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Abstract. The concentrations of atmospheric particulate
matter and many of its constituents are temporally auto-
correlated. However, this information has not been utilized in
source apportionment methods. Here, we present a Bayesian
matrix factorization model (BAMF) that considers the tem-
poral auto-correlation of the components (sources) and pro-
vides a direct error estimation. The performance of BAMF
is compared with positive matrix factorization (PMF) using
synthetic Time-of-Flight Aerosol Chemical Speciation Mon-
itor data, representing different urban environments from
typical European towns to megacities. We find that BAMF
resolves sources with overall higher factorization perfor-
mance (temporal behavior and bias) than PMF on all datasets
with temporally auto-correlated components. Highly corre-
lated components continue to be challenging and ancillary in-
formation is still required to reach good factorizations. How-
ever, we demonstrate that adding even partial prior infor-
mation about the chemical composition of the components
to BAMF improves the factorization. Overall, BAMF-type
models are promising tools for source apportionment and
merit further research.

1 Introduction

Air pollution in the form of particulate matter (PM) has a
substantial impact on the earth’s climate (IPCC, 2023) and
severe adverse effects on human health (Lelieveld et al.,
2015; Daellenbach et al., 2020). The noxiousness of PM
could strongly depend on the chemical composition of the
particles, which is governed by their origin (Bates et al.,
2019; Daellenbach et al., 2020). PM is affected by many
emission sources and dynamic atmospheric processes, mak-
ing PM a poorly understood complex mixture, especially
the organic aerosol (OA) fraction of PM. Typically, directly
emitted OA (primary OA – POA) is distinguished from OA
formed in the atmosphere from emitted vapors by nucleation
or condensation (secondary OA – SOA). Identifying and
quantifying the sources of PM is, therefore, essential for de-
signing effective and efficient air pollution reduction strate-
gies. Such analyses (called “source apportionment”) com-
bine chemical characterization data with non-negative matrix
factorization methods. The idea is to use the variation in the
chemical composition of a set of measurements, such as out-
puts from mass spectrometers, to decompose the measure-
ments into “source terms” using non-negative matrix factor-
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ization. The underlying assumption is that the measurement
is a linear combination of strictly non-negative source terms.

Multiple methods for weighted non-negative matrix fac-
torization exist (Wang and Zhang, 2012). A widely used
method in atmospheric sciences is positive matrix factoriza-
tion (PMF) (Paatero and Tapper, 1994), which has been used
in over 1000 papers (Hopke, 2016). In earlier studies, chem-
ical mass balance (CMB) was a popular method, but it has
the drawback that factor profiles must be defined beforehand
(see, e.g., Watson et al., 2001). This introduced significant
uncertainty since these factor profiles are usually not known
beforehand or only with considerable uncertainty. PMF im-
proved on this by optimizing the source profiles (Canonaco
et al., 2013).

Previous studies have revealed that chemical data from
the Aerosol Mass Spectrometer family (Aerodyne Aerosol
Mass Spectrometer, Canagaratna et al., 2007; Aerosol Chem-
ical Speciation Monitor, Ng et al., 2011; Fröhlich et al.,
2013) retain sufficient information for the resolution of some
sources (Zhang et al., 2007, 2011; Daellenbach et al., 2017).
However, distinguishing factors with chemical or temporal
similarities or accurately resolving low-concentration fac-
tors is often challenging (Ulbrich et al., 2009; Canonaco et
al., 2013; Zhang et al., 2011; Heikkinen et al., 2021). Sev-
eral studies have shown that utilizing a priori information to
constrain the chemical composition or time series of POA
sources is usually required to accurately estimate their con-
tribution to OA (Canonaco et al., 2013; Crippa et al., 2014;
Reyes-Villegas et al., 2016; Schlag et al., 2017; Zhang et al.,
2018; Huang et al., 2019; Zhu et al., 2018; Chazeau et al.,
2022). In addition, different statistical data reduction meth-
ods applied to mass spectrometry data extract different com-
ponents (Isokääntä et al., 2020). This demonstrates that the
problem does not have one unique solution, and the choice
of method can emphasize different features of the resolved
components.

While developments related to source apportionment, in
atmospheric science, focused on different ways to pre- and
post-process data (Zhang et al., 2019), the underlying solver
algorithm mainly remained the same: PMF. Rolling PMF
(Canonaco et al., 2021) refers to a pre-processing strategy
feeding only subsets of data (e.g., 7 or 14 d) to the PMF
solver. This allows for a temporal variation of the chemical
composition of sources (particularly relevant for SOA), even
if their profiles remain static within each PMF run (Canonaco
et al., 2021).

The commonly used optimization goalQ in PMF only ac-
counts for reconstruction of the data (Wang and Zhang, 2012;
Paatero and Tapper, 1994). It lacks time information, which
is a drawback considering some atmospheric measurements
exhibit strong temporal auto-correlation (see, e.g., Fig. 1).
Earlier studies have also found sources with longer cycles
due to emissions, such as traffic, and meteorological con-
ditions (Daellenbach et al., 2020; Chen et al., 2022). Here,
we present a probabilistic matrix factorization method that

accounts for auto-correlation. We evaluate the model perfor-
mance in resolving air pollution sources based on realistic
synthetic chemical data.

2 Methods

In this section we discuss the methods used in the paper,
starting with notation in Sect. 2.1. We define the BAMF
model in Sect. 2.2 and describe how we find solutions in
Sect. 2.3 using the pre- and post-processing steps in Sect. 2.4.
In Sect. 2.5 we describe how we compare BAMF with PMF,
which is defined in Sect. 2.6.

2.1 Notation

In this paper, we describe the data by X ∈ Rn×m, where the
rows i ∈ [n] = {1, . . .,n} correspond to measurements taken
at consecutive times ti . The columns j ∈ [m] = {1, . . .,m}
correspond to the different dimensions of the measurement.
Our objective is to find a lower dimensional non-negative
decomposition X≈GF with p factors such that G ∈ Rn×p

≥ 0

and F ∈ Rp×m
≥ 0 , where p�min(n,m). In other words, the

objective is to present the data as a multiplication of two
much smaller matrices. The rows of Fi· contain the time-
independent components of the decomposition, which we
call factor profiles. Factor profiles are defined to sum to unity
in order to facilitate comparisons between different datasets
and models. The columns of G·i contain the time depen-
dency of each of the rows of F; we will call these the fac-
tor time series. Simply put, the factor profiles represent the
concentration and time-independent chemical composition
of the sources, and the factor time series describes the time-
dependent concentration of the sources. Note that the order-
ing of these profiles is arbitrary for the overall solution.

2.2 Bayesian auto-correlated matrix factorization,
BAMF

We define a Bayesian probabilistic model that captures our
prior assumptions of the process that generated the measure-
ments. The only observed variables in our model are the data
matrix X ∈ Rn×m and the uncertainty estimate σ ∈ Rn×m

≥0 .
Together they define the probability distribution of the ob-
served concentration of each m/z at any point in time with
the data matrix being the average and the uncertainty matrix
the standard deviation of the distribution, here the Gaussian
distribution. In addition to these observed variables, there are
several latent variables. These include the matrices G and F
mentioned above, vectors α ∈ Rp

≥0 and β ∈ Rp
≥0 which de-

termine the auto-correlation behavior of the model, as well
the “noise-free data matrix” Z ∈ Rn×m

≥0 . We define the prob-
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Figure 1. The auto-correlations of the hourly means of several aerosol constituents measured at 19 different sites in Europe. The auto-
correlation is the Pearson correlation coefficient between the original and the delayed time series. Auto-correlations at a lag of 1 and 2 h are
very high in most cases. These data show that particulate matter constituents exhibit strong lag-1 auto-correlation, consistent with earlier
such statements in the literature (e.g., Hirtzel et al., 1982). Auto-correlations calculated on data from Chen (2022).

abilistic model as

Z=GF (1)

Xij ∼Normal
(
location= Zij ,scale= σ ij

)
for all i ∈ [n] and j ∈ [m] (2)

Fi· ∼ Dirichlet
( )

for all i ∈ [p] (3)

Gi+1,k ∼Cauchy
(
location=Gik, scale = αk1ti +βk

)
for all k ∈ [p] and i ∈ [n− 1], (4)

where Normal corresponds to the normal probability distri-
bution with a given mean and standard deviation, and Dirich-
let to the Dirichlet distribution parameterized by a unit vector
1m. The model specification implies that the components of
Fi· can have values from [0,1] with equal likelihood, but all
rows must sum to unity. Cauchy is the Cauchy probability
distribution, with the width depending on the time difference
between the ith and (i+ 1)th observation (1ti = ti+1− ti).
Essentially our model describes the data as a non-negative
matrix decomposition (NMF) with a lag-1 auto-correlation
term and a Gaussian error term for the reconstruction of X.

We chose the Cauchy distribution for the auto-correlation
term because the long tails make large jumps between the ith
and (i+ 1)th observation more probable than, e.g., a Gaus-
sian distribution. Other choices are possible, but the exper-

iments in this paper suggest the Cauchy distribution works
as an approximation for real data. Choosing the distribu-
tion shape also implicitly influences the weight of the G
auto-correlation. The αk1ti +βk determines the scale of the
Cauchy distribution. The α terms allow the model to deal
with time steps of different lengths and missing data, since it
forms a simple linear model for the scale. It has a minimum
width βk and increases linearly as 1t increases (with αk).
Thus, for arbitrarily large time steps the Cauchy approaches
a uniform distribution. In physical terms this means that at
short time steps we expect the values of G to stay close to
the previous value, and at large time steps larger deviations
have higher probability. It is possible to use other formula-
tions for the width, which would be appropriate if one wishes
to include a more complex and computationally intensive de-
scription of auto-correlation. It is also possible to consider
more than lag-1 auto-correlation.

2.2.1 Uncorrelated Bayesian matrix factorization,
BAMF-0

For comparison, we created a version of the BAMF model
without the lag-1 auto-correlation terms of Eq. (4). In other
words, the model consist entirely of Eqs. (1)–(3). The model
is otherwise identical to the BAMF model. This variation is
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essentially a probabilistic weighted NMF model, making it
possible to assess the impact of the auto-correlation terms on
the solution.

2.2.2 Bayesian matrix factorization with additional
constraints, BAMF-C

In source apportionment analyses, it is common to utilize ref-
erence spectra as boundary conditions for the factor analysis
– to find components with, e.g., previously observed chemi-
cal compositions. We include this scenario in another model,
called “BAMF-C”, by adding peak intensity ratios to the
BAMF model,

F[ii,jj ]/F[kk, ll] ∼ Normal(ratio,width) , (5)

where ii, jj and kk, ll are the indices of matrix F indicat-
ing the peak pair to constrain. The ratio is the desired inten-
sity ratio, and width is a free parameter describing the width
of the distribution, i.e., the uncertainty of the intensity ratio.
This approach makes it possible to constrain the range of F
for arbitrarily many m/z pairs, which is currently not done
in the other models. A similar concept could constrain G to
have a similar time behavior as an external ancillary mea-
surement, e.g., of a source tracer. The constraint is similar to
the widely used a value (anchor value) approach in Source
Finder coupled to PMF (Canonaco et al., 2013, SoFi/PMF)
with two notable differences. Firstly, the intensity ratio of
the peaks is constrained in BAMF-C, while the a-value con-
straint approach in SoFi/PMF uses the peak intensity. Sec-
ondly, BAMF-C has a soft-boundary, with increasing penalty
term as distance from the anchor grows. SoFi/PMF employs
a hard boundary (defined as a relative deviation from the
a value), without additional penalty on the object functionQ
for deviation from the anchor. In the present study, we evalu-
ate the performance of the PMF and BAMF algorithm itself
without discarding sub-optimal solutions (PMF) or samples
(BAMF) during post-processing. Appendix F lists the pro-
files used for constraints in this work.

2.3 Solver

We use Stan (Carpenter et al., 2017) to compile and run
the probabilistic models. Stan solves the probabilistic infer-
ence problem with a Markov chain Monte Carlo (MCMC)
method. Instead of obtaining a single solution for the la-
tent variables, e.g., by finding the model with the highest
likelihood, we get an empirical distribution of possible so-
lutions from which we can infer, e.g., confidence intervals.
Stan takes our model and observed variables as input and
outputs samples from the posterior distribution of the latent
variables. We run multiple MCMC chains, starting from dif-
ferent initial conditions and usually extract a few thousand
posterior samples per chain.

The standard way to initialize the model in Stan is by
randomly sampling from the prior distributions. However,

our model has many parameters with fairly strict distribu-
tions. Consequently, we found this starting point to be poor,
sometimes causing Stan to markedly slow down, or even fail.
Hence, we initialize the model with a point solution. We uti-
lize Stan’s capability to find a single maximum a posteriori
(MAP) point solution for the parameters, which we use as
the initialization. Note, however, that the solutions typically
have several local optima, in which case the point solution is
only one such local optimum.

Hamiltonian Markov chain Monte Carlo

Stan (Carpenter et al., 2017) uses a Hamiltonian MCMC
method to draw samples from the posterior distribution of
our model (Eqs. 1–4) given the data. We go through the basic
idea here, but direct readers to Carpenter et al. (2017), Gel-
man et al. (2014) and references therein for a more detailed
explanation.

The samples are drawn in proportion to the posterior prob-
ability of each sample. Obtaining samples from a multidi-
mensional posterior distribution is a non-trivial task. For ef-
fective sampling, we use Hamiltonian Monte Carlo (HMC),
a method where the gradient of the distribution and an ancil-
lary variable called momentum are used to direct the chain to
explore the typical set (Gelman et al., 2014). Specifically, we
use the HMC based No-U-Turn Sampler (NUTS) (Hoffman
and Gelman, 2014) from Stan. Stan uses warm-up iterations
to estimate the parameters the NUTS sampler needs before
drawing the posterior samples used in the computations (Car-
penter et al., 2017).

The MAP estimate is used as a starting point for the sam-
pling. It is found with an optimization method on the same
probability distribution used by the sampling. We use the
LBFGS (Liu and Nocedal, 1989) gradient-based optimiza-
tion algorithm included in Stan for MAP estimates (Carpen-
ter et al., 2017).

2.4 Pre- and post-processing

Before running our model, we normalize the data such that
the mean of the data (X) is 1. The error estimate is scaled
with the same scaling factor. The equations to do this are:

fnorm =
∑
i,j

Xij/(n×m)

X∗ij = Xij/fnorm

σ ∗ij = σ ij/fnorm,

where fnorm is a scalar normalization factor, X∗ij and σ ∗ij are
the scaled data and error, respectively, which we use as model
inputs. This normalization is done so that we can use a con-
sistent scale for priors and posteriors, making the modeling
easier, and the denormalization is performed to return the re-
sults to familiar units. The normalization is optional, a user
can also choose to use non-scaled values.

Stan outputs posterior samples from the two matrices F
and G, representing the time-independent chemical compo-
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sition of the factors and their time-dependent concentration.
Since all the magnitude information is in G, G needs to be
renormalized by simply multiplying with the normalization
factor. The rows of F are constrained to sum to unity, and
are, thus, directly comparable to mass spectrometric refer-
ences, which are normalized similarly (Crippa et al., 2013;
Ulbrich et al., 2022).

Sorting the components

The order of the components in F and G is arbitrary in our
samples. The problem is not unique to BAMF but inherent
to all such matrix decompositions. To be able to compare
solutions, we need to be able to sort the components. The
contribution of the same component to Z should be similar
between two samples. To calculate the contribution for each
component, we multiply the row of F with the corresponding
column of G and use this to sort the components.

To select the ordering of the components, we take a small
number of representative samples, usually the last five, and
compute the optimal permutation using the Hungarian algo-
rithm (Kuhn, 1955), which is a cost minimization algorithm
that minimizes the cost of assigning values. In this case we
are minimizing the Manhattan distances, which is the sum of
absolute differences between the Z contributions in the sam-
ples. We then select the most common permutation as the
ordering of the factors for all samples.

We use this approach for sorting the outputs of all models
(BAMF-0/C, BAMF, PMF) to ensure the most direct compa-
rability of the results. Finally, median, 25 %, and 75 % per-
centiles are computed using the sorted samples. In the com-
parisons, we use medians for all models, but in some figures,
we also show 25 % and 75 % percentiles. The median, or any
central estimate, is not guaranteed to be the “best” optimized
solution in any metric (probability or root mean square sum
of residuals). Still, we use it to represent a reasonable solu-
tion inferred from the samples.

2.5 Evaluating model performance

The first metric to check is if the model explains the data
well (reconstruction performance). If X is not reconstructed
appropriately, the solution is not acceptable. This can mean
either that the data cannot be factorized this way (the model
assumptions are wrong) or that the solver failed to find a so-
lution. In such cases, the number of iterations should be in-
creased, or solver parameters must be adjusted, such as the
number of warm-up samples and parameters influencing the
step size.

Even at moderate data sizes, assessing whether the original
data falls within the model confidence bounds for every vari-
able individually is not practical. Therefore, we summarized
this information by computing the model residual (difference
between the model input and output, mean of all samples)
normalized with the uncertainty of the model output (stan-

dard deviation of all samples); essentially observing whether
the original data are inside the sample standard deviation.

Sij =
(
Xij −E

[
Xsamples

])
/σ
(
Xsamples

)
(6)

Data in S should be centered at 0 and have a standard de-
viation below 1, which means the data are often less than
1 model standard deviation away from the model mean. In
addition, we also use a common evaluation metric in PMF
analyses (Qm/Qexp), where Qm is defined as (Canonaco et
al., 2013, notation adapted):

Qm =
∑
i,j

(
(X−Z)i,j
σ i,j

)2

. (7)

EssentiallyQm describes the sum of squared model residuals
normalized to the input error. We use the same reduction as
Zhang et al. (2011) where Qexp is approximated as data size
and denote Qm/Qexp as Q∗m.

For synthetic data – with a known ground truth – it is possi-
ble to assess how well the methods resolve the actual compo-
nents in addition to the reconstruction performance. We call
this evaluation factorization performance. We compare the
median solutions with the corresponding actual components
by calculating the average distance, Pearson and Spearman
(nonlinear) correlations. Optimal matching between median
solutions and true components is obtained using the Hungar-
ian algorithm (Kuhn, 1955). The approach is similar to the
sorting above but with the true components defining the or-
der. Direct comparison with true components is only possible
in cases where the number of true components matches the
number of modeled components. Otherwise, the model must
combine multiple components or create additional ones.

2.6 PMF

We use PMF, specifically the multilinear engine 2 (ME-2)
controlled by the user interface SoFi (Canonaco et al., 2013;
Paatero and Tapper, 1994), as a baseline comparison. PMF
solves the decomposition in Eq. (1) by minimizing the sum
of the squared residuals normalized with the input error –
see Eq. (7) (object function) – given the boundary condi-
tion that all values must be positive (Canonaco et al., 2013).
Since SoFi finds local optima, we ran it with different ran-
dom seeds to get multiple solutions for all comparisons. As
the runs have varying starting points, they often lead to dif-
ferent local optima, especially in cases with high rotational
ambiguity. Thus, PMF provides a collection of local minima,
while BAMF tries to sample the posterior distribution of the
model, including plausible answers that are not minima. For
simplicity, we will refer to the group of PMF solution sets as
“samples”, even though PMF is not a sampler.

A priori information in the form of known rows of fac-
tor profiles or of known columns of factor time series can
be added to the model to reduce the rotational ambiguity.
By adding this external information, the user can reduce the
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space PMF searches for the optimized solution, reducing the
rotational ambiguity of the solution. Using external data to
run PMF is usually referred to as “constraining the solution”,
and external information is used as constraints. Here we used
two approaches, (a) entirely unconstrained PMF runs and
(b) constrained runs using external source profiles. We rely
on the commonly used a-value approach to constrain the
PMF runs. In the a-value approach, the user inputs one or
more factor profiles or factor time series and defines a rela-
tive tolerated deviation from the anchor (termed “a value”)
(Canonaco et al., 2013). Constraint strengths are not directly
comparable between the hard cut-off approach used in PMF
and the softer Gaussian error term approach used in BAMF-
C. For the best possible comparability, we first ran BAMF-
C (constraint strength 0.001) and determined the equivalent
a value by taking the maximum deviation from the anchor
value on a constrained component in F (a value of 18 %).
See Appendix F for the profiles used to make this compari-
son.

3 Datasets

We generated synthetic datasets mimicking the OA sources
in different urban environments. These synthetic datasets
mimic mass spectral OA analyses of a Time-of-Flight
Aerosol Chemical Speciation Monitor (ToF-ACSM, Fröh-
lich et al., 2013), a ubiquitous instrument in measuring PM
composition with a focus on OA. The instrument measures
a signal for several mass-to-charge ratio channels. We model
these mass spectra as a sum of 2–5 different mixed sources.
The sources are constructed of time-independent chemi-
cal fingerprints, in our notation F, from the AMS Spectral
Database (Ulbrich et al., 2009, 2022) combined with their
time behavior and magnitude, G. The noiseless spectra, Z,
are then acquired by matrix multiplication of F and G. We
then generate X, as Eq. (2), by applying random Gaussian
noise to each data point. The errors are applied to X, which
is a sum of all the components, so that individual component
error in the original G is undefined.

The ToF-ACSM alternates between measuring particles
and air together, called “open signal” (Iopen), and measur-
ing only air, called “closed signal” (Iclosed). The difference
signal (Idiff = Iopen− Iclosed) represents the signal caused by
the measured particles. For computing the error of Idiff, we
use an error function based on the signal strength, according
to Allan et al. (2003), and Ulbrich et al. (2009):

Erroropen =

√√√√(
Iopen+ Ibaseline

)
× topen√

28
m/z

(8)

Errorclosed =

√√√√ (Iclosed+ Ibaseline)× tclosed√
28
m/z

(9)

Error=max
(

Errormin,
1.2×

√
Error2

open+Error2
closed

topen×
√

28
m/z

)
, (10)

where topen and tclosed are the open and closed signal mea-
surement times, respectively, m/z is the mass charge ratio of
the measurement, Errormin is a lower limit set on the mea-
surement error, and Ibaseline is the baseline signal in the mass
spectrometer. Since the organic fragment ions at them/z val-
ues 16, 17, 18, and 28 are computed based on the measure-
ment at m/z 44 and thus contain duplicate information, they
are removed before running any of the models and only later
reintroduced in the results.

3.1 Synthetic data representing a polluted megacity

First, we generated a synthetic ToF-ACSM OA mass spec-
tral dataset mimicking a polluted megacity environment af-
fected by multiple OA sources. The synthetic datasets used
here are based on observations from Beijing, as it is a rel-
atively well-studied environment. In our case, the modeled
sources are traffic exhaust (HOA); cooking (COA); biomass
burning (BBOA); coal combustion (CCOA); and secondary
OA (OOA). In addition, we also constructed more simple
datasets generated with fewer factors (two factors: HOA
+ OOA; three factors: HOA+COA+OOA; and four fac-
tors: HOA+COA+BBOA+OOA). F were chemical finger-
prints from the literature (Elser et al., 2016; Ulbrich et al.,
2009, 2022). G was created as a mix of Gaussian and Cauchy
(BBOA Gaussian, others Cauchy), biased, positive random
walks, with added typical diurnal concentration cycles (Kul-
mala et al., 2021) corresponding to the matching OA sources
(based on F). A mix of different random walk distribu-
tions was chosen to test whether the model approximation
of Cauchy auto-correlation works with them. The random
walk aims to introduce variability such as one would get from
varying transport and mixing. The diurnal cycle was simply
summed to the random walk to produce the time series. The
overall order of magnitude and diurnal concentration vari-
ability of the components (OA sources) were estimated based
on previous literature on OA sources in Beijing (Kulmala et
al., 2021). For each number of factors, we constructed 10
different datasets amounting to a total of 40 datasets. For ref-
erence, one 5-component dataset in its component form is
shown in Fig. 2. CCOA and BBOA are very similar in F and
G (see Appendix B), making it a challenging dataset. The
time series of CCOA and BBOA are also similar in magni-
tude and have similar diurnal behavior. While the short-term
auto-correlation is high, the random walks of the megacity
dataset are not as highly auto-correlated as the PM data in
Fig. 1. The added diurnal peaks can be seen as the periodic
peaks in the correlograms in Fig. 2c and f. See Appendix C
for an example of the m/z dependence of the measurement
errors on this dataset.
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Figure 2. Characteristics of the synthetic ToF-ACSM OA datasets. Panels (a) and (d) show the factor profiles (F) used to construct the
synthetic datasets. The solid black bars are ions derived from m/z 44 and are only used for converting concentrations. Panels (b) and (e)
show the factor time series (G) used to construct each dataset, and the unit for them is µgm−3, and panels (c) and (f) show the temporal
auto-correlation for each factor. Auto-correlation refers to the Pearson correlation coefficient of the component with the same component
time-shifted by the number of hours. Panels (a), (b), and (c) are for megacity data and panels (d), (e), and (f) are for the European urban
environment.

3.2 Synthetic dataset representing a typical European
urban environment

As another test, we used chemical transport model data from
Jiang et al. (2019) representing approximately 2 weeks of
simulated measurements in Zurich, Switzerland. Zurich rep-
resents a typical European city with low pollution levels. In
this case, the G time series come from the transport model
and F is taken from the literature (HOA and BBOA from
an ambient analysis presented by Elser et al., 2016; Ulbrich
et al., 2009, 2022, biological SOA (SOAbio) from an ambi-
ent analysis presented by Daellenbach et al., 2017, anthro-
pogenic SOA, SOAanthro, is represented by laboratory Diesel
generator SOA presented by Sage et al., 2008).

This dataset differs from those in Sect. 3.1 in two impor-
tant ways. Firstly, the concentrations are lower since the en-
vironment is less polluted, which affects the error estimation
as larger relative measurement errors, median 1.0 % of data
magnitude for this dataset and median 0.6 % for one of the
datasets described in Sect. 3.1. Secondly, the sources exhibit
high correlation in the time series (Appendix B shows that
correlations in G are higher than in the dataset described in
Sect. 3.1), possibly indicating that meteorological conditions
and transport of pollutants are important drivers of the con-
centration of the components. From a source apportionment
analysis perspective, this simulates the worst-case situation
with the data having poor separability in G. The components
of this dataset compared to the megacity data can be seen in
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Fig. 2. The auto-correlation behavior of the two datasets is
very similar, indicating that our fully synthetic data behave
as realistically as the transport model.

4 Results and discussion

In this section we compare the factorizations from BAMF
and PMF on simulated megacity data, in Sect. 4.1, and syn-
thetic European data, in Sect. 4.2. We also investigate what
happens when we do not know the true number of sources,
in Sect. 4.3, and how additional prior information improves
the factorization, in Sect. 4.4.

4.1 Simulated megacity source apportionment

In the first experiment, we assess the performance of BAMF,
BAMF-0, and PMF on synthetic data mimicking the condi-
tions in a polluted megacity described in Sect. 3.1. First, we
assess the reconstruction of the input by the different mod-
els. In addition to minimizing the residuals, BAMF also in-
cludes a penalty for deviations from auto-correlation in G.
Due to this and BAMF being a sampled model instead of
an optimizer as described in Sect. 2.3, PMF would be ex-
pected to give answers with lower absolute measurement
error-weighted residuals compared to BAMF. In other words,
PMF is expected to have a better reconstruction performance.

Figure 3 shows the median solution reconstruction across
the 10 different datasets as the number of components in-
creases. All models reconstruct the input data well within
the error estimate. The similar reconstruction metrics for
BAMF and BAMF-0 suggest that the inclusion of the auto-
correlation term does not substantially deteriorate the re-
construction accuracy. On the other hand, PMF has, as
expected, marginally lower absolute measurement error-
weighted residuals than BAMF and BAMF-0. However, they
are below unity and within the error estimate, judging by the
normalized residuals. Therefore, PMF most likely finds solu-
tions that fit the noise in the data better. All other reconstruc-
tion metrics (S mean, S standard deviation, Q∗m) are compa-
rable for all models.

Data reconstruction is essential to get within the error lim-
its. However, source apportionment aims to accurately and
precisely resolve the actual components in G and F, i.e., fac-
torization performance. The solution of each model to the
example dataset is shown in Fig. 4. For this example, we
observe that all models resolve all five components. How-
ever, BAMF has a better factorization performance both in
F and G than the models not accounting for auto-correlation
(BAMF-0, PMF) in Table 1. Similarly, for the diurnal cy-
cles in the example in Fig. 4c, the diurnal concentration of
OA sources, as identified by BAMF, closely resembles the
ground truth components. While all models capture the time
behavior of the diurnals, the absolute magnitude has a bias,

with BAMF having a substantially smaller bias than the other
models for four out of five components (Table 1).

All models slightly underestimate OOA, which results in
overestimating the other components (Table 1). For the fi-
nal component, CCOA, PMF has less bias, but it correlates
worse with the truth. BAMF-0 and PMF significantly under-
estimate OOA, which results in an overestimation of other
components to get the reconstruction correct. Some factors
have a more pronounced cyclical temporal behavior, as wit-
nessed by high auto-correlation at higher temporal lag (e.g.,
Fig. 4c CCOA, BBOA, COA). Based on Table 1, some of
the factors with pronounced cyclical temporal behavior are
better represented by BAMF than PMF (e.g., BBOA, COA),
while this is not necessarily the case for others (e.g., CCOA).

When considering all 10 synthetic datasets with five com-
ponents mimicking a polluted megacity, BAMF consistently
produces factors closer in magnitude to the truth and which
correlate better with the actual factors than the other models
(Fig. 5). BAMF is also better correlated with the time behav-
ior of the components, while one of the components (CCOA,
strongly correlated with BBOA in terms of G and F) is dif-
ficult for all models. We hypothesize BAMF-0 shows better
spread in Fig. 5, due to being constrained by the underes-
timation of OOA and having to include those peaks in the
spectra. Figure 5a shows that BAMF can over- and under-
estimate both BBOA and CCOA depending on the dataset.
Appendix A shows the inverse relationship between CCOA
and BBOA mass concentration biases and how the profile re-
construction affects the CCOA mass concentration bias for
the BAMF model. Overall, using auto-correlation in source
apportionment markedly improves the quality of the resolved
factors while keeping the overall reconstruction metrics sim-
ilar.

4.2 Simulated European low-pollution city source
apportionment

In a second exercise, we assessed the performance of BAMF,
BAMF-0, and PMF on a synthetic dataset mimicking the
conditions in a typical European city (Sect. 3.2). In contrast
to the fully synthetic dataset in Sect. 3.1, here, the true com-
ponents G are OA source components computed by an air
quality model (Jiang et al., 2019). This provides G time se-
ries close to the atmosphere while still knowing the ground
truth. While the three models show somewhat different com-
ponents (Fig. 6), the reconstruction metrics indicate that all
models have acceptable solutions (Table 2). In fact, the met-
rics also show that the European dataset is reconstructed al-
most within the error limits with even only three compo-
nents, i.e., one component less than is present in the syn-
thetic dataset (HOA, BBOA, SOAanthro, SOAbio). This could
explain why there is significant freedom in acceptable four-
component solutions and variation between them.

All models show signs of mixing between the components,
most likely due to the correlation of the true G components

Atmos. Meas. Tech., 17, 1251–1277, 2024 https://doi.org/10.5194/amt-17-1251-2024



A. Rusanen et al.: Bayesian auto-correlated matrix factorization 1259

Figure 3. Reconstruction metrics for BAMF, BAMF-0, and PMF for synthetic megacity data. Panel (a) shows the relative error of X of the
median solution as a function of the number of components for the synthetic megacity data (BAMF and BAMF-0: results from 10 different
datasets for each number of factors, PMF: only for the 5-factor cases). Panel (b) shows the Q∗m statistic, where all models are very similar.
Panel (c) shows the mean and panel (d) shows the standard deviation of S, as a function of the number of factors for the synthetic megacity
data (the ideal value for the mean is 0 and the ideal value for standard deviation is smaller than 1). S refers to the difference between the
original data and the samples normalized with the standard deviation of the samples (uncertainty of the model).

(time behavior is very similar) as well as similar chemical
signatures F. PMF mixes the SOA components while BAMF
mixes the POA components. However, it is worth noting that
BAMF has a significant bias on several components in G
as seen in Table 2, but otherwise reflects their time behav-
ior well. Given the recovered POA /SOA ratio, BAMF most
likely mixes HOA and BBOA explaining that HOA is over-
estimated while BBOA is underestimated. PMF, on the other
hand, produces two almost identical components (both in F
and G) for two of the four components, and PMF cannot thus
distinguish the components present in the dataset. In Fig. 6d
BAMF-0 and BAMF also seem to overestimate higher lag
auto-correlation of BBOA in a similar fashion but have a
higher bias. It should be noted that even BAMF only consid-
ers lag-1 auto-correlation in the model. For HOA, BAMF and
PMF do not match the anti-correlated part between lags 5 and
20 and PMF cannot match the behavior of SOA bio. Over-
all, all models are challenged by the European dataset, with
BAMF having the most consistent performance.

4.3 Resolving an unknown number of sources

For real-world source apportionment analyses, the true num-
ber of components, i.e., sources, to be resolved via matrix
factorization is unknown yet crucial. Despite the importance,

accurately determining and specifying the correct number
of modeled components is not trivial (see, e.g., Isokääntä
et al., 2020; Ulbrich et al., 2009; Zhang et al., 2011). Typ-
ical strategies rely on reconstructing X within the measure-
ment error, the absence of structure in the measurement error-
weighted residuals and the environmental interpretability of
the resolved components. Here, we assess the behavior of
the BAMF, BAMF-0, and PMF models as the number of
components are changed on the four-component chemical
transport model dataset from Sect. 3.2. The model runs were
performed both with an underspecified setting using three
components and overspecified setting using five components
(Figs. 7 and 8). While underspecified, all models extract an
SOAanthro component and merge the remaining three com-
ponents into two. At the same time, BAMF extracts a com-
ponent similar to SOAbio, while BAMF-0 and PMF extract
components similar to HOA and BBOA but lack SOAbio.

For the overspecified models (five instead of four compo-
nents), the results differ (Fig. 8). While the models with-
out the auto-correlation assumption (PMF, BAMF-0) split
the true components into multiple sub-components (mostly
the POA components, HOA and BBOA), BAMF produces
an extra component that is easily identifiable as unnecessary
in addition to the four components resolved with four fac-
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Figure 4. Illustration of F and G reconstruction of all models for one of the synthetic megacity ToF-ACSM OA datasets with five components.
Panel (a) is F, (b) is G, (c) is the diurnal concentration variation, and (d) is auto-correlation measured as Pearson correlation coefficient.
Here, we display the median and the 0.25 and 0.75 quantiles. For all BAMF-type models, these quantities are computed based on the samples
and for PMF, based on the 100 solutions.

tors. This unnecessary component is characterized by an ex-
tremely high auto-correlation and low magnitude, as seen in
Fig. 8b, c, and d. For this component the time series is almost
constant, and the composition is flat with large uncertainties.
The extra component does not affect the factorization per-
formance of the other components of BAMF substantially.
At the same time, BAMF-0 and PMF have a reduced fac-
torization performance with too many components (Fig. 8,

Table 2). In general use, one would prefer the model to in-
dicate the limits of the factorization as BAMF does, instead
of producing duplicate components. It should be noted that
the behavior of BAMF can be changed by adding new model
terms, such as constraints on F. For example, the model mini-
mizes the constrained component when it is run equally over-
specified (five instead of four components) but with a priori
information on F as can be seen in Appendix D.
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Table 1. Reconstruction and factorization performance of all three models for the synthetic megacity ToF-ACSM OA dataset in Fig. 4. The
reconstruction metrics measure the residuals divided by the error estimate. A value closer to 0 is better and a value below 1 is smaller than
the error estimate given to the model. The factorization performance is assessed via three metrics: G/Truth is the average ratio of each factor
time series, r is the Pearson correlation coefficient between the factor time series, and ρ is the Spearman correlation coefficient between the
factor profiles. For the factorization performance, a value closer to 1 is better. Nonlinear correlation coefficient is used for factor profiles,
since they have an additional constraint of summing to unity and thus linear correlation is penalized for small errors disproportionately. For
each metric, the best value is highlighted in bold.

BAMF BAMF-0 PMF

Reconstruction performance: Median(|Z−X|/σ ) 0.68 0.68 0.64
Max(|Z−X|/σ ) 5.85 5.07 3.72

Factorization performance: G/Truth OOA 0.94 0.83 0.78
G r OOA 1.00 1.00 1.00
F ρ OOA 0.99 0.90 0.93
Diurnal G/Truth OOA 0.94 0.83 0.78

G/Truth HOA 0.99 1.16 1.51
G r HOA 0.99 0.92 0.86
F ρ HOA 0.99 1.00 0.97
Diurnal G/Truth HOA 1.01 1.21 1.57

G/Truth COA 0.99 1.44 1.39
G r COA 0.98 0.78 0.95
F ρ COA 0.99 1.00 1.00
Diurnal G/Truth COA 1.03 1.53 1.47

G/Truth BBOA 1.08 1.26 1.28
G r BBOA 0.98 1.00 0.66
F ρ BBOA 0.99 1.00 0.94
Diurnal G/Truth BBOA 1.10 1.26 1.37

G/Truth CCOA 1.24 1.20 1.17
G r CCOA 0.99 0.98 0.86
F ρ CCOA 1.00 0.99 0.96
Diurnal G/Truth CCOA 1.27 1.19 1.27

4.4 Using ancillary information to improve resolving
sources

As highlighted in Sect. 4.2, all models are challenged by
the European dataset. Imperfect matrix factorization results
are likewise often observed when using PMF for real-world
chemical datasets (see, e.g., Canonaco et al., 2013; Daellen-
bach et al., 2017). Often, information is available that could
help resolve the sources, such as chemical fingerprints of spe-
cific components associated with different sources. In cur-
rent practice, previously observed F profiles are often used as
boundary conditions in source apportionment analyses. This
approach has significant uncertainty in the general case be-
cause true F is unknown. Still, in our specific test case, the a
priori information is precisely correct – the known informa-
tion on F of the true components.

We tested the performance of the models when using a
priori information on F using three different approaches on
the European dataset (from Sect. 3.2):

1. Full constraint. For BAMF-C and PMF, the two POA
components (HOA and BBOA) were fully (for allm/zs)

constrained with a roughly 18 % deviation allowed from
the anchor (see Sect. 2.2.2 and 2.6 for the determination
of this).

2. Incomplete constraint. Knowledge on the entire fac-
tor profile is not always available, e.g., not the same
m/z range is measured. With the incomplete constraint
approach, we test whether a priori information on parts
of the factor profile improves the factorization perfor-
mance and thus whether such information is useful. For
the BAMF model, a priori information was only used in
a limited arbitrarily chosen m/z range (12–60) instead
of for all m/zs (m/z 12–100), the same deviation al-
lowed from the anchor for the constrained components.

3. Partial constraint. Sometimes, only very little chemi-
cal information is available for a specific factor, and
it is defined by few key tracers. With the partial con-
straint, we test whether a priori information on just a
few peaks/variables improves the factorization perfor-
mance. For the BAMF model, a priori information was
only used for four arbitrarily chosen m/z peaks out of
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Figure 5. Summary of factorization performance of the three models for all synthetic megacity ToF-ACSM OA datasets with five components
(10 datasets): Panel (a) shows the mean of the median value of the components of G divided by the true value (ideal value is 1). Panel (b)
shows the Spearman correlation coefficient median solution components of F compared to the true value (a value of 1 refers to a perfect
correlation). Panel (c) shows the Pearson correlation coefficient of the median solution components of G compared to the true value (a value
of 1 refers to a perfect linear correlation).

74 (m/zs 45, 57, and 60, F[ii,jj ], compared tom/z 43,
F[kk, ll]) for HOA and BBOA defined with the same
deviation allowed from the anchor for constrained com-
ponents.

The reconstruction and factorization performance of the
different models are compared in Table 2. The fully con-
strained BAMF model (BAMF-C) performs substantially
better in extracting BBOA both in F and G compared to
BAMF. In fact, the extracted components are very simi-
lar to the true components with very similar temporal be-
havior and reduced biases in G (Fig. 9). Fully constrained
PMF performs marginally better than unconstrained PMF
but still mixes SOAbio with SOAanthro (Fig. 9). This can
be expected since the a priori information is applied to
HOA and BBOA, not to the SOA components. Figure 9d
shows that PMF-C captures HOA time behavior very well,
while BAMF still overestimates some auto-correlation, even
though the bias in Fig. 9a is significantly reduced. PMF-C
also has some solutions that start to approach correct SOA
bio, with solutions falling between unconstrained PMF and
BAMF-C. For BAMF-C and BAMF SOA bio is virtually
unchanged (Figs. 9a, d and 6a, d). The incompletely con-
strained BAMF model performs slightly worse than the fully
constrained BAMF model. Partially constrained BAMF per-
forms worse but is still on par with the fully constrained PMF

(Table 2). The partially constrained BAMF model reduces
bias in BBOA but starts mixing SOA bio with the other com-
ponents (Fig. 10, Table 2). Using a priori information on F
improves the factorization performance of both PMF and es-
pecially BAMF, with more information leading to solutions
closer to the ground truth. This is especially helpful when
the additional information is on the components the model
mixes when unconstrained. Such prior information is pow-
erful, e.g., constrained PMF does better than unconstrained
BAMF for all components except SOA bio. For this dataset
and these constraints, BAMF-C fully constrained has the best
factorization performance, fully constrained PMF and par-
tially constrained BAMF-C perform slightly worse but about
equally good, and unconstrained models fail to resolve one or
more components correctly regardless of the model. A com-
parison of the results of fully constrained PMF and uncon-
strained BAMF can be seen in Appendix G.

5 Conclusions

We present a Bayesian matrix factorization model that ac-
counts for temporal auto-correlation of the components
(BAMF) and provides direct error estimation. BAMF is built
on top of Stan, a freely available, robust, actively developed,
open-source framework for statistical modeling with the abil-
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Figure 6. Factorization performance of all three models for the synthetic European city ToF-ACSM OA dataset. The shaded area is the
interquartile range (0.25–0.75 quantile). Panel (a) is F, (b) is G, (c) is the diurnal, and (d) is auto-correlation measured as Pearson correlation
coefficient.
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Figure 7. Factorization performance of underspecified (three components) models for the synthetic European city ToF-ACSM OA dataset.
Panel (a) is F, (b) is G, (c) is the diurnal, and (d) is auto-correlation measured as Pearson correlation coefficient. The models extract different
components and they are shown next to the closest original component. This is why there are 4 components shown even though the models
extract only 3 components each.
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Figure 8. Factorization performance of overspecified (five components) models for the synthetic European city ToF-ACSM OA dataset.
Panel (a) is F, (b) is G, (c) is the diurnal, and (d) is auto-correlation measured as Pearson correlation coefficient. “?0” denotes an unidentified
component.
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Figure 9. Factorization performance of models using a priori information on F for the synthetic European city ToF-ACSM OA dataset,
fully constrained BAMF and fully constrained PMF results compared to unconstrained PMF. Panel (a) is F, (b) is G, (c) is the diurnal
concentration, and (d) is the auto-correlation behavior.
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Figure 10. Factorization performance of models using a priori information on F for the synthetic European city ToF-ACSM OA dataset,
partial and incomplete constraints in BAMF compared to unconstrained BAMF. Panel (a) is F, (b) is G, (c) is the diurnal concentration,
and (d) is the auto-correlation behavior. The results for SOA components overlap between BAMF and BAMF-C(incomplete) such that the
BAMF results are not visible in panels (b), (c), and (d).
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ity of full Bayesian statistical inference with MCMC sam-
pling. Here, we characterize the BAMF performance on syn-
thetic Time-of-Flight Aerosol Chemical Speciation Monitor
mass spectral OA data compared to PMF. This approach al-
lows us to assess the model performance based on input data
reconstruction and the ability to accurately model the chemi-
cal composition and concentration time series of the compo-
nents.

All models performed well in reconstruction performance
regardless of factorization performance, indicating that re-
constructing the data is insufficient for judging how good
the extracted factors are. Without strongly correlated com-
ponents, BAMF resolves temporally auto-correlated compo-
nents well (synthetic megacity dataset), while PMF performs
considerably worse. Both BAMF and PMF are challenged by
strongly correlated components (European data).

Further, we show that using a priori information on the
chemical composition of the components improves BAMF
factorization performance such that all components are well
represented. Even adding a priori information for a few peaks
significantly reduced component bias, and partially specify-
ing the profile (for 56 % of the peaks) produced comparable
results to fully constraining the profile with PMF. This opens
up possibilities for using incomplete chemical composition
information to improve factorizations.

While we tested BAMF on synthetic OA ToF-ACSM data
in this paper, source apportionment analyses of other chem-
ical PM data (e.g., trace elements from either Xact or of-
fline filter analysis) could also profit from accounting for the
auto-correlation of components, if the components are auto-
correlated. Further testing is especially needed for datasets
with temporally sparse sources, i.e., pollution sources occur-
ring only during specific events, which are also challenging
for PMF.

Overall, we believe BAMF-type models are promising
tools for source apportionment and deserve further research,
e.g., improving the separation of the chemical composition
of components or the computational speed of BAMF. These
models can also be used complementary to current source
apportionment methods due to their different emphasis and
advantages. One such research topic would be introducing
rolling window methods as has been done with PMF, to al-
low the source profiles to change over time and to act as a
basis for real-time source apportionment. Other possible top-
ics are using BAMF with other time series instruments and
with real-world data. Another area of development is compu-
tational speed – for the dataset sizes discussed here running
BAMF takes a few hours on a modern computer (Intel Xeon
Silver 4110), but the time increases as the data size increases.

Appendix A: The correlation of BAMF CCOA error in
the five-component megacity datasets

The error in F for CCOA seems to be correlated with BBOA
error (Fig. A1) with correlation coefficient −0.5 and the er-
ror quickly increases as the component is underestimated as
shown in Fig. A2. Thus it seems that the variance in the re-
construction for CCOA in BAMF is due to the mixing of
BBOA and CCOA components. This is probably due to these
components having very similar G and F profiles as seen in
Tables B1 and B2.

Figure A1. The bias of CCOA and BBOA G component in the five-
component megacity datasets.

Figure A2. The bias of CCOA time series and composition in the
five-component megacity datasets.
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Appendix B: Correlation between true components in
the datasets

Comparing the true components of the datasets shows that
the European dataset components are much more correlated
both in G Tables B1 and B3, as well as F Tables B2 and B4.
Overall F components have similar, very high, correlations
with each other, while the G components are markedly more
correlated with each other in the European dataset than in the
megacity datasets, with biological SOA being the exception.

Table B1. Pearson correlation and standard deviation of the G components used to construct the 10 five-component megacity datasets.

Component OOA HOA COA BBOA CCOA

OOA 1 −0.079± 0.067 0.039± 0.173 0.044± 0.158 0.033± 0.091
HOA −0.079± 0.067 1 −0.076± 0.069 −0.133± 0.104 −0.171± 0.061
COA 0.039± 0.173 −0.076± 0.069 1 0.330± 0.093 0.346± 0.047
BBOA 0.044± 0.158 −0.133± 0.104 0.330± 0.093 1 0.503± 0.096
CCOA 0.033± 0.091 −0.171± 0.061 0.346± 0.047 0.503± 0.096 1

Table B2. Spearman correlation of the F components used to con-
struct the five-component megacity datasets. Note that F does not
change between datasets, and thus standard deviation is 0.

Component OOA HOA COA BBOA CCOA

OOA 1 0.761 0.659 0.804 0.816
HOA 0.761 1 0.839 0.864 0.845
COA 0.659 0.839 1 0.850 0.754
BBOA 0.804 0.864 0.850 1 0.871
CCOA 0.816 0.845 0.754 0.871 1

Table B3. Pearson correlation of the G components used to con-
struct the European dataset.

Component HOA BBOA SOA traffic SOA bio

HOA 1 0.773 0.718 0.005
BBOA 0.773 1 0.629 0.073
SOA traffic 0.718 0.629 1 0.018
SOA bio 0.005 0.073 0.018 1

Table B4. Spearman correlation of the F components used to con-
struct the European dataset.

Component HOA BBOA SOA traffic SOA bio

HOA 1 0.852 0.844 0.801
BBOA 0.852 1 0.875 0.847
SOA traffic 0.844 0.875 1 0.845
SOA bio 0.801 0.847 0.845 1

Appendix C: Concentration and uncertainty at selected
m/zs for synthetic megacity ToF-ACSM OA data

Figure C1 shows example time series for selectedm/zs from
the synthetic megacity data.

Figure C1. Concentration and uncertainty time series at selected
m/zs for synthetic megacity ToF-ACSM OA data. The shaded area
contains 95 % of the probability mass of the Gaussian distribution
of the error.
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Appendix D: Overspecified BAMF-C results

Figure D1 shows results from BAMF-C with too many com-
ponents.

Figure D1. Results from overspecified BAMF-C model for the synthetic European city ToF-ACSM OA dataset with five modeled components
instead of four and HOA and BBOA fully constrained.
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Appendix E: Workflow in this study

Figure E1 summarizes the steps used to run the BAMF model
in this study and their order. In this study the profiles were
from the literature (see Appendix F). In general use, the data
generation step is not needed.

Figure E1. Workflow of running the BAMF model in this study. Pre- and post-processing steps are technically optional but help in the
convergence and interpretation of the results. With PMF the pre-processing and denormalization are skipped and the modeling box is just
PMF, but we still sort the data similarly.

Appendix F: Profiles and constraints used

Table F1 summarizes the source profiles and constraints
used. Constraints were only applied in the European dataset.

Table F1. The source profiles used to construct the datasets. The profiles were restricted to m/z 12–100, summed to unit mass intervals, and
normalized to sum to 1.

Component Megacity dataset European dataset

HOA∗ Elser et al. (2016) Elser et al. (2016)
BBOA∗ Elser et al. (2016) Elser et al. (2016)
CCOA Elser et al. (2016) Not applicable
COA Elser et al. (2016) Not applicable
OOA Elser et al. (2016) Not applicable
SOA bio Not applicable Daellenbach et al. (2017)
SOA anthro Not applicable Sage et al. (2008)

∗ Indicates the values from this profile were also used as constraints.
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Appendix G: Comparison of constrained PMF and
BAMF

Figure G1 compares PMF with constraints to BAMF with-
out them. This represents the absolute best-case scenario for
PMF where you know the exact HOA and BBOA profiles be-
forehand. As mentioned in the main text, this does not fix the
inability to resolve SOA bio.

Figure G1. Unconstrained BAMF and constrained PMF on the European dataset with four components.

https://doi.org/10.5194/amt-17-1251-2024 Atmos. Meas. Tech., 17, 1251–1277, 2024



1274 A. Rusanen et al.: Bayesian auto-correlated matrix factorization

Appendix H: Error estimates and interquartile range

The error bars and the shaded areas in the time series are
based on the interquartile ranges (IQR) in the empirical dis-
tribution given by the MCMC sampler. This gives us an idea
of how accurately we can fix the modeled concentrations and
compositions. In these results the error estimation is a bit op-
timistic, since it does not always cover the true solution. The
underestimation is possibly due to the strictness of IQR and
it not considering the model choice error. Figure H1 shows
how the IQR compares to the median answer, with small con-
centrations having the most relative uncertainty. It also shows
that BAMF-0 and PMF are often more uncertain than BAMF.
In the case of PMF this is probably due to the values not be-
ing samples but solutions with different random seeds.

Figure H1. IQR compared to the median on the base case of the European dataset
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