitivity tests are as
follows:

a. In the computation of the cross-sectional fluxes, the
wind speed and direction from ERA5 were used. It is
common practice to rotate the wind vector to match the
direction of the observed plume (e.g. Reuter et al., 2019;
Nassar et al., 2017; Varon et al., 2018). Therefore, we
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have tested the influence of the wind rotation to match
the direction of the detected plume track.

b. The OCO-3 L2 XCO2 product includes a quality flag,
allowing us to filter out those observations tagged as
having poorer quality. Omitting the quality filtering has
the advantage of a denser coverage, and thus fewer
missing SAM observations, at the expense of higher
bias risk.

c. We used the NO2 VCD to obtain the shape of the po-
tential plume, which constrains the CO2 plume region.
We tested the applicability of the method without using
NO2 measurements but constraining the CO2 plume re-
gion by a wedge downwind of the source (as described
in Sect. 2.2.1) to define the NO2 region.

2.5 Scene selection

The analysed scenes were selected using an automatic proce-
dure. It comprises searching for SAMs with more than 800
soundings (after quality filtering) and co-located TROPOMI
NO2 overpasses with a time difference with respect to the
OCO-3 overpass that is smaller than 5 h.

We also applied additional filters in the emission quantifi-
cation procedure. A scene was discarded according to the fol-
lowing criteria:

1. If there were less than 20 OCO-3 observations within
the detected potential plume or less than 50 in the back-
ground, the scene was not included. This condition dis-
cards scenes with too few observations for our emission
estimation procedure.

2. The width of TROPOMI pixels increases in the across-
flight direction due to the increasing viewing angle,
from about 3.6 km at nadir to about 14 km at the edges.
A larger pixel size can result in an underestimation of
the extent of the detected NO2 plume with the statis-
tical test due to the dilution of the signal; this is fur-
ther intensified due to smoothing. In cases with strong
NO2 emissions, the larger pixel size can also lead to an
overestimation of the detected plume, underconstrain-
ing the CO2 plume and leading to a possible inclusion
of background structures in the CO2 plume. To avoid
such cases, we omitted a scene if more than 50 % of
the TROPOMI observations with an enhanced VCD be-
longed to the outer 50 pixels of the swath (on any side).

3. If the angle between the plume track and the wind di-
rection was wider than 45◦, the scene was not included.
This provides an additional check on the wind direc-
tion as obtained from ERA5 and avoids the analysis of
scenes in which there was an abrupt change in the wind
direction shortly before the overpass.

4. If the highest computed lag distance was smaller than
2 km (about the size of an OCO-3 footprint), the scene

was omitted. With this criterion, we avoid characteriz-
ing the dispersion of the fluxes along the plume track
with an insufficient number of independent CSs.

2.6 Bottom-up emission estimation

To validate our top-down emission estimates, we computed
the CO2 emissions of the Bełchatów Power Station for the
selected scenes at approximately the OCO-3 overpass time
using a bottom-up approach based on the power plant activ-
ity.

First, an hourly bottom-up estimate of the CO2 emissions
was computed as the product of the hourly generated power
and the emission intensity (mass of emitted CO2 per unit
of generated power). We used information on the hourly
net generated power per generation unit of ≥100 MW in-
stalled capacity, provided by the European Network of Trans-
mission System Operators for Electricity (ENTSO-E) on its
Transparency Platform (https://transparency.entsoe.eu/, last
access: 3 February 2023). The emission intensity was com-
puted from the total CO2 emissions divided by the net gen-
erated power by the power plant in 2018. That year, the
CO2 emissions were 38.4 Mt CO2, as reported by the Euro-
pean Industrial Emissions Portal (https://industry.eea.europa.
eu, last access: 20 February 2023). The European Indus-
trial Emissions Portal collects information from the EU Reg-
istry on Industrial Sites and the European Pollutant Release
and Transfer Register (E-PRTR). The net generated power
in that year, according to the power plant operator (PGE,
2023), was 32.535 TW h. That yields a CO2 intensity of
1.18× 10−6 Mt CO2 (MW h)−1, which we assumed to have
remained approximately constant up until 2022.

Power plant emissions have strong daily and day-to-
day variations (Velazco et al., 2011). For this reason, de-
spite providing our top-down emission estimates in units of
Mt CO2 yr−1, they are not annual averages. They are up-
scaled and represent the emissions within the approximate
plume characteristic time, 1t , before the OCO-3 overpass.
Therefore, we averaged the reported hourly generated power
within that 1t before the OCO-3 overpass to compute the
bottom-up emission estimates, which we can directly com-
pare with our top-down estimates. This approach is similar
to the “dynamic value” described by Nassar et al. (2021).

We estimated the uncertainty in the bottom-up emission
estimates by taking two contributions into account: the “in-
tensity uncertainty” and the “characteristic time uncertainty”.
The former refers to the uncertainty in the estimated emis-
sion intensity, subject to the uncertainty in the data used in
its computation. Gurney et al. (2016) analysed two emission
datasets for power plants in the US, finding monthly emis-
sion differences of about 6 % for about half of the facilities.
For such a large power plant, we would not expect the uncer-
tainty to belong to the top 50th percentile. Despite that, we
considered a conservative 6 % uncertainty in the CO2 emis-
sions from EIEP (2020), and consequently in the emission
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intensity computed from it. We assumed that this includes
changes in the intensity over the years, the different emis-
sion intensities that the various units in the power plant have,
and possible mismatches between the net generated power as
reported by ENTSO-E and the power plant operator. With re-
spect to the characteristic time uncertainty, this contribution
to the uncertainty refers to the mentioned emission variations
within1t , which we account for by taking half the maximum
difference in the hourly generated power times the emission
intensity. The total uncertainty in our bottom-up estimates is
the root sum of squares of the characteristic time and the in-
tensity uncertainties.

Our bottom-up emission estimates are shown in Table 1,
along with their corresponding uncertainties.

3 Results

3.1 Scene selection

In the period from the beginning of the OCO-3 XCO2 dataset
in July 2019 until November 2022 inclusive, we found a total
of 94 SAMs over the Bełchatów Power Plant, 14 of which
have more than 800 soundings (after quality filtering). All
14 of these SAMs have at least one co-located S5P overpass
with a time difference smaller than 5 h. After applying the
scene selection filters mentioned in Sect. 2.5, we were left
with nine scenes, corresponding to nine different SAMs.

3.2 CO2 emission estimates

The results for these nine scenes obtained from the scene se-
lection are detailed below, illustrated in Fig. 9 and summa-
rized in Table 1 (along with the meteorological information
for each scene and several other parameters that character-
ize the scene). The correlation between our top-down (TD)
and bottom-up (BU) estimates is 0.92, and the results ob-
tained using these two methods agree in eight out of nine
cases within their 1σ uncertainty range. Their mean differ-
ence (TD−BU) is −2.8 Mt CO2 yr−1 and their standard de-
viation is 3.7 Mt CO2 yr−1. The mean uncertainty for these
nine scenes is 5.8 Mt CO2 yr−1 (22.0 %), and it is dominated
by the dispersion uncertainty, which is on average about 1.8
times higher than the wind uncertainty and slightly larger (on
average 1.3 times higher) than the sensitivity uncertainty.

The results obtained for the nine analysed scenes are de-
tailed below. They are illustrated in Figs. 3–8 for some of
the overpasses and in Figs. A1–A5 in Appendix A for those
overpasses not shown in this text. We refer to overpass times
in local time (LT), as determined by the corresponding time
zone. All of the overpass times for the analysed scenes for the
Bełchatów power station refer to Central European Summer
Time (CEST). The results for each scene are as follows:

10 April 2020 The OCO-3 overpass began at 15:35 LT
(CEST), while the co-located S5P overpass began at

12:57 LT. Our TD CO2 emissions are estimated to be
32.29± 6.38 Mt CO2 yr−1. The mean horizontal wind
speed within the potential plume was 3.39 m s−1 with
an angle relative to the plume track of about−4.7◦. The
characteristic time was estimated to be about 3 h. Within
that characteristic time before the OCO-3 overpass, all
of the units were operative and the BU estimated emis-
sions decreased by 3.51 Mt CO2 yr−1. Within that time,
there was a gradual 1.5 m s−1 increase in the wind speed
and an angle shift of 13.94◦ about the plume track. The
steps to compute the emission estimate and the results
are shown in Figs. 3–5.

17 April 2020 The OCO-3 overpass was at 11:42 LT, while
the S5P overpass began at 14:06 LT. Our TD emission
estimate is 32.04± 10.27 Mt CO2 yr−1, as illustrated in
Fig. 6. The averaged wind speed within the potential
plume at the OCO-3 overpass time was 5.86 m s−1, with
an angle of 18.4◦ with respect to the detected plume
track. We estimated a characteristic time of approxi-
mately 2 h. Within that characteristic time before the
OCO-3 overpass, the wind speed slightly increased to
then decreased by a total amount of about 0.79 m s−1,
while its angle remained approximately constant. We re-
fer to an approximately constant wind speed or wind di-
rection if its change within the characteristic time is less
than 0.5 m s−1 or 10◦, respectively. The power plant ac-
tivity slightly decreased within the characteristic time,
from 3381 to 3041 MW h, leading to a BU age uncer-
tainty of 1.63 Mt CO2 yr−1. The dispersion uncertainty
of 9.28 Mt CO2 yr−1 is the largest among all of the anal-
ysed scenes. In Fig. 6c and d, we can appreciate the os-
cillations in the cross-sectional fluxes, with a CO2 accu-
mulation at higher distances from the source.

18 June 2021 Figure 7 shows the results for this overpass.
The TD emission estimate is 32.77±5.40 Mt CO2 yr−1.
Within the 2 h characteristic time prior to the over-
pass, the wind speed increased by 0.71 m s−1, while
the wind direction remained approximately constant.
The generated power also remained approximately con-
stant, as shown by the relatively small age uncertainty
(0.12 Mt CO2 yr−1).

19 June 2021 The potential plume extends, in this case, to
areas without OCO-3 observations. Therefore, we have
obtained cross-sectional fluxes only up to a distance
from the source of about 23 km. Our TD emission es-
timate is 41.94± 6.99 Mt CO2 yr−1. The results for this
overpass are shown in Fig. A1.

20 June 2021 The low power plant activity (operating at
less than 40 % of its maximum capacity) and the rel-
atively high wind speed of 6.80 m s−1 resulted in en-
hancements over the background of the same order
of magnitude as the background structures; thus, the
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emission plume is hardly perceptible at first sight (see
Fig. A2). The estimated TD emissions are 17.96±
3.83 Mt CO2 yr−1. Within the 1 h (characteristic time)
prior to the OCO-3 overpass, the wind speed decreased
by about 0.61 m s−1, while the wind direction and the
power-plant-generated power remained approximately
constant. The large fraction of missing OCO-3 obser-
vations within the refined plume led to the omission of
about two-thirds of the defined CSs within the plume
range, especially at distances of between 14 and 23 km
from the source. The low number of valid CSs, dis-
tributed in blocks spanning over less than 5 km and with
gaps reaching 10 km, led to a likely incomplete charac-
terization of the correlation of the cross-sectional fluxes
and, thus, to an underestimation of the dispersion un-
certainty (1.88 Mt CO2 yr−1). The inference of an un-
derestimated dispersion uncertainty can also be reached
when looking at the unexpectedly high computed effec-
tive number of independent CSs.

8 October 2021 The large fraction of missing (quality-
filtered) SAM observations led to the near absence of
valid CSs to compute the fluxes for distances less than
about 23 km downwind of the source. We observed
(Fig. A3) a near-monotonic increase in the fluxes with
distance downwind of the source over about 10 km. This
increase could be attributed, at the first instance, to a
violation of the stationarity assumption that we made
to estimate the mean emission rate and its uncertainty.
However, the change in the generated power within
the characteristic time is in the order of 10 %, while
the fluctuations in the cross-sectional fluxes are at least
1 order of magnitude larger. The wind speed and the
power plant activity remained approximately constant
within the characteristic time of 1 h before the overpass.
Therefore, a plausible cause of the apparent monotonic
change in the cross-sectional fluxes is the turbulent flow,
where we missed part of the oscillating behaviour due
to the cut-off of 35 km along the plume track. This ex-
planation seems consistent with Fig. A3d, where we
observe a decrease in the cross-sectional fluxes at dis-
tances greater than 35 km downwind.

9 October 2021 The results for the 9 October 2021 scene
are shown in Fig. 8. The wind speed and power gen-
eration are comparable to those determined for the
scene on 20 June 2021. The relatively large fraction of
gaps within the potential plume and the low enhanced
1XCO2 led to an apparent underestimation of the re-
fined plume extent before about 18 km downwind of the
source. This is the only case where the obtained TD es-
timate (11.59± 4.12 Mt CO2 yr−1) does not agree with
our BU estimate (19.54± 1.48 Mt CO2 yr−1) within the
uncertainty ranges.

24 June 2022 The OCO-3 overpass took place at 09:01 LT
and is the earliest of all of the scenes investigated. De-
spite the 4 h time difference with the TROPOMI over-
pass, which is the largest of the analysed scenes, the
detected potential plume seems to well-constrain the
OCO-3 plume (see Fig. A4). The wind was highly vari-
able during this scene. In the characteristic time of 1 h
before the OCO-3 overpass, the wind speed increased
by 3.73 m s−1 and its direction changed by 13.35◦.

13 October 2022 The TD emission estimate is 27.75±
6.08 Mt CO2 yr−1. Within the 1 h characteristic time be-
fore the overpass, the wind speed and direction re-
mained constant, and there was a drop in the generated
power, from 3045 to 2464 MW, resulting in a higher
age uncertainty than for other scenes, although it was
smaller than the dispersion uncertainty. This overpass is
illustrated in Fig. A5.

3.3 Sensitivity analysis

As a result of the sensitivity analysis explained in Sect. 2.3.3,
we obtained a measure of the sensitivity uncertainty, which
is included in the total uncertainties in our TD esti-
mates. We obtained sensitivity uncertainties of (1) 1.24 and
1.36 Mt CO2 yr−1 for the p-value sensitivity for the poten-
tial plume detection and plume refinement, respectively;
(2) 0.74 Mt CO2 yr−1 for the filling parameter sensitivity;
(3) 0.70 and 1.24 Mt CO2 yr−1 for the lower and upper limit
of the plume range, respectively; and (4) 1.94 Mt CO2 yr−1

for the background model. Assuming uncorrelated un-
certainty contributions, this results in a total ssens of
3.11 Mt CO2 yr−1.

In the sensitivity tests (a)–(c), described in Sect. 2.4, we
analysed (a) wind rotation to match the detected plume track,
(b) omission of quality filtering of XCO2 data and (c) omis-
sion of the use of NO2 data to detect the potential plume. The
results that we obtained for these tests are shown in Fig. A7
in Appendix A and summarized in the following:

a. When automatically rotating the wind direction to
match that of the detected plume track, we did not
observe significant differences in the obtained emis-
sion rates (see Fig. A7a) because the angle that the
mean wind speed forms with the detected plume
track was, for the analysed scenes, between 1.4 and
18.4◦. The absolute mean difference between BU
and TD estimations slightly decreased (from −2.8 to
−2.4 Mt CO2 yr−1) and its standard deviation increased
by 0.3 Mt CO2 yr−1.

b. A larger disparity was found when switching off the
quality filtering in the XCO2 data. In this case, as sum-
marized in Fig. A7b, we found that running the same
analysis including the XCO2 observations considered to
have a poor quality results in a correlation coefficient of

Atmos. Meas. Tech., 17, 1145–1173, 2024 https://doi.org/10.5194/amt-17-1145-2024



B. Fuentes Andrade et al.: Estimating localized CO2 emissions 1159

Figure 6. Overview of the top-down emission rate estimation steps for the scene on 17 April 2020. Panel (a) displays the NO2 VCD.
The SAM footprints are enclosed by grey polygons. As in Fig. 3, the observations with enhanced 1VCD, as obtained from the t test, are
enclosed by orange polygons. The SAM region is depicted using a dashed grey line. The dashed red line surrounds the cluster closest to
the source and the solid red line accounts for the potential plume. Panel (b) shows XCO2 over NO2 VDC in the background (greyscale).
The solid black line encloses the XCO2 background area (excluding the potential plume). The refined plume is enclosed by the solid orange
line within the potential plume. The straight line that traverses the potential plume is the computed track. Panel (c) is analogous to Fig. 5a.
Panel (d) is analogous to Fig. 5b. The black arrows in panels (a)–(c) depict the mean horizontal wind within the potential plume. The black
cross represents the source location.

about 0.45 and a standard deviation of the difference
(BU−TD) of 14.7 Mt CO2 yr−1. This discrepancy was
especially remarkable in the scenes where the emission
plume is close to the lignite pit, situated just a few kilo-
metres south-west of the Bełchatów power plant, where
a region of elevated 1XCO2 is noticeable in most of
the SAMs. In these scenes, the observations with ele-
vated 1XCO2 were masked as belonging to the plume.
If we discard the scenes in which the wind blows to-
wards the pit region (about 90◦), i.e. the scenes on 8 and
9 October 2021, we obtain a correlation coefficient of
0.86 and the difference (TD−BU) becomes −3.50±
5.91 Mt CO2 yr−1. Two additional scenes passed our
scene selection filters in this case – 27 June and 10 Oc-
tober 2022.

c. Omitting the use of NO2 data to detect the potential
plume also led to a noticeable decrease in the cor-
relation coefficient (to 0.26) and a TD−BU differ-
ence of −2.2± 10.1 Mt CO2 yr−1, as we can see in
Fig. A7c. The main reason for the decreased corre-
lation is the larger potential plume, which undercon-
strained the CO2 plume region, thereby resulting in

the inclusion of neighbouring background structures of
enhanced 1XCO2 in the detected plume, e.g. on the
SAMs on 18 June 2021 (shown in Fig. A8) and 24 June
2022. In addition, no CO2 plume was detected for the
SAM on 20 June 2021 using the same p value employed
for the NO2 data. A higher p value leads to the detection
of the CO2 plume in this case, although it can also result
in the further inclusion of background structures in the
detected plume. A higher sensitivity (2.77 Mt CO2 yr−1)
to the chosen p value was found.

4 Discussion and conclusions

With our data-driven cross-sectional flux method using co-
located CO2 and NO2 satellite data, we were able to quantify
the CO2 emissions from the Bełchatów Power Station. We
estimated the power plant CO2 emissions for nine automat-
ically identified different OCO-3 overpasses and compared
the results with bottom-up (BU) emission estimates, finding
a good correlation (0.92). The results obtained using these
two methods agree in eight out of nine analysed cases within
their uncertainty range.
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Figure 7. Overview of the top-down emission rate estimation steps for the scene on 18 June 2021. The panels are analogous to those in
Fig. 6.

Figure 8. Overview of the top-down emission rate estimation steps for the scene on 9 October 2021. The panels are analogous to those in
Fig. 6.

Atmos. Meas. Tech., 17, 1145–1173, 2024 https://doi.org/10.5194/amt-17-1145-2024



B. Fuentes Andrade et al.: Estimating localized CO2 emissions 1161

Table 1. Parameters characterizing each of the analysed scenes including CO2 emission estimates. The satellite overpass times (local time)
and the meteorological information at the OCO-3 overpass time are shown. The angle refers to that between the wind vector and the
north-to-south direction, positive in the clockwise direction. The top-down and bottom-up emission estimates are shown along with their
corresponding uncertainties, broken down into their components as described in Sect. 2.3. The sensitivity uncertainty of 3.11 Mt CO2 yr−1

is included in the total top-down uncertainty estimates.

Date
2020 2021 2022

10 April 17 April 18 June 19 June 20 June 8 October 9 October 24 June 13 October

OCO-3 time (LT) 15:35 11:42 11:23 10:36 09:48 14:53 14:06 09:01 12:34
S5P time (LT) 12:57 14:06 13:59 13:40 13:21 14:00 13:41 13:03 13:22
Wind speed (m s−1) 3.39 5.86 5.58 6.18 6.80 7.78 6.40 9.10 5.76
Angle, θ (◦) −53.53 −30.35 144.60 139.92 139.06 93.84 92.39 131.18 151.37
nd (1025 cm−2) 2.12 2.10 2.11 2.11 2.10 2.15 2.15 2.11 2.12
Boundary layer height (km) 1.64 1.32 1.26 1.26 1.03 0.79 1.06 1.23 0.65
Characteristic time (h) 3 2 2 1 1 1 1 1 1
Number of independent CSs, n′eff 10.38 5.41 7.30 6.64 24.90 8.37 9.31 15.56 5.98
Generated power (MW) 3774 3217 3709 3714 1936 2793 1889 3208 2754

To
p-

do
w

n∗

Emissions 32.29 32.04 32.77 41.94 17.96 24.13 11.59 33.75 27.75
Total uncertainty 6.38 10.27 5.40 6.99 3.83 5.04 4.12 4.40 6.08
Dispersion uncertainty 3.40 9.28 3.33 5.37 1.88 3.61 2.55 2.49 4.62
Wind uncertainty 4.42 3.11 2.89 3.22 1.21 1.65 0.90 1.86 2.45
Emissions (Nassar et al., 2022) 29.60 27.90 36.90 26.40 10.20 21.40 16.40 35.20 –
Uncertainty (Nassar et al., 2022) 3.30 1.90 4.60 1.10 1.50 3.80 2.60 7.00 –

B
ot

to
m

-u
p∗

Emissions 39.04 33.28 38.37 38.42 20.03 28.90 19.54 33.19 28.49
Total uncertainty 2.79 2.46 2.14 2.16 1.16 1.61 1.48 1.98 3.20
Age uncertainty 1.76 1.63 0.12 0.34 0.34 0.08 1.01 0.72 2.78
Intensity uncertainty 2.17 1.85 2.13 2.14 1.11 1.61 1.09 1.84 1.58
Emissions (Nassar et al., 2022) 31.30 28.10 32.20 24.40 17.20 24.30 15.50 29.50 –
Uncertainty (Nassar et al., 2022) 1.57 1.41 1.61 1.22 0.86 1.22 0.78 1.48 –

∗ All quantities expressed in Mt CO2 yr−1.

Figure 9. Bottom-up (black), top-down (blue) and Nassar et al. (2022) (orange) emission estimates for the analysed scenes. The 1σ un-
certainties are displayed as bars about the corresponding emission estimate. The same uncertainties are shown at the bottom, revealing the
relative contributions to the bottom-up and top-down emission estimates, where the bar’s length is the respective uncertainty contribution
quadratically scaled with respect to the total uncertainty.
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Nassar et al. (2022) also analysed eight of our nine scenes.
Their results are shown in Fig. 9 and Table 1 along with
our results. We analysed an additional scene on 13 October
2022, not shown by Nassar et al. (2022). Conversely, Nas-
sar et al. (2022) showed a SAM corresponding to 27 June
2022 that was discarded by our filtering algorithm (Sect. 2.5)
due to the lack of plume observations left after dumping the
OCO-3 retrievals flagged as being of poor quality. Our top-
down (TD) estimates agree with those obtained from Nas-
sar et al. (2022) in six out of eight cases. The emission esti-
mates of Nassar et al. (2022) (NA) have a correlation coeffi-
cient of 0.85 with our BU estimates, and the NA−BU differ-
ence (mean± standard deviation) is−5.8±4.8 Mt CO2 yr−1.
The correlation coefficient between NA and TD is 0.76, with
a mean NA−TD difference (mean± standard deviation) of
−2.8± 6.7 Mt CO2 yr−1. Nassar et al. (2022) also computed
BU emission estimates based on the generated power by the
power plant. However, their BU estimates are scaled by their
mean TD emission estimates. Therefore, we have not per-
formed any comparisons with the BU estimates of Nassar et
al. (2022).

The relative uncertainties for individual overpasses lie be-
tween 13 % and 32 % (22.0 % on average), higher than those
of 3.8 %–19.7 % (12.2 % on average) obtained by Nassar
et al. (2022). The obtained relative uncertainties are of the
same order of magnitude as the uncertainty levels to be
achieved with the CarbonSat mission (Buchwitz et al., 2013;
Bovensmann et al., 2010), which aimed for about 20 % un-
certainty in the CO2 emission estimate for individual over-
passes (ESA, 2015). The dispersion uncertainty dominates
over that of wind and sensitivity, as it accounts for the large
fluctuations in the cross-sectional fluxes. Using simulated
plumes, Brunner et al. (2023) showed that estimated individ-
ual (2 km wide) cross-sectional fluxes fluctuate about 20 %–
30 % due to turbulence, even with perfect knowledge of the
1XCO2 map and wind speed. A similar outcome was ob-
tained by Wolff et al. (2021). We have observed more pro-
nounced fluctuations, with standard deviations ranging from
27 % to 67 % of the corresponding mean emission estimate.
We expect these larger fluctuations to arise from the use
of modelled data in the mentioned studies, as opposed to
our measurement-based analysis. Despite the large fluctu-
ations in individual cross-sectional fluxes, having multiple
CSs downwind of the source enabled their correlation to be
investigated, which led to dispersion uncertainties between
about 1.88 and 9.28 Mt CO2 yr−1. To obtain a qualitative
check on the obtained dispersion uncertainties, we computed
the effective number of CSs for each scene using Eq. (7), as
shown in Table 1. In agreement with the reasoning made in
Sect. 2.3.1, we obtained typical effective numbers of about
15 CSs or less. A noticeable exception is the unexpectedly
high effective number of CSs (24.90) obtained for the scene
on 20 June 2021 (Fig. A2). This is probably a consequence of
the low number of valid CSs, distributed in blocks of about
5 km or less, with gaps between the blocks reaching 10 km,

which likely led to an incomplete characterization of the cor-
relation of the cross-sectional fluxes and, in this case, to an
underestimation of the dispersion uncertainty.

The sensitivity uncertainty (3.11 Mt CO2 yr−1) shows fair
stability of the method over the used parameters. All of the
contributions to the sensitivity uncertainty that are accounted
for are of the same order of magnitude. The choice of the
p value was of little influence for most of the analysed
scenes, for both the plume detection and the refinement, as
long as it was large enough to detect the full extent of the
actual emission plume and there were no other structures
with elevated 1XCO2 close to the plume. The choice of the
p value only had a significant effect (about 5–6 Mt CO2 yr−1)
for plume detection in the 20 June 2021 scene (Fig. A2), due
to the structures with elevated 1XCO2 in the vicinity of the
plume, included within the potential and refined plume for
higher p values. We encountered a similar situation when
setting the upper limit of the plume range along its track,
with very small fluctuations for every scene except that on
17 April 2020 (Fig. 6), for which the estimated emission rate
increased about 10 Mt CO2 yr−1 when varying the parameter
from 30 to 40 km. This results from an accumulation of CO2
at those distances along the plume track.

In some of the analysed scenes there seemed to be de-
viations from our assumption of stationarity. For example,
we observed significant wind speed variability within the
characteristic time for the overpass on 24 June 2022 and
less-notable variability on 10 April 2020, 17 April 2020
and 18 June 2021. We also observed noticeable changes in
the power-plant-generated power, as occurred on 13 October
2022. These deviations are partly considered in the disper-
sion uncertainty because they can enhance or reduce the fluc-
tuations and be partly masked by them. For example, a mono-
tonic decrease in the wind speed would lead to an underesti-
mation of the cross-sectional fluxes that becomes more pro-
nounced with distance from the source. For a relatively large
decrease of 1 m s−1 in the wind speed, from a typical wind
speed of about 6 m s−1 and emissions of 30 Mt CO2 yr−1,
variations of less than about 5 Mt CO2 yr−1 would be ex-
pected for individual CSs, which are much smaller values
than the oscillations observed in the cross-sectional fluxes.

We have identified no significant difference between con-
sidering the wind direction obtained from ERA5 and rotat-
ing it to match the detected plume track. For this reason, we
have used the ERA5 wind speed, as this has the advantage of
being able to account for variable wind directions along the
plume track. In addition, it is independent of any assump-
tion regarding the shape of the plume track (in our case lin-
ear) and any possible difference between our detected plume
track and the plume centreline. An advantage of the wind
rotation would be a potential increase in the number of anal-
ysed scenes, as we have discarded scenes with an angle larger
than 45◦ between the detected track and the mean wind direc-
tion (see Sect. 2.5). However, such a large difference between
the detected track and the mean wind direction may indicate
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a bias in the wind vector; therefore, discarding that scene is
the most prudent option.

We have observed significant disagreement between BU
and TD estimates when using the XCO2 observations flagged
as having poor quality. Nevertheless, after discarding the
scenes in which the emission plume was close to the lignite
pit, the disagreement between performing or non-performing
quality filtering was significantly smaller. The better agree-
ment between TD and BU estimates when disregarding these
scenes suggests the presence of possible artefacts in the
XCO2 estimates over the pit regions as well as the impor-
tance (for the application of our method) of accurate XCO2
measurements and reliable quality filtering in the case of po-
tential biases in the XCO2. However, an analysis with more
scenes is needed for a more conclusive result. A larger num-
ber of scenes were successfully analysed using our method,
at the cost of a reduced correlation between BU and TD esti-
mates.

The TD−BU difference had a large standard deviation
when the potential plume was not detected using NO2 data
but rather through a wedge centred on the mean wind vec-
tor. This disagreement appears to result from the inclusion
of background structures with enhanced 1XCO2 (of about
the same order of magnitude as the 1XCO2 resulting from
the power plant emissions) close to the source in the detected
plume. The reason for this is that the potential plume defined
through this wedge downwind has a greater extent than that
detected using NO2; therefore, it constrains less of the region
for CO2 plume detection. Some examples of this inclusion of
background structures in the refined plume happened for the
overpasses on 18 June 2021 (shown in Fig. A8) and 24 June
2022. In these cases, the discrimination between background
features and signal due to the source emissions is difficult
without ancillary data. In addition, no CO2 plume was de-
tected for the SAM on 20 June 2021 without the aid of NO2
data. With this, we confirmed the usefulness of NO2 data to
constrain the CO2 plume region. These data helped us de-
fine a CO2 background region and exclude false positives,
i.e. pixels wrongly assigned as belonging to the plume.

The presented method has some limitations. It can only
quantify CO2 emissions from isolated sources. The use of
NO2 allows us to identify scenes and targets whose emission
plumes might be affected by other emission sources, but no
decoupling has been attempted. In addition, the method relies
on the confinement of the CO2 plume to the detected poten-
tial plume. In general, we found good agreement. However,
we might encounter cases, such as the scene on 18 June 2021
(Fig. 7), in which the CO2 plume seems to extend beyond
the potential plume boundaries. In the aforementioned case,
the part of the CO2 plume that we miss is mostly beyond the
plume range, having only a small effect on the final result, but
it could lead to a significant underestimation of the emissions
in other cases. This mismatch is due to a change in the wind
direction in the time between the OCO-3 and S5P overpasses
and will be solved with the use of simultaneously retrieved

XCO2 and NO2 maps (at the same spatial resolution) from
the future CO2M, from which we expect to detect potential
plumes with a higher congruity with the CO2 one.

Furthermore, we have focused on one of the power plants
with the highest emissions in the world. We have obtained
successful TD estimates for individual overpasses with es-
timated BU emissions as low as about 19–20 Mt CO2 yr−1.
This suggests the feasibility of tracking power plants whose
emissions are of about that magnitude. Power plants emit-
ting over 20 Mt CO2 yr−1 are responsible for roughly 5 % of
the total annual power plant CO2 emissions (Strandgren et
al., 2020). The uncertainty in the presented method is ex-
pected to scale with the source emissions. The dispersion un-
certainty includes terms that are expected to be proportional
to the emissions, e.g. those resulting from turbulence effects,
as well as other terms that are independent of the emissions,
such as those derived from XCO2 random error. The sensitiv-
ity uncertainty also has terms proportional to the emissions,
resulting from factors such as the uncertainty derived from
the gap-filling method, and terms that are independent of the
emissions, such as those resulting from the uncertainty de-
rived from the function used to fit the XCO2 background. The
wind uncertainty is proportional to1XCO2; thus, we can as-
sume that this component of the total uncertainty will also be
directly proportional to the emissions. Therefore, we would
expect uncertainties with a similar proportionality factor to
that obtained in the present study (22 % of the emission rate)
for power plants whose emissions are comparable to those
of Bełchatów. For power plants with lower CO2 emissions,
the absolute total uncertainty is expected to decrease accord-
ingly, with a lower threshold determined by the terms inde-
pendent of the emissions. These terms will presumably lead
to a higher relative uncertainty for power plants with lower
CO2 emissions.

With our cross-sectional flux method, we have shown the
potential to monitor CO2 emissions from individual power
plants by employing OCO-3 XCO2 observations. Using such
a method, we can obtain independent emission estimates,
which are crucial for facilities with limited or missing infor-
mation on activity data. The TROPOMI NO2 column den-
sities have proven useful to detect the emission plume in
scenes with other neighbouring sources or small-scale back-
ground structures with enhanced XCO2. The application of
our method to observations from the planned CO2M is ex-
pected to have many advantages. The simultaneous CO2M
measurements of NO2 and XCO2 at the same spatial reso-
lution, which is similar to that of OCO-3, will increase the
spatial correlation between NO2 and XCO2 images, and thus
allow us to constrain the CO2 plume better, which will lead
to an increase in the accuracy of the emission estimates as
well as reduced uncertainty.

https://doi.org/10.5194/amt-17-1145-2024 Atmos. Meas. Tech., 17, 1145–1173, 2024



1164 B. Fuentes Andrade et al.: Estimating localized CO2 emissions

Appendix A: Additional figures

In Sect. 3 of the main text of this paper, we described each of
the analysed scenes and detail the results obtained for each of
them. Some of these scenes are also displayed in Figs. 3–8.
Figures A1–A5 illustrate the obtained results for the scenes
mentioned in Sect. 3 but not shown there.

The sensitivity analysis performed to obtain the uncer-
tainty from sensitivity is described in Sect. 2.3.3. The ob-
tained results are shown in Sect. 3.3 and also illustrated in
Fig. A6, which shows the sensitivity analysis with respect to
the considered parameters, as described in Sect. 2.3.3.

The semivariograms used to compute the dispersion un-
certainty according to Sect. 2.3.1 are shown in Fig. A9.

Figure A1. Overview of the top-down emission rate estimation steps for the scene on 19 June 2021. The panels are analogous to those in
Fig. 6 in the main text.
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Figure A2. Overview of the top-down emission rate estimation steps for the scene on 20 June 2021. The panels are analogous to those in
Fig. 6 in the main text.

Figure A3. Overview of the top-down emission rate estimation steps for the scene on 8 October 2021. The panels are analogous to those in
Fig. 6 in the main text.
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Figure A4. Overview of the top-down emission rate estimation steps for the scene on 24 June 2022. The panels are analogous to those in
Fig. 6 in the main text.

Figure A5. Overview of the top-down emission rate estimation steps for the scene on 13 October 2022. The panels are analogous to those in
Fig. 6 in the main text.
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Figure A6. Sensitivity analysis performed to estimate a measure of the sensitivity uncertainty. The legend shows the names of the parameters
taken into account and the values considered in each case. The p values for the detection of the potential plume (p-value-n) and for plume
refinement (p-value-c) are calculated by taking values from 0.03 to 0.1 in both cases. The area and weighting of the distance weighting
interpolation (d_idw) are shown, where “d” indicates inverse distance weighting interpolation, “dd” indicates the squared inverse distance
weighting interpolation and the numbers refer to the radius of the used area (in tenths of degrees). The limits of the plume range (dist_as and
dist_max for the lower and upper thresholds, respectively) are also shown; the values are in kilometres. The functions used to fit the XCO2
background (sub_method) are given: linear dependence on longitude and latitude with a possible swath bias (nofp_linreg), linear dependence
on longitude and latitude with a possible swath and footprint biases (coord_linreg), and only linear dependence on longitude and latitude
(noswfp_linreg). Each data point stands for the result of the analysis using the value indicated by the marker for each considered parameter.
The dashes stand for the values used for the main analysis. The bars show, for each scene, the total uncertainty obtained using the parameters
selected for the main analysis.
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Figure A7. Summary of the results, analogous to Fig. 9, for the sensitivity tests: (a) rotation of the wind direction to match the plume track,
(b) no quality filtering of the XCO2 data and (c) potential plume definition through a wedge downwind of the source instead of NO2 VCD.
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Figure A8. Overview of the top-down emission rate estimation steps for the scene on 18 June 2022. The panels are analogous to those in
Fig. 6 in the main tex. Instead of NO2 data, a wedge downwind of the source was used to define the potential plume NO2 (as described in
Sect. 2.4).

Figure A9. Semivariograms used to compute the dispersion uncertainty (see Sect. 2.3.1), analogous to Fig. 5c, for each of the nine analysed
scenes. The blue dots stand for the empirical semivariogram, computed using Eq. (5). The exponential fit according to Eq. (6) is shown as a
solid line for (a) 10 April 2020, (b) 17 April 2020, (c) 18 June 2021, (d) 19 June 2021, (e) 20 June 2021, (f) 8 October 2021, (g) 9 October
2021, (h) 24 June 2022 and (i) 13 October 2022.
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Data availability. The OCO-3 XCO2 data are available from
https://doi.org/10.5067/970BCC4DHH24 (OCO-2/OCO-3 Science
Team et al., 2022). The data generated showing the power per gen-
eration unit from ENTSO-E are available from https://transparency.
entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show
(ENTSO-E Transparency Platform, 2023). The ERA5 me-
teorological dataset is available from the Copernicus Cli-
mate Change Service (C3S) Climate Data Store (CDS)
(https://doi.org/10.24381/cds.143582cf, Hersbach et al., 2017).
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