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Abstract. The significance of air quality monitoring for ana-
lyzing impact on public health is growing worldwide. A cru-
cial part of smart city development includes deployment of
suitable air pollution sensors at critical locations. Note that
there are various air quality measurement instruments, rang-
ing from expensive reference stations that provide accurate
data to low-cost sensors that provide less accurate air qual-
ity measurements. In this research, we use a combination of
sensors and monitors, which we call hybrid instruments, and
focus on optimal placement of such instruments across a re-
gion. The objective of the problem is to maximize a satisfac-
tion function that quantifies the weighted closeness of dif-
ferent regions to the places where such hybrid instruments
are placed (here weights for different regions are quanti-
fied in terms of the relative population density and relative
PM2.5 concentration). Note that there can be several con-
straints such as those on budget, the minimum number of
reference stations to be placed, or the set of important re-
gions where at least one sensor should be placed. We develop
two algorithms to solve this problem. The first one is a ge-
netic algorithm that is a metaheuristic and that works on the
principles of evolution. The second one is a greedy algorithm
that selects the locally best choice in each iteration. We test
these algorithms on different regions from India with vary-
ing sizes and other characteristics such as population distri-
bution, PM2.5 emissions, or available budget. The insights
obtained from this paper can be used to quantitatively place
reference stations and sensors in large cities rather than using
ad hoc procedures or rules of thumb.

1 Introduction

According to the World Health Organization (WHO), am-
bient air pollution is a significant threat to people’s health,
causing around 6.7 million premature deaths annually in
2019 (Fuller et al., 2022). Shockingly, 99 % of the global
population resides in areas that do not meet the WHO’s air
quality guidelines, with 89 % of these premature fatalities oc-
curring in low- or middle-income countries (WHO, 2023;
Pandey et al., 2021). To address this issue, it is crucial to
develop suitable sensor networks by putting the air pollu-
tion monitors or sensors at appropriate locations, meeting
the requirements of various groups in the city and provid-
ing much needed information. Air pollutant concentrations
have traditionally been monitored using reference stations
(we will refer to them as monitors in this paper), which are
highly accurate but also very costly, limiting their widespread
deployment (Lagerspetz et al., 2019). To achieve accurate
air pollution monitoring within metropolitan regions, hun-
dreds or even thousands of reference stations are required,
which proves costly to maintain and operate (Zikova et
al., 2017). However, the emergence of low-cost air qual-
ity sensors presents an opportunity for higher-density de-
ployments and improved spatial resolution in monitoring
(Spinelle et al., 2017; Castell et al., 2017). Low-cost sen-
sors offer a cost-effective solution, reducing installation and
maintenance expenses and facilitating broader spatial cover-
age, particularly in remote areas. Therefore, in order to bal-
ance the accuracy of monitoring along with costs involved in
such instruments, we will consider deployment of both mon-
itors and sensors in this paper.
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Some studies focus on optimizing air quality monitoring
networks (AQMNs) using different models: physical mod-
els (Araki et al., 2015; Hao and Xie, 2018) and learning-
based models (Hsieh et al., 2015). However, the accuracy
of these methods relies heavily on the precision of the air
quality models, and both Hao and Xie (2018) and Hsieh et
al. (2015) required existing air quality measurements as in-
puts for their prediction models, which largely depend on the
quality and completeness of the input data. The studies by Li
et al. (2017), Brienza et al. (2015), and Zikova et al. (2017)
discuss ad hoc placement of air quality sensors in their re-
spective study regions or use some rules of thumb. However,
this shows that the placement of sensors is not optimized un-
der the budget constraints that might be present. To address
these challenges, it becomes crucial to develop more strategic
approaches to place air quality sensors. Properly optimized
sensor placement can lead to more comprehensive and accu-
rate understanding of air pollution patterns, facilitating tar-
geted pollution control measures and ultimately improving
public health and environmental management.

Lerner et al. (2019) present a method for optimizing sen-
sor placement based on sensor characteristics and land use
analysis. Sun et al. (2019) also propose an optimal sensor
placement strategy based on population density without rely-
ing on air pollution data. Their study highlights that humans
naturally depend on the closest station to observe and obtain
relevant information regarding the environment when multi-
ple stations are present in a city. The satisfaction regarding
the information increases as one moves closer to the adja-
cent station. Unlike Lerner et al. (2019), Sun et al. (2019)
represent the benefit of placing a sensor in a particular grid
to not only the citizens living in that grid but also to those
living in the nearby grids. However, Sun et al. (2019) have
limitations in that they do not incorporate air pollution data
as a parameter in optimization, which raises concerns about
the accuracy and reliability of the obtained results. Further-
more, both Lerner et al. (2019) and Sun et al. (2019) only
consider deployment of one type of sensor, but as we dis-
cussed previously, both monitors (which are very accurate)
and sensors (which are not that accurate but are much more
economical than monitors) should be considered together for
deployment.

Note that Castell et al. (2017) also highlighted that sen-
sors alone may not provide accurate air quality measure-
ments as compared to reference instruments or monitors. Our
proposed approach aims to leverage the strengths of both
sensors and monitors to enhance air quality monitoring in a
cost-effective manner. We propose to develop a framework
for placing hybrid instruments with the objective of max-
imizing public satisfaction by considering emission spread
and population density as parameters (while considering the
benefit of placing instruments in nearby grids and not just
the grids where they are placed). Also, several notable con-
straints such as having at least one sensor in a given set of
important grids (like important residential or commercial ar-

eas), not having monitors in certain given grids (like places
with a sparse population or water bodies), or having a min-
imum number of grids where monitors should be placed in
the network, have been proposed in the optimization formu-
lation. Therefore, the following are the contributions of our
work.

– Our research focuses on optimal deployment of hybrid
air quality monitoring networks consisting of monitors
and sensors where the goal is to maximize public sat-
isfaction by providing accurate air quality information
while considering several budget and other constraints.

– We propose a genetic algorithm (GA) and a greedy algo-
rithm (GrA) to solve the developed optimization prob-
lem.

– We test the developed algorithms on networks of vary-
ing sizes and geographic locations.

This paper’s remaining sections are organized as follows:
Sect. 2 describes the optimization problem and presents the
algorithms for solving the problem. The next section pro-
vides the numerical results tested using different algorithms
under different settings. The final section concludes our
study and provides future directions.

2 Methodology

This section is divided into two parts. The first part describes
the problem statement for optimization of a hybrid instru-
ment network. The second part describes the methods pro-
posed to solve the optimization problem. The second part is
further sub-divided into two sub-parts: genetic algorithm and
greedy algorithm, respectively.

2.1 Problem statement

Our approach focuses on placing sensors and monitors in or-
der to maximize a utility function quantifying popular sat-
isfaction with the instrument placements. Realizing that hu-
mans naturally depend on the closest station to observe and
obtain relevant information regarding the environment when
multiple stations are present in a city, we assume that an in-
dividual’s satisfaction g(d) is a function of his or her dis-
tance d to the closest sensor or monitor (Sun et al., 2019).
Intuitively, the satisfaction with the information increases as
one moves closer to the adjacent station. This is because
people will have higher confidence in the readings by sen-
sors or monitors that are closer to them rather than read-
ings from instruments that are farther from them. Therefore,
g(d) must satisfy the following conditions as stated in Sun
et al. (2019): (i) g(d) must be a decreasing function; i.e., for
any d1 ≤ d2 we have g(d1)≥ g(d2), and (ii) for any d ≥ 0,
g(d)≥ 0 and g(0)= 1. The foremost condition corresponds
to the relation of satisfaction function to distance, while the
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latter ones ensure the fact that the gε[0,1] and g is highest
when the distance is zero. The following exponentially de-
creasing function g(d) readily satisfies the aforementioned
conditions (Sun et al., 2019):

g(d)= exp
(
−
d

θ

)
, (1)

where θ is an exponential decay constant1. The exponential
decay function is often chosen in similar studies and prac-
tical applications because of its simplicity and effectiveness
in modeling the attenuation of the signal or influence with
increasing distance in studies such as Sun et al. (2019). It
aligns with the intuitive idea that the influence of air qual-
ity monitoring decreases as one moves farther away from the
monitor. We also present the results with another appropriate
satisfaction function later. Note that monitors and sensors are
not differentiated, while determining the satisfaction function
in our problem. This is because, in many practical air qual-
ity monitoring scenarios, users may either not be interested
or able to distinguish between the data collected from mon-
itors and sensors (if the information related to the type of
instrument is not openly available). From the user’s perspec-
tive, the primary concern may be just to obtain reasonable
air quality information rather than worry about the specific
source of the data.

In accordance with the standard procedure for environ-
mental monitoring (Krause et al., 2008; Hsieh et al., 2015),
we divide the city into distinct, equally sized square grids.
Then, we place our hybrid instruments (sensors and mon-
itors) in these fragmented grids. Let V = {a|a = 1, 2. . .,n}
represent a set of grids in the interested geographical area,
in which n= |V | represents the total number of grids. For
each a ∈ {1,2, . . .,n}, let pa represent the percentage of peo-
ple living in grid a, ea represent the percentage of PM2.5
emissions2 in grid a, and ma denote the weighted average of
pa and ea of grid a; i.e.,ma = (w1×pa)+(w2× ea), where
0≤ w1, w2 ≤ 1, and w1+w2 = 1. Note that both population
density and PM2.5 emissions are important factors when de-
ciding on the relative importance of various grids. Popula-
tion density reflects the concentration of people residing in

1Depending on the largest distances that are considered in a grid
network and the precision that is being considered, θ should be ap-
propriately decided. For instance, if the computation precision be-
ing used is say about 10−5 and the largest distance is say 10 units,

then θ = 1 might be reasonable since e−
10
1 = 4.5× 10−5.

2We acknowledge the distinction between PM2.5 emissions and
PM2.5 concentrations (which are to be measured by the network),
with the possible impacts of secondary aerosol formation and pol-
lution transport not being accounted for by using emission infor-
mation alone. In our approach, we initially prioritize PM2.5 emis-
sions as the foundational data for instrument placement. However,
the placement of the instruments can be updated as better estimates
of PM2.5 concentrations become available after the initial place-
ment of sensors.

that grid, while the PM2.5 emissions are an indicator of the
level of fine particulate matter in the air within that grid (sec-
ondary aerosol production and pollution transport also play
a role in the concentrations, but they are not considered here
due to a lack of data). Finding a weighted average of the cor-
responding percentage values of these parameters provides
a single value that quantifies the importance of a particular
grid and allows comparison between different grids. Also, if
we do not do the weighted averaging and individually min-
imize some metrics related to emission and population, this
will result in a multi-objective optimization problem, which
is much more difficult to solve and analyze (Deb, 2001).

We will now introduce some variables to define the opti-
mization formulation. The notations are summarized in Ap-
pendix A. Let S be a set of grids where instruments (sensors
and monitors) are placed (i.e., set S consists of each grid a
such that at least a sensor or a monitor is placed at grid a).
For each grid a ∈ {1,2, . . .,n}, let xa be equal to 1 if a sensor
is placed at grid a; otherwise, it is equal to 0. Let ya be equal
to 1 if a monitor is placed at grid a; otherwise, it is equal to
0. Let za be equal to 1 if any instrument is placed at grid a;
otherwise, it is equal to 0. Let c be the cost of a sensor, c′

be the cost of a monitor, and P be the total available budget.
Let B be the set of grids where at least one sensor should
be placed. Let C be the set of grids where a monitor cannot
be placed. Let h be the minimum number of monitors that
should be deployed. Let M be a very large positive number
and m be a very small positive number. The formulation for
optimally placing hybrid instruments is as follows.

max
∑n

a=1
ma · g (d(a)) (2)

s.t.
∑n

a=1

(
cxa + c

′ya
)
≤ P (3)∑

a ε B
xa ≥ 1 (4)∑

a ε C
ya = 0 (5)∑n

a=1
ya ≥ h (6)

Mza +m≥ xa + ya, ∀ a = 1,2, . . .,n (7)

xa + ya ≥ za, ∀ a = 1,2, . . .,n (8)

where d(a)=min
b∈V

{
zb · d(a,b)+ d(a) · (1− zb)

}
, and

d(a)=max
b∈V

d(a,b).

The objective is to choose a subset of grids S ⊆ V that
maximizes the overall satisfaction percentage under given
constraints. Here, we define d(a, b) as the distance between
grid a and grid b (note that, when we are finding distances
between two grids, we mean distances between the centers
of the grids), and d(a) is the minimal distance between grid
a and any grid of set S (assuming that S is not an empty set,
which is the case because of the constraint in Eq. 4). The con-
dition in Eq. (3) is the budget constraint which states that the

https://doi.org/10.5194/amt-17-1651-2024 Atmos. Meas. Tech., 17, 1651–1664, 2024



1654 N. Ajnoti et al.: Hybrid instrument network optimization

total cost of all the instruments cannot exceed P . The condi-
tion in Eq. (4) ensures that a sensor is placed in at least one
of the grids belonging to set B. We do not impose analogous
constraints such as Eq. (4) for monitors as monitors cannot
be placed anywhere since they need electricity availability
and they are big, heavy, and costly as compared to sensors.
Equation (5) ensures that no monitor is placed at any grid
belonging to set C (these grids can belong to locations like
open areas or areas near water bodies). Note that it may not
be cost-effective or practical to deploy expensive monitors in
certain areas, and thus monitor deployments are restricted but
sensor deployments are not. The condition in Eq. (6) ensures
that at least h monitors are deployed. Equations (7) and (8)
are the definitional constraints for variable za . That is, they
ensure that, for each grid a, za is equal to 1 if xa + ya ≥ 1.
Otherwise, za is equal to 0.

As mentioned before, users may either not be interested
or able to distinguish between the data collected from moni-
tors and sensors. However, the network designer may be in-
terested in distinguishing between the satisfaction obtained
from the monitors and sensors. Therefore, we provide an al-
ternate optimization formulation that distinguishes between
the satisfaction obtained from monitors and sensors in Ap-
pendix B.

2.2 Methods

We will now present different algorithms to solve the pro-
posed formulation. We will first introduce a genetic algo-
rithm.

2.2.1 Genetic algorithm

A genetic algorithm is a metaheuristic that is inspired by the
natural selection process and genetics (Deb, 2001). It mimics
the principles of survival of the fittest, crossover, and muta-
tion to iteratively search for optimal solutions. The algorithm
starts by creating an initial population of potential solutions
represented as strings of individuals. Consider a string com-
prising 2n elements (n is the total number of grids), where the
first n elements are for the placement of the sensors and the
next n elements are for the placement of the monitors. Each
element in the string can take a value of either 0 or 1, where
1 indicates the presence of a sensor or monitor (depending
on whether we are looking at the first n or last n elements)
in the corresponding grid and 0 indicates their absence. We
now consider a modification of the above string where we re-
move the elements that correspond to monitors belonging to
set C. The removed elements will always have a value equal
to 0 due to the definition of set C (consequently, monitors
will not be placed on the grids belonging to the C set), and
thus they are separated so that the values of these elements
do not change due to the different processes in the GA. The
aforementioned modified string is used in our problem. Each

string encodes a set of decision variables representing a can-
didate solution to the problem.

We define a fitness metric that is used to assign a relative
merit (fitness) to each solution based on the corresponding
objective function value and constraint violations. The fit-
ness, F(H), of any string H is calculated as follows:

F(H)

=

{
fn if H is a feasible sol string,
fnmin−D1−D2−D3 otherwise, (9)

where
D1

=

{
0

∑n

a=1

(
cxa + c

′ya
)
≤ P,∑n

a=1

(
cxa + c

′

ya

)
−P otherwise,

(10)

D2 =

{
0

∑
a ε Bxa ≥ 1,

1 otherwise, (11)

D3 =

{
0

∑n
a=1ya ≥ h,

h−
∑n
a=1ya otherwise. (12)

Here, fn is the objective function value for string H as ob-
tained by Eq. (2); fnmin is the minimum value of objective
function values over all the feasible solution strings in a given
population of strings; andD1,D2, andD3 are penalty values
for violating constraints in Eqs. (3), (4), and (6), respectively.
Note that there is no penalty value for violating the constraint
in Eq. (5), as that is automatically satisfied due to the way we
define our strings (recall that we removed the elements cor-
responding to the grids of set C).

In each generation (or iteration) of the GA, roulette wheel
selection (RWS) is used to select solutions from a popula-
tion based on their fitness values (Deb, 2001). RWS pro-
vides a proportional selection mechanism where fitter so-
lutions have a higher probability of being selected, but it
still allows weaker solutions to have some chance of being
chosen. After the selection procedure, a crossover procedure
is followed where two strings are randomly selected from
the mating pool, and a partial interchange from both strings
is done to generate two new strings. We use the two-point
crossover operator where two distinct crossover points divide
the strings into three substrings and the middle substring is
exchanged between the strings (Deb, 2001). After crossover,
a mutation procedure is followed where the mutation opera-
tor alters from 1 to 0 or vice versa in each element of a string
with probability Pm (referred to as the mutation probabil-
ity). Note that mutation helps in maintaining diversity in the
population. After applying the genetic operators, the parent
population and offspring population are combined, strings in
the combined population are sorted in non-increasing order,
and the top half of the combined population is selected as
the population for the next generation. This process is re-
peated over multiple iterations or generations until the ter-
mination criterion (to be specified next) is met. We now de-
scribe the termination criterion. Let the average fitness value
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of the strings in the population of the ith iteration or gener-
ation be ki . Let N be the maximum number of iterations of
the GA that are allowed. Then, the algorithm stops at the end
of the ith iteration if

∣∣∣ ki−ki−1
ki−1

∣∣∣≤ α (where α is a given value)
or if i becomes equal to N .

2.2.2 Greedy algorithm

The second method to solve the optimization problem from
Sect. 2.1 is a GrA. A greedy algorithm iteratively comes up
with a solution by making choices that are locally optimal in
each iteration, but it is not guaranteed to produce an optimal
solution. In this algorithm, we first place a sensor at one of
the locations from set B to satisfy Eq. (4). This placement
is done by selecting the grid with the highest ma among the
set B. Then, we find the placement location for hmonitors to
satisfy Eq. (6) by ensuring that Eq. (5) (which tells us about
the grids where monitors cannot be placed) is not violated.
We now define the grid location s∗ with the largest informa-
tion gain as

s∗ = argmaxS
∑n

a=1
ma
(
g
(
d ′ (a,K ∪ s)

)
− g

(
d ′(a,K)

))
,

where K is the set of grids that have either a sensor or a
monitor already placed (note that K is not an empty set be-
cause we have at least one grid belonging to set B that has
a sensor placed) and d ′(a,K) represents the minimum dis-
tance between grid a and any grid of set K . The placement
of h monitors is done by repeatedly choosing the grid loca-
tion with the largest information gain s∗. Let P ′ = P , where
P ′ is the budget that remains after we subtract the cost of dif-
ferent instruments that are placed in different iterations of the
GrA. After the placement of one sensor plus h monitors, the
available budget is P ′ = P −c−hc′. After satisfying Eq. (6),
there is no benefit to placing more monitors that are costly,
and thus we target the placement of sensors. We keep placing
sensors such that the grid location with the largest informa-
tion gain s∗ is selected while ensuring that P ′ is updated with
every placement of sensor and budget constraint is satisfied.
The algorithm terminates when there is an insufficient budget
to place sensors, i.e., when P ′ < c.

We now provide an example to illustrate the greedy algo-
rithm in Appendix C.

3 Results

In this section, we will present results by testing our pro-
posed algorithms in different settings. Our algorithms have
been employed in two distinct areas within Surat and Mum-
bai. Both algorithms were implemented in MATLAB and ex-
ecuted on a computer with an Intel® Core™ i7-2600 proces-
sor and 8 GB RAM (Ajnoti et al., 2024).

Table 1. Numbering of grids in the portion of Surat that is consid-
ered.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 1. Intensities of population density for the considered grids
of Surat (population per square kilometer) on the left and PM2.5
emissions data for the considered grids of Surat (kT yr−1) on the
right.

3.1 Surat

We first consider a portion of Surat, which is a major city in
the state of Gujarat, India, for optimal placement of air qual-
ity instruments. In this study, we take a pilot project area of
5 km× 5 km in Surat and divide it into 25 grids (thus, each
grid has a size of 1 km× 1 km). The total number of grids
in Surat is 25; they are numbered from 1 to 25 from left to
right in increasing order and from top to bottom in increasing
order (see Table 1). To calculate the optimal locations for hy-
brid instruments, we use the average percentage of the pop-
ulation density (WorldPop provides open-source3 population
density data at a spatial resolution of 1 km× 1 km) and PM2.5
emissions data (The Energy and Resources Institute (TERI)
provided us with PM2.5 emissions data for Surat at a spatial
resolution of 1 km× 1 km) for the part of Surat that we focus
on. Figure 1 provides the intensity of population density (in
population per square kilometer) and emissions (kT yr−1) for
the grids of Surat that are considered in this paper.

Figure 2 displays the placement locations of sensors (pur-
ple points) and monitors (orange points) in Surat as obtained
by a genetic algorithm (left) and a greedy algorithm (right)
with a budget value of USD 295 000. Note that the objective
function value corresponding to both the algorithms for this
case is around 96.3 (see Fig. 3), but the spatial distribution
of the instruments is not the same. This is because it is a
discrete optimization problem and it is possible that two so-
lutions with very different looking spatial distributions can
have the same objective function value. Note that there is no

3https://hub.worldpop.org/geodata/summary?id=41746 (last ac-
cess: 27 December 2023)
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scope to further add any instrument in the solution of any
of the algorithms, as there are two monitors and 17 sensors
and 2× 122000+ 17× 3000= 295000. Also, note that the
weights taken in the objective function are w1 = w2 = 0.5.
This is because, by averaging these variables, we strike a
balance between the need to monitor areas with high pol-
lution levels (captured by PM2.5 emissions) and areas with
high population densities (captured by the population den-
sity). Note that we will present the sensitivity analysis with
different weights later. The parameter values that are used
in this placement are as follows: the cost of a sensor (c) is
USD 3000, the cost of a monitor (c′) is USD 122 000,4 the
total available budget (P ) is USD 295 000, and the values of
θ and h are 1 and 2, respectively. The GA parameters that
are used are as follows: the population size is equal to 1000,
the mutation probability (Pm) is equal to 0.1, the maximum
number of iterations or generations is 500, and the value of
α is 10−5. Note that we determined that α = 10−5 consis-
tently yielded satisfactory convergence while ensuring com-
putational efficiency through systematic tuning involving a
range of α values.

Figure 3 shows the values obtained and the computa-
tional time for the two algorithms, considering different total
available budgets (i.e., P ). Note that the obtained value on
the vertical axis in Fig. 3 is an objective function value as
given by Eq. (2). The minimum budget that is considered is
USD 253 000, which is equal to the cost of three sensors plus
h monitors (any value of the budget lower than this will not
yield a feasible solution of the problem as the budget con-
straint will not be satisfied). The maximum budget in Fig. 3
is USD 313 000, which allows for the placement of two mon-
itors and 23 sensors covering the entire portion area (as there
are a total of 25 grids) under the minimum possible budget,
as at least two monitors need to be placed by Eq. (6). Note
that, if the budget is sufficiently large and the optimal so-
lution involves covering all the grids, the GA can provide
solutions where at some places interchanging sensors with
monitors will not change the value of the solution. This is
because the objective function does not differentiate between
monitors and sensors and the solutions of the GA are gener-
ated through a probabilistic process and thus may exhibit a
different spatial distribution than that obtained by the GrA.

From Fig. 3, it can be observed that, for most of the bud-
get points, the obtained values for the GrA and GA are very
close. Also, note that the obtained values for both the algo-

4We obtained the cost estimate for a monitor through the
cost of continuous ambient air quality monitoring stations
(CAAQMSs) imported to India whose price is available at the
following link: https://timesofindia.indiatimes.com/india/centre-
asks-states-not-to-procure-imported-air-quality-monitors-
indigenous-systems-to-be-deployed/articleshow/95901936.cms
(last access: 27 December 2023). Similarly, the cost of a sen-
sor (here Aeroqual S500) is estimated from the following link:
https://www.cleanair.com/product/aeroqual-s500-starter-kit/ (last
access: 27 December 2023).

rithms increase with the increase in the budget because it is
possible to place more instruments with the increase in the
budget, and this results in an increase in the overall satisfac-
tion function value. Note that the computation time of the
GA is significantly larger than that of the GrA because the
GA samples through a set of possible solutions and itera-
tively applies various operators such as selection, crossover,
and mutation, whereas the GrA is a deterministic algorithm
that comes up with a single solution.

We provide an example in Appendix D to show the perfor-
mance of different network configurations that have different
variations with respect to the optimal solution.

3.1.1 Sensitivity analysis

In this section, we will present the results with a different
g(d) function and consider different weights corresponding
to pa and ea in the objective function.

Sensitivity analysis with another g(d) function

As previously mentioned, the g(d) function should be a de-
creasing function. Therefore, we explore an alternative func-
tion g(d)= 1

d+1 apart from the exponential function. We
have now obtained the results from a greedy algorithm and
a genetic algorithm for the Surat network (5× 5 size) using
g(d)= 1

d+1 while keeping all the other parameters the same
(as in Fig. 3).

Figure 4 presents the values obtained by different algo-
rithms and functional forms for g(d) with varying budget
values. It can be seen in the above figure that the values
obtained by the genetic algorithm and the greedy algorithm
for g(d)= e−d are very close, and thus the solid-blue and
red curves almost overlap. The same holds for g(d)= 1

d+1 ,
and therefore the dashed black and purple lines almost over-
lap. Note that the values that are obtained by the two algo-
rithms for g(d)= 1

d+1 are greater than those obtained for
g(d)= e−d . This is because 1

d+1 > e
−d for all positive val-

ues of d . However, note that the pattern of the values that
are obtained for the two functional forms is the same; i.e.,
the values decrease as the total available budget increases.
Also, note that the values obtained by the two functional
forms converge at the budget value of USD 313 000. Since
it is not possible to have percentage values greater than 100,
the values for both the functional forms will remain the same
for budget values greater than USD 313 000. We believe that
similar patterns will be observed by other functional forms
of g(d) as long as they satisfy the conditions that are neces-
sary for satisfaction functions (i.e., g(d)must be a decreasing
function and g(0)= 1). We have defined a similarity index
that quantifies the difference in the placement of hybrid in-
struments as obtained by different algorithms. Suppose the
number of grids where the placement of hybrid instruments
by the two algorithms is identical is given by k (a grid is said
to have identical placement by the two algorithms if the grid
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Figure 2. Hybrid placement obtained by the GA (a) and GrA (b) for the Surat network with a budget value of USD 295 000. Map data
©Google Maps 2023.

Figure 3. Plot comparing the genetic and greedy algorithms for
varying total available budget values.

Figure 4. Plot comparing two functional forms of g(d).

contains a sensor as determined by both the algorithms or a
monitor as determined by both the algorithms). Also, let the
maximum number of hybrid instruments that can be placed in
the given constraints be equal to p. Then, the similarity index
is given by k/p. Since the solution obtained by the genetic al-
gorithm is probabilistic, we tested five runs of the genetic al-
gorithm (for a given budget value) and compared the solution
obtained by each run to the solution obtained by the greedy
algorithm to determine the similarity indices and finally ob-
tained the average similarity index by taking the mean of the
five similarity indices. Figure 5 shows the average similarity
index for different budget values and for different g(d) func-
tions (while keeping equal weights for the percentages of the
population density and emissions). Note that the similarity
index is upper-bounded by 1. Also, we see that, as budget
values increase, the average similarity index for both g(d)
functions increases. This is because, as the budget increases,
the number of grids at which instruments can be placed in-
creases and both the algorithms usually place sensors at most
of the grids, except at a few grids where monitors are placed
to meet the requirement of the minimum monitors. Note that
the average similarity index is around 0.5 for low budget val-
ues due to the existence of solutions that have varying place-
ments but have close objective function values (but as the
budget increases, the variation in the placement decreases,
as explained before). Also, the average similarity indices ob-
tained by the two g(d) functions are close for most of the
budget values.

Sensitivity analysis for different weights in the objective
function

We have also conducted the sensitivity analysis by varying
the weights between the percentages of population density
and PM2.5 emissions (i.e., pa and ea) for Surat. Table 2
shows the weights corresponding to the different cases that
have been considered. We have determined the results for
both the greedy algorithm and the genetic algorithm by keep-
ing all the parameters the same (as in Fig. 3).
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Figure 5. Average similarity index for different g(d) functions.

Table 2. Different cases for the weights.

Case Weightage for pa Weightage for ea

1 0.25 0.75
2 0.5 0.5
3 0.75 0.25

Figure 6 shows the values that are obtained for different
cases, budget values, and algorithms. As before, the values
obtained by the GA and GrA are very close for the given
weights and budget. Among these cases, the values corre-
sponding to Case 3 (where pa = 0.75 and ea = 0.25) are the
highest and those corresponding to Case 1 (where pa = 0.25
and ea = 0.75) are the lowest. Thus, as the relative weigh-
tage for population density increases in the objective func-
tion, the values obtained increase. However, it can be seen
that the difference between the values for Cases 1 and 3 is
not that large, signifying that the objective function values
may not be that sensitive to the relative weightage between
population density and emissions. Figure 7 shows the aver-
age similarity index for different budget values and different
cases corresponding to the weights of the percentages of pop-
ulation density and PM2.5 emissions (while keeping g(d) as
the exponential function). It can be seen that the average sim-
ilarity index increases with budget values for the same reason
as mentioned for Fig. 5. Also, the values of the similarity in-
dices are close for most of the budget values.

3.2 Mumbai

We now present the results that we tested for portions of
Mumbai, which is the financial hub of India. In this case, we
only considered the contribution of population in the objec-
tive function (i.e., w1 = 1, w2 = 0, implying ma = pa) due
to unavailability of PM2.5 emissions data for Mumbai. How-

Figure 6. Plot comparing cases for different weights corresponding
to pa and ea .

Figure 7. Average similarity index for different weights corre-
sponding to pa and ea .

ever, the aforementioned change does not have any signifi-
cant relevance to the results that we present as we plan to test
the effect of varying the budget (as in the last section) and the
effect of varying the size of the network (i.e., the number of
grids). All the parameter values for the algorithm’s execution
were the same as in the example for Surat (i.e., Fig. 3), except
for the variable θ , which has now been set to 5 (note that θ
has been increased now because we have a larger number of
grids in the Mumbai network as compared to Surat, resulting
in higher average distances between the grids for the Mumbai
network, and thus we need to update θ for better normaliza-
tion). Consider a region of size 10 km× 10 km in Mumbai
that has been divided into 100 grids (i.e., each grid has a size
of 1 km× 1 km). Figure 8 shows the variation of the values
obtained and the computation time with the total available
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Figure 8. Plot comparing the genetic and greedy algorithms for
varying total available budget values.

budget for the GA and GrA for this region. The solid lines
represent the obtained values, and the dashed lines are used
to represent the computation time in seconds for different al-
gorithms. It can be seen that the GA provides a higher value
as compared to the GrA for most of the cases. Thus, this high-
lights the importance of the GA in obtaining values that are
closer to the optimal ones as compared to the GrA when the
network size increased (however, this advantage comes at the
high computational cost of the GA as compared to the GrA).

Figure 9 shows the placement of hybrid instruments ob-
tained for the two algorithms (GA and GrA) when the budget
is equal to USD 283 000 when we have all the other parame-
ters the same as those in Fig. 8. The blue and orange points
represent the placements of the sensors and monitors, respec-
tively. In Fig. 9a, two sensors are positioned in the northeast-
ern area, while no sensors or monitors are placed in that area
in Fig. 9b. In Fig. 9b, monitors and sensors are predominantly
concentrated on the left side of the Mumbai area, whereas in
Fig. 9a, the sensors and monitors exhibit a more diverse and
scattered distribution. Note that, out of 100 grids, sensors and
monitors can be placed in only 15 grids by maximizing the
objective function. The leftmost and southern areas have the
highest population density, which explains the concentration
of the sensors and monitors in those regions. There is a differ-
ence in the solutions that are obtained by the two algorithms
because the GA samples through various solutions to pro-
ceed towards a solution is closer to the optimal one, whereas
the GrA is a deterministic algorithm and may get stuck near
a locally optimal solution.

Figure 10 shows the comparison between the GA and
GrA with varying numbers of grids for the budget value of
USD 283 000.5 The solid lines represent the obtained values

5The population data (in terms of population per
square kilometer) are available at the following link:
https://docs.google.com/spreadsheets/d/1tdDUXnu4EQb2t3g_

in the percentage for the different algorithms, and the dashed
lines are used to represent the computation time in seconds
for the different algorithms. As the number of grids increases,
there is a noticeable decline in citizen satisfaction (i.e., the
obtained values) because the budget P remains the same and
thus the satisfaction averaged across all the grids reduces as it
is distributed across the total region (note that the percentage
of the population in each grid also decreases as the number
of grids increases and thus also contributes to the observed
trend). Also, the values obtained by the GA and GrA are sim-
ilar, and in some cases the GA outperforms the GrA, whereas
the reverse happens in the other cases. Note that the compu-
tation time required for the GA increases rapidly with the in-
crease in the number of grids, because with the increase in the
number of grids, the size of each string in the GA increases
and it takes more iterations before the termination criterion
is reached in the GA (as the number of feasible solutions in-
creases with the increase in grid size). However, the increase
in the computational time of the GrA is not that high, as it
is a polynomial–time algorithm (Cormen et al., 2022); i.e.,
the computational time increases polynomially with respect
to the increase in the problem size (i.e., the number of grids
in our problem).

4 Conclusions

This research paper proposed an optimization formulation
for placement of hybrid instruments (sensors and monitors).
The objective of the problem is to maximize the satisfaction
function while satisfying various constraints for the place-
ment. To solve this formulation, we proposed two algo-
rithms: a genetic algorithm (GA), which is a metaheuristic
that works using the principles of evolution, and a greedy al-
gorithm (GrA), which makes choices that are locally optimal
in each iteration. We tested the placement solutions gener-
ated by these algorithms on networks from different locations
(Surat and Mumbai) that differed over sizes and characteris-
tics (population distribution, budget, and PM2.5 distribution).
We observed that, as the total available budget increased, the
obtained values from the two algorithms also increased as
it became possible to place more instruments (sensors and
monitors). We found that the GrA is very computationally
efficient as compared to the GA, but we found that both the
GrA and GA provided close values (in some cases the GA
outperformed the GrA, whereas in other cases the reverse
happened). Note that since the GA searches through a set

M96RXb4mkRXdaFP3/edit#gid=1468141414 (last access:
27 December 2023). These data contain the largest set of
grids used with 35× 35= 1225 grids. There are two sheets:
one shows the numbering of the grids and the other con-
tains the population data. The population data for both Surat
and Mumbai have been obtained from the following website:
https://hub.worldpop.org/geodata/summary?id=41746 (last access:
27 December 2023).
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Figure 9. Sensor placement obtained by the GA (a) and GrA (b) for the 10 km× 10 km (100-grid) region in Mumbai when the budget is
equal to USD 283 000. Map data © Google Maps 2023.

Figure 10. Plot comparing the genetic and greedy algorithms for a
varying number of grids.

of solutions over multiple iterations and uses operators like
mutation, it has a better likelihood of getting towards the op-
timal solutions, whereas the GrA may get stuck near a local
optimum in some cases. These findings suggest that, if time
is not constrained (i.e., we have a few days to decide on the
placement solution), it might be better to use the GA and GrA
together (i.e., use the best solution out of the two algorithms)
to place the instruments, whereas in scenarios where there is
a scarcity of time, it is advisable to use the GrA. While the
study’s results are specific to these locations, the underlying
methodology and principles learned from these cases can be
broadly applied to other areas facing similar air quality mon-
itoring challenges. The methodology presented in our paper
serves as a template for optimizing sensor networks in any lo-
cation, provided that relevant data on population, emissions,

and potential grid locations are available. Our research aims
to provide valuable insights for future government decision-
making processes regarding the optimal deployment of hy-
brid instruments in cities lacking an existing sensor network.

There are several interesting future extensions of this work
that are possible. We acknowledge the challenges associated
with quantifying PM2.5 emissions in areas lacking an estab-
lished monitoring network, as evident in the Mumbai case.
However, in future, solutions such as considering existing
models or satellite-derived data as proxies for local PM2.5
concentrations during the network design phase can be im-
plemented. Also, after the placement of the instruments, one
could iteratively update the placement of the network using
some existing models or proxy data, as newly collected data
update the prior estimates of concentrations in the different
grid cells. In addition, we assumed a particular form of the
satisfaction function (consisting of exponential terms), but
other forms can also be tested. Similarly, other factors apart
from population density and PM2.5 concentrations such as
socioeconomic disparities across various grids can also be
factored while determining the satisfaction function. Note
that exploring other objective functions, such as improving
estimates of population exposure or monitoring the largest
known sources, would also be very interesting. To address
these alternative objectives, we could make the following
modifications to our approach. First, the objective function
could be defined appropriately, whether it is optimizing pub-
lic satisfaction, estimating exposure, or addressing specific
environmental issues. Also, depending on the chosen objec-
tive, we may need to adapt the data collection methods used.
For example, if the goal is to estimate population exposure,
we may need to tailor the data collection frequency accord-
ingly. The analysis methods and models used for decision-
making can be customized based on the objective. For in-
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stance, if the goal is to address specific environmental con-
cerns, sophisticated modeling techniques may be employed
to assess pollutant dispersion. When other objective func-
tions are used, the fitness function in the genetic algorithm
will be modified. The selection, crossover, and mutation op-
erators will not change if the constraints remain the same,
and there would only be a change in the objective func-
tion. Similarly, the greedy algorithm will have a modified
gain function s∗ and the rest of the algorithm will remain
the same provided the constraints in the problem remain the
same. Thus, our approach can be flexibly adapted to address
a range of objectives. Note that there is also potential for
creating user-friendly software tools or decision support sys-
tems based on the methodology presented in our paper. Such
tools would enable users with limited algorithmic expertise
to apply similar optimization techniques to their specific lo-
cations, addressing the concern of not having the ability to
run the algorithm. In these software tools, the users will only
have to provide input values for the problem, e.g., the net-
work they want to solve, the costs of the instruments, the
budget, or the algorithm they want to use, and the toolbox
will provide the results.

Appendix A

Notations Description

V Set of all grids
n Total number of grids
S Set of grids selected for deploying hybrid instruments
g(d) An individual’s satisfaction as a function of his or her distance d to the closest sensor or monitor
θ Exponential decay parameter
pa Percentage of the population living in grid a
ea Percentage of the concentration of PM2.5 in grid a
ma Weighted average of pa and ea
c Cost of each sensor
c′ Cost of each monitor
P Total available budget
h Minimum number of monitors to be deployed
za Binary variable signifying whether a sensor or a monitor is placed at grid a or not
xa Binary variable signifying whether a sensor is placed at grid a or not
ya Binary variable signifying whether a monitor is placed at grid a or not
B Set of grids where at least one sensor is to be placed
C Set of grids where monitors cannot be placed
M A very large positive number
m A very small positive number
Pm Mutation probability
N Maximum number of iterations of the GA that are allowed
d(a) Minimum distance between grid a and the grids containing hybrid instruments
d(a,b) Distance between grid a and grid b
d(a) Maximum distance between grid a and any other grid of set V
d ′ (a,K) Minimum distance between grid a and set K
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Appendix B

We provide an alternative optimization formulation whose
objective is to maximize the weighted sum of satisfaction
functions from monitors and sensors. Let ws be the weight
corresponding to the satisfaction from sensors and wm be the
weight corresponding to the satisfaction from monitors. Let
d(a) be the minimum distance between grid a and any grid
containing sensors, and let d ′(a) be the minimum distance
between grid a and any grid containing monitors. The re-
maining parameters and variables mean the same as before.
Then, the formulation is as follows:

maxws
∑n

a=1
ma · g (d(a))+wm

∑n

a=1
ma · g

(
d ′(a)

)
, (B1)

s.t.
n∑
a=1

(
cxa + c

′ya
)
≤ P, (B2)∑

a ε B
xa ≥ 1, (B3)∑

a ε C
ya = 0, (B4)∑n

a=1
ya ≥ h, (B5)

where

d(a)=min
b∈V

{
xb · d(a,b)+ d(a) · (1− xb)

}
,

d(a)=max
b∈V

d(a,b), and

d ′(a)=min
b∈V

{
yb · d(a,b)+ d(a) · (1− yb)

}
.

Thus, the relative values of the weights ws and wm decide
the relative importance being given to sensors and monitors.
Typically, wm should be chosen larger than ws as monitors
are more accurate than sensors. One could solve the above
formulation with minimal changes to the proposed genetic
and greedy algorithms.

Appendix C

We now provide an example of a 3× 3 network (i.e., a net-
work with 3×3= 9 grids) to illustrate the greedy algorithm.
The population density data (in population per square kilo-
meter) and PM2.5 emissions data (kT yr−1) for a 3× 3 net-
work are provided in Tables C1 and C2, respectively.

Table C1. Population density data.

65 646 29 660 15 504
9487 2984 2260
2042 2393 1711

Then, we calculate the percentage of population density
(pa) and PM2.5 emissions (ea) for each grid and then calcu-
late ma , which is an average of pa and ea . Tables C3 and C4
show the values of pa and ea , respectively.

Table C2. PM2.5 emissions data.

0.143405 0.120589 0.097773
0.114025 0.142434 0.170843
0.084646 0.16428 0.243914

Table C3. Percentage of population density.

49.85 22.5231 11.7734
7.2042 2.266 1.7162
1.5506 1.8172 1.2993

Table C4. Percentage of PM2.5 emissions.

11.1868 9.407 7.6271
8.895 11.111 13.3273
6.6031 12.8153 19.0274

The following values are thema values for each grid of the
3× 3 network that we consider.

Table C5. Average of the percentages of population density and
PM2.5 emissions.

30.5184 15.965 9.7002
8.0496 6.6885 7.5217
4.0769 7.3162 10.1633

Suppose the set B in which at least one sensor is to be
placed from Eq. (4) consists of grids 7 and 9, and set C in
which no monitor can be placed from Eq. (5) is given by set
7. Suppose h= 2, which represents the minimum number of
monitors required. Let the cost of the sensor (c) and monitor
(c′) be 200 and 8000 units, respectively. The total available
budget is 16 500 units.

Figure C1p shows the initial empty grids, which are grey in
color. Figure C1q shows the grid area in which two grids (i.e.,
grids 7 and 9) are shown in light-green-colored grids, which
tells us about grids in set B, where at least one sensor must
be placed. Given that the value of ma for grid 9 is greater
than that of grid 7, a sensor is initially placed at grid 9 to
satisfy Eq. (4). The placement of a sensor at grid 9 reduces
the available budget to 16 300 units.

Figure C1r shows the placement of a sensor at grid 9 and a
grid (corresponding to set C) which is shown by an orange-
colored square grid (i.e., grid 7). The monitors are positioned
at grids 1 and 2 based on the values obtained from the largest
information gain s∗ and in adherence to Eq. (5), which has
a requirement that no monitor be placed on any grid belong-
ing to set C. This further reduces the budget from 16 300 to
300 units by subtracting 16 000 units (i.e., c′h).

We continue to place sensors until the budget constraint
is violated. We will place the next sensor at the grid with
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the largest information gain s∗, and that grid is grid 3. This
further reduces the budget from 300 to 100 units. The algo-
rithm stops here as there is no sufficient budget to proceed.
Figure C1s shows the final solution using the greedy algo-
rithm, where grey-colored square grids show the empty grids,
purple-colored square grids show the placement locations of
the sensors, and light-yellow-colored square grids show the
placement locations of the monitors.

Figure C1. Example to show the working of the greedy algorithm.

Appendix D

We present an example to show the performance of differ-
ent network configurations that have different variations with
respect to the optimal solution. Consider an example of a
3× 3 network. Let the cost of a sensor (c) and a monitor (c′)
be USD 3000 and 122 000, respectively. Suppose the budget
value is equal to USD 253 000. The numbering of the grids
follows the convention that numbers first increase as we go
from left to right in increasing order and numbers increase
as we go from top to bottom. Let set B in which at least one
sensor is to be placed from Eq. (4) consist of grids 7 and 9,
and let set C in which no monitor can be placed from Eq. (5)
be set 7. We consider four different feasible solutions as fol-
lows.

Case 1. The solution is obtained from the greedy algo-
rithm.

Figure D1 shows the solution that is obtained in Case 1.
The purple points show the placement locations of sensors,
and orange points show the placement locations of monitors.
It can be seen that monitors are placed at grids 1 and 2 and
that sensors are placed at grids 3, 4, and 9.

Case 2. The sensor placed at grid 3 in Case 1 is moved to
grid 7 (all the other instrument locations remain the same as
in Case 1).

Case 3. The monitor placed at grid 1 in Case 1 is moved
to grid 5 (all the other instrument locations remain the same
as in Case 1).

Case 4. The sensor placed at grid 3 in Case 1 is moved to
grid 7, and the monitor placed at grid 1 in Case 1 is moved to
grid 5 (all the other instrument locations remain the same as
in Case 1).

Table D1 shows the values that are obtained for the differ-
ent cases.

It can be seen that Case 1 has the largest value, and the
value decreases as we go from Case 1 to Case 4. Thus, Case 1

Figure D1. Hybrid placement obtained from the GrA. Map data
© Google Maps 2023.

Table D1. Values obtained for different cases.

Case Obtained value

Case 1 83.8154
Case 2 80.2608
Case 3 68.7521
Case 4 65.1975

is the closest to the optimal solution and Case 4 is the far-
thest. Note that Case 4 has both the modifications that are
made in Cases 2 and 3 with respect to Case 1. Since there
was a decrease in the value as we go from Case 1 to Case 2
and a decrease in the value from Case 1 to Case 3, the largest
decrease in the value is seen as we go from Case 1 to Case 4.
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