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Abstract. Oxidation of volatile organic compounds (VOCs)
can lead to the formation of secondary organic aerosol
(SOA), a significant component of atmospheric fine parti-
cles, which can affect air quality, human health, and climate
change. However, the current understanding of the formation
mechanism of SOA is still incomplete, which is not only due
to the complexity of the chemistry but also relates to analyti-
cal challenges in SOA precursor detection and quantification.
Recent instrumental advances, especially the development of
high-resolution time-of-flight chemical ionization mass spec-
trometry (CIMS), greatly improved both the detection and
quantification of low- and extremely low-volatility organic
molecules (LVOCs/ELVOCs), which largely facilitated the
investigation of SOA formation pathways. However, analyz-
ing and interpreting complex mass spectrometric data remain
a challenging task. This necessitates the use of dimension re-
duction techniques to simplify mass spectrometric data with
the purpose of extracting chemical and kinetic information of
the investigated system. Here we present an approach to ap-
ply fuzzy c-means clustering (FCM) to analyze CIMS data
from a chamber experiment, aiming to investigate the gas
phase chemistry of the nitrate-radical-initiated oxidation of
isoprene.

The performance of FCM was evaluated and validated. By
applying FCM to measurements, various oxidation products
were classified into different groups, based on their chemi-
cal and kinetic properties, and the common patterns of their
time series were identified, which provided insight into the
chemistry of the investigated system. The chemical proper-

ties of the clusters are described by elemental ratios and the
average carbon oxidation state, and the kinetic behaviors are
parameterized with a generation number and effective rate
coefficient (describing the average reactivity of a species)
using the gamma kinetic parameterization model. In addi-
tion, the fuzziness of FCM algorithm provides a possibility
for the separation of isomers or different chemical processes
that species are involved in, which could be useful for mech-
anism development. Overall, FCM is a technique that can be
applied well to simplify complex mass spectrometric data,
and the chemical and kinetic properties derived from clus-
tering can be utilized to understand the reaction system of
interest.

1 Introduction

Volatile organic compounds (VOCs) in the atmosphere are
oxidized by reactions with hydroxyl radicals (OH), ozone
(O3), nitrate radicals (NO3), or Cl atoms, leading to the for-
mation of condensable vapors such as low- and extremely
low-volatility organic compounds (LVOCs/ELVOCs) that
subsequently condense onto existing particles or even form
new particles and thereby form secondary organic aerosol
(SOA) (Donahue et al., 2012; Hallquist et al., 2009; Zie-
mann and Atkinson, 2012). SOA comprises a major fraction
of the atmospheric submicron particulate matter and can have
an adverse impact on air quality, human health, and climate
(Hallquist et al., 2009; Jimenez et al., 2009; Pöschl, 2005;
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Spracklen et al., 2011; Zhang et al., 2007). Despite extensive
studies on characterization of the products and mechanisms
involved in VOC oxidation and SOA formation, how VOCs
contribute to SOA formation is not yet fully understood. This
is not only hampered by the complexity of the chemistry it-
self but also by the remaining analytical challenges in the
detection of organic precursors with low volatility (Bianchi
et al., 2019; Shrivastava et al., 2017).

Recent instrumental developments, especially the avail-
ability of high-resolution time-of-flight chemical ionization
mass spectrometry (CIMS) in atmospheric research, made
the direct detection of low-volatility vapors possible (Ehn et
al., 2012, 2014; Jokinen et al., 2015). Benefitting from this,
it has been discovered that the highly oxygenated organic
molecules (HOMs), which are formed through a rapid gas
phase process called autooxidation and generally have very
low volatilities, significantly contribute to SOA and even new
particle formation (Crounse et al., 2013; Ehn et al., 2012,
2014; Kirkby et al., 2016; Praske et al., 2018).

While advanced mass spectrometers greatly enhance our
capability to detect and quantify HOMs and facilitate the
investigation of the HOM formation mechanism, the highly
complex mass spectrometric data, which consist of hundreds
to thousands of variables (i.e., detected ions) over thousands
of points in time, make the data processing and interpreta-
tion challenging. In addition, the mass spectrometers are un-
able to detect structures of molecules, despite modern instru-
ments with high resolution (e.g., over 10 000m/1m) (Breit-
enlechner et al., 2017; Krechmer et al., 2018), which signif-
icantly hinders the understanding of the chemical processes
involved. Furthermore, it is difficult to refine and extract ki-
netic and mechanistic information directly from the mass
spectrometric data.

To reduce the complexity of data analysis, dimension re-
duction techniques are necessary, which compress various
variables in a dataset into a few to a dozen of factors/clus-
ters based on the underlying correlation/similarity of differ-
ent variables, e.g., in terms of their sources or physicochemi-
cal properties, while retaining the major chemical and kinetic
information of investigated systems and thus making the data
analysis easier and more effective (Äijälä et al., 2017; Buch-
holz et al., 2020; Koss et al., 2020; Yan et al., 2016; Zhang et
al., 2019).

Factorization is one of the major dimension reduction
techniques within which positive matrix factorization (PMF)
(Paatero, 1997; Paatero and Tapper, 1994) is the most com-
monly used approach in atmospheric science, especially for
ambient measurements of particulate matter by aerosol mass
spectrometry (Canonaco et al., 2013; Lanz et al., 2007, 2008;
Zhang et al., 2005, 2011), as well as for VOC measure-
ments in both field and laboratory studies (Brown et al.,
2007; Lanz et al., 2009; Li et al., 2021; Rosati et al., 2019;
Vlasenko et al., 2009; Yuan et al., 2012). Principal compo-
nent analysis (PCA) (Wold et al., 1987) is also a frequently
used multivariate factor analysis technique for the deconvo-

lution and interpretation of gas and particle phase composi-
tion data (Sofowote et al., 2008; Wyche et al., 2015; Zhang
et al., 2005). Additionally, non-negative matrix factorization
(NMF), which is very similar to the PMF approach, has been
widely used in interdisciplinary fields (Devarajan, 2008; Fu
et al., 2019; Lee and Seung, 1999), as well as in atmospheric
science (Chen et al., 2013; Karl et al., 2018; Malley et al.,
2014; Song et al., 2021). Despite the similarities in math-
ematical formulation and constraints to PMF, the NMF al-
gorithm does not need an error matrix as input. This elim-
inates the potential impact of error estimation on outcomes
and makes it more user-friendly.

In addition to factorization methods, an increasing num-
ber of recent studies have applied clustering techniques to
mass spectra data (Äijälä et al., 2017; Koss et al., 2020; Li
et al., 2020; Priestley et al., 2021). For example, Äijälä et
al. (2017) combined a clustering algorithm, k-means ++,
with PMF to classify and characterize the organic compo-
nent of air pollution plumes detected by aerosol mass spec-
trometry (AMS). Li et al. (2020) developed a clustering algo-
rithm named noise-sorted scanning clustering, based on the
traditional density-based special clustering of applications
combined with a noise algorithm and thereafter applied this
method to distinguish different types of thermal properties
of various biogenic SOA. Koss et al. (2020) compared the
performance of hierarchical clustering analysis (HCA) with
PMF and gamma kinetics parameterization for the analysis of
complex mass spectrometric data. Their results demonstrate
the feasibility of using HCA to identify major types of ions
and patterns of time behavior and to draw out bulk chemical
properties of the system that can be useful for modeling. In
addition, in a recent work by Priestley et al. (2021), HCA was
applied to infer the CHON functionality of products formed
from benzene oxidation.

In this work, we choose the fuzzy c-means clustering al-
gorithm (FCM) as the major technique to analyze CIMS data
collected from a chamber experiment, aiming to investigate
the gas phase chemistry of the isoprene–NO3 oxidation sys-
tem. Isoprene is the most abundant biogenic volatile organic
compound (BVOC) on Earth and is highly reactive in the at-
mosphere, which is an important precursor of O3 and SOA,
and thus imposes detrimental effects on climate and health
(Carlton et al., 2009; Surratt et al., 2019). The reaction of
isoprene with NO3 is an important source of SOA, but its gas
phase reaction mechanism, especially the multi-generation
chemistry and the contribution of the corresponding oxida-
tion products to SOA formation remain ambiguous at present
(Carlton et al., 2009; Fry et al., 2018; Ng et al., 2008; Rollins
et al., 2009; Wu et al., 2021). Fuzzy c-means clustering is the
most widely used fuzzy clustering algorithm and is adopted
in this study considering the following three aspects. First,
FCM allows variables to be affiliated with multiple clusters,
similar to factorization methods like PMF, NMF, and PCA.
Conversely, hard clustering methods, such as the most popu-
lar k-means clustering, assign each variable exclusively into
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one cluster. In atmospheric chemistry, one compound can
originate from several different sources, or a detected species
may consist of isomers produced from different chemical
processes. Therefore, from this perspective, assigning a vari-
able to multiple clusters with a quantified membership de-
gree is more rational than assigning variables to mutually ex-
clusive clusters. Second, FCM is more user-friendly, since
only the data matrix is needed as input, whereas additional
information is required for factor analysis methods, such as
the error matrix needed in PMF. Furthermore, receptor mod-
els like PMF assume that the factor profiles remain constant
over time and that the chemical species do not react with each
other during the sampling period (Chen et al., 2011; Reff et
al., 2007; Xie et al., 2022), which is not the case for chamber
measurements.

Using FCM, variables with similar time behaviors will be
grouped into the same cluster, and the centroid of the clus-
ter (cluster center) can be used as a surrogate for these vari-
ables. Therefore, the numerous species detected in a chem-
ical system can be compressed to a much smaller number
of clusters, each of which represents a typical chemical pro-
cess/source with unique time behavior. By analyzing these
cluster centers instead of the whole dataset, one can obtain
the chemical and kinetic properties of the investigated sys-
tem in a much easier way. The significant reduction in the
complexity of data analysis and the chemical and kinetic in-
formation derived from this method can help with a better
understanding of the chemical system of interest (Koss et al.,
2020). In addition, to evaluate its performance, we applied
FCM to a synthetic dataset derived from a box model with
an explicit mechanism. By exemplifying the functionality of
such a clustering method in analyzing CIMS data, we pro-
pose that FCM is a useful method that offers a new approach
to analyzing mass spectrometric data and to deriving useful
information on chemical and kinetic properties of products
that can help decipher the underlying reaction mechanism.

2 Methods

2.1 Data collection and processing

The experimental data used in this work were collected in
the atmospheric simulation chamber SAPHIR (Simulation
of Atmospheric PHotochemistry In a large Reaction Cham-
ber) at the Forschungszentrum Jülich, Germany, during the
ISOPNO3 campaign in 2018. The SAPHIR chamber is a
double-walled Teflon (PEP) cylinder, with an approximate
volume of 270 m3 (5 m in diameter; 20 m in length). It is
fixed by an aluminum frame with movable shutters that can
be opened or closed to simulate daytime or nighttime chem-
istry. Trace gases in the chamber can be well mixed within
2 min with the help of two continuously operated fans. Dur-
ing an experiment, the chamber is filled with synthetic air
and kept slightly overpressured (∼ 35 Pa) to prevent perme-

ation of outside air into the chamber. Due to small leakages
and instrument sampling consumption, there is a replenish-
ing flow into the chamber, which leads to a dilution rate of
4 % h−1–7 % h−1. More details about the chamber setup and
its performance can be found elsewhere (Rohrer et al., 2005).

The experiment selected here was conducted to character-
ize the gas phase chemistry of the NO3-initiated oxidation
of isoprene. O3 and NO2 were added in sequence to produce
NO3, followed by the addition of ∼ 10 ppbv of isoprene to
initiate the reaction. The injections were repeated four times
(only NO2 and O3 were added in the last injection) to build
up products and to facilitate later-generation oxidation. The
mixing ratios of O3 and NO2 in the chamber were approxi-
mately 100 and 25 ppbv, respectively, after the first injection,
as shown in Fig. S1 in the Supplement. A detailed descrip-
tion of the experimental procedure can be found elsewhere
(Wu et al., 2021).

During the campaign, a comprehensive set of instruments
was deployed to measure radicals and closed-shell prod-
ucts in both gas and particle phase, as described by Wu et
al. (2021). In this work, however, we focus on the measure-
ments acquired by a high-resolution time-of-flight chemical
ionization mass spectrometer (Aerodyne Research Inc.), us-
ing Br− as reagent ion, which detected the HO2 radical and
the gas phase products generated by the reaction of isoprene
and NO3. The mass spectrometer was operated in V mode
with a mass resolution of 3000–4000 (m/1m). A customized
inlet was designed to connect the CIMS directly to the cham-
ber to reduce losses of the HO2 radical and HOM in the sam-
pling line (Albrecht et al., 2019). More information about
settings and performance of the instrument can be found in
our previous study (Wu et al., 2021).

The raw mass spectrometric data were processed using the
Tofware toolkit (v. 2.5.11, Tofwerk AG and Aerodyne Re-
search Inc.) in Igor Pro (v.7.0.8, WaveMetrics), following
the routines described by Stark et al. (2015). High-resolution
peak fitting was conducted in the mass range of m/z 60–
600 to identify the chemical composition of detected ions.
For the high-resolution peak assignment, we fitted the ob-
served peaks using predefined instrument functions (includ-
ing peak shape, peak width as a function of m/z, and base-
line). If necessary, contributions of more than one compo-
nent were considered for the fit in order to reduce the residu-
als of the fitting. Once the peak numbers and peak positions
were fixed, the chemical formula (consisting of C, H, O, and
N atoms) of each peak was assigned manually by selecting
from a formula list generated by the software. During the
peak fitting, isotopes were constrained, and only plausible
formulas with relative m/z deviations smaller than 10 ppm
were considered. In addition, only molecule formulas with a
time behavior commensurable with expectations for the spe-
cific chemical system were assigned (Pullinen et al., 2020).
For example, it is illogical if large amounts of organonitrates
are observed under low-NOx conditions.
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Overall, around 160 ions were identified by the Br− CIMS.
The background signal of each ion was determined from
measurements prior to precursor injection and was subtracted
from the signal measured in the chamber. These ions consist
of species related to real isoprene oxidation products, as well
as other signals related to the ion source, internal standard,
and interferences from chamber and tubing. The product ions
are those produced by isoprene oxidation, and they should
have visible changes (either increase or decrease) when the
chemistry is initiated or modified. A simple way to sort the
product ions from other chemically irrelevant signals is to
examine the time evolution of each ion. By comparing the
signals before and after each injection, we can easily distin-
guish the product ions from others. Among all the identified
ions, a total of 91 ions were recognized as product signals.
Since we intend to investigate the underlying chemical re-
lationships of different products through their time behavior
and not the absolute concentration, normalized (to the sum of
total ion counts) signals were used for further analysis. Cal-
ibration procedures are described in more detail elsewhere
(Wu et al., 2021).

In addition to abovementioned chamber data, we use a
synthetic dataset from a box model with the default gas phase
reaction schemes of isoprene–NO3 taken from the Master
Chemical Mechanism (MCM) version 3.3.1 (Jenkin et al.,
2015). For the modeling, temperature, relative humidity, and
dilution rate were constrained using measured data. The ini-
tial concentrations of O3, NO2, and isoprene were added into
the model according to the experiment schedule. Overall,
the modeled concentrations of O3, NO2, NO3, and isoprene
match the measurements well (Fig. S2). The synthetic data
were used to learn about the principal behaviors of the time
series (of products) in a complex chemical system with an es-
tablished complex mechanism. A detailed description of the
isoprene–NO3 chemistry and evaluation of the model perfor-
mance are outside the scope of this work. An updated mech-
anism for isoprene oxidation by NO3 has been published re-
cently by Carlsson et al. (2023).

2.2 Fuzzy c-means clustering (FCM)

Clustering is one of the major dimension reduction tech-
niques besides factorization, which groups a set of ob-
jects into a certain number of clusters according to their
(dis)similarities, which are generally measured by a distance
metric, such that objects within each cluster are much closer
to each other than to those pertaining to other clusters (Hastie
et al., 2009). The notion of a fuzzy set, first proposed by
Zadeh (1965), gives an idea how to deal with data with indis-
tinct boundaries of clusters. Based on this concept, Bezdek et
al. (1984) developed the fuzzy c-means clustering algorithm.
In contrast to the hard clustering counterparts like k-means
and k-medoids clustering, FCM allows each object to belong
to multiple clusters with the membership degree measured
by a value varying from 0 to 1 (Bezdek et al., 1984). Conse-

quently, fuzzy clustering can deal with non-discrete data bet-
ter and thus is adopted here to analyze CIMS data obtained
from isoprene–NO3 oxidation.

Fuzzy c-means clustering is one of the best-known fuzzy
clustering algorithms by virtue of its simplicity, quick con-
vergence, and wide applicability (Ghosh and Dubey, 2013;
Ren et al., 2016; Yang, 1993). It is a distance-based cluster
assignment method, and its working principle is very sim-
ilar to that of the k-means algorithm. FCM is conducted
through an iterative process which attempts to group all ob-
jects within a dataset into a predefined number of clusters (c)
with a degree of membership and simultaneously minimize
the sum of squared distance between the member objects and
the cluster centroids, as defined in Eq. (1):

Jm (V,U)=
c∑
i=1

n∑
j=1

umijd
2
ij , (1)

where xj is the object j in the dataset; uij is the membership
degree of xj to the ith cluster, which is enforced to satisfy

uij ∈ [0,1] and
c∑
i=1
uij = 1; dij denotes the distance between

object xj and the ith cluster center vi ; and m is the fuzzifier
(m ∈ [1,∞)) that controls the fuzziness level of the cluster-
ing.

Starting with an initial fuzzy partition matrix (U0), either
provided or randomly produced, the cluster centers (V) are
calculated by

vi =

n∑
j=1

umij · xj

n∑
j=1

umij

(2)

for all i (1≤ i ≤ c), and afterwards, the membership degrees
of each object are updated by

uij =

{∑c

k=1

(
dij

dkj

) 2
(m−1)

}−1

. (3)

The algorithm proceeds by repeating the above process, and
every iteration generates two new sets of V and U. The
iteration ends when the algorithm converges (no signifi-
cant change with further iteration, namely ‖U (t+1)

−U (t)‖ =

maxi,j {|u
(t+1)
ij −utij |}< ε) or the predefined maximum num-

ber of iterations is reached. In this study, the FCM algo-
rithm was implemented using the open-source scikit-fuzzy
(v 0.4.2) package (https://pypi.org/project/scikit-fuzzy/, last
access: 30 December, 2023) in Python.

2.3 Clustering parameters

As noted in Sect. 2.2, several parameters need to be specified
ahead of executing FCM, including the number of clusters,
the distance metric to measure the (dis)similarity of objects,

Atmos. Meas. Tech., 17, 1811–1835, 2024 https://doi.org/10.5194/amt-17-1811-2024

https://pypi.org/project/scikit-fuzzy/


R. Wu et al.: Application of fuzzy c-means clustering for analysis of chemical ionization mass spectra 1815

the value of the fuzzifier, the initial fuzzy partition matrix, the
maximum number of iterations, and the stopping criterion.
All these parameters can affect the partition outcomes, and
among them, the most important ones are the cluster num-
ber, the distance metric, and the fuzziness index. A brief in-
troduction to these parameters and the methods to determine
their optimal values are given in the following sections.

2.3.1 Number of clusters (c)

Figuring out the optimal number of clusters (c) is one of the
challenges in cluster analysis. The optimal number of clus-
ters is related to the structure of the investigated dataset, and
it has a critical impact on clustering outcomes. To our knowl-
edge, none of the existing methods are feasible for the deter-
mination of the optimal cluster number in all possible cases
and applications.

The frequently used method to address this problem is to
set the search range of c, conducting clustering to gener-
ate solutions according to the predefined number of clusters,
and then choosing one or several clustering validity indices
(CVIs) to evaluate the outcomes. By comparing the values of
the CVI(s) of alternative clustering solutions obtained with
different numbers of clusters, the appropriate c could be de-
termined accordingly.

In this case, a validity index is used as a fitness func-
tion to evaluate the quality of the clustering results in terms
of the intra-cluster compactness and inter-cluster separation.
In addition, CVIs play an extremely important role in au-
tomatically determining the appropriate number of clusters.
Plenty of CVIs have been proposed in the past. Generally,
these CVIs can be divided into three categories. The first
type of CVI only considers the property of the member-
ship degree in the calculation, such as the partition coeffi-
cient (Bezdek and Pal, 1998) and partition entropy (Simovici
and Jaroszewicz, 2002), which are also the earliest valid-
ity indices for fuzzy clustering. The main disadvantage of
such CVIs is that they lack a direct connection to the ge-
ometry structure of the data. Considering this, another type
of CVI, such as the Fukuyama–Sugeno index (Fukuyama
and Sugeno, 1989), Xie–Beni index (Xie and Beni, 1991),
Kwon index (Kwon, 1998) and Bouguessa–Wang–Sun index
(Bouguessa et al., 2006), was proposed, which takes both
membership degree and the geometry structure of dataset
into consideration. Given their advantages over those in the
first category, we only chose CVIs belonging to the second
category in this study. Different from the first two types of
CVIs, the third type of CVI makes use of the concept of
hypervolume and density for evaluation. The fuzzy hyper-
volume and the average partition density (Gath and Geva,
1989) are the most popular two indices in this category. In
this study, the second type of CVI was chosen for the analy-
sis, considering its applicability to our dataset.

Although there are various types of CVIs, no CVI can
always outperform others due to their own limitations and

the complexity of different datasets (Kryszczuk and Hur-
ley, 2010; Wang et al., 2021). Generally, each CVI only
attaches importance to a specific aspect or limited aspects
of a clustering solution, while other aspects can be inade-
quately represented or even overlooked (Kryszczuk and Hur-
ley, 2010). In order to overcome or at least diminish the im-
pact from this result, we adopt multiple CVIs for the evalu-
ation in this study. Among all the alternatives, the follow-
ing six CVIs were chosen, including the sum of within-
cluster variance (VSWCV; elbow method), Fukuyama–Sugeno
index (VFS), Xie–Beni index (VXB), Kwon index (VKwon),
Bouguessa–Wang–Sun index (VBWS), and fuzzy silhouette
(FS; Campello and Hruschka, 2006). They are the most fre-
quently used CVIs in the literature and are reported to per-
form well (Bouguessa and Wang, 2004; Campello and Hr-
uschka, 2006; Rawashdeh and Ralescu, 2012; Zhou et al.,
2014). More information about these CVIs can be found in
Sect. S1 in the Supplement.

With respect to the search range of c, a rule of thumb sug-
gests that the maximum c should not exceed

√
n (n here is

the number of elements in a dataset) (Ren et al., 2016; Yu
and Cheng, 2002). Therefore, the search range of c could
be set to [2,

√
n+ 1] in general. To obtain a concrete result,

for each c in this range, the FCM algorithm is performed
50 times with the default settings (m= 2; metric=Euclidean
distance; ε = 1×10−5). The selected CVIs are calculated for
each repetition, and the averages of results from 50 repeti-
tions are used for further analysis. By evaluating the varia-
tions in CVIs with different c values, the expected optimal
number of clusters is determined.

2.3.2 Distance metric

The selection of an appropriate distance or (dis)similarity
metric for clustering is also challenging, since it not only
relates to the inherent structure of the investigated dataset
but also depends on the analysis purpose. Various distance
metrics have been proposed for measuring the (dis)similarity
between each pair of objects, among which the Euclidean
distance is the most frequently used metric. As defined by
Eq. (4), the Euclidean distance corresponds to the true geo-
metrical distance between two objects. Most of the previous
studies adopted this metric by default for FCM (Haqiqi and
Kurniawan, 2015; Nishom, 2019; Singh et al., 2013). How-
ever, Euclidean distance may not always be appropriate. The
Euclidean distance assumes that each object is equally im-
portant during clustering, namely that the data are spherically
distributed, so it is sensitive to outliers (Arora et al., 2019;
Dik et al., 2014). If the investigated data are not spherically
distributed, then using Euclidean distance metric for cluster-
ing could potentially lead to unsatisfactory outcomes (Arora
et al., 2019; Gueorguieva et al., 2017; Vélez-Falconí et al.,
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2020).

d (x,y)=

√√√√ n∑
i=1

(xi − yi)
2, (4)

where x and y are n-dimensional objects, with xi and yi de-
noting the ith dimension of x and y, and x and y are the
means of x and y in all dimensions, respectively.

In addition to Euclidean distance, other distance metrics,
such as the Manhattan distance, the Eisen cosine distance,
and the Pearson correlation distance, are used to measure
(dis)similarities (Äijälä et al., 2017; Koss et al., 2020). The
Manhattan distance is also named the city block distance or
taxicab distance. It computes the sum of the absolute differ-
ences between all sets of coordinates of pairwise objects, fol-
lowing Eq. (5), which is reported to be less sensitive to noise
(Dik et al., 2014). Another disadvantage of Manhattan dis-
tance is that the results would be different if the coordinate
system were rotated (Vélez-Falconí et al., 2020). However, if
the attributes are discrete or binary, then the Manhattan dis-
tance is more effective than other metrics.

d (x,y)=

n∑
i=1

|xi − yi | , (5)

where x and y are n-dimensional objects, with xi and yi de-
noting the ith dimension of x and y, and x and y are the
means of x and y in all dimensions, respectively.

The Eisen cosine and the Pearson correlation distance are
both correlation-based distance metrics. The Pearson corre-
lation distance measures the linear dependence of two ob-
jects, while the cosine distance uses the cosine angle of two
objects to measure their (dis)similarity. They are calculated
by subtracting the correlation coefficient from 1, as defined
by Eqs. (6) and (7), and therefore, they are invariant to the
magnitudes of variables. Two objects are considered sim-
ilar if they are highly correlated in terms of correlation-
based distances, even though they may be far away from
each other in the Euclidean space. This is particularly benefi-
cial when dealing with mass spectrometric data (mass pro-
files). The cosine distance is commonly used to measure
the (dis)similarity of aerosol source profiles (Äijälä et al.,
2017; Bozzetti et al., 2017; Heikkinen et al., 2021; Ulbrich
et al., 2009). It should be noted that even though correlation-
based metrics are called “distance”, strictly speaking, they
are (dis)similarity metrics rather than distance metrics be-
cause they no longer satisfy the triangle inequality (Kaufman
and Rousseeuw, 2009).

d (x,y)= 1−

∣∣∣∣ n∑
i=1
xiyi

∣∣∣∣√
n∑
i=1
x2
i

n∑
i=1
y2
i

(6)

d (x,y)= 1−

n∑
i=1
(xi − x)(yi − y)√(

n∑
i=1
(xi − x)

2
)√(

n∑
i=1
(yi − y)

2
) , (7)

where x and y are n-dimensional objects, with xi and yi de-
noting the ith dimension of x and y, and x and y are the
means of x and y in all dimensions, respectively.

Since the Euclidean distance can be severely affected by
the scale of objects, which means that the (dis)similarity be-
tween objects measured by Euclidean distance might become
skewed if input variables are in different scales or units.
Therefore, it is highly recommended to normalize the data
before clustering if Euclidean distance is chosen as a met-
ric of (dis)similarity. In this study, we intend to compare the
time behaviors of different variables directly, regardless of
their differences in absolute intensity or detection sensitiv-
ity. Therefore, we normalize the time series data using the
Euclidean norm before clustering to eliminate the effects of
different branching ratios and sensitivity of species and to
facilitate the comparison of different time patterns.

Since it is difficult to know the inherent structure of high-
dimensional data, we also make use of CVIs to figure out the
suitable distance metric for the FCM applied to our dataset.
By running the FCM with the four different distance metrics
mentioned above and then calculating the six CVIs accord-
ingly while retaining all other parameters, we get four par-
allel results for each CVI. The “optimal” distance metric is
determined by comparing these outcomes. Again, for each
distance metric under scrutiny, the FCM algorithm was re-
peated 50 times to ensure reliable outcomes. The averages of
results from these runs are then utilized for subsequent anal-
ysis.

2.3.3 Value of fuzzifier

The fuzzifier (m,m ∈ [1,∞)) defines the fuzziness degree of
the clustering. A proper value of m can suppress the noise
and smooth the membership function (Huang et al., 2012).
When m= 1, FCM is equivalent to the k-means algorithm.
The closer m is to 1, the crisper the resulting solution be-
comes. On the contrary, as m becomes larger, the cluster-
ing outcomes become fuzzier. When m approaches infinity,
different cluster centers and the centroid of all objects will
coincide, and thereby, all objects have the identical mem-
bership degree to each cluster, namely uij = 1/c. Theoreti-
cally, the larger the m, the fuzzier the clustering outcomes
will be (Hammah and Curran, 1998). Therefore,m should be
selected to fulfill the request of maximum recognition of a
partition with a fuzziness as small as possible.

According to previous studies, the optimal value of m
varies in the range of 1 to 5 (Hathaway and Bezdek, 2001;
Huang et al., 2012; Ozkan and Turksen, 2007; Pal and
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Bezdek, 1995; Wu, 2012), and it is often set to be 2, which
is a default value recommended by Pal and Bezdek (1995).
However, it is reported that in many cases the true value ofm
deviates from this recommended value, which is believed to
be biased by the data structure of interest (Huang et al., 2012;
Hwang and Rhee, 2007; Schwämmle and Jensen, 2010; Yu et
al., 2004; Zhou et al., 2014). A few methods have been pro-
posed to determine the optimal value or range of the fuzzifier
(Gao et al., 2000; Huang et al., 2012; Ozkan and Turksen,
2007; Schwämmle and Jensen, 2010). However, they are ei-
ther empirical or only applicable for limited cases. It is still a
problem to determine the appropriate fuzzifier value in FCM.

In this study, we adopted the method proposed by Gao et
al. (2000) to determine the optimal fuzzifier valuem∗. Based
on their method, a fuzzy objective function (µG) and a fuzzy
constraint function (µC) have been defined, and the intersec-
tion of µG and µC is supposed to be the value of m∗, as de-
fined by Eq. (8):

m∗ = {max {min {µG (m),µC (m)}}} , (8)

where µG is a fuzzy objective function, as calculated by
Eq. (9),

µG (m)= exp
{
−α×

Jm (U,V )

(Jm (U,V ))

}
, (9)

where α is a constant larger than 1 and generally set to be 1.5
in practice, and Jm(U,V ) is the objective function of fuzzy
clustering as shown in Eq. (1).

And µC is a fuzzy constraint function as defined by

µC (m)=

{
1+β ×

(
Hm (U,c)

(Hm (U,c))

)}−1

, (10)

where β is a constant that is usually set to be 10 in practice,
and Hm(U,c) is the fuzzy partition entropy calculated by

Hm (U,c)=−
1
n

c∑
i=1

n∑
j=1

uij · loga
(
uij
)
, (11)

where uij is the membership degree of object j to the ith
cluster, and a is a constant ∈ (1,∞), which is usually set to
the mathematical constant.

Based on the fuzzy decision-making method, we search
for m∗ in the range of [1.1,9] with an increment of 0.1. The
number of clusters varies between 2 and 10, and the ini-
tial fuzzy partition matrix (U0) is randomly created. Other
parameters are fixed. For each setting, the algorithm is run
50 times for dependable results. By evaluating the variations
inm∗ with c and the initial values of the membership degree,
the optimal value of m is determined.

2.3.4 Other parameters and constraints

We find that when using a small number of iterations, the
FCM does not always return the same result for each run

and sometimes does not even return a valid solution. This
is probably because the limit of iterations is reached before
the algorithm converges. To avoid this, the maximum number
of iterations was set to be 10 000 in this study. In our case,
however, hundreds of iterations can already ensure a valid
solution and reproducible results.

The initial fuzzy partition matrix was randomly created by
the algorithm, and 50 repetitions were used to evaluate the
influence of U0 on clustering outcomes. As for the stop cri-
terion, the algorithm can offer reproducible results when this
value is set to 1× 10−3 or smaller. For the calculation of re-
sults selected for analysis in this study, the stop criterion was
set to 1× 10−5.

The clustering results of FCM are not as clear as that of k-
means clustering, in which each object is forced to one clus-
ter exclusively. Consequently, it is important to distinguish
an invalid cluster and thereby to identify an invalid solution.
According to the definition of the fuzzy clustering algorithm(

c∑
i=1
uij = 1

)
, each object can only belong to one cluster

with a membership degree larger than 0.5. Therefore, we de-
fine a cluster with at least one object having the membership
degree larger than 0.5 as a valid cluster and a solution with-
out any invalid clusters as a valid solution. In this work, only
valid solutions were considered for further analysis.

2.4 Gamma kinetics parameterization (GKP)

The mass spectrometric data from chamber oxidation experi-
ments not only contain chemical composition information of
the products but also a great deal of kinetic clues. The kinetic
information, mainly the reaction rate constant and the gener-
ation number (the oxidation steps needed to produce the tar-
get compound) underlying in the time series of each species,
is useful for mechanism development. However, it is chal-
lenging to extract kinetic information from time series data,
and there is only a limited number of studies which include
the determination of kinetic parameters based on gas phase
measurements (Koss et al., 2020; Zaytsev et al., 2019). In
this study, we try to determine the kinetic parameters based
on time series data using the gamma kinetics parameteriza-
tion (GKP). The GKP model describes the multistep reaction
system as a linear system with first-order reactions, and it
was originally used in biological and chemical fields (Zhou
and Zhuang, 2007). The model returns the so-called effec-
tive rate constant (overall rate of reactions in the pathway)
and the generation number that are implied by the time be-
haviors of individual species (Koss et al., 2020; Zhou and
Zhuang, 2007). The GKP model was introduced for atmo-
spheric chemistry studies by Koss et al. (2020) and has been
successfully applied to parameterize the kinetics of gas phase
products formed from toluene and 1,2,4-trimethylbenzene
oxidation in chamber studies (Koss et al., 2020; Zaytsev et
al., 2019).
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According to the GKP method, the NO3-initiated isoprene
oxidation system can be described by Eq. (12):

C5H8
k0·[NO3]
−→ P1

k1·[NO3]
−→ P2

k2·[NO3]
−→ ·· ·Pm

km·[NO3]
−→

Pm+1
km+1·[NO3]
−→ ·· ·, (12)

where km is the rate constant of product Pm reacting with
the NO3 radical, and the subscript m denotes the number of
oxidation steps (by NO3) needed to form product Pm.

Typically, the rate constants for different reaction steps are
disparate, and there is no simple analytical solution for the
differential equations that describe Eq. (12). However, if as-
suming a single rate coefficient for all steps in a sequence,
the differential equations in Eq. (12) become mathematically
solvable. Additionally, the bimolecular reactions between Pm
and NO3 must be reduced to pseudo-first-order reactions by
replacing the reaction time t with the integrated NO3 expo-
sure

∫ t
0 [NO3]dt . The time series of Pm can then be described

by Eq. (13) (Koss et al., 2020):

[Xm](t)= a(k [NO3]1t)mGe−k[NO3]1t , (13)

where a is a scaling factor that relates to the product yield, as
well as to the instrument sensitivity (Koss et al., 2020); k is
a second-order rate constant (cm3 molec.−1 s−1); and mG is
the generation number.

3 Results and discussion

3.1 Evaluation of clustering parameters

As mentioned earlier, one of the major hurdles in using FCM
is the necessity for several predefined parameters. Inadequate
selection of these parameters can result in unreasonable clus-
tering outcomes. The number of clusters, the distance met-
ric, and the fuzziness value are the most important parame-
ters that affect the partition. Therefore, in this section we will
have a close look at these three parameters and evaluate their
effects on the quality of clustering based on the methods in-
troduced in Sect. 2.3. The optimal values of these parameters
are then determined for the analysis of our data.

3.1.1 Number of clusters (c)

To explore the effect of cluster number on partition results,
we applied the FCM algorithm to the chamber data with c
varying from 2 to 10. For each c value in this range, the al-
gorithm was run 50 times, and the selected CVIs were cal-
culated accordingly for each repetition. Despite some varia-
tions in specific CVIs among different repetitions, the trends
of CVIs with changing cluster numbers and the optimal num-
ber of clusters indicated by each CVI are generally the same
for each repetition.

Figure 1 depicts different CVIs as a function of number of
clusters, based on FCM results from 50 repetitions. For the

sum of within-cluster variance (VSWCV), the inflection point
of the curve (so-called elbow point) indicates the best value
of c, which is, in our case, five (Fig. 1a). The Fukuyama–
Sugeno index (VFS) uses the discrepancy between the com-
pactness and separation of clusters to measure the quality of a
clustering solution (as defined by Eq. S2), and thus a smaller
value of VFS indicates a better partition (Fukuyama, 1989).
In our case, the eight-cluster solution is the best option in
terms of VFS (Fig. 1b). The Xie–Beni index (VXB) is defined
as the ratio of compactness and separation (Eq. S6), where
the within-cluster compactness is measured by the sum of the
within-cluster variance, while the between-cluster separation
is measured by the minimum squared distance between clus-
ter centers. Generally, the smaller VXB, the better a clustering
solution can be, since, under such conditions, objects within
one cluster are much closer to each other but further away
from those in other clusters (Xie and Beni, 1991). According
to Fig. 1c, c = 2 is the best option in terms of VXB. However,
when c = 2, the VSWCV value is relatively large (Fig. 1a),
which is not expected for a good clustering solution. When
c = 5, the VXB reaches a local minimum, and the VSWCV
curve also gets the maximum curvature at this point, indi-
cating that the optimal cluster number might indeed be five.
The Kwon index (VKwon) is a modification of VXB, which ad-
ditionally introduces a penalty function to measure the clus-
ter compactness together with the sum of within-cluster vari-
ance. As defined by Eq. (S8), the penalty function measures
the average squared distance between cluster centers and the
overall mean of the dataset. By introducing this factor, VKwon
eliminates the monotonous decreasing tendency when c ap-
proaches the number of objects in the dataset (Kwon et al.,
2021). Like VXB, a smaller VKwon indicates a better partition,
and the results in Fig. 2d show that the local optimal value of
c is five as well.

In addition, the Bouguessa–Wang–Sun index (VBWS) and
the fuzzy silhouette values (FS) were calculated for each
FCM run. These two indices use slightly different definitions
of compactness and separation to measure the quality of clus-
tering. The VBWS uses the fuzzy covariance matrix as a mea-
sure of compactness, and thus VBWS takes the cluster shape,
density, and orientation into account and has been proven to
work well for largely overlapping clusters (Bouguessa et al.,
2006; Bouguessa and Wang, 2004). In general, the larger the
VBWS, the better a fuzzy partition will be, and hence, the op-
timal number of clusters for our data is three (and four) based
on VBWS (Fig. 1e). Meanwhile, as depicted in Fig. 1e, VBWS
shows that there is a local optimum at c = 7, though it has
a higher uncertainty at this point. FS is an extension of the
concept of the crisp silhouette (CS) that was originally de-
veloped to assess non-fuzzy clustering (Rousseeuw, 1987).
It is more appealing than CS for fuzzy clustering, since it
makes explicit use of the fuzzy partition matrix. In FS, ob-
jects in the near-vicinity of cluster centers are given more im-
portance than those located in the boundary region (overlap).
Consequently, it performs better than CS for highly overlap-
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Figure 1. Values of selected clustering validity indices VSWCV (a),
VFS (b), VXB (c), VKwon (d), VBWS (e), and FS (f) as a function
of the number of clusters from 2 to 10. The averages of the results
from 50 repetitions are shown in the plot, and the error bars show
the standard deviations. Blue points denote the optimal values of c,
according to each CVI, and the solution selected for further analysis
is marked by red circles.

Figure 2. Values of selected clustering validity indices VFS (a),
VKwon (b), VBWS (c), and FS (d) as a function of the number of
clusters. Points in different colors are the results obtained with dif-
ferent distance or similarity metrics. The averages of results from
50 repetitions are shown in the plot, and the error bars denote the
standard deviations. Euclidean distance was used in the calculation
of CVIs.

ping data (Campello and Hruschka, 2006). In principle, a
larger overall FS suggests a better partition. Therefore, the
best number of clusters determined by FS is two (Fig. 1f).
Nevertheless, when c = 2, the sum of the within-cluster vari-
ance for this solution is still quite high (Fig. 1a), which is not
expected for a good partition. It seems more sensible to set
the number of clusters to five, as this is where FS reaches its

local maximum and VSWCV is significantly reduced and has
the maximum curvature. It is worth noting that the silhouette
score can not only be used to assess the overall quality of par-
tition but also to evaluate the quality of individual clusters
and objects. The silhouette score of an object ranges from
−1 to +1, and a value close to +1 indicates that the object is
correctly assigned. On the contrary, a silhouette value of −1
implies that the object is misclustered and should be assigned
to a neighboring cluster. A silhouette value approaching zero
suggests that the object is in the overlapping region of clus-
ters, and thus the algorithm is unable to assign it to one clus-
ter (Campello and Hruschka, 2006; Rawashdeh and Ralescu,
2012; Subbalakshmi et al., 2015).

In summary, different CVIs sometimes suggest a different
optimal cluster number. However, by making use of informa-
tion from multiple CVIs, the appropriate number of clusters
in this study is determined to be five. It should be noted that
the main topic of this study is to offer a proof of concept for
the application of FCM in deconvolution of mass spectro-
metric data. Therefore, the depth of the discussion about the
determination of the correct cluster number in this section
must suffice for our purposes. The solution of c = 5 is se-
lected here as one example for the chemical characterization
and kinetic parameterization in the following sections. In ad-
dition, It is worth mentioning that the multiple CVI method
presented in this section provides a way to automatically de-
termine the optimal number of clusters for FCM.

3.1.2 Distance metric

Figure 2 shows four selected CVIs as a function of c with
different distance metrics. As mentioned before, smaller VFS
and VKwon indicate better partitioning, whereas for VBWS and
FS, the opposite applies. In terms of VFS, it indicates that
the cosine distance is more suitable for FCM in our case, al-
though the impacts of different distance metrics on the clus-
tering outcomes are minimal (Fig. 2a). The VBWS values also
suggest that the cosine distance is more appropriate for FCM
regarding the data used in this study. As for VKwon and FS,
there are no significant differences in the quality of partition-
ing when the number of clusters is small (e.g., c = 2, 3, 4),
despite different distance metrics, as shown in Fig. 2b and d.
However, the discrepancies become more pronounced with
increasing c. In general, the Euclidean distance is more ap-
pealing for our data in terms of VKwon and FS. To conclude,
among all the examined distance metrics, the Euclidean and
cosine distance provided a better performance in fuzzy clus-
tering regarding the data used in this study, and the Euclidean
distance was employed as the (dis)similarity metric in FCM
for further analysis in this study. Additionally, the Euclidean
distance was used in the calculation of various CVIs.
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3.1.3 Fuzzifier value

Based on the fuzzy decision-making method introduced in
Sect. 2.3.3, we searchedm∗ in the range of [1.1,9]with an in-
crement of 0.1. The intersection of the fuzzy objective func-
tion, µG, and the fuzzy constraint, µC, as shown in Fig. 3a,
indicates the optimal value of the fuzzifier for each run. To
investigate whether m∗ depends on c and U0, the number of
clusters was set to vary from 2 to 10. For each c in this range,
FCM was performed 50 times with a randomly created initial
fuzzy partition matrix.

As shown in Fig. 3b, we do observe a relationship between
m∗ and c/U0. For smaller cluster numbers, e.g., c = 2 or 3,
the determined optimal values of m are slightly larger than
those obtained with larger c (c ≥ 4). In addition, the results
obtained with a smaller c are more robust. Different repeti-
tions always return identical m∗ values, suggesting that the
initial fuzzy partition matrix does not affect m∗ when the
number of clusters is smaller than four. However, when c
increases to four or even larger, then there is a variation in
m∗ among different repetitions, indicating that U0 starts to
affect the determined value of m∗, even though the variation
in the value of m∗ is small (between 1.42 and 1.52). One
plausible explanation for the dependency of m∗ on c/U0 is
shown as follows. When c is small, there are more overlaps
between clusters, and thus m∗ can be relatively large. When
c becomes larger, the assignment becomes stricter, and the
overlaps between clusters are reduced. Therefore, m∗ gets
smaller, and the clustering outcomes become more specific,
which are likely to be more sensitive to local minima. Since
the local minima largely depend on U0, consequently, the re-
sults become more sensitive to U0.

Figure 3c displays the distribution ofm∗ obtained from 50
repetitions with c = 5. The histograms of the optimal value
of m with other numbers of clusters are provided in the Sup-
plement (Fig. S3). For c = 5, the results suggest that the op-
timal value of m is 1.53 in most cases. Therefore, a value of
m= 1.53 is used for the FCM in this study.

Overall, the number of clusters and the initial membership
degree matrix do affect the optimal value of the fuzzifier that
was determined based on the fuzzy decision-making method
in this study, but the influence is not very strong. The values
of m∗ determined for our dataset vary around 1.5, despite
different c and U0, indicating that the FCM results in this
study are relatively crisp.

3.2 FCM clustering results

3.2.1 FCM of chamber data

Using the appropriate clustering parameters determined in
Sect. 2.3, we performed the transition from FCM to cham-
ber data with the number of clusters varying from 2 to 10.
For each c, the algorithm was run 50 times. According to the
results of these 50 repetitions, two- and three-cluster solu-

tions seem very robust. The repetitions always give identi-
cal outcomes, despite different initial partition matrices. This
is also true for the five-cluster case. However, the influence
of the initial position of the cluster centers on the partition
increases when the number of clusters is further increased,
but in all cases, more than half of the repetitions return the
same results; thus, we select the most frequent outcomes as
the final solutions for each case. Here we will not describe
all solutions in detail but, instead, try to formulate a synthe-
sis of the results and present the common features shared by
solutions with different numbers of clusters.

Figure 4 shows the FCM results with two to five clus-
ters for the chamber data obtained during the isoprene–
NO3 experiment. Additional solutions with 6–10 clusters are
shown in the Supplement (Fig. S4). Two distinct clusters
emerge from the data in the two-cluster solution. Accord-
ing to their relative formation rates, cluster 1 is regarded as
first-generation cluster, since species belonging to this clus-
ter show a pronounced signal increase after the addition of
the reactants, while cluster 2 behaves more like a second- or
later-generation product, with its overall formation rate be-
ing much smaller than that of cluster 1. In addition to the
time patterns, the mass profiles of cluster 1 and cluster 2 are
clearly different (Fig. 4b).

When the cluster number is increased to three for both the
time pattern and the mass profile of cluster 1, it almost re-
mains unchanged compared to those in the two-cluster case.
It seems that mainly the former cluster 2 is separated into
two new clusters (clusters 2 and 3) with different formation
rates for each. Cluster 2 is regarded as a representative of the
second-generation processes, and cluster 3 represents third-
or later-generation product, since it exhibits a smaller for-
mation rate compared to cluster 2. However, there are fewer
high-affiliation members (with a membership degree over
0.5) in cluster 1 in the three-cluster solution, indicating that
at least some of the former contributors of this cluster have
been moved, most likely to the new cluster 2. The mass pro-
files of cluster 2 and cluster 3 display quite distinct features,
as shown in Fig. 4b, but the mass profiles of cluster 2 in both
the two- and the three-cluster solution match to a large ex-
tent, even though their time patterns are somewhat different.

As shown in Fig. 4b, part of the species from cluster 1
in the three-cluster solution is separated out to a new clus-
ter (cluster 2 in four-cluster solution) when increasing the
number of clusters from 3 to 4. The newly formed clus-
ter shares the same fingerprint molecules, i.e., C5H9NO5
and C5H9NO6 (corresponding to species nos. 34 and 38 in
Fig. 4b), in the mass profile with cluster 1 in three-cluster
case. This migrates the former cluster 2 into cluster 3 and
cluster 3 into cluster 4, with some slight alterations in their
time patterns and mass profiles. The time series of the new
cluster 2 resembles that of cluster 1 but with smaller forma-
tion rates. In general, the member traces of different clusters
seem to converge towards the time traces of the cluster cen-
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Figure 3. Determining the optimal value of the fuzzifier (m∗) in FCM. In panel (a), the intersection (red point) of the fuzzy objective function
(µG) and constraint (µC) is determined asm∗. Panel (b) depicts the relationship betweenm∗, the number of clusters (c), and the initial fuzzy
partition matrix (U0). Panel (c) shows the frequency distribution of m∗ for 50 repetitions with c = 5 (determined as the optimal number of
clusters in this study).

Figure 4. Results of fuzzy c-means clustering for chamber data with cluster numbers between two and five. Time series (a) and mass
profiles (b) of clusters for each solution (in row). The time series of cluster centers are shown as thick colored solid lines, and the time
series of species with the membership degree larger than 0.5 to the cluster are illustrated as thin gray lines. The species number in panel (b)
corresponds to species listed in Fig. S7 (in order of molecular mass).

ters, indicating that the system approaches the correct num-
ber of clusters.

When increasing the number of clusters from four to five,
a new, distinct cluster (cluster 5) emerges, which has very
small production in the early reaction stage, and its time trace

shows that members in this cluster were destroyed signifi-
cantly when there was abundant NO3 in the system (step IV
in Fig. S1). This specific character in time seems to already
evolve in cluster 4 in the four-cluster solution. The mass pro-
files of the first four clusters of the five-cluster solution are

https://doi.org/10.5194/amt-17-1811-2024 Atmos. Meas. Tech., 17, 1811–1835, 2024



1822 R. Wu et al.: Application of fuzzy c-means clustering for analysis of chemical ionization mass spectra

very similar to those of the four-cluster case, but the mass
profile of cluster 5 shows distinct differences from that of the
others. It is important to mention that these five clusters now
also effectively capture the loss rates over a timescale larger
than 13 h and that most members in these clusters are well
represented by their respective cluster centers.

When the number of clusters is further increased, more de-
tailed and complicated clustering outcomes emerge, which is
impelled by different formation and/or destruction pathways
of species (Fig. S4). However, the differences between the
new and existing clusters become smaller. Since the major
objective of this study is to demonstrate the applicability of
FCM in analyzing mass spectrometric data, we will not dis-
cuss the detailed interpretation of these solutions here.

To better understand the chemical composition of clusters,
the bulk chemical properties like the hydrogen-to-carbon ra-
tio (H : C), oxygen-to-carbon ratio (O : C), and average car-
bon oxidation state (OSC) of different clusters were calcu-
lated and compared. The OSC of each cluster was calculated
following the method proposed by Kroll et al. (2011), in
which all the N atoms of N-containing compounds were as-
sumed to be present in nitrate groups (and thus OSN =+5),
as described in our previous study (Wu et al., 2021). Figure 5
shows the distribution of clusters in the OSC vs. nC space for
solutions with two to five clusters. Additional results for so-
lutions with 6 to 10 clusters can be found in the Supplement
(Fig. S5). The contribution of an individual species to a clus-
ter is weighted by its nominal mass and signal intensity in the
cluster profile. Regardless of the number of clusters, differ-
ent solutions cover similar chemical composition ranges in
terms of average OSC and nC. However, there are discrepan-
cies in detail. For example, the OSC of cluster 5 in the five-
cluster solution slightly deviates from the trend that the other
four clusters follow. A similar behavior is observed for clus-
ter 1 in the six-cluster solution. This indicates that increas-
ing the number of clusters could help to find new groups of
species with distinct chemical compositions. However, fur-
ther increasing the number of clusters to seven or more clus-
ters does not yield new clusters with significantly different
chemical composition, implying that c = 5 or c = 6 is the ap-
propriate number of clusters in terms of separation by chem-
ical composition. It is also shown in Fig. 5 that different clus-
ters are well separated in the OSC vs. nC space, despite some
overlaps, indicating that they have distinct chemical compo-
sitions. For instance, the two early-generation clusters, clus-
ter 1 and cluster 2 in the four-cluster solution, are differenti-
ated from each other by their chemical properties.

In general, the early-generation clusters with a lower ox-
idation degree fall in the corner of the plot with smaller
OSC but larger nC, while the later-generation clusters with a
higher oxidation degree move towards the corner with larger
OSC but smaller nC. This indicates that the later-generation
products detected in the gas phase in this study were formed
through further oxidation of early-generation species and
that they underwent more fragmentation during oxidation. Of

Figure 5. Average carbon oxidation state (OSC) of the obtained
FCM clusters from chamber data as a function of number of car-
bon atoms (nC). Panels (a) to (d) show results for solutions with
two to five clusters, respectively. Cluster centers are depicted by
circles in different colors. The color scheme follows that in Fig. 4.
The marker area of clusters is proportional to the sum of average
signal intensity of all species in the cluster weighted by their mem-
bership degrees. Closed-shell products detected by Br− CIMS are
shown as gray hexagons, and the marker area is proportional to the
average intensity of species over the whole experiment.

course, it is very likely that there are later-generation prod-
ucts with larger nC. However, as they become highly func-
tionalized through multiple oxidation steps, they would have
a very or extremely low volatility and thus mostly exist in the
particle phase and be undetectable in the gas phase.

3.2.2 FCM of model data

As mentioned earlier, we also applied FCM to data ob-
tained from a box model, with the default gas phase reaction
schemes for isoprene–NO3 taken from MCM v3.3.1 (Jenkin
et al., 2015). For consistency, only closed-shell products
from isoprene oxidation in MCM were taken for the clus-
tering. Since the reaction scheme of isoprene with NO3 in
the MCM mechanism is semi-explicit, the clustering results
of modeled data provide a way to evaluate the applicability
of fuzzy clustering in analyzing time series data. In turn, by
comparing the cluster centers derived from model data with
those derived from mass spectrometric data, one can check if
the model can reproduce the measurements well and thus in-
vestigate the representativeness of oxidation mechanism cou-
pled in the model.

Figure 6 shows the results of FCM applied to model data,
again with the number of clusters varying from two to five.
It is clearly shown that different species are sorted according
to their patterns of time behaviors and that different clusters
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Figure 6. Results of FCM for model data with the number of clus-
ters varying from two to five. Each row represents one solution, with
the time series of cluster centers shown in solid thick colored lines,
and the species with the membership degree larger than 0.5 to the
cluster illustrated as solid thin gray lines.

represent multi-generation products. Taking the two-cluster
solution as an example, the signals of most species in clus-
ter 1 evidently increase as soon as the reaction is initiated,
while those in cluster 2 grow considerably slow, indicating
that cluster 1 is a surrogate of early-generation products,
whereas cluster 2 corresponds to later-generation products.
This is very similar to what we observe from the real mea-
surements, even though the time behavior derived from those
two cases is not the same. However, the fast-forming path-
ways play a more important role in the measured data than
in the model data. In addition, more later-generation clusters
are selected out from the model data with an increasing num-
ber of clusters, while the changes in early-generation clusters
are indistinct. However, in terms of clusters 3–5 in the five-
cluster solution, it is evident that certain chemical loss pro-
cesses are missing from the MCM mechanism, which are ob-
served from the chamber data. For instance, autoxidation and
related processes for the isoprene–NO3 system are underrep-
resented in the MCM, as well as the formation of accretion
products.

As for the chemical properties, different clusters are dis-
crete in the OSC vs. nC space (Fig. S6), and thus it can
be inferred that product species would also be grouped
in a reasonable way when applying FCM to experimental
data. Moreover, clusters in different solutions cover a sim-
ilar chemical composition range of OSC and nC despite in-
creasing the number of clusters (except for the two-cluster
solution), which is consistent with what we observed for the
chamber data. However, the increase in the OSC of clusters
for model data is less pronounced during the oxidation pro-

cesses, probably due to the absence of autooxidation steps
in the MCM. Moreover, the MCM lacks accretion products
(mostly assigned to early-generation clusters with more car-
bon atoms in bulk) but tends to have more small species (with
low nC), which is not observed in the mass spectra data.
This can be due to the detection limits of the Br− CIMS for
smaller compounds. Regarding the two-cluster solution, the
chemical range of clusters is much narrower, and they are
overlapping in the chemical space to some extent, suggesting
that the number of clusters is not enough.

According to the outcomes from the application of FCM
to both the measured and model data, we conclude that
FCM can give interpretable and chemically meaningful re-
sults when it is applied to mass spectrometric data in a time
series analysis.

3.3 Insights from clustering results

3.3.1 Chemical properties of different clusters

In this section, we utilize the five-cluster solution, identified
as the optimal cluster number for our dataset (Sect. 2.3), to il-
lustrate how to extract chemical and kinetic information from
the mass spectrometric data based on the FCM analysis. This
does not necessarily mean that the five-cluster solution is
superior over others. However, as demonstrated in previous
sections, the FCM results exhibit consistent features regard-
less of the number of clusters predefined. Therefore, findings
derived from the five-cluster solution could potentially apply
to other cases.

It is clearly shown in Fig. 7a that different clusters have
significantly different compositions. For example, cluster 1,
which represents the early-generation products, is dominated
by a single species (with the chemical formula C5H9NO5),
and its intensity is much higher than those of the other four
clusters. Another characteristic of cluster 1 is that more than
80 % of the detected 2N dimers (except one species with the
formula C10H16N2O11) are assigned to this cluster (Fig. S7).
These compounds are obviously first-generation products
probably formed through RO2+RO2 reactions (Wu et al.,
2021). Therefore, it is reasonable to sort them into cluster
1, which is representative of the early-generation products.
Cluster 2 also behaves like the early-generation products but
differs from cluster 1 in terms of reactivity, i.e., formation
and destruction rates. The differences in the cluster 1 and
cluster 2 in chemical composition are even more percepti-
ble. As shown in Fig. 7a, besides C5H9NO5, there is another
1N monomer (C5H9NO6) present in cluster 2 with a rela-
tively high intensity. In addition, most of the detected small
molecules (C≤3) are assigned to this cluster (Fig. S7). Note
that the formation rate of cluster 2 (from FCM analysis of the
chamber data) resembles that of cluster 1 (in the five-cluster
solution) from the FCM analysis of the model data. In addi-
tion, the fractions of some 3N dimers (e.g., C10H17N3O12–14)
in cluster 2 are relatively high (Fig. S7). The 3N dimers are
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Figure 7. Chemical properties of clusters from the five-cluster solution. The subplots show mass profile of each cluster (a), van Krevelen
plot (b), and average carbon oxidation state of clusters (c), respectively. Different clusters are distinguished by color, and the color scheme
follows the one in Fig. 4. The marker area of the clusters is proportional to the sum of average signal intensity of all species in the cluster
weighted by their membership degrees. The species number in panel (a) corresponds to species listed in Fig. S7 (in order of molecular mass).
Gray hexagons in panels (b) and (c) denote species identified by Br− CIMS, and the marker area is proportional to the average intensity of
species over the whole experiment.

expected to be second- or even later-generation products that
are produced from the cross-reaction of a first-generation ni-
trooxy peroxy radical and a secondary dinitrooxy peroxy rad-
ical or from further oxidation of the corresponding 2N dimers
(Wu et al., 2021). This indicates that cluster 2 is very likely a
mixture of the first- and second-generation products, which
have not been resolved by the FCM in the five-cluster solu-
tion. Increasing the number of clusters might help to separate
the typical behavior of a minority of components. When the
cluster number is increased to six, it is indeed mainly the for-
mer cluster 2 in the five-cluster solution which is further split
into new clusters (cluster 2 and cluster 3) in which the first-
generation behavior of the new cluster 2 is more pronounced.
From this point of view, the six-cluster solution seems better
than the five-cluster solution.

Regarding later-generation clusters, namely cluster 3,
cluster 4, and cluster 5, the second- or later-generation prod-
ucts, such as C4 species and 2N and 3N monomers, are pre-
dominant in their composition. Nevertheless, the mass pro-
files of cluster 3, cluster 4, and cluster 5 are quite distinct.
For example, cluster 3 is dominated mainly by a C4 species
(C4H7NO5), while the major fingerprint of cluster 4 is con-
stituted by two 2N monomers (C5H8N2O8 and C5H8N2O9),
a C4 species (C4H7NO6), and a C2 species (C2H3NO5).
In addition, 3N monomers are almost completely present
in cluster 4 (Fig. S7). Cluster 5 has a much lower inten-
sity compared to other clusters, and a distinctive character-
istic of this cluster is a high contribution of two 3N dimers
(C10H17N3O15 and C10H17N3O16) (Fig. S7).

Figure 7b and c show the chemical properties of each clus-
ter center in terms of the bulk elemental molar ratios (in the

van Krevelen space) and the average carbon oxidation state.
The van Krevelen plot visualizes the chemical composition
of organics by the hydrogen-to-carbon (H : C) vs. oxygen-
to-carbon (O : C) ratio, and it is widely used to trace the
origin and evolution of organic compounds (Chhabra et al.,
2011). When calculating the O : C ratios of the N-containing
compounds, the concept of effective oxygen number (nO_eff,
nO_eff = nO−2×nN) was employed, whereas in the case of a
nitrate group, only one of the O atoms bonded to C atom was
considered in the calculation (Xu et al., 2021). The cluster
centers cover a narrow range of chemical space of the orig-
inal dataset (gray circles in Fig. 7b) but are located where
most of the compounds fall in. They lie almost along a line
of H : C= 1.75 in the van Krevelen plot, indicating that they
have gained on average one H atom compared to isoprene.
A trajectory with a slope of zero is expected in van Kreve-
len plots when only alcohol or hydroperoxide functionalities
are introduced in the molecule (Chhabra et al., 2011). This
is a characteristic of autoxidation steps (–OOH) or H shifts
in alkoxy radicals (−OH and thereafter −OOH). Therefore,
the distribution of the clusters in the van Krevelen space im-
plies that autoxidation steps or intramolecular H shifts were
involved in the reactions of isoprene with NO3 studied in this
work.

In terms of average oxidation state and carbon atom num-
bers, the early-generation products which undergo fewer ox-
idation steps usually have a much lower oxidation degree
but more carbon atoms per molecule. With the reaction pro-
ceeding, the early-stage products will be further oxidized
and fragmented, leading to the formation of later-generation
products with a higher oxidation state but less carbon atoms
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per molecule. Consequently, the trajectory of chemical pro-
cesses generally starts with the precursor in the lower-right
corner and moves towards to the upper-left area (products)
in the OSC vs. nC space through oxidation and fragmen-
tation. In this study, the early-generation clusters have a
lower oxidation state but more carbon atoms, while the later-
generation clusters are the other way around, thus following
the oxidation trajectory in chemical space well.

When considering the characteristics of members in each
cluster, we focus solely on high-affiliation species (with a
membership degree over 0.5) to simplify the discussion. Fig-
ure 8 shows the chemical properties of the high-affiliation
species described by their elemental molar ratios and av-
erage carbon oxidation state. In general, most of the high-
affiliation species of the two early-generation clusters (clus-
ters 1 and 2) center in a relatively low Oeff : C area of the van
Krevelen plot, while those from the three later-generation
clusters (clusters 3, 4, and 5) spread to the higher Oeff : C
area. This confirms that species belonging to later-generation
clusters are generally more oxidized than those from early-
generation clusters, as expected. With respect to the average
oxidation state, species of cluster 1 in general have lower
OSC than others, and they are mainly monomers (nC= 5)
and dimers (nC= 10). The OSC of species from cluster 2 is
slightly higher than that from those of cluster 1, and there
are more fragments in this cluster, including both monomers
with nC< 5 and dimer species with 5<nC< 10. The high-
affiliation species of later-generation clusters generally have
a higher oxidation degree than that from early-generation
clusters but most of them are molecules with fewer than six
carbon atoms.

Based on abovementioned results, we conclude that FCM
is a feasible dimension reduction technique for dealing with
complex mass spectrometric data from an oxidation system
of interest. The derived clusters show a chemically realis-
tic time behavior and cover the major range of the chemical
properties of the original dataset. This suggests that the FCM
could be useful for the simplification and analysis of mass
spectra data and that the chemical information underlying in
the clusters can be helpful for understanding the system of
interest.

3.3.2 Kinetic properties of different clusters

The FCM results show that different clusters have different
time behaviors, indicating that they were formed by differ-
ent (or a series of) reaction steps. By fitting the GKP func-
tion (Eq. 12) to the measurements, we can extract underly-
ing kinetic information (effective rate constant k and gener-
ation number mG) from time series data. Generally, a larger
value of k implies a faster formation rate of a product class
for a given oxidant exposure, and vice versa. It should be
noted that the k obtained here is not a stepwise rate constant,
and it has no direct relationship with the stepwise rate con-
stants of the reaction sequence. However, this value offers

a way to quantitatively measure the overall rate constant of
all reactions along the pathway (Koss et al., 2020). Since the
FCM cluster centers represent chemically realistic time pat-
terns and retain the major kinetic properties of the original
dataset, they can be used as surrogates for various products
formed in the isoprene–NO3 system, and the GKP function
can be fitted to the time series of cluster centers. This largely
reduces the complexity of the data analysis and provides a
way to get kinetic information directly from measurements.

Figure 9 shows the result of the fit of GKP to the FCM
clusters derived from the chamber measurements for the five-
cluster solution. All except cluster 5 are fitted with a coeffi-
cient of determination (r2) of 0.96 or higher, indicating that
the GKP model can reproduce the kinetic behavior of the
products formed from the isoprene–NO3 oxidation system in
this study well. Cluster 5 is not well reproduced (with a r2 of
0.41), probably due to its extremely low and noisy signal as
a surrogate of the later-generation products. The fitted values
of mG for early-generation clusters are expected to be one
(in theory). As depicted in Fig. 9a, the generation number of
cluster 1 is close to one and that of cluster 2 is between one
and two, coinciding with the expectation. As for the three
later-generation clusters, their mG values are approximately
two (clusters 3 and 4) or three (cluster 5), indicating that they
undergo two or more NO3 oxidation steps.

There are several possible reasons for non-integer values
of mG, including uncertainties from signal noise, especially
for low signal-to-noise data, and possible influences from
physical processes like vapor–wall interaction, which can
lower the signal of species and thus lead to a higher fitted
mG (Koss et al., 2020). In addition, the value of mG can be
distorted to some extent if compounds are produced from iso-
prene oxidation by oxidants other than NO3, e.g., OH and
O3, in this case. While NO3 makes up the major fraction of
consumption of isoprene, its reactions with O3 and OH still
contribute 10 %–15 % of the isoprene loss (Vereecken et al.,
2021; Carlsson et al., 2023). Consequently, it is very likely
that some species detected by CIMS were oxidized by mul-
tiple oxidants. Such an effect will lower mG, as unaccounted
sources increase the concentrations of species besides the
NO3 exposure, and the linear, first-order kinetic assumption
of the GKP model is no longer applicable. For example, the
isoprene hydroperoxy aldehyde (C5H8O3), one of the major
products from photooxidation, is also observed from NO3-
initiated oxidation (Vereecken et al., 2021; Wennberg et al.,
2018; Wu et al., 2021). Furthermore, the deviation of mG
from integer values can occur if isomers that were formed
by a different number of oxidation steps exist.

Since the generation number corresponds to the reaction
steps with NO3 to form the product, the later-generation
species, which undergo more oxidation steps, should have
largermG values and higher nitrogen-to-carbon ratios (N : C)
when considering that NO3 is the only oxidant. Figure 10
shows the relationship between generation number and
chemical properties of clusters. In general, clusters with
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Figure 8. Chemical properties of high-affiliation species from each cluster (with a membership degree larger than 0.5) described by van
Krevelen (a) and average carbon oxidation state (OSC) vs. carbon number (nC) (b) plot. The marker area is proportional to the average signal
intensity of species over the whole experiment.

Figure 9. Parameterized effective rate constant (k; cm3 molec.−1 s−1) and generation number (mG) for FCM clusters (five-cluster case)
derived from CIMS measurements of isoprene–NO3 system. Panels (a) to (e) show the GKP fitting results for different clusters, with cluster
1 in red, cluster 2 in dark blue, cluster 3 in green, cluster 4 in black, and cluster 5 in orange, respectively. Colored dots in each panel are
the time series of the clusters, and black lines are GKP fits. Panel (f) shows the distribution of the kinetic parameters. The marker area is
proportional to the sum of average intensity of all species in the clusters weighted by their membership degrees.

higher mG have larger N : C ratios, as expected, confirming
that NO3 is the predominate oxidant for isoprene oxidation
in our system. Nonetheless, we find that species with larger
N : C ratios are not necessarily later-generation products. As
shown in Fig. 9a, cluster 4 has a larger N : C ratio than clus-
ter 3 and cluster 5, but it appears with a smaller mG. This
indicates that some of the nitrogen atoms of compounds in
cluster 4 were gained through non-oxidative steps. On the
other hand, cluster 5 has a larger mG value than cluster 3 and
cluster 4, but its N : C ratio is relatively small. This is proba-
bly because the species in cluster 5 were formed by isoprene
oxidation by other oxidants than NO3, e.g., OH and O3. An-

other plausible explanation could be that the NO3 oxidation
reaction does not lead to an increase in nitrogen content in
the product molecules, e.g., through H abstraction instead of
the addition to C=C double bonds (Wu et al., 2021).

There is a strong linear correlation between the generation
number and the average oxidation state of the clusters, apart
from cluster 5, as illustrated in Fig. 10b. The early-generation
clusters have smaller mG values than later-generation clus-
ters, which corroborates that the generation number returned
by the GKP model is reasonable. The linear regression re-
sult shows that the value of OSC increases by∼ 0.74 for each
generation. FormG= 0, the corresponding OSC is−1.45, ap-
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Figure 10. Relationship between generation number (mG) and chemical properties of clusters. Nitrogen-to-carbon (N : C) ratio (a) and
average carbon oxidation state (OSC) (b) as a function of m. The marker area is proportional to the sum of average intensity of all species in
the clusters weighted by their membership degrees.

proximate to the average carbon oxidation state of isoprene
(OSC =−1.6). For each addition of NO3 functionality, the
OSC of the corresponding product increases by 0.2, and the
following O2 addition (if possible) results in the OSC increas-
ing by additional 0.8. Therefore, it involves at least one au-
tooxidation step for each NO3 addition, considering an in-
crease of about 0.8 in OSC per generation.

Cluster 5 has a mG value approaching three, suggesting
that the species belonging to this cluster underwent roughly
three oxidation steps. However, its average oxidation rate is
unexpectedly low, deviating from the linear line of mG and
OSC. One plausible explanation for this is that such species
are probably formed through unimolecular fragmentation.
For example, if the H abstraction (of RO2) occurs at a carbon
with an−OOH functionality attached, the reaction chain will
be terminated by an OH loss and lead to the formation of a
carbonyl compound (Bianchi et al., 2019), which results in
products with a lower average oxidation state.

In general, the effective rate constants of the clusters
are limited by the reaction rate constant of isoprene, and
the early-generation clusters have larger k values than the
later-generation ones. As shown in Fig. 9f, the returned
k values of the two early-generation clusters 1 and 2 are
very close to the reaction rate constant of isoprene with
NO3 (6.5× 10−13 cm3 molec.−1 s−1 at 298 K, IUPAC, https:
//iupac-aeris.ipsl.fr/datasheets/pdf/NO3_VOC8.pdf, last ac-
cess: 15 March 2024). The k values of the later-generation
clusters, clusters 4 and 5, are about 1 order of magnitude
smaller. Cluster 3, which represents second-generation prod-
ucts with mG ≈ 2, has a similar effective rate constant to
cluster 1 and cluster 2, indicating that the species belong-
ing to this cluster form or react relatively fast. As shown in
Fig. 7c, cluster 3 has a high oxidation degree but fewer car-
bon atoms on average, suggesting that the species in cluster
3 are probably highly oxidized fragments. This is confirmed
by its mass profile (Fig. 7a).

The GKP method was also applied to individual species.
Examples of fits for various species are shown in Fig. S8.
Figure 11 depicts the fitted k and mG values of the high-
affiliation species from each cluster. For species from clus-

Figure 11. Fitted effective rate constant (k) and generation number
(mG) of the high-affiliation species of each FCM cluster. The cluster
centers and members are denoted by color-coded circles and penta-
grams, respectively. The circle area is proportional to the average
signal intensity of species over the whole experiment.

ter 1, cluster 2, and cluster 3, most of the returned k values
fall into the same order of magnitude to the rate constant
of isoprene with NO3 (k= 6.5× 10−13 cm−3 molec.−1 s−1

at 298 K). For those from the two later-generation clusters,
clusters 4 and 5, the returned k values are about 1 and 2
order(s) of magnitude smaller, respectively. Most returned
mG of species from cluster 1 are around one, indicating that
they are formed after one oxidation step (with NO3), which
is consistent with the expectation for early-generation prod-
ucts. However, the returned mG of some species from clus-
ter 1 are between one and two, e.g., the compound(s) with
the formula of C5H9NO5 (the largest red marker in Fig. 11).
This suggests that such species may consist of isomers origi-
nating from more than one pathway with different number of
oxidation steps.

For species belonging to cluster 2, their mG are mostly
in a range from one to two, but there are also some smaller
molecules (mainly C3 and C4 species) with largermG values,
indicating that such fragmented compounds are formed after
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multiple oxidation steps. With regard to species from later-
generation clusters, the returned mG values span a broader
range, but there are no compounds with a generation num-
ber larger than four. In general, most of the high-affiliation
species (from both the early- and later-generation) fall in the
fast-reacting (large k) area, with a few of exceptions having
relatively small k andmG. These two types of compounds are
both kinetically realistic. However, there are several species
with large mG (around three) but relatively small k, e.g.,
C10H17N3O15 and C10H17N3O16 from cluster 5. This sug-
gests that they are slow-forming products that appear after
several oxidation steps, which should be difficult to form and
thus should be low in signal or even undetectable. In fact, the
signals of C10H17N3O15 and C10H17N3O16 are extremely
low and noisy at the beginning of the reaction, as shown in
Fig. S8u and v. Detectable increases in the signal of these
masses are only observed when the NO3 exposure was rela-
tively high.

To conclude, the kinetic parameters derived from GKP fit-
ting to the clusters are reasonable and well correlated to their
chemical properties. Specifically, isoprene products formed
in the early stage are larger molecules but less oxidized and
with relatively high reactivity, while those formed in the later
stage tend to be smaller but highly oxidized and less reactive.
Fragmented species are exceptions that have a relatively high
oxidation degree and are simultaneously reactive.

3.4 Implications for isoprene–NO3 chemistry

As noted previously, one big advantage of FCM is that vari-
ables can be affiliated to multiple clusters, which relates to
many real-world problems in a more realistic and reasonable
way. It is explained in Sect. 3.3 that different FCM clusters
have distinct differences in chemical and kinetic properties,
potentially representing different chemical processes. There-
fore, the clustering distribution of a species gives an insight
into its formation mechanism.

Figure 12 shows the cluster apportionment of selected
major products formed from isoprene oxidation by NO3.
Since different FCM clusters represent different types of
chemical processes or products that have distinct chemi-
cal and kinetic properties, a different distribution indicates
different formation pathways of the respective species. Ac-
cording to the general reaction scheme of isoprene with
NO3 (scheme S1), 1N and 2N monomers are expected to
be the first- and second-generation products, respectively.
The accretion products are supposed to be formed from
the RO2+RO2 reaction (Berndt et al., 2018), and thus 2N
dimers are probably originating from the self- or cross-
reactions of two C5-nitrooxy peroxy radicals, while 3N
dimers are most likely produced by cross-reactions of C5 ni-
trooxy peroxy radicals with C5 dinitrooxy peroxy radicals
(Ng et al., 2008; Wu et al., 2021). Accordingly, 2N and 3N
dimers should be first- and second-generation products, re-
spectively. A possible permutation scheme for the formation

of 2N and 3N dimers can be found in Table S1 in the Supple-
ment.

The FCM results affirm these suppositions to some ex-
tent. For example, 1N monomer species like C5H9NO4
and C5H9NO5 are predominant in early-generation clus-
ters (cluster 1 and cluster 2), while 2N monomers are
mostly found in the later-generation clusters (cluster 3 and
cluster 4). However, there are some exceptions, such as
C5H7NO6 and C5H7NO7. These two species have entirely
different cluster distributions compared to C5H7NO4 and
C5H7NO5, regardless of their similar formula composition.
The majority of C5H7NO6 and C5H7NO7 is apportioned
to the second-generation cluster (cluster 3), indicating that
C5H7NO6 and C5H7NO7 are second-generation products,
whereas C5H7NO4 and C5H7NO5 are subsumed in early-
generation products. A similar phenomenon is observed
among C5H9NO7, C5H9NO4, and C5H9NO5. Another ex-
ample is the 3N dimers. In theory, 3N dimers are supposed
to be second-generation products (Table S1), but the FCM
outcomes show that different 3N dimers are formed from
different pathways with different generations. For example,
C10H17N3O12, C10H17N3O13, and C10H17N3O14 are sup-
posed to be early-generation products, based on the FCM
results, whereas C10H17N3O15 and C10H17N3O16 are sup-
posed to be third- or even later-generation products that have
much lower formation rates compared to typical secondary
compounds. This implies that the formation mechanisms of
3N dimers are more complicated than expected. Further in-
vestigation is needed to understand distinct behaviors of dif-
ferent 3N dimers observed in this study.

In terms of 2N monomers, the clustering results con-
firm that they are very likely second-generation products,
but some species probably originated from different forma-
tion pathways, even though they have the same generation
number. As shown in Fig. 12, most fractions of C5H8N2O8
and C5H8N2O10 fall into cluster 4, whereas C5H8N2O7,
C5H10N2O8, and C5H10N2O9 are primarily assigned to clus-
ter 3. Cluster 3 and cluster 4 are different in their chemical
and kinetic properties, as described in Sect. 3.3, which most
likely represent two different chemical processes. A similar
phenomenon is observed in C10H16N2O11, which has a dis-
tinctive distribution compared to other 2N dimers. This sig-
nifies the uniqueness of its formation mechanism.

Although a species can be apportioned to multiple clus-
ters in FCM, most products in this study predominantly be-
long to one cluster, e.g., C5H9NO4 and C5H9NO6, suggest-
ing that they were formed predominantly through a single
pathway. In contrast, some species are primarily made up of
two clusters, such as C5H7NO5, C5H9NO5, C5H9NO7, and
C10H17N3O12, indicating that they are probably comprised
of two structural isomers or that they originate from two dif-
ferent reaction pathways (with different oxidation steps).

All of these findings from FCM are valuable and can be
used as constraints for mechanism development, especially
for less-known species. For example, C4H7NO5 is ubiqui-
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Figure 12. Cluster apportionment of selected major products from the isoprene–NO3 oxidation system. The colored boxes correspond to
different types of products.

tous in the atmosphere and contributes significantly to iso-
prene organonitrates, but it is less investigated (Tsiligiannis
et al., 2022). Only a few studies mentioned the formation
processes of C4H7NO5 in daytime chemistry (Jenkin et al.,
2015; Praske et al., 2015; Schwantes et al., 2015; Wennberg
et al., 2018). The formation mechanism of this compound
in the nighttime is unclear yet (Tsiligiannis et al., 2022; Wu
et al., 2021). According to the FCM outcomes, C4H7NO5 is
exclusively assigned to cluster 3 (a second-generation clus-
ter), suggesting that C4H7NO5 is a second-generation prod-
uct and is mainly originating from a single pathway. Com-
bining this information together with its molecular composi-
tion, we proposed that C4H7NO5 is probably formed via fur-
ther oxidation of the hydroxy carbonyl (C5H8O2) by NO3,
as shown in scheme S2 in the Supplement (Wu et al., 2021).
In a recent publication, Tsiligiannis et al. (2022) have dis-
cussed the sources and fate of C4H7NO5 based on both
measurements and modeling results. They suggest that de-
composition of C5H8NO7 radicals, nitrated epoxides, or per-
oxides are also plausible formation pathways for nighttime
C4H7NO5. Nonetheless, the fuzzy clustering results suggest
that there is only one major formation channel (or maybe an
unknown pathway) for C4H7NO5 detected in our system.

4 Conclusions

Recent advances in mass spectrometry, especially the devel-
opment of CIMS, empower us to detect low-volatility vapors
in the gas phase directly and largely enhance our understand-
ing of the formation mechanism of SOA. However, the com-
plex, highly resolved mass spectra introduce new difficulties
for data processing and interpretation. Although different sta-
tistical analysis techniques, such as PMF, PCA, and HCA,
have been proposed and widely used to analyze mass spec-

trometric data, the application of fuzzy clustering algorithms
in analyzing CIMS data has not yet come into common view.

In this study, we promote adopting the FCM method for
the analysis of CIMS data obtained from complex oxidation
systems. Different from hard clustering algorithms, FCM al-
lows variables to belong to multiple clusters, which is more
suitable for overlapping data and more reasonable for mea-
surements in atmospheric science.

Several parameters need to be defined before running
FCM, such as the number of clusters, fuzzifier value, and the
distance metric used for measuring dissimilarity, which have
a critical effect on clustering outcomes. Using multiple clus-
tering validity indices, the impacts of these parameters on the
partition were evaluated, and their optimal values were deter-
mined for our dataset. Furthermore, based on a practical case,
we exemplified the functionalities of FCM in understanding
the chemical and kinetic properties of the investigated sys-
tem.

Overall, the FCM approach we presented in this work is
an applicable and useful tool to analyze mass spectromet-
ric data. It largely simplifies the characterization of an oxi-
dation system by grouping numerous products into a much
smaller number of clusters, based on their different chemical
and kinetic properties. The chemical and kinetic information
retained from the clustering outcomes helps to understand
the chemical processes involved in the investigated system
and can be useful for mechanism development.

Data availability. All data given in the figures can be made avail-
able in a tabular or digital form, including those given in the
Supplement. Please send all requests for data to t.mentel@fz-
juelich.de and r.wu@fz-juelich.de. The chamber data used in
this work are available on the EUROCHAMP database under
https://doi.org/10.25326/JTYK-5V47 (Fuchs et al., 2020).
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