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S1 Fuzzy clustering validity indices 

Six fuzzy validity indices were used to determine the appropriate number of clusters, include 

Sum of within-cluster variance (𝑉𝑆𝑊𝐶𝑉), Fakuyama-Sugeno index (𝑉𝐹𝑆, Fukuyama, 1989), Xie-

Beni index (𝑉𝑋𝐵, Xie and Beni, 1991), Kwon index (𝑉𝐾𝑤𝑜𝑛, Kwon, 1998), Bouguessa-Wang-Sun 

index (𝑉𝐵𝑊𝑆, Bouguessa et al., 2006), and Fuzzy Silhouette (𝐹𝑆, Campello and Hruschka, 2006). 

Their definitions and notes for applications are described in this section. 

(1) Sum of within-cluster variation (𝑽𝑺𝑾𝑪𝑽). The basic idea of clustering is to sort clusters so 

that the sum of within-cluster variation is minimized, and this is used as the objective function 

𝐽𝑚(𝑈, 𝑉) in fuzzy c-means clustering, as given by Eq. S1. The sum of within-cluster squared 

distance measures the compactness of clustering, and the “elbow” point of the curve of 𝑉𝑆𝑊𝐶𝑉 as 

a function of numbers of clusters is generally considered as an indicator of the optimal number of 

clusters (Campello and Hruschka, 2006). 

𝑉𝑆𝑊𝐶𝑉 = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑(𝑥𝑗 , 𝑣𝑖)2                                                                                                             𝑛

𝑗=1
𝑐
𝑖=1 (S1) 

where 𝑥𝑗 and 𝑣𝑖 denote the 𝑗𝑡ℎ object in the dataset and the 𝑖𝑡ℎ cluster center, respectively, m is 

the fuzzifier, 𝑢𝑖𝑗  is the membership degree of 𝑥𝑗  to the ith cluster, and 𝑑(𝑥𝑗 , 𝑣𝑖) represents the 

distance between the object 𝑥𝑗 and the ith cluster center 𝑣𝑖. 

The elbow point is where the 𝑉𝑆𝑊𝐶𝑉 stops to drop as rapidly as before, namely the point of 

maximum curvature. In this study, the KneedLocator function of Kneed package in Python was 

used to find the elbow point.  

(2) Fukuyama-Sugeno index (𝑽𝑭𝑺). The Fakuyama-Sugeno index combines the membership 

degree and the geometrical property of the dataset to evaluate a partition (Bouguessa and Wang, 

2004). It evaluates the quality of a clustering solution by measuring the discrepancy between 

compactness and separation of clusters, as formulated by Eq. S2. Obviously, smaller 𝑉𝐹𝑆 

indicates better performance of clustering. 

𝑉𝐹𝑆 = 𝐶𝑜𝑚𝑝𝑎𝑐𝑡(𝑐) − 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑠𝑢𝑚(𝑐)                                                                                                 (S2) 

where the compactness is defined by the sum of within-cluster squared distance, as given by Eq. 

S3: 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡(𝑐) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑(𝑥𝑗 , 𝑣𝑖)

2𝑛
𝑗=1

𝑐
𝑖=1                                                                                                  (S3) 



 

 

where 𝑥𝑗 and 𝑣𝑖 denote the 𝑗𝑡ℎ object in the dataset and the 𝑖𝑡ℎ cluster center, respectively, m is 

the fuzzifier, 𝑢𝑖𝑗  is the membership degree of 𝑥𝑗  to the 𝑖𝑡ℎ  cluster, and 𝑑(𝑥𝑗 , 𝑣𝑖) represents the 

distance between the object 𝑥𝑗 and the ith cluster center 𝑣𝑖. 

And the separation of partition is measured by the sum of squared distances between each cluster 

center and the mean of all cluster centers, as given by Eq. S4:  

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑠𝑢𝑚(𝑐) = ∑ (∑ 𝑢𝑖𝑗
𝑚)𝑑(𝑣𝑖, �̅�)2𝑛

𝑗=1
𝑐
𝑖=1                                                                                         (S4) 

where �̅� =
1

𝑐
∑ 𝑣𝑖

𝑐
𝑖=1 , and 𝑑(𝑣𝑖, �̅�) represents the distance between the ith cluster center 𝑣𝑖 and the 

mean of all cluster centers �̅�. 

 

(3) Xie-Beni index ( 𝑽𝑿𝑩 ). Xie-Beni index is a popular fuzzy clustering validity measure 

proposed by Xie and Beni (1991). It is defined as the ratio of compactness and separation as 

shown in Eq. S5, where the sum of within-cluster squared distance divided by the total number 

of objects in the numerator, represents the compactness of the partition, and the minimum 

squared distance of cluster centers in the denominator represents the separation. The smaller the 

numerator, the more compact the clusters are, whereas the larger the denominator, the more 

dispersed the clusters are from each other. As a consequence, the smaller 𝑉𝑋𝐵, the better the 

partition. 

𝑉𝑋𝐵 =
1

𝑛
𝐶𝑜𝑚𝑝𝑎𝑐𝑡(𝑐)

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑚𝑖𝑛(𝑐)
                                                                                                                                     (S5) 

where n is the total number of objects in the data set, the compactness of the partition, 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡(𝑐), is defined by the sum of within-cluster squared distance, as given by Eq. S3, and 

the separation of partition, 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑚𝑖𝑛(𝑐), is measured by the minimum squared distance 

between cluster centers, as calculated by Eq. S6: 

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑚𝑖𝑛(𝑐) = min
𝑘≠𝑖

𝑑(𝑣𝑘, 𝑣𝑖)2                                                                                                         (S6) 

where 𝑑(𝑣𝑘, 𝑣𝑖)is the distance between the kth cluster center 𝑣𝑘 and the ith cluster center 𝑣𝑖 (𝑘 ≠ 𝑖. 

(4) Kwon index (𝑽𝒌𝒘𝒐𝒏). When c approaches n, the value of 𝑉𝑋𝐵 decreases monotonically to 0 

and will lose robustness in determining the optimal number of clusters. To overcome this 

drawback, Kwon (1998) revised 𝑉𝑋𝐵 and proposed the Kwon index, as defined in Eq. S7. The 

second item in the numerator is a penalty function, which represents the average squared 



 

 

distance of cluster centers to the overall mean of the data set and can eliminate its monotonous 

decreasing tendency when the number of clusters is close to n. Similar to 𝑉𝑋𝐵, the smaller 𝑉𝑘𝑤𝑜𝑛, 

the better the clustering quality. 

𝑉𝐾𝑤𝑜𝑛 =
𝐶𝑜𝑚𝑝𝑎𝑐𝑡(𝑐)+𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑐)

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑚𝑖𝑛(𝑐)
                                                                                                                   (S7) 

where 𝐶𝑜𝑚𝑝𝑎𝑐𝑡(𝑐)  and 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑚𝑖𝑛(𝑐)  represent the compactness and separation of the 

partition, which are calculated by Eq. S3 and Eq. S6, respectively, and 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑐) is a penalty 

function defined by Eq. S8: 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑐) =  (1 𝑐⁄ ) ∑ 𝑑(𝑣𝑖, �̅�)2 𝑐
𝑖=1                                                                                                      (S8) 

where �̅�  denotes the overall mean of the data set, that is �̅� =
1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1 , and 𝑑(𝑣𝑖, �̅�)  is the 

distance between the ith cluster center 𝑣𝑖 and �̅�.  

(5) Bouguessa-Wang-Sun index (𝑽𝑩𝑾𝑺). To better deal with overlapped clusters that differ in 

geometric shape, Bouguessa et al. (2006) proposed a new validity index, as formulated in Eq. S9, 

and hereafter called Bouguessa-Wang-Sun index in this study. Similar to 𝑉𝑋𝐵 and 𝑉𝐾𝑤𝑜𝑛, 𝑉𝐵𝑊𝑆 is 

also based on the concept of using the ratio of separation and compactness, but the definitions for 

compactness and separation are modified. By making use of the fuzzy covariance matrix as a 

measure of compactness, 𝑉𝐵𝑊𝑆 takes the variations of cluster shape, density and orientation into 

account and was proved to performe well for heavily overlapping clusters (Bouguessa and Wang, 

2004; Bouguessa et al., 2006). According to its definition, a larger value of 𝑉𝐵𝑊𝑆 indicates a 

better fuzzy partition. 

𝑉𝐵𝑊𝑆 =
𝑆𝑒𝑝(𝑐)

𝐶𝑜𝑚𝑝(𝑐)
                                                                                                                                             (S9) 

In the equation, 𝑆𝑒𝑝(𝑐)  represents fuzzy separation, as defined in Eq. S10, and 𝑺𝑩  is the 

between-cluster fuzzy matrix given by Eq. S11. The larger 𝑆𝑒𝑝(𝑐), the better separation between 

clusters. 

𝑆𝑒𝑝(𝑐) = 𝑡𝑟𝑎𝑐𝑒(𝑆𝐵)                                                                                                                                 (S10) 

𝑆𝐵 = ∑ ∑ 𝑢𝑖𝑗
𝑚(𝑣𝑖 − �̅�)𝑛

𝑗=1 (𝑣𝑖 − �̅�)𝑇𝑐
𝑖=1                                                                                                  (S11) 

𝐶𝑜𝑚𝑝(𝑐) in Eq. S9 represents the overall compactness of fuzzy clustering, as given by Eq. S12. 

The smaller 𝐶𝑜𝑚𝑝(𝑐), the more compact within each cluster. 



 

 

𝐶𝑜𝑚𝑝(𝑐) = ∑ 𝑡𝑟𝑎𝑐𝑒(∑ )𝑖
𝑐
𝑖=1                                                                                                                     (S12) 

where ∑𝑖 is the fuzzy covariance matrix as defined by: 

∑𝑖 =  
∑ 𝑢𝑖𝑗

𝑚(𝑥𝑗−𝑣𝑖)𝑛
𝑗=1 (𝑥𝑗−𝑣𝑖)

𝑇

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

                                                                                                                      (S13) 

(6) Fuzzy Silhouette (𝑭𝑺). The silhouette score (𝑠𝑗, as defined in Eq. S14) was first proposed by 

Rousseeuw (1987) and can be used to measure how close an object is to the cluster center it 

belongs compared to other clusters. The average silhouette score of all objects, 𝐶𝑆, as given by 

Eq. S15, are frequently used to assess the quality of clustering solutions. The silhouette score 

was originally adopted to evaluate hard or non-fuzzy clustering solutions and did not consider 

the fuzzy partition matrix in the calculation. Consequently, 𝐶𝑆  might be inadequate to 

discriminate fuzzy clusters since it ignores the information contained in the fuzzy partition 

matrix which reveal the overlap degrees of clusters.  

𝑠𝑗 =
𝑏𝑗−𝑎𝑗

𝑚𝑎𝑥{𝑎𝑗,𝑏𝑗}
                                                                                                                                             (S14) 

𝐶𝑆 =  
1

𝑛
∑ 𝑠𝑗                                                                                                                                             𝑛

𝑗=1 (S15) 

where 𝑎𝑗 is the average distance of object 𝑥𝑗 (belonging to cluster p) to all other objects in the 

same cluster. Let 𝑑𝑗  be the average distance of object 𝑥𝑗  to all objects belonging to another 

cluster r (𝑟 ≠ 𝑖), then 𝑏𝑗 is the minimum of 𝑑𝑗, which represents the average distance of object j 

to its closet neighboring cluster. 

To extend the silhouette score to fuzzy partition and make explicit use of the fuzzy partition 

matrix, Campello and Hruschka (2006) proposed Fuzzy Silhouette (𝐹𝑆), as given by Eq. S16. 

Instead of weighing each individual silhouette equally, 𝐹𝑆 stresses the importance of objects 

lying in the vicinity of cluster centers while reducing the importance of objects located in the 

boundary region (whose membership degrees to different clusters are similar or identical). 

 𝐹𝑆 =  
∑ (𝑢𝑝𝑗−𝑢𝑞𝑗)

𝛼
𝑆𝑗

𝑛
𝑗=1

∑ (𝑢𝑝𝑗−𝑢𝑞𝑗)
𝛼𝑛

𝑗=1

                                                                                                                               (S16) 

where 𝑠𝑗 in the average silhouette score of object 𝑥𝑗, 𝑢𝑝𝑗 and 𝑢𝑞𝑗 are the first and second largest 

coefficient of 𝑥𝑗 in the fuzzy partition matrix, respectively, and 𝛼 is a weight coefficient and set 

to be 1 as default in this study (Campello and Hruschka, 2006).  



 

 

In a hard partition, each object is exclusively partitioned to one cluster, and it is easier to 

determine the intra- (within-cluster) and inter- (between-cluster) distances. With regard to a 

fuzzy partition, however, an object could belong to multiple clusters simultaneously, and its 

affiliation to each cluster is measured by the membership degree. In order to determine the intra- 

and inter-distance of an object in a fuzzy partition, the original definition of silhouette is 

reformed by introducing a concept of intra-inter scores. The intra-score matrix is defined by  

𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑖 = [𝑖𝑛𝑡𝑟𝑎𝑖(𝑑𝑗𝑘)],     1 ≤ 𝑗 ≠ 𝑘 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑐                                                              (S17) 

where 𝑖𝑛𝑡𝑟𝑎𝑖(𝑑𝑗𝑘) = (𝑢𝑖𝑗 ⋀ 𝑢𝑖𝑘). 

And the inter-score matrix is given by 

𝐼𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑖𝑟 = [𝑖𝑛𝑡𝑒𝑟𝑖𝑟(𝑑𝑗𝑘)],     1 ≤ 𝑗 ≠ 𝑘 ≤ 𝑛, 1 ≤ 𝑖 < 𝑟 ≤ 𝑐                                                   (S18) 

where 𝑖𝑛𝑡𝑒𝑟𝑖𝑟(𝑑𝑗𝑘) = (𝑢𝑖𝑗 ⋀ 𝑢𝑟𝑘) ⋁  (𝑢𝑟𝑗 ⋀ 𝑢𝑖𝑘). 

𝑢𝑖𝑗 and 𝑢𝑖𝑘 are the membership degree of object 𝑥𝑗 and 𝑥𝑘 to cluster i, and 𝑢𝑟𝑗 and 𝑢𝑟𝑘 are the 

membership degree of object 𝑥𝑗 and 𝑥𝑘 to cluster r, respectively. 

With the intra- and inter-distance scores defined above, we can calculate the intra-distance 

𝑎𝑗  and inter-distance 𝑏𝑗  follow the equations proposed by Rawashdeh and Ralescu (2012), as 

shown by Eq. S19 amd Eq. S20, respectively: 

𝑎𝑗 = min {
∑ 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑖(𝑗,𝑘)𝑛

𝑘=1 𝑑(𝑥𝑗,𝑥𝑘)

∑ 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑖(𝑗,𝑘)𝑛
𝑘=1

},    1 ≤ 𝑗 ≠ 𝑘 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑐                                                (S19) 

𝑏𝑗 = min {
∑ 𝐼𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑖𝑟(𝑗,𝑘)𝑛

𝑘=1 𝑑(𝑥𝑗,𝑥𝑘)

∑ 𝐼𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑖𝑟(𝑗,𝑘)𝑛
𝑘=1

},    1 ≤ 𝑗 ≠ 𝑘 ≤ 𝑛, 1 ≤ 𝑖 < 𝑟 ≤ 𝑐                                      (S20) 

where 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑖(𝑗, 𝑘) and 𝐼𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑖𝑟(𝑗, 𝑘) are the intra-, and inter-distance score of the object 

𝑥𝑗 , respectively, as defined in Eq. S17 and Eq. S18, and 𝑑(𝑥𝑗 , 𝑥𝑘)  represents the distance 

between the object 𝑥𝑗 and 𝑥𝑘. 

The silhouette score falls in the range from -1 to +1, with a value approaching +1 indicating 

that the object is correctly assigned, whereas with a value close to -1 indicating that the object is 

misclustered (better to sort it to a neighboring cluster than to current cluster). An 𝑠𝑗 close to 0 

implies that the object lies in the boundary region (between clusters) and thus it is unclear to 

which cluster it belongs. The average cluster silhouette score can tell if the cluster is 

appropriately configurated or not. The larger the average cluster silhouette score, the clearer the 

cluster. The overall average silhouette score of all objects in the dataset can be used as a measure 

of clustering quality. Further, it can be used to find the appropriate number of clusters. When 



 

 

plotting the overall silhouette score as a function of cluster number, the maximum point of the 

curve indicates the optimal value of c, where the clustering solution has a minimum intra-cluster 

distance (𝑎𝑗) and a maximum inter-cluster distance (𝑏𝑗).   



 

 

Table S1. Possible permutation scheme for 2N- (grey), 3N- (blue) and 4N-dimers (orange) 

formed through RO2 + R’O2 reactions. Second-generation species are outlined in blue. And 

molecules detected by Br- CIMS are shown in bold.  

  C5H8NOx 

C5H8NOx 

O5 O6 O7 O8 O9 O10 O11 

O5 C10H16N2O8       

O6 C10H16N2O9 C10H16N2O10      

O7 C10H16N2O10 C10H16N2O11 C10H16N2O12     

O8 C10H16N2O11 C10H16N2O12 C10H16N2O13 C10H16N2O14    

O9 C10H16N2O12 C10H16N2O13 C10H16N2O14 C10H16N2O15 C10H16N2O16   

O10 C10H16N2O13 C10H16N2O14 C10H16N2O15 C10H16N2O16 C10H16N2O17 C10H16N2O18  

O11 C10H16N2O14 C10H16N2O15 C10H16N2O16 C10H16N2O17 C10H16N2O18 C10H16N2O19 C10H16N2O20 

  C5H8NOx 

C5H9N2Oy 

O5 O6 O7 O8 O9 O10 O11 

O9 C10H17N3O12 C10H17N3O13 C10H17N3O14 C10H17N3O15 C10H17N3O16 C10H17N3O17 C10H17N3O18 

O10 C10H17N3O13 C10H17N3O14 C10H17N3O15 C10H17N3O16 C10H17N3O17 C10H17N3O18 C10H17N3O19 

O11 C10H17N3O14 C10H17N3O15 C10H17N3O16 C10H17N3O17 C10H17N3O18 C10H17N3O19 C10H17N3O20 

O12 C10H17N3O15 C10H17N3O16 C10H17N3O17 C10H17N3O18 C10H17N3O19 C10H17N3O20 C10H17N3O21 

O13 C10H17N3O16 C10H17N3O17 C10H17N3O18 C10H17N3O19 C10H17N3O20 C10H17N3O21 C10H17N3O22 

O14 C10H17N3O17 C10H17N3O18 C10H17N3O19 C10H17N3O20 C10H17N3O21 C10H17N3O22 C10H17N3O23 

O15 C10H17N3O18 C10H17N3O19 C10H17N3O20 C10H17N3O21 C10H17N3O22 C10H17N3O23 C10H17N3O24 

O16 C10H17N3O19 C10H17N3O20 C10H17N3O21 C10H17N3O22 C10H17N3O23 C10H17N3O24 C10H17N3O25 

  

C5H9N2Oy 

C5H9N2Oy 

O9 O10 O11 O12 O13 O14 O15 

O9 C10H18N4O16       

O10 C10H18N4O17 C10H18N4O18      

O11 C10H18N4O18 C10H18N4O19 C10H18N4O20     

O12 C10H18N4O19 C10H18N4O20 C10H18N4O21 C10H18N4O22    

O13 C10H18N4O20 C10H18N4O21 C10H18N4O22 C10H18N4O23 C10H18N4O24   

O14 C10H18N4O21 C10H18N4O22 C10H18N4O23 C10H18N4O24 C10H18N4O25 C10H18N4O26  

O15 C10H18N4O22 C10H18N4O23 C10H18N4O24 C10H18N4O25 C10H18N4O26 C10H18N4O27 C10H18N4O28 

O16 C10H18N4O23 C10H18N4O24 C10H18N4O25 C10H18N4O26 C10H18N4O27 C10H18N4O28 C10H18N4O29 



 

 

  



 

 

 

 

Figure S1. Concentrations of trace gases (NOx, NOy, and isoprene) and conditions of the 

chamber experiment selected for FCM analysis in this study. Adapted from Wu et al. (2021).   



 

 

 

Figure S2. Measured and simulated concentrations of O3, NO2, NO3, and isoprene in the 

chamber experiment of isoprene oxidation by NO3. Simulation results are from a box model with 

using the gas-phase chemistry mechanism of isoprene + NO3 from MCM v3.3.1.  



 

 

  

Figure S3. Distribution of the optimal value of fuzzifier (𝑚∗) obtained from 50 repetitions. 

 



 

 

 

 

 

 



 

 

 

 

Figure S4. Fuzzy c-means clustering results of chamber data with 7-10 clusters. Time series (a) and profiles (b) of clusters for each 

solution. The cluster centers are shown as colored thick lines, and species with the membership degree larger than 0.5 to the cluster are 

illustrated as thin lines in gray. The species number in panel (b) corresponds to species listed in Fig. S7 (in order of molecular mass). 

 



 

 

 

 

Figure S5. Average oxidation state (𝑂𝑆𝐶
̅̅ ̅̅ ̅) of FCM clusters of chamber data as a function of 

number of carbon atoms (𝑛𝐶). Panel (a) to panel (e) show results for solutions with 6 to 10 

clusters, respectively. Cluster centers are depicted by circles in different colors. The color 

scheme follows that in Fig. 4. The marker area of clusters is proportional to the sum of average 

signal intensity of all species in the cluster weighted by their membership degrees. Closed-shell 

products detected by Br- CIMS are shown as grey hexagons, and the marker area is proportional 

to the average intensity of species over the whole experiment.  

  



 

 

 

Figure S6. Average oxidation state (𝑂𝑆𝐶
̅̅ ̅̅ ̅) of FCM clusters of model data as a function of number 

of carbon atoms (𝑛𝐶). Panel (a) to panel (d) show results for solutions with 2 to 5 clusters, 

respectively. Cluster centers are depicted by circles in different colors. The color scheme follows 

that in Fig. 4. The marker area of clusters is proportional to the sum of the average signal 

intensity of all species in the cluster weighted by their membership degrees. Closed-shell 

products detected by Br- CIMS are shown as grey hexagons, and the marker area is proportional 

to the average intensity of species over the whole experiment.   



 

 

 

 

Figure S7. Cluster apportionment of species for the five-cluster solution. The sum of fractions of a compound in each cluster adds up 

to 1. Different clusters are distinguished by color, and the color scheme follows that in Fig. 4. Species are listed in the same order (in 

order of molecular mass) to those in Fig. 7. 



 

 

 

Figure S8. Representative species measured by Br--CIMS from isoprene + NO3 experiment (red) 

and the GKP fitting results (black). 

 



 

 

 

Scheme S1. General reaction scheme of isoprene oxidation by NO3. The first- and second-generation products are shown in black and 

blue, respectively. Closed-shell species are outlined in black boxes. Dimers are not shown in this scheme for simplicity.  



 

 

 

 

Scheme S2. Proposed formation mechanism of C4H7NO5 through further oxidation of the first-generation C5 carbonyl compound. 

Adapted from Wu et al. (2021). 
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