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Abstract. Solar irradiance nowcasting and short-term fore-
casting are important tools for the integration of solar plants
into the electricity grid. Understanding the role of clouds and
aerosols in those techniques is essential for improving their
accuracy. In this study, we introduce improvements in the
existing nowcasting and short-term forecasting operational
systems SENSE (Solar Energy Nowcasting System) and
NextSENSE achieved by using a new configuration and by
upgrading cloud and aerosol inputs, and we also investigate
the limitations of evaluating such models using surface-based
sensors due to cloud effects. We assess the real-time esti-
mates of surface global horizontal irradiance (GHI) produced
by the improved SENSE?2 operational system at high spatial
and temporal resolution (~5km, 15 min) for a domain in-
cluding Europe and the Middle East-North Africa (MENA)
region and the short-term forecasts of GHI (up to 3 h ahead)
produced by the NextSENSE2 system against ground-based
measurements from 10 stations across the models’ domain
for a whole year (2017).

Results for instantaneous (every 15min) comparisons
show that the GHI estimates are within £50 Wm~2 (or
+10 %) of the measured GHI for 61 % of the cases af-

ter the implementation of the new model configuration and
a proposed bias correction. The bias ranges from —12 to
23Wm~2 (or from —2 % to 6.1 %) with a mean value of
11.3Wm~2 (2.3 %). The correlation coefficient is between
0.83 and 0.96 and has a mean value of 0.93. Statistics are sig-
nificantly improved when integrating on daily and monthly
scales (the mean bias is 3.3 and 2.7 W m™2, respectively).
We demonstrate that the main overestimation of the SENSE2
GHI is linked with the uncertainties of the cloud-related in-
formation within the satellite pixel, while relatively low un-
derestimation, linked with aerosol optical depth (AOD) fore-
casts (derived from the Copernicus Atmospheric Monitoring
Service — CAMS), is reported for cloudless-sky GHI. The
highest deviations for instantaneous comparisons are associ-
ated with cloudy atmospheric conditions, when clouds ob-
scure the sun over the ground-based station. Thus, they are
much more closely linked with satellite vs. ground-based
comparison limitations than the actual model performance.
The NextSENSE2 GHI forecasts based on the cloud motion
vector (CMV) model outperform the persistence forecasting
method, which assumes the same cloud conditions for fu-
ture time steps. The forecasting skill (FS) of the CMV-based
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model compared to the persistence approach increases with
cloudiness (FS is up to ~ 20 %), which is linked mostly to pe-
riods with changes in cloudiness (which persistence, by def-
inition, fails to predict). Our results could be useful for fur-
ther studies on satellite-based solar model evaluations and,
in general, for the operational implementation of solar en-
ergy nowcasting and short-term forecasting, supporting solar
energy production and management.

1 Introduction

Climate change mitigation along with energy production in
a sustainable manner can be addressed through the deploy-
ment of renewable energy technologies (Edenhofer et al.,
2011; IPCC, 2022). Diverse renewable-energy technologies
are being investigated worldwide, and their deployment has
been increasing, with solar energy markets growing rapidly,
such that they could become the major source of energy sup-
plies in the coming decades (Arvizu et al., 2011; [EA, 2022).
Since solar energy resources are strongly affected by atmo-
spheric conditions, they are highly variable spatially and tem-
porally. Therefore, there is a need for operational nowcasting
and short-term solar forecasting for real-time energy produc-
tion to better integrate solar energy exploitation technolo-
gies with national and international power systems. Under
all skies, the availability of solar resources is primarily af-
fected by clouds (e.g., Fountoulakis et al., 2021); for clear-
sky conditions, it depends on the atmospheric composition,
with the most important variables being aerosols (e.g., Pa-
pachristopoulou et al., 2022) and water vapor (e.g., Yu et
al., 2021). Among those variables, clouds and aerosols are
characterized by large temporal and spatial variability, mak-
ing them key variables for solar energy applications. Con-
tinuously improved earth observation (EO) data (satellite-
based and atmospheric models) are exploited to produce ac-
curate estimates of spectral surface solar radiation in real
time (nowcasting), which has numerous applications in dif-
ferent fields aside from the solar energy sector (e.g., Qu et
al., 2014; Thomas et al., 2016; Kosmopoulos et al., 2018),
like human health (e.g., Kosmopoulos et al., 2021; Schen-
ziger et al., 2023). To increase the accuracy of those now-
casting and forecasting tools, it is imperative to understand
the spatiotemporal variability of cloud and aerosol properties
when implementing the tools.

Solar resource assessment at a particular location is im-
portant for planning and managing solar energy technolo-
gies. Ground-based measurements of surface solar radiation
are only available for a few locations, with possible gaps in
time. Those spatial and temporal gaps are filled by mod-
eled estimates of surface solar radiation. Of particular im-
portance are gridded surface solar radiation estimates with
high spatial and temporal resolution and a wide coverage
(up to the global scale) provided by satellite-based models
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or atmospheric models (see, e.g., an overview of those tech-
niques in Sengupta et al., 2021). Due to their large area cov-
erage and high temporal resolution, geostationary satellite
data are used to produce estimates of surface solar radia-
tion both in real time as an operational service and to gen-
erate historical archives based on long-term satellite mea-
surements. Several methods exist for obtaining satellite esti-
mates of surface solar irradiance. A well-established method
considers cloud extinction through the cloud coverage index
(Cano et al., 1986) or cloud index, calculated from normal-
ized satellite reflectances. Using the cloud index, the trans-
mission factor or the clear-sky index (also called the cloud
modification factor; “CMF” hereafter) is calculated, which is
finally multiplied by the results of a clear-sky model to re-
trieve the solar irradiance at the earth’s surface (Hammer et
al., 2003). This is the general idea behind the HELIOSAT
method (Cano et al.,, 1986; Hammer et al., 2003) widely
used in various European research projects and applications.
The derivative Heliosat-2 method (Rigollier et al., 2004) is
launched in real time by the SoDa service and produces the
HelioClim-3 database (Qu et al., 2014), a real-time solar radi-
ation database dating from February 2004 onwards. A more
recent version of the HelioClim-3 database (Thomas et al.,
2016) — version 5 (HC3v5) — combines the McClear clear-
sky model (Lefevre et al., 2013; Gschwind et al., 2019) with
cloud index values extracted from Meteosat Second Gener-
ation (MSG) satellite images. The Satellite Application Fa-
cility on Climate Monitoring (CM SAF) provides satellite-
based estimates of surface solar radiation using data from
Meteosat geostationary satellites. Currently, the third edition
of the Surface Solar Radiation Data Set — Heliosat (SARAH-
3, Pfeifroth et al., 2023a) — covers the period 1983-2020 as
a climate data record (CDR) and is operationally extended
into the present with a delay of a few days (Interim Cli-
mate Data Record (ICDR)). The retrieval algorithm MAG-
ICSOL (Pfeifroth and Trentmann, 2023; Miiller et al., 2015)
is a combination of a modified Heliosat method to derive the
effective cloud albedo (CAL) and the SPECMAGIC clear-
sky model (Mueller et al., 2012). More available open-access
satellite-based surface solar radiation climatological datasets
based on the cloud index method can be found in Miiller and
Pfeifroth (2022).

There are also fully physical models that directly esti-
mate surface solar radiation using radiative transfer mod-
els (RTMs) and geophysical parameters — including clouds
(cloud and aerosol optical properties and total column val-
ues for water vapor and ozone content) and surface condi-
tions — as inputs for a given atmospheric state. The com-
bination of multi-channel information from geostationary
satellites with cloud retrieval schemes provides cloud opti-
cal properties that can be explicitly used in RTMs to account
for cloud extinction and finally to calculate the surface so-
lar radiation. Parameterizations or look-up tables based on
RTM simulations are used instead of direct radiative transfer
calculations to optimize the computational time for opera-
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tional use of the models. This is the case for the Heliosat-4
method (Qu et al., 2017), which is used in Copernicus Ra-
diation Service (CAMS Radiation Service) estimates of sur-
face solar irradiance. Their Heliosat-4 method is composed
of two models that independently consider clear-sky and
cloudy conditions. Specifically, the McClear model (Lefevre
et al., 2013; Gschwind et al., 2019) is used for calculations
of cloud-free irradiances and the McCloud model for cal-
culating the extinction of irradiance by clouds (through the
clear-sky index), both of which are based on look-up tables
(LUTs) to speed up calculations. The input cloud proper-
ties of the current CAMS Radiation Service v4 are retrieved
by the adapted APOLLO Next Generation scheme from the
MSG/SEVIRI (Spinning Enhanced Visible and Infrared Im-
ager) satellite images (Schroedter-Homscheidt et al., 2022).
The most recent version of the US National Renewable En-
ergy Laboratory’s (NREL'’s) gridded National Solar Radia-
tion Database (NSRDB; 1998-2016; Sengupta et al., 2018)
is also based on a fully physical model. This is the Phys-
ical Solar Model (PSM), which was developed by NREL
and produces gridded surface solar irradiance estimates using
satellite retrievals for clouds and other atmospheric proper-
ties from GOES data as input to the radiative transfer model.

The continued developments and improvements in satellite
estimates of surface solar radiation made since the 1980s re-
sulted in accurate real-time as well as climatological datasets
(Qu et al., 2014; Urraca et al., 2017; Pfeifroth et al., 2023b;
Qu et al., 2017; Schroedter-Homscheidt et al., 2022; Sen-
gupta et al.,, 2018; Habte et al., 2017), although certain
sources of biases and common factors that increase the un-
certainty have been reported: an increase in the distance
from the subsatellite point and more frequent occurrences of
clouds (especially fragmented cloud cover), complex terrain,
and bright surfaces (snow, desert). In addition, it is a chal-
lenge per se and increases the evaluation uncertainties when
any model is validated at an instantaneous timescale. Gridded
satellite estimates with ground-based point measurements of
surface solar radiation differ not only due to model uncer-
tainties but also due to the different spatiotemporal scales in-
volved (satellite pixels represent a large area and large time
intervals of a few minutes; ground-based measurements rep-
resent the area exactly over the station for smaller time inter-
vals).

Motivated by the recent advances in satellite-based
retrievals of surface solar radiation and building upon
the knowledge of already-existing and well-established
methodologies, an upgrade has been performed to an exist-
ing service that provides satellite estimates of surface solar
radiation in real time. The aim is for the improved nowcast-
ing system to be the basis of the new forecasting system.
The Solar Energy Nowcasting System (SENSE) was devel-
oped under the EU project Geo Cradle by the Beyond Cen-
tre of EO Research and Satellite Remote Sensing at the Na-
tional Observatory of Athens, Greece, in collaboration with
the Physical and Meteorological Observatory at Davos of the
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World Radiation Center, Switzerland (Kosmopoulos et al.,
2018). It is a combination of geophysical input parameters
from satellite-based and model data sources and a neural net-
work (NN) technique trained on precalculated surface solar
radiation simulations (look-up table — LUT) using RTM. It
uses the cloud optical thickness (COT) retrievals produced
by the Application Facilities Support to Nowcasting and Very
Short Range Forecasting (NWC-SAF) algorithm based on
MSG satellite data and aerosol optical depth (AOD) fore-
casts from the Copernicus Atmospheric Monitoring Service
(CAMS) as inputs to the NN to derive the surface solar ra-
diation in real time. More details about the previous ver-
sion of the SENSE service can be found in Kosmopoulos
et al. (2018). In the same publication, the validation of this
method showed good agreement on daily and monthly levels;
however, various sources of uncertainties have been identi-
fied, mainly concerning the use of the NN (especially under
high irradiance values), the COT input, and the structure and
density of atmospheric parameters in the LUTs. The reason
for the development of the new version of the model, called
SENSE2, used in the present study was to minimize those
uncertainties before using this model for the new forecasting
system. For the new version of the model, it was decided that
the fully physical approach of the model, which benefits from
cloud optical property monitoring by the MSG satellites and
recent advances in EO, would be retained, while the scheme
that replaces the direct radiative transfer calculations would
be improved.

The solar energy forecasting methods are categorized into
three base methods (Sengupta et al., 2021; Yang et al., 2022)
based on the time horizon (few seconds to few days) and
the exogenous data, i.e., sky cameras, satellite data, and nu-
merical weather predictions (NWPs). Additionally, there are
many statistical and machine-learning methods that are often
combined with NWP data to improve their outputs (i.e., post-
processing or blending). Each method fits the specific needs
of different applications. The cloud motion vector (CMV)
technique is commonly used on satellite data for solar fore-
casting a few hours (up to 6 h) ahead. The CMVs are cal-
culated using consecutive satellite images and, assuming a
constant cloud speed, the future cloud positions are derived
by applying the CMV field to the latest cloud image. The
use of CMVs for short-term forecasting of surface solar ra-
diation based on satellite data started almost 20 years ago
(Hammer et al., 1999, 2003; Lorenz et al., 2004). In the
last decade, interest in using optical flow techniques from
the computer vision community in satellite images for cloud
motion estimation in the context of solar forecasting has in-
creased. One of the first works was by Urbich et al. (2018),
who used two optical flow methods for the European do-
main and compared them when they were used to forecast
MSG-satellite-derived effective cloud albedo. When com-
bined with SPECMAGIC NOW, those forecasted values of
effective cloud albedo deliver short-term forecasts of surface
solar irradiance (SESORA — seamless solar radiation; Ur-
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bich et al., 2019). Kallio-Myers et al. (2020) used an opti-
cal flow method on SEVIRI-based images of effective cloud
albedo to forecast global horizontal irradiance up to 4 h ahead
with 15 min time resolution for southern Finland by applying
the Heliosat method to the forecasted effective cloud albedo
maps in combination with the Pvlib Solis clear-sky model
(the Solis—Heliosat forecasting model). In the same study,
they also found that their forecasting model mostly outper-
forms persistence, especially under changes in cloudiness. It
is a common practice to benchmark forecasts of surface solar
radiation with the persistence approach (e.g., Kallio-Myers
et al., 2020; Garniwa et al., 2023), a method that assumes
constant cloudy conditions for future time steps.

The NextSENSE system was first introduced in a study
by Kosmopoulos et al. (2020) as a novel short-term so-
lar energy forecasting system (3h ahead; every 15min)
based on forecasts of satellite-derived COT using a CMV
technique, with solar irradiance estimated by the SENSE
model. The NextSENSE system was developed as a contin-
uation of SENSE during the EU project e-shape and by the
same research groups previously mentioned. The CMV tech-
nique that is employed is based on state-of-the-art image-
processing technologies (dense optical flow). The evaluation
of the CMV forecasts was performed by Kosmopoulos et
al. (2020) for selected test days with different cloud move-
ment patterns against the real MSG COT and in terms of ir-
radiance estimates using both forecasted and real COT. They
found that the deviations of forecasted irradiances compared
with nowcasting outputs ranged from 18 % to 34 % under
changing cloudy conditions, outperforming the persistence
method for certain conditions. The aim of the current study
is to validate the NextSENSE model for 1 full year of ir-
radiance forecasts with ground-based measurements to ob-
tain more robust conclusions. Additionally, as NextSENSE is
based on the same hierarchy of SENSE with only the CMV
analysis added, all improvements to SENSE2 are inherited
by the new NextSENSE2 system too.

The present study aims to investigate the role of clouds
and aerosols in the nowcasting and short-term forecasting of
global horizontal irradiance (GHI) using ground-based mea-
surements by

— introducing the SENSE2 and NextSENSE2 upgrades of
SENSE and NextSENSE systems, respectively

— validating the improved nowcasted GHI using ground-
based pyranometer measurements for 1 year (2017)

— investigating the cloud and aerosol effects on GHI esti-
mates

— proposing a possible correction for GHI estimation
based on MSG COT real-time information

— validating CM V-forecasted GHI and benchmarking the
results with those obtained by the persistence method.

Atmos. Meas. Tech., 17, 1851-1877, 2024

2 Data and methods
2.1 SENSE2

SENSE2 is an operational system that produces fast esti-
mates of GHI in real time every 15 min for a wide area in-
cluding Europe and the Middle East-North Africa (MENA)
region at high spatial resolution (~ 5km). These estimates
are calculated from earth observation (EO) data and look-
up tables (LUTs) derived from radiative transfer model
(RTM) simulations. The SENSE2 presented in this study
(Fig. 1) is an improved system, compared to the previous
SENSE version, in terms of the parameterizations for radia-
tive transfer calculations and, mainly, the improvement of the
aerosol and cloud representation in the model using a more
detailed LUT and multi-parametric equations for different
aerosol and cloud scenes, respectively. The new version of
the SENSE2 system is available as a web service via https:
/Isolar.beyond-eocenter.eu/#solar_short (last access: 15 De-
cember 2023).

The first improvements of the SENSE2 system are as fol-
lows:

— The computations of clear-sky GHI are performed dur-
ing the previous day for the whole domain (1.5 million
pixels) every 15 min; for the current day, the real-time
cloud information is applied to provide all-skies GHI in
real time (no NN is used).

— The computations of clear-sky GHI are based on a
new, more-detailed LUT of ~ 16 million combinations
of simulated GHI at the earth’s surface that was gen-
erated using the National Infrastructures for Research
and Technology (GRNET) High Performance Comput-
ing Services and the computational resources of the
ARIS GRNET infrastructure. The RTM simulations
were performed using the libRadtran package (Emde et
al., 2016; Mayer and Kylling, 2005). Table 1 summa-
rizes the input variables and their resolution. The num-
ber of variables and their resolution resulted in a total of
~ 16 million runs.

RTM simulations were performed spectrally from 280 to
3000 nm with 1 nm spectral resolution using the DISORT ra-
diative transfer solver in pseudo-spherical mode (Buras et al.,
2011). The molecular absorption parameterization of repre-
sentative wavelength approach (REPTRAN; Gasteiger et al.,
2014). was used to account for the absorption of atmospheric
gases for the whole solar spectrum. The Kurucz 1.0 nm (Ku-
rucz, 1994) extraterrestrial solar spectrum and the US Stan-
dard Atmosphere (Anderson et al., 1986) were used as in-
puts. The default aerosol model of Shettle (1989) was used
as the basis, and the aerosol optical properties of AOD, single
scattering albedo (SSA), and Angstrém exponent (AE) were
modified varying according to Table 1. The spectral global ir-
radiances were integrated over the spectral range of the sim-
ulations to derive the GHI.
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Figure 1. Schematic overview of the solar energy nowcasting system (SENSE2) and system for short-term forecasting up to 3 h ahead

(NextSENSE2).

Table 1. Input parameters for radiative transfer simulations per-
formed on the ARIS GRNET supercomputer resulted to the 7D GHI
LUT.

Parameter Range Resolution
Solar zenith angle (SZA; in degrees) 1to 89 1
Aerosol optical depth at 550 nm (AOD) 0to02,2.5,3.0 0.05
Single scattering albedo (SSA) 0.6to 1 0.1
Angstrﬁm exponent (AE) 0to2 0.4
Total ozone column (TOC; in DU) 200 to 500 100
Water vapor (WV; in cm) 0.5t03 0.5
Surface albedo 0.05t0 0.8 0.15

The clear-sky GHI estimates from SENSE2 (Fig. 1) are
calculated on the previous day by linear interpolation in the
seven dimensions (7D) of the precalculated GHI LUT using
the corresponding inputs. Specifically, the solar zenith angle
(SZA) values are precalculated for every grid cell of the do-
main (1.5 million in total) for 15 min time steps. The main
input parameter for the clear-sky computations is the fore-
casted AOD at 550 nm from CAMS (“CAMS AOD” here-
after). The forecasts for the day of interest are values from the
CAMS run initialized at 00:00 UTC on the previous day (e.g.,
the AOD used to simulate the GHI for the 24th of a month
is derived from the CAMS run that started on the 23rd at
00:00 UTC). Climatological values are used for the interpo-
lation in the 7D LUT for the additional aerosol optical prop-
erties SSA and AE (MAcv2 climatology; Kinne, 2019), the
water vapor (WV) (CAMS reanalysis; Inness et al., 2019),
the total ozone column (TOC) (climatological values based
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on ozone-monitoring instrument (OMI) TOC data; Bhartia,
2012), and the surface albedo (GOME-2 database of direc-
tionally dependent Lambertian-equivalent reflectivity; Tilstra
etal., 2017, 2021). It should be mentioned that the interpola-
tion procedure in the 7D LUT was added to the new SENSE2
to further improve the accuracy of the GHI estimations. Fi-
nally, since the results of the RTM runs are for sea level and
the mean Earth—Sun distance, a post-correction of the clear-
sky GHI values from the LUT is performed for the surface
elevation using the methodology described in Fountoulakis
et al. (2021) and the actual Earth—Sun distance for the par-
ticular day of year (DOY). Based on simulations for various
atmospheric and surface albedo conditions, Fountoulakis et
al. (2021) estimated an average increase of the GHI of 2 %
per km, which has also been applied to the model output to
correct the surface GHI for sites at higher altitudes than sea
level.

The use of LUTs in operational surface solar radiation re-
trievals instead of direct RTM calculations is well established
(e.g., Qu et al., 2017; Mueller et al., 2009). From a techni-
cal point of view, there are various concepts which can re-
duce the number of RTM simulations needed to generate a
LUT by several orders of magnitude. Mueller et al. (2009)
developed a flexible, fast, and accurate scheme to retrieve
the broadband surface solar irradiance (CM CAF datasets)
using the hybrid eigenvector approach, resulting in a com-
bination of basis LUTs with an optimized interpolation grid
and parameterizations using only almost 1000 RTM calcula-
tions. This approach was extended by Mueller et al. (2012)
to wavelength bands for spectrally resolved surface solar ir-
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radiance retrievals from spaceborne data. This optimization
of the computing performance is of paramount importance
for the reprocessing of a large amount of satellite data (up
to a few decades). In this work, the main concept behind
the generation of our clear-sky LUT was to have spectral
irradiance outputs (1 nm spectral resolution). The choice to
calculate spectral solar data and not directly calculate total
shortwave radiation is based on the fact that the SENSE2
output could be used for other applications (e.g., health and
agriculture), based on the irradiance weighting of a relevant
spectral range with an action spectrum (function) defined for
each of the effects. So, a large number of RTM runs had to
be performed (once) for the spectral surface solar irradiance
that covered all possible combinations of atmospheric and
surface states. Technically, since the operational setup of the
SENSE2 model allows for the computation of the clear-sky
GHI values from the previous day, the processing time for in-
terpolation to the seven dimensions of the LUT has no effect
on the timely production of the real-time output of the model
every 15 min, while the accuracy of the clear-sky output is al-
most identical to direct RTM simulations (Papachristopoulou
et al., 2022), and the uncertainties of the clear-sky GHI re-
trievals are related only to the uncertainties of the model
inputs. In addition, this LUT includes various aspects, es-
pecially for aerosols (AOD, SSA, AE), that can reduce the
uncertainty under different aerosol conditions for broadband
solar radiation or specific spectral regions.

Another improvement is related to the cloud representation
in real time using multi-parametric equations for different
cloud scenes based on the cloud modification factor (CMF)
concept instead of using the COT as an input parameter in
direct RTM calculations. The computation of the all-skies
GHI in real time every 15 min is based on the COT product
we extract operationally in real time using broadcasted MSG
satellite data and the software package provided by the EU-
METSAT Satellite Application Facilities for Nowcasting and
Very Short Range Forecasting, NWC SAF (Météo France,
2016; Derrien and Le Gléau, 2005). Neither the direct ra-
diative transfer simulations nor the multi-dimensional inter-
polations would be sufficiently fast to provide the all-skies
GHI SENSE2 product for 1.5 million pixels in a timely man-
ner. Instead, a multi-parametric equation was constructed by
fitting on libRadtran simulations for a wide range of COT
values and different SZAs (see the points in Fig. 2a). The
design of the cloud model was a trade-off between the rel-
evance of the cloud property and the operational implemen-
tation of the model. It was shown in previous studies (Qu et
al., 2017) that, in most of the cases (except for high surface
albedo values > 0.9), the vertical position and extent of the
cloud has only a small or a negligible influence on the RTM
simulations of surface solar irradiance. Under cloudy condi-
tions, COT is the variable that has the greatest impact on the
simulation of surface solar radiation (Qu et al., 2017; Oumbe
et al., 2014; Taylor et al., 2016). In our simulations, spher-
ical droplets were assumed, with typical values for the ef-
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fective radius (Refr = 10 pm) and typical climatological mean
heights (cloud’s base at 2 km and its height was 3 km) (Tay-
lor et al., 2016; Kosmopoulos et al., 2018) used given the
unavailability of height descriptors in the operational mode,
the negligible influence of changes in droplet effective radius
with respect to COT on the simulation of surface solar radia-
tion (Oumbe, 2009), and that this setup helps to simplify the
cloud model. The COT of the cloud layer at 550 nm is addi-
tionally specified, which leads to an adjustment of the default
liquid water content value of 1 gcm™> using the parameter-
ization from Hu and Stamnes (1993). Finally, homogeneous
cloud layer was used for the libRadtran simulations, meaning
a cloud cover fraction value of 100 %, which is one of the
model’s limitations, since it is not always correct to assume
totally cloudy pixels for low values of COT (Mueller et al.,
2009). The simulated GHI for each COT was divided by the
GHI for COT =0 (clear sky) for the same SZA to derive the
CMF (Eq. 1). The CMF ranges from O (overcast conditions)
to 1 (clear sky) and is easy to use to provide all-skies GHI by
simply multiplying the clear-sky GHI by CMF (Eq. 3). The
libRadtran-derived CMFs for each SZA were fitted against
COT using a hyperbolic tangent function. The resulting fits
are shown as solid lines in Fig. 2a and are mathematically
expressed by the multi-parametric Eq. (2).

GHI

CMF = (1
GHIclr

CMF = 1 — tanh” (COT%) )

Here, a and b are polynomials of SZA:

a=224x10"" 4281 x 107*.SZA —2.18 x 1077 - SZA?
+3.71x1077.SZA% —2.65 x 1077 - SZA*

b=122+5.27x 1073 -SZA —2.24 x 1073 . SZA?
+8.33x1075.SZA3 +3.94 x 1078.SZA*.

The real-time MSG COT is used, along with SZA, as an input
in Eq. (2) every 15 min for ~ 1.5 million pixels to calculate
the CMF (“CMFmsg” hereafter). Apart from being very fast,
this formula also accurately calculates CMFmsg, as can be
seen by a comparison of the CMF values derived by Eq. (2)
against those from libRadtran runs (Fig. 2b). CMF differ-
ences are less than 0.015 (or 1.5 %) for SZAs lower than 70°,
while they are up to 0.03 (3 %) for SZAs between 80 and 90°,
showing the very good representation of the CMF as a func-
tion of COT achieved with Eq. (2). In terms of accuracy, this
means that using Eq. (2) is almost the same as running RTM
simulations, but in terms of computational time, Eq. (2) is far
more efficient in the operational mode. Finally, by multiply-
ing CMFmsg by the clear-sky GHI, the all-skies GHI product
is obtained (Eq. 3) in less than 1 min for 1.5 million pixels.

GHI = GHI,, - CMFmsg 3)
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Figure 2. (a) Cloud modification factor (CMF) versus cloud optical thickness (COT) and solar zenith angle (SZA) based on radiative transfer
simulations of global horizontal irradiances using the libRadtran package. CMF is the ratio of the global horizontal irradiance (GHI) to the
GHI under cloudless conditions (COT = 0). (b) Differences between the CMF derived directly from libRadtran simulations and that derived

from Eq. (2) as a function of COT and SZA.

The new SENSE2 configuration was built to improve GHI
nowcasting at the 15 min timescale. Additionally, it allows
the system greater flexibility:

— It can include reanalysis or measured data of AOD
and other optical properties, e.g., CAMS reanalysis or
AERONET measurements.

— It can be extended to other output products. Apart from
GHI, the direct normal irradiance (DNI) or total irra-
diance on a tilted surface could be also produced. By
introducing spectral information and making the appro-
priate modifications, products related to specific spec-
tral regions could also be derived (e.g., the UV index
(using real-time TOC data as input) and the photosyn-
thetically active radiation (PAR)).

— It can run a past time series for one or a few locations
autonomously using actual measurements as input. In
this case, if there is no time constraint, model runs could
be performed without the parameterizations (LUT and
multi-parametric functions).

2.2 NextSENSE2

NextSENSE?2 is the operational system that provides fore-
casts of GHI up to 3 h ahead with a 15 min time step by ap-
plying a CMV technique to the MSG COT product (Fig. 1).
In this section, we describe the method employed to produce
forecasted COT, which is the main input used to derive the
operational forecasts of GHI. All the other EO inputs and the
radiative transfer parameterizations for fast estimates of fore-
casted GHI are the same as those described in the previous
section for the SENSE2 model.

https://doi.org/10.5194/amt-17-1851-2024

We use CMVs to predict the motions of the clouds and
project their future positions. The CMVs in NextSENSE2 are
calculated by applying a state-of-the-art optical flow algo-
rithm from the computer vision community. Optical flow is
the apparent motion of objects between consecutive frames,
which is caused by the relative movement between the ob-
ject and a camera. We apply the Farnebick (2003) two-frame
motion estimation technique to images of the COT product
(Kosmopoulos et al., 2020). Several other optical flow algo-
rithms, like TV-L1, are available as free software (OpenCV)
and are used for cloud motion estimation in solar energy
short-term forecasting systems (Urbich et al., 2019). In this
study, we used the Farnebick technique based on the results
of a previous study by Kosmopoulos et al. (2020). The optical
flow displacement vectors are calculated by applying the al-
gorithm to two consecutive images of satellite-derived COT.
This CMV field is applied to the later COT image (real) to
get the next COT image (forecasted COT). This procedure is
performed 12 times, resulting in the 3 h forecasting horizon.
The main assumptions are brightness constancy and that the
cloud’s displacements are only two-dimensional (i.e., in the
image plane). More details regarding the CMV model and
forecasted COT can be found in Kosmopoulos et al. (2020).

2.3 Persistence forecast

It is not easy to evaluate the quality of different forecast-
ing methods of surface solar radiation using only statisti-
cal metrics, since the study period, the geographical area,
and other factors affect their forecasting accuracies. That is
why it is a typical evaluation practice to benchmark the dif-
ferent forecasts against some simple forecast methods (Pel-
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Figure 3. Locations of the ground-based stations measuring global
horizontal irradiance (GHI) that are used in the current study. These
are eight BSRN stations plus Athens and Thessaloniki in Greece.

land et al., 2013). We used the persistence forecast to bench-
mark the CMV-forecasted GHI of the NextSENSE2 system,
which is a commonly used reference in solar forecasting
(e.g., Kosmopoulos et al., 2020; Kallio-Myers et al., 2020).
This method assumes that the state of the clouds remains
constant for future time steps, while all other variables, like
SZA, dynamically change. Hence, it uses the same COT val-
ues from the later satellite information as input to the next 12
time steps in order to forecast the GHI up to 3 h ahead.

2.4 Ground-based irradiance measurements

To validate the modeled GHI, ground-based measurements
from pyranometers were utilized. The ground-based 1 min
GHI measurements were collected from stations of the Base-
line Surface Radiation Network (BSRN; Driemel et al.,
2018), which are within the study area and have data for all of
2017, and from two additional stations at Athens (ASNOA:
the NOA’s Actinometric Station) and Thessaloniki. Table 2
summarizes information on all 10 stations utilized, and Fig. 3
depicts their geographical locations.

BSRN station-to-archive files were accessed and manip-
ulated using the SolarData v1.1 R package (Yang, 2019).
The function that reads the data from the station-to-archive
files also computes several auxiliary variables, such as solar
zenith angle, clear sky irradiances using the Ineichen—Perez
clear-sky model (Ineichen and Perez, 2002), and extraterres-
trial GHI. Using the same methodology, the Ineichen—Perez
clear sky model values were also computed for the non-
BSRN station data by adjusting the functions of the Solar-
Data v1.1 R package for the non-BSRN stations.

The BSRN-recommended quality check (QC) tests (Long
and Dutton, 2010) were applied to the collected measure-
ments to ensure that they were of the best quality. Measure-
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ments that did not pass the above QC tests were flagged and
labeled as missing values. The GHI records that are available
at the two Greek stations (1951—present in Athens; 1993—
present in Thessaloniki) are among the longest continuous
high-quality GHI records in the eastern Mediterranean Basin,
an area where BSRN data are not available for the period
of this study. The pyranometers in Athens and Thessaloniki
are calibrated regularly, and the GHI measurements were
subjected to quality control before being used in the study.
More information on the GHI datasets for the Thessaloniki
and Athens stations can be found in Bais et al. (2013) and
Kazadzis et al. (2018), respectively.

2.5 Ground-based aerosol information

To assess the CAMS AOD forecasts used as input to
the model, ground-based measurements of AOD from the
AERONET network (Holben et al., 1998) were used. Each
of the ground-based stations with pyranometer data (BSRN,
Athens, and Thessaloniki) has a collocated AERONET sta-
tion (see Table 2). The level 2, version 3 direct sun (Giles et
al., 2019) AOD data at 500 nm were collected and the AOD
values at 550 nm were derived using the Angstrom exponent
for 440-675 nm. However, measurements of AOD at 500 nm
were not available for Cabauw, so the AOD at 440 nm was
used instead and converted to 550 nm using the Angstrém
exponent for 440-675 nm.

2.6 Evaluation metrics

Common statistical metrics were adopted for the validation
of the SENSE2- or NextSENSE2-derived GHI values against
ground-based measurements. Given that the error is defined
as the difference between the modeled values (xy, ;) and the
observed values (x,_;), we have three common metrics: the
mean bias error (MBE), root mean square error (RMSE), and
Pearson correlation coefficient (R).

1
MBE = > (X — Xo;) )
i=1
1 & 2
RMSE= | — > (xm; — xo;) 5)
i=1

The relative values of the latter two metrics, rMBE and
rRMSE, were obtained with respect to the mean of the ob-
served values of GHIL

An additional metric, the forecast skill (FS), was used to
assess the performance of CMV-forecasted GHI using the
persistence model as a benchmark model:

rRMSECMV

FS=1-—
TRMSE pers

, (6)
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Table 2. Detailed information about the ground-based stations used in this study.
Ground-based pyranometer AERONET station

Name Network Lat. (°N) Long. (°E) Location

ATH - Athens - 37.9 23.7  Greece (Europe) Co-located

CAB - Cabauw BSRN 519711 49267 Amsterdam (Europe) Co-located

CAM - Camborne BSRN 50.2167 —5.3167 London (Europe) Co-located

CAR - Carpentras BSRN 44.083 5.059  Paris (Europe) Co-located

CNR - Cener BSRN 42.816 —1.601  Madrid (Europe) Co-located

LER - Lerwick BSRN 60.1389 —1.1847 London (Europe) Co-located

LIN - Lindenberg BSRN 52.21 14.122  Berlin (Europe) Co-located (metObs LIN)

PAL - Palaiseau, SIRTA Observ. BSRN 48.713 2.208  Paris (Europe) Co-located

TAM - Tamanrasset BSRN 22.7903 5.5292  Algiers (Africa) Co-located

THE - Thessaloniki - 40.63 22.96  Greece (Europe) Co-located

where RMSEcmy and rRMSE s are the relative RMSEs of
the CMV and persistence forecasting models, respectively.

3 Results and discussion

The results are discussed separately for the evaluation of
nowcasted GHI (Sect. 3.1) based on SENSE2 outputs (“mod-
eled GHI” hereafter) and the evaluation of the short-term
forecasted GHI (Sect. 3.2), namely the NextSENSE2 prod-
uct (“forecasted GHI” hereafter). The comparisons between
ground-based and estimated GHI were restricted to SZAs be-
low 75° (i.e., for solar heights above 15° from the local hori-
zon) because the accuracy of satellite cloud retrievals is de-
graded for higher SZAs.

The CMF derived from the ground-based measurements
of GHI was used in our analysis to evaluate CMFmsg and to
categorize the cloudiness conditions. Specifically, the CMF
was calculated as the ratio (Eq. 7) of the measured GHI to the
clear-sky irradiance calculated by the Ineichen—Perez clear-
sky model (Ineichen and Perez, 2002) (see Sect. 2.4):

CMF = M ) (7
GHIclr

Three categories of CMF are considered in the following:
CMF > 0.9 for clear-sky conditions, 0.4 < CMF < 0.9 for

partially cloudy conditions, and CMF < 0.4 for overcast con-
ditions.

3.1 Nowcasting
3.1.1 Overall performance

Figure 4 presents the overall performance of the SENSE2
system at the (instantaneous) 15 min timescale by comparing
the modeled GHI values against ground-based measurements
from all stations for a whole year (2017). We can see that
most of the points (Fig. 4a; number of cases N > 600) fall
on the 1:1 line (blue line), which indicates that the system
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shows good performance overall, with a correlation coeffi-
cient of 0.93. For 58 % of the cases, the absolute differences
between modeled and ground-based measurements of GHI
are within £50Wm~2 or +10% (Fig. 4b). The SENSE2
system mostly overestimates the GHI, leading to points
above the identity line (Fig. 4a; MBE is 23.8 W m—2 (4.9 %));
this overestimation is more pronounced for low irradiances
(lower-left corner of Fig. 4a where GHI < 250 W m~2). Ler-
wick is the most northern station and also the station with the
greatest MBE (Fig. 4b and Figs. A1, A2 in Appendix A).

We investigated how the mean cloudiness (CMF) of every
station, the station’s latitude, and the mean measured GHI
influenced the GHI MBE; the results are presented in Fig. 5.
The GHI MBE increases with an increase in cloudiness (a
decrease in mean CMF). At the same time, the cloudiness
increases and lower values of mean measured GHI are ob-
served with increasing latitude. Those results are in line with
previous studies (Qu et al., 2014, 2017). According to Qu et
al. (2014), the error of the satellite estimates of surface solar
radiation increases with an increase in the distance from the
subsatellite point (lat=0°, long =0° for Meteosat) and an
increase in the occurrence of fragmented cloud cover. Qu et
al. (2017) found that their retrievals for the northernmost sta-
tions were less accurate, which was attributed to the more fre-
quent cloud occurrence over those stations and the more er-
roneous satellite retrievals of cloud properties for large SZAs
and satellite viewing angles. One of those stations was Ler-
wick, which is close to the edge of the field of view of the
Meteosat satellite, where errors due to parallax become im-
portant (Marie-Joseph et al., 2013; Schroedter-Homscheidt
et al., 2022). The effect of clouds on GHI estimates is inves-
tigated in more detail in Sect. 3.1.3.

All the statistical metrics are drastically improved by in-
creasing the timescale for all stations (Fig. 6). The north-
ernmost stations (CAB, CAM, LER, LIN, and PAL) show
similar results. At the 15 min timescale, the MBE, RMSE,
and correlation coefficient show ranges of 29-43Wm™2,
104131 Wm™2, and 0.82-0.90, respectively. Those statis-
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Figure 4. (a) Comparison of the modeled versus measured global horizontal irradiance (GHI) for all ground-based stations in 2017. (b) Rel-
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and its size indicates the magnitude of the mean GHI observed at
the ground-based station.

tics are improved for the monthly means to 5-10 Wm™?2
for MBE, 7-13Wm~2 for RMSE, and R ~ 1. Similar re-
sults were found for the rest of the stations (which are the
southernmost ones): the MBE, RMSE, and correlation coef-
ficient range from —7 to 30Wm_2, from 84 to 104 W m™2,
and from 0.93 to 0.95, respectively, for the 15 min timescale,
whereas the MBE ranges from —4 to 8 Wm™2, the RMSE
ranges from 6 to 10W m™2, and R ~ 1 for monthly means.
The overall MBE and RMSE are reduced to 6.6 W m™2
(3.3 %) and 15.4 W m~2 (7.7 %) for the daily mean GHI and
t05.7Wm™2 (3.2%) and 9.2 W m~2 (5.2 %) for the monthly
means, while the correlation coefficient shows values that al-
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Figure 6. Comparison of the modeled versus measured global hori-
zontal irradiance (GHI) per ground-based station in 2017 for differ-
ent timescales (15 min, daily mean, and monthly mean).

most reach 1, which was anticipated since the cloud effect is
smoothed out for larger timescales.

3.1.2 Aerosol effect on the retrieved solar irradiance
The CAMS AOD forecasts used as input to the opera-
tional model were assessed against ground-based measure-

ments from the AERONET network, and the related uncer-
tainty introduced into the modeled GHI was calculated. The
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Figure 7. (a) Mean bias error (MBE) of the aerosol optical
depth (AOD) at 550 nm forecasted by CAMS (1d ahead fore-
cast) compared to the AOD measured by ground-based sun pho-
tometers of the AERONET network. (b) MBE of global horizon-
tal irradiance (GHI) modeled under clear-sky conditions using the
CAMS-forecasted AOD at 550 nm as input versus measured values
(AERONET).

AERONET AOD direct sun measurements were matched
with CAMS AOD forecasts (1 h time resolution) interpolated
to the 15 min time steps of the model. The closest AERONET
measurement +10min around each 15min time step was
matched (or the mean value was used if more than one mea-
surement was available). To estimate the model uncertain-
ties due to the forecasted AOD, the clear-sky GHI was calcu-
lated using the forecasted CAMS AOD and the synchronized
AERONET AOD measurements as input. The MBE for AOD
(CAMS against AERONET) and clear-sky GHI (modeled us-
ing CAMS AOD against those using AERONET AOD) per
station is presented in Fig. 7.

CAMS forecasts mostly overestimate AOD, with an MBE
of 0.015 (10 %) for all stations, which results in an under-
estimation of the modeled clear-sky GHI of —2.7 W m™2
(—0.4 %). The greatest overestimation, 0.05 (~ 50 %), was
found for CAM and CNR; this resulted in the greatest un-
derestimation of modeled clear-sky irradiance: —8.5 W m—2
(—=1.4%). An underestimation of AOD was found for
CAB and THE, with an MBE of <0.01 (<3 %), result-
ing in negligible overestimation of the modeled irradiance
(MBE <1Wm™2or 1%).

An overestimation of the CAMS-forecasted AOD at
550nm for 2017 over Europe is also reported (the aver-
age modified normalized mean bias ranges from ~ 10 % to
30 %), which is based on the continuous quarterly evalua-
tion of the AOD forecasts against daily AERONET cloud-
screened (i.e., version 3, level 1.5) sun photometer data
(Basart et al., 2023; Eskes et al., 2021). While this is the
case on average, in contrast, the CAMS-forecasted AOD
is underestimated during high aerosol loads, especially in
desert regions and during dust events (Basart et al., 2023;
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Papachristopoulou et al., 2022), which might explain the al-
most zero bias for Tamanrasset station (the overestimation of
small AODs is masked by the frequent underestimation of
large AODs) compared to the greater values of bias (> 0.01)
found for most of the other stations. Qu et al. (2017) ana-
lyzed case studies at Tamanrasset and found that the CAMS
(MACC) AOD at 550nm is frequently found to be under-
estimated when compared against AERONET data during
summer dust events, explaining the strong positive bias they
found for their modeled direct irradiance (using the Heliosat-
4 method and the McClear clear-sky model). In the same
study (Qu et al., 2017), in contrast to the CAMS AOD un-
derestimation that occurred during dust events, a systematic
overestimation of AOD during periods free of those events
was found for the two desert stations examined (Sede Bo-
ger and Tamanrasset) which the study linked to an underes-
timation of the modeled direct irradiance at those stations.
The updated McClear v3 clear-sky model was used in the
study by Schroedter-Homscheidt et al. (2022), and a nega-
tive bias was found for their GHI estimates under clear-sky
conditions for most of the stations, especially those located
in dust-affected regions, which is in line with our results —
although the results are not directly comparable since they
performed a direct comparison with the BRSN-measured ir-
radiances. Our results demonstrate that the clear-sky model
using CAMS forecasts shows good performance, highlight-
ing that the AOD product forecasted by CAMS is suitable for
GHI-nowcasting applications.

3.1.3 Cloud effects on the retrieved solar irradiance

Overall, the model overestimates GHI, as we saw in
Sect. 3.1.1. The improvement of the statistics upon going
from an instantaneous comparison to integrated timescales
(e.g., daily) indicates that this overestimation can be at-
tributed to the uncertainties related to the cloud informa-
tion from satellite retrievals but also to satellite/ground-based
evaluation representativity issues. In order to understand this
more closely, we investigated the effect of different condi-
tions in cloudiness on the error in the modeled GHI.

Initially, we classified the cloudiness conditions using the
ground-based CMF (Fig. 8a, b, c¢). According to the results,
GHI is overestimated by the model under cloudy conditions
(CMF < 0.9), while for clear-sky conditions (CMF > 0.9,
Fig. 8a), the model closely resembles the measured GHI.
For partially cloudy conditions (0.4 < CMF < 0.9, Fig. 8b),
the MBE is 81.6 Wm™2 (22.8%) and the greatest error
in GHI occurs for low CMF values (CMF < 0.4, Fig. 8c)
(MBE=100.1 Wm™2 or 73.1 %). High deviations at low
measured GHI values (<250 Wm™?2) are most commonly
found in the latter category.

We also compared the modeled and measured GHI val-
ues for clear-sky conditions according to the satellite data,
namely for COT =0 (Fig. 8d). In this case, the model over-
estimates GHI, with an MBE of 13.6 Wm™2 (2.3 %). Most
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cloudiness conditions based on the cloud modification factor (CMF; the ratio of ground-based GHI measurements to clear-sky GHI (clear-sky
model)), (d) for clear-sky conditions as determined by the MSG satellite product for zero cloud optical thickness (COT = 0), and (e, f) for
conditions characterized as “sun visible” or “sun obscured” over the ground-based station.

of the cases are on the 1: 1 line, with a few being higher, es-
pecially for measured GHI < 250 W m~2, meaning that there
are clouds over the ground-based station that have not been
resolved by the satellite pixel (COT =0). A positive bias was
also found at all stations examined by Qu et al. (2017) for
clear-sky pixels as defined by the APOLLO/SEYV cloud prop-
erties retrieval scheme, which contributed to the overall over-
estimation for all skies. This was attributed to small broken
clouds that cause large variability in surface GHI and to false
detections by the cloud retrieval algorithm being treated as
clear-sky cases.

To demonstrate the effect of sun visibility over the ground-
based stations on the GHI error, we tried to separate out
those instances by using the pyrheliometer measurements of
direct irradiance (DNI — direct normal irradiance) available
from the BSRN network. The DNI measurements (1 min)
were divided by the clear-sky DNI, which was again ob-
tained from the Ineichen—Perez clear-sky model (Ineichen
and Perez, 2002). We classified situations with a ratio of ac-
tual to clear-sky model DNI of > 0.8 as “sun visible”. This
threshold was selected to account for the strong effect of
aerosols on DNI, given that a monthly mean climatologi-
cal value for the aerosol attenuation factor is used by the
DNI clear-sky model (Ineichen and Perez, 2002). We clas-
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sified situations with a ratio of < 0.6 as “sun obscured”, and
we omitted situations with ratio values between 0.6 and 0.8
(“unclassified situations”) so that we could be confident by
more than 40% that the direct irradiance was blocked by
clouds. The results of the comparison between modeled and
measured GHI values were grouped based on the sun visi-
bility classification and are presented in Fig. 8e and f. We
can see that the sun-visible situations give quite good results
(points close to the 1: 1 line, with an MBE of —28.1 W m™2
or —4.4 %).

In contrast, the model overestimates GHI (MBE is
74.5Wm~2 or 24.5 %) when the sun is obscured over the
ground-based station. Comparing Fig. 8b and ¢ with Fig. 8f,
we can see that most of the cases that are above the 1: 1 line
happened when the sun was obscured. This is caused by the
fact that the satellite-based cloud retrieval is representative
of the whole pixel, while the information on whether the sun
is obscured over the ground-based station is representative
of the (point) station and cannot be inferred from the satel-
lite cloud retrievals. This — combined with the facts that the
direct irradiance attenuation from clouds is completely dif-
ferent from GHI, it does not linearly decrease with cloudi-
ness or cloud optical thickness, and, finally, its contribution
to GHI depends on various parameters (mainly the solar ele-
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vation) — introduces an issue into any instantaneous compar-
ison between a satellite-based GHI retrieval representing a
whole pixel and a GHI value measured at a single point. So,
the main result of this analysis of sun visibility over a station
is to discuss possible systematic biases due to the satellite
pixel versus station evaluation representativeness issue. This
issue makes instantaneous model output evaluation difficult,
especially in partly cloudy situations.

Since the main source of errors in this analysis is asso-
ciated with clouds, we further assessed the satellite-derived
cloud input in the model. The MSG COT is transformed into
CMFmsg using Eq. (2), and this is the cloud-related input
in the SENSE2 model. Since this cannot be evaluated di-
rectly with ground-based measurements, we indirectly eval-
uated CMFmsg with the CMF derived from GHI measure-
ments (Eq. 7). The results are presented in Fig. 9 as relative
frequency distributions of CMFmsg, CMF, and the difference
between them (CMFmsg — CMF) for all cases and differ-
ent cloudiness conditions. Overall, the CMFmsg is overesti-
mated (0.02; Fig. 9a and b), which is the reason for the over-
estimation of SENSE2-modeled GHI overall. This CMFmsg
overestimation occurs mainly when there are cloudy condi-
tions (Fig. 9g, h, i, and j) and where the sun is obscured over
the ground-based station (Fig. 9m and n).

There are also cases of CMFmsg underestimation (CMF
differences < 0 in Fig. 9b), which come mostly from situa-
tions characterized as cloudless (CMF > 0.9, Fig. 9e and f)
and explain the points below the 1:1 line in Figs. 4a and
8 (i.e., those for which the measured GHI is greater than
the modeled one). The first reason for this is a cloudy satel-
lite pixel (corresponding to CFMmsg < 1 in Fig. 9¢e) but a
ground-based CMF =1 (which indicates that no clouds are
present over the station). There are also many cases where
CMF > 1 (Fig. 9e) that is attributed to irradiance enhance-
ment by clouds, which often occurs when the sky above the
ground station is partially cloudy but the sun is visible (see
also Figs. 9k and 1 and 8e). In this case, the reflection of solar
radiation by clouds increases the diffuse component from di-
rections relatively close to the sun, hence the measured GHI
on the ground. This is a three-dimensional effect of clouds
that cannot be reproduced using the one-dimensional radia-
tive transfer modeling used in this study. This is a limitation
of the SENSE2 model — it does not include three-dimensional
cloud effects (enhancement of the GHI or parallax) which
can be reproduced using 3D RT simulations (e.g., Mayer,
2009). However, three-dimensional cloud structure informa-
tion is not available for an operational solar energy now-
casting model from geostationary satellites (Qu et al., 2017;
Schroedter-Homscheidt et al., 2022); besides, the introduc-
tion of parameterizations and techniques to improve the com-
putational time (Tijhuis et al., 2023) is essential.

Summarizing, to explain the overestimation of SENSE2
GHI retrievals, we have to recognize that a direct compar-
ison between point measurements of solar radiation at the
ground and satellite estimates representative of a pixel intro-

https://doi.org/10.5194/amt-17-1851-2024

duces deviations (e.g., Kazadzis et al., 2009; Schenziger et
al., 2023; Carpentieri et al., 2023) that are linked with the
cloud features within the pixel and the limitations of cloud
monitoring using satellite data (e.g., spatial resolution). We
investigated the distributions of both CMFs and the differ-
ences between the CMFs separately for, again, clear-sky con-
ditions according to the satellite (namely COT = 0; Fig. 9¢
and d). Regardless of the fact that CMFmsg can only be one,
meaning that no clouds are resolved by the satellite, there
are cloudy cases with CMF < 1 for the ground-based sta-
tion (Fig. 9c). Due to the satellite’s spatial resolution, small-
scale broken clouds cannot be resolved in some cases (e.g.,
Schenziger et al., 2023; Marie-Joseph et al., 2013; Qu et al.,
2017), but those clouds may have a significant impact on the
ground-based measured irradiance if they are obscuring the
sun (almost total attenuation of the direct irradiance). If they
do not obscure the sun, this also corresponds to the clear-
sky case for the ground-based station, although the effect
of cloud enhancement of the measured GHI cannot be ex-
cluded (CMF =1 and CMF > 1 in Fig. 9c, respectively). In
a recent study by Schenziger et al. (2023) using sky cam-
era images, the limitation of MSG satellite-based modeled
CMF was demonstrated for small-scale clouds. Different re-
sults were obtained for two different stations inside the same
satellite pixel, which was characterized as cloud free. For
one station that was cloud free, the model agreed with the
measurements; however, for the station that was covered by
localized cumulus clouds that could not be resolved by the
satellite, there were discrepancies between the ground-based
and satellite-based modeled values. Nevertheless, even for
the cases where the satellite imager can resolve clouds within
a partially cloudy pixel, the COT product for this pixel is a
constant value, namely a spatially homogeneous cloud opti-
cal property for the corresponding area. In this atmospheric
scene with a high spatial variability of clouds, the results of
the comparison will depend dramatically on whether the GHI
is measured at ground level with the sun obscured or unob-
scured.

3.1.4 Bias correction based on the cloud input

Overall, the model overestimates GHI, which is attributed
to the CMFmsg overestimation. Based on the main conclu-
sions from the investigation of CMF differences in the pre-
vious section, we tried to find out if there is a pattern for
CMF difference (modeled against measured) as a function
of CMFmsg that is common to all stations, since it is the
only operationally available input every 15 min. Addition-
ally, we found that those differences hardly change with SZA
(Fig. B1 in the Appendix B), so we only investigated their re-
lationship with CMFmsg.

We calculated the mean CMF difference and its standard
deviation per CMFmsg bin for every station, and the results
are presented in Fig. 10. A pattern of mean CMF differ-
ences in which the CFMmsg overestimation reached almost
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Figure 9. Left panels (a, c, e, g, i, k, m): distributions of the cloud modification factors (CMFs) from measurements of global horizontal irra-
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Right panels (b, d, f, h, j, 1, n): distributions of the difference between the CMF derived from MSG satellite COT against the CMF derived

from measurements of GHI.

0.1 starting at CMFmsg bin 0.3 and continuing up to bin 0.8
was found for almost all stations (apart from TAM, ATH ,and
THE), which was also related to the low standard deviations
in those bins.

As we discussed in the previous section, this CFMmsg
overestimation (up to ~0.1) is mostly related to partial
cloudiness and sun-obscured conditions over the station.
Nevertheless, the sun’s visibility above a station is an infor-
mation that cannot be provided by satellites. Consequently,
we tried to correct CMFmsg (the operational input) with
the CMF differences (modeled against measured values). We
used the mean of the CMF differences per CMFmsg bin from
7 out of 10 stations (excluding TAM, ATH, and THE) to de-
rive the correction factor (“the correction” hereafter), which
is depicted as a dashed thick black line in Fig. 10. The correc-
tion was only applied to CMFmsg values in bins 0.3-0.8. The
correction was applied to all stations, including TAM, ATH,
and THE, which acted as a test bed (with a low frequency
of cloudy cases) for the general correction derived from the
other seven stations.

Atmos. Meas. Tech., 17, 1851-1877, 2024

Table 3 summarizes the statistics of the corrected mod-
eled GHI against ground-based measurements. The MBE and
RMSE are improved after the correction. LER and CAM
are the two stations with the greatest improvements in their
statistics, followed by CAB and LIN, which was anticipated
since those stations are at higher latitudes (associated with
high cloudiness). Even stations ATH and THE, which were
not used in the correction factor derivation, exhibit better re-
sults after applying the correction. TAM is the only station
for which the statistics were not improved. Because cloudi-
ness was rare at that station, its statistics were already good,
indicating that a hybrid approach to the correction based on
the area’s cloudiness would probably be better. Overall, after
the correction, the GHI differences (modeled against mea-
sured values) were within 50 Wm~2 (or +10 %) for 61 %
of the cases. The MBE for all stations was also improved
to 11.3Wm™2 (2.3 %) compared to the uncorrected value
(23.8W m~2 or 4.9 %). For the daily mean GHI, the overall
MBE and RMSE were improved to 3.3 Wm~2 (1.7 %) and
13.1Wm™2 (6.6 %) compared to the uncorrected values of
6.6Wm2(3.3%)and 15.4Wm—2 (7.7 %), respectively. For
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to different stations.

monthly means, the MBE improved to 2.7Wm™2 (1.6 %)
compared to 5.7Wm2 (3.2%) before correction, and the
RMSE improved to 6.3 Wm~2 or 3.6 % (it was 9.2W m~?
or 5.2 % before correction).

After improving the configuration of the SENSE2 model
and correcting the bias in CMFmsg for partially cloudy con-
ditions (the “bell-shaped curve” between CMFmsg bins 0.3
and 0.8, which has been also reported in other studies, e.g.,
Marie-Joseph et al., 2013), more accurate estimates of GHI
were produced, in line with the results from similar models
(Queet al., 2014; Thomas et al., 2016; Qu et al., 2017). These
SENSE2 GHI estimates will be the basis for the new fore-
casting system NextSENSE2 evaluated in the next section
(Sect. 3.2).

Comparing our results with other studies, for the HC3v3
database of surface solar irradiation (Qu et al., 2014), correla-
tion coefficient values greater than 0.92 and relative RMSEs
between 14 %-38 % were found for the 15 min timescale.
In the same study, for daily irradiation, correlation coeffi-
cient values greater than 0.97 were found, along with relative
RMSEs between 6 % and 20 %. For the latest version (5) of
HelioClim-3 database (HC3v5), validation against 14 BSRN
stations (Thomas et al., 2016) resulted in relative biases

https://doi.org/10.5194/amt-17-1851-2024

between —4 % and 5 % and rRMSEs between 14.1 % and
37.2 % for GHI. Both studies highlight the good performance
of the clear-sky irradiation values from the McClear clear-
sky model (which uses advanced inputs for aerosol, water va-
por, and ozone instead of climatological values). A compar-
ison of the 15 min means of global irradiance estimated by
the fully physical Heliosat-4 method (a combination of the
McClear and McCloud models) against ground-based mea-
surements from 13 stations of the BSRN network (Qu et
al., 2017) showed large correlation coefficients for all sta-
tions (0.91-0.97) and biases and RMSEs of GHI that ranged
between 2-32 and between 74-94 W m~2, respectively. In
the same study, the greatest values of the relative RMSE of
the mean irradiance were found for stations with rainy cli-
mates and mild winters (26 % to 43 %, with the greatest value
found for the northernmost station), while values for sta-
tions in desert and Mediterranean climates ranged between
15 % and 20 %, which are in line with our findings for the
northernmost and southernmost stations, respectively, in this
study. The positive biases previously observed when using
the APOLLO cloud retrieval in Heliosat-4 (Qu et al., 2017)
for the CAMS Radiation Service were significantly reduced
and balanced after applying the new cloud retrieval scheme

Atmos. Meas. Tech., 17, 1851-1877, 2024



1866

Atmos. Meas. Tech., 17, 1851-1877, 2024

K. Papachristopoulou et al.: Effects of clouds and aerosols on downwelling surface solar irradiance

oo oo oo o222

oIS oSS

S oo oo oo o2

NN S S S~

SO ooo

88°0
¥6°0

88°0

e ke e e e e

PN AN NN AN B BN N

Q1) '

(8709

9€¢l
S8l
I'v1
) 81
)91t
oYl
Sl
)Lyl
49!
el

e e e e e

ToT ST oo o

—_—— o oCoooS o2

R e e e

RN NN AN NS AN AN NN

P e e e

(S0 8

N e e s e e

oo o oo oCo2

R T e e e

—_m e s = = -

—_m e m = .

uonelg

“100

| @), wmasNg | (%), wmadn

y

(%) ~WwM ASINY | (%) —w M TEN \

¥y

(%) WM HIN

| @) wmaswa |

oy

uru gy

Areq

A[quoy

‘PIoq

UL UMOUS I8 UOTIOLIOD Y} Jo)Je PIAOIdWI 9IaMm JBY) SSOY) ‘SAN[BA PIJOILIOD SIJBIIPUT 10D, "SSULIIAD) YIIM UOTIOAIIOD I)J8 PUB 9I0Joq SOOUBIPRLIT PI)ISLOMOU JO OUBULIONSJ *€ QR

APOLLO_NG (a new cloud mask with a cloud probability
threshold of 1 %, among other improvements; for more de-
tails, see Schroedter-Homscheidt et al., 2022). After the im-
provements, relative RMSE values of hourly GHI of between
10.3 % and 25.5 %, along with a mean value of 13.7 %, were
reported for 2015 (Schroedter-Homscheidt et al., 2022). An
extensive validation (Urraca et al., 2017) of the operational
radiation product (ICDR) of the CM SAF over Europe for
the 2008-2015 period gave an MBE of 4.5Wm™2 (4 %)
and an RMSE of 18.1 Wm™2 (15.1 %) for daily means of
the product, and it was reported that it was overestimated at
high latitudes, in contrast to the climate data records (CDRs).
For the new SARAH-3 CDR SIS (Surface Incoming Short-
wave Radiation) product for the period 1983-2020, valida-
tion (Pfeifroth et al., 2023b) showed biases of 4.2, 2.18, and
2.25W m™2 for the 30 min instantaneous data, daily mean,
and monthly mean, respectively. The validation of the oper-
ational product (ICDR) with respect to the SARAH-3 CDR
for the year 2020 showed that the ICDR product consistently
temporally extents the SARAH-3 CDR data records. The rea-
sons for the differences between these two products were dif-
ferences in the auxiliary data (water vapor, etc.) and the time
range used for deriving the effective cloud albedo and daily
SNOW CcoVer.

3.2 Short-term forecasting

3.2.1 Overall performance — benchmarking with the
persistence method

Figure 11 summarizes the performance of the CMV-method-
predicted GHI (green points) as a function of the forecast-
ing horizon by providing the main statistics after compari-
son with ground-based GHI measurements from all 10 sta-
tions for a whole year (2017). Detailed results per station
for representative statistics and selected time steps (460,
4120, +180 min) can be found in Table 4. As a benchmark,
the results from the commonly used persistence forecasting
method are also presented in Fig. 11 (black points). We can
see that the CMV model systematically outperforms persis-
tence for all time steps. It is interesting that the first time
step (415 min) is not the one with the maximum difference
between the CMV and persistence statistics (or the maxi-
mum CMV FS%), indicating that the probability of chang-
ing cloudiness is low for such a short time interval, which
favors the persistence method. The second time step is the
one with the maximum CMV FS% (best performance) com-
pared to persistence (up to ~ 10 %). As the forecasting hori-
zon increases, all the metrics deteriorate for both methods
and persistence is systematically worse than CMV.

An interesting grouping of stations was obtained by com-
paring the main statistics (rRMSE and FS) for both fore-
casting methods with the mean CMF (representing its mean
cloudiness) for each station (Fig. 12). Three time steps were
selected: +60, +120, and +180 min (in order of increasingly
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Figure 11. Performance statistics for forecasted global horizontal irradiance (GHI) by the CMV model (green points) and by the persistence

method (black points) for every 15 min time step up to 3 h ahead.

Table 4. Performance statistics for CM V-forecasted global horizontal irradiance (GHI) for the 60, 120, and 180 min time steps.

Station Mean rRSME (%) R FS (%)
CMF Time step (min) Time step (min) Time step (min)

+60 +120 +180 | 460 +120 4180 | +60 +120 4180
ATH 097 220 24.5 253 | 0.90 0.87 0.86 0 1.7 3.2
CAB 0.68 39.7 45.6 49.6 | 0.80 0.73 0.68 | 10.5 7.5 5.8
CAM 0.63 54.1 62.0 68.9 | 0.66 0.58 0.50 2.7 34 1.5
CAR 0.85 228 26.3 29.6 | 0.90 0.86 0.82 8.1 5.6 3.1
CNR 0.81 31.0 34.8 374 | 0.85 0.79 0.75 2.4 2.9 2.6
LER 0.61 50.8 56.0 59.6 | 0.73 0.67 0.62 | 10.4 9.5 9.4
LIN 0.68 39.7 459 512 | 0.81 0.74 0.69 | 13.9 10.9 8.8
PAL 0.68 389 44.9 48.8 | 0.82 0.75 0.71 | 11.6 7.6 6.0
TAM 0.87 214 23.1 24.7 | 0.89 0.86 0.82 2.2 1.0 —-13
THE 091 239 27.2 29.2 | 0.89 0.86 0.84 6.8 5.1 2.4

transparent symbols in the plot). Two groups of stations are
evident: those with high mean cloudiness (LER, CAM, PAL,
LIN, and CAB), which show worse rRMSEs than those with
lower cloudiness (ATH, THE, TAM, CAR and CNR), inde-
pendently of the method used. Again, the CMV model (green
symbols) outperforms the persistence method (black sym-
bols) for all stations for these time steps (except +240 min
for TAM). The interesting finding is that the FS (%) of
the CMV method increases with decreasing CMF; in other
words, the forecasting skill of the CMV model is higher
compared to persistence for stations with higher cloudiness,
demonstrating the applicability of the CMV method of fore-
casting GHI under cloudy conditions.

3.2.2 Performance for different cloudy conditions

To demonstrate the value of the CMV model compared to
the persistence method, which assumes the same cloudy con-

https://doi.org/10.5194/amt-17-1851-2024

ditions for all future time steps, we compared their perfor-
mance under different cloudy conditions and transitions in
cloudiness. Figure 13 presents the RMSEs for both models
(green points for CMV and black points for persistence) and
the CMV model FS% as a function of CMF for three time
steps (460, 4120, and 4180 min). Persistence performs bet-
ter than the CMV model under clear-sky conditions, namely
when CMF = 1, for all time steps (as expected, as there is no
change in cloudiness). This is also true for CMF bin 0.9 for
the +180 min time step only and for CMF bin > 1 (a bin
which mainly contains clear-sky cases) for all time steps.
For cloudy conditions, namely when CMF < 0.9, the CMV
model outperforms persistence for all time steps (apart from
+180 min when considering CMF bin 0.9). The cloudier the
conditions (the smaller the CMF), the better the performance
of the CMV model and the greater the CMV FS% (which is
up to ~20 % for the +60 min time step). The FS of CMV

Atmos. Meas. Tech., 17, 1851-1877, 2024
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Figure 12. Relative root mean square error ((RMSE%) and forecasting skill expressed as a percentage (FS%) for the CMV model (green
symbols) and the persistence method (black symbols) when they were used to forecast global horizontal irradiance (GHI) versus the average
cloudiness of stations (mean CMF) for the time steps (in order of increasingly transparent symbols) +60, 4120, and +240 min.

model decreases slightly with forecasting horizon; however,
for the maximum forecasting horizon (4180 min), it remains
quite high (~ 410 %) for CMF bins < 0.7.

To demonstrate the better performance of the CMV
method compared to the persistence method for all time
steps under cloudy conditions, we calculated CMV FS%
for partially cloudy conditions (0.4 < CMF < 0.9) and over-
cast conditions (CMF < 0.4), and the results are presented in
Fig. 14. We can see again that the FS of the CMV model
decreases with time; however, the minimum value is ~ 10 %
for both categories. The maximum FS occurs at the +15 min
time step for both categories (at ~16% and ~22 % for
0.4 < CMF < 0.9 (cross symbols) and CMF < 0.4 (triangle
symbols), respectively).

The performance of the CMV model against the persis-
tence method was also assessed under changing cloudiness,
evaluated as the CMF change based on ground-based mea-
surements. The CMF changes were calculated for a time in-
terval of 60 min (as ACMF =CMF, 4y — CMF,), and the
results for the CMV model FS (%) are presented for the
460 min time step as a function of CMF change in Fig. 15.
The high negative value of FS for the zero CMF change
bin indicates that the persistence method is better for that
bin, which was anticipated since there is zero or almost zero
change in CMF, which is practically the definition of the
persistence method. Persistence is still better than CMV for
CMF changes from cloudy to clearer conditions up to the
+0.3 CMF change bin, but the FS is less negative than for
the zero bin. For CMF changes from cloudy to clearer con-
ditions with higher magnitudes (bins > 0.4), CMV is better
than persistence, with an FS value of 15 % for the +0.6 CMF
change bin. Consistent results were found for the opposite
situation, namely changes from clearer to cloudy conditions,
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with the CMV model always giving better FS values (of up
to ~ 20 %) than persistence.

Our analysis for different cloudiness conditions highlights
the limited ability of the persistence method compared to the
CMV-based NextSENSE2 to accurately forecast GHI under
cloudy conditions (CMF values < 0.9) and to follow transi-
tions in cloudiness (especially those from clearer to cloudy
conditions).

A direct comparison of the results of the present study for
the NextSENSE2 short-term forecasting model with other
studies is not straightforward, as the study period, the geo-
graphical area, and the validation methods used are differ-
ent. Kallio-Myers et al. (2020) validated their Solis—Heliosat
satellite-based GHI forecast modeled over southern Finland,
and they found that the rRMSE reached 50 % at the 4 h time
step. Urbich et al. (2019) validated SESORA short-term fore-
casts of solar surface irradiance over Germany and parts of
Europe for 17 different cases with different weather patterns
for the period August to October 2017, with all forecasts
initiated at 09:15 UTC. For validation against the SARAH-
2 data by CM SAF, they reported an RMSE of 59 W m—2
after 15 min and a maximum RMSE of 142 W m_z, reached
after 165 min.

One of the limitations and sources of error for
NextSENSE?2 is related to the satellite-based optical flow
method used for short-term forecasting: this method cannot
reproduce cloud formation or dissipation. One example of
this is convective clouds that form very fast, violating the op-
tical flow criterion, i.e., that there should be constant inten-
sity of the pixels between two consecutive images (e.g., Ur-
bich et al., 2018, 2019). Urbich et al. (2018) applied the com-
mon approach of separation into subscales for the optimiza-
tion process, which ultimately did not improve the forecast
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Figure 14. Forecasting skill (FS, expressed as a percentage) of the
CMV model against the persistence method for all stations as a
function of time horizon for two different cloudiness conditions:
0.4 < CMF < 0.9 (crosses) and CMF < 0.4 (triangles).

and increased the complexity of the implementation. As has
already been discussed in the “Introduction”, satellite-based
short-term forecasting is the best choice for a time horizon of
up to 6 h ahead, since it is available in real time and at high
spatial resolution. However, merging it with NWP models
is a solution for increasing the time horizon and the qual-
ity of forecasts (Lorenz et al., 2012; Wolff et al., 2016), as
it compensates for the effect of changes in intensities (dur-
ing convection or cloud dissipation) that cannot be captured
by CMV models (Miiller and Pfeifroth, 2022). A compari-
son of a short-term forecasting model of surface solar radia-
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Figure 15. Forecasting skill (FS, expressed as a percentage) of the
CMYV model against the persistence method for all stations as a
function of CMF change within a 60 min time interval (from time 0

to the 460 min time step).

tion (the SESORA model) with different NWP models (apart
with the persistence model) has been presented by Urbich et
al. (2019), and they found that the intersection point where
the NWP model delivers better results depends on the model
and is beyond 3—4 h, which is also in line with the findings
of other studies (e.g., Lorenz et al., 2012; Wolff et al., 2016).
The merge of our short-term forecasting model with an NWP
model is out of the scope of the present study. The elabora-
tive benchmark analysis of the NextSENSE2 system against
the persistence approach has demonstrated its applicability
as an operational tool for a time horizon of up to 3 h ahead.
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4 Summary and conclusions

Our motivation is the continuous improvement of EO-based
estimates and the accuracy of short-term forecasts of avail-
able solar resources to support solar energy exploitation
systems at a regional scale (in Europe and the MENA re-
gion). In this study, we improved the SENSE nowcasting
and NextSENSE short-term forecasting operational systems,
and we analyzed cloud-related uncertainties in detail, using
ground-based measurements to discriminate between differ-
ent sun visibility conditions.

In terms of the aerosol-related inputs, a slight overestima-
tion of CAMS AOD against AERONET retrievals (< 10 %)
was found, which resulted in a SENSE2 clear-sky GHI un-
derestimation of less than 1 %, highlighting the applicabil-
ity of CAMS forecasts as EO inputs for operational solar re-
source nowcasting. In terms of modeled all-skies GHI, it was
found that SENSE2 mostly overestimates GHI, with an MBE
of 23.8 Wm—2 (4.9 %) for instantaneous comparisons, which
was attributed to the uncertainties related to satellite cloud
retrievals (overestimation of CMFmsg by ~ 0.02) and also
to the spatial representativeness of satellite-based retrievals
compared to ground-based measurements. We demonstrated
that the most difficult situations to model are those with
high spatial variability of solar radiation within the satel-
lite pixel due to clouds (e.g., small broken clouds and the
sun is obscured over the ground station, which is informa-
tion that cannot be derived from satellite data). Based on our
cloud-related analysis using ground-based data, a correction
for the modeled GHI was used, resulting in an overall im-
provement in the SENSE2-modeled GHI such that 61 % of
the cases were within 50 Wm~2 (+10 %) of the measured
GHI and the final MBE of SENSE2 was 11.3 W m~2 (2.3 %).
Our main analysis was based on the 15 min timescale; how-
ever, depending on the application, hourly, daily, or monthly
data could be used. The daily and monthly SENSE2 GHI
showed much better statistics (MBEs of 3.3 and 2.7 Wm™2,
respectively). The validation results for SENSE2 demon-
strate highly accurate nowcasted values of GHI which are in
line with similar models. The recorded positive bias could be
reduced by applying improvements in the NWC SAF cloud
retrieval input to SENSE2 regarding partially cloudy pixels.
NextSENSE2 was also improved due to the SENSE2 im-
provements. We also showed that, compared to the persis-
tence method, the model works much better (as expected) at
locations with increased cloudiness and frequent cloudiness
changes.

The data and methods involved in the estimation and pre-
diction of the GHI in this study also revealed their limita-
tions. As mentioned, the pixel-based approach for the model
inputs (satellite and models) could not always reflect the real-
ity above a (point) ground-based station. However, the model
inputs are the state of the art for EO data and are readily
available at a regional or global scale and at high spatial and
temporal resolution; hence, the GHI product is representa-
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tive of an area (~ 5km x 5km in this model), which is use-
ful for photovoltaic parks covering a wide area. In general,
performance evaluations of such EO-based GHI models with
ground-based measurements must account for these spatial
representativity issues when performing comparisons. The
optical flow algorithm for calculating CM Vs is also based on
assumptions like 2D clouds and brightness constancy. How-
ever, it is a method based on cloud inputs from satellite data
in real time, and the applicability of such methods compared
with the persistence approach was demonstrated here.

Since satellite cloud information is the only real-time in-
put, a new straightforward configuration for estimating GHI
was applied (SENSE2). The advantage of calculating clear-
sky GHI from the previous day is what increases the accu-
racy of this product, since it is based on a detailed LUT of
~ 16 million combinations of seven different inputs; apart
from AOD, these include additional aerosol optical proper-
ties and atmosphere/surface state inputs. Thus, the uncer-
tainties in the estimated clear-sky GHI practically only re-
sult from uncertainties in the model inputs. The new scheme
for calculating the all-skies GHI by multiplying the clear-sky
GHI by CMFmsg (derived in real time by a multi-parametric
function of MSG COT and SZA) was improved by applying
a suitable CMFmsg correction. The correction was success-
ful and improved the model performance, especially for areas
with high cloudiness. Additionally, the new configuration of
SENSE2 is more flexible and it is easy to adapt so that it can
provide more products (like DNI, the UV index, or PAR). Fi-
nally, running the model in a retrospective way using reanal-
ysis data or in situ observational data for certain locations is
one of the prospects for the new model.

According to the results, high-resolution (every 15 min at
~5km x 5km) and quite accurate real-time GHI estimates
and forecasts are produced from the upgraded SENSE2 and
NextSENSE2 operational systems, respectively, which can
contribute to solar energy systems management and plan-
ning.
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Appendix A
Density scatterplot of GHI(W/ m? ), Athens 2017 Density scatterplot of GHI(W/ m? ), Cabauw 2017
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Figure Al. Comparison of the modeled versus measured global horizontal irradiance (GHI) for (a) Athens, (b) Cabauw, (¢) Camborne,
(d) Carpentras, and (e) Cener for 2017.
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Appendix B

To see if the CMF difference (modeled against measured
values) changed with SZA, the MBE of CMF was calcu-
lated for 10° bins of SZA. The measured CMF was consid-
ered to be the one derived from GHI measurements (Eq. 7)
and the modeled one was derived using Eq. (2). The results
are presented in Fig. Al for all cases and under different
cloudiness conditions, along with the relative values of CMF
MBE expressed as percentages. We can again see that most
of the overestimation of CMF values by MSG COT occurs
for cloudy conditions (CMF < 0.9). Specifically, for partially
cloudy conditions (0.4 < CMF < 0.9), the MBE reaches val-
ues of up to ~ 0.20, and for overcast skies (CMF < 0.4), there
are SZA bins (0°) for which the MBE reaches values of up to
0.25. However, the MBE hardly changes with SZA for those
two categories.
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Figure B1. Cloud modification factor (CMF) mean bias error (MBE
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of solar zenith angle (SZA) for all cases and different cloudiness
conditions.
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