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Abstract. Originally developed for the moderate resolu-
tion imaging spectroradiometer (MODIS) in polar, sun-
synchronous low earth orbit (LEO), the Dark Target (DT)
aerosol retrieval algorithm relies on the assumption of a sur-
face reflectance parameterization (SRP) over land surfaces.
Specifically for vegetated and dark-soiled surfaces, values of
surface reflectance in blue and red visible-wavelength bands
are assumed to be nearly linearly related to each other and to
the value in a shortwave infrared (SWIR) wavelength band.
This SRP also includes dependencies on scattering angle and
a normalized difference vegetation index computed from two
SWIR bands (NDVISWIR). As the DT retrieval algorithm
is being ported to new sensors to continue and expand the
aerosol data record, we assess whether the MODIS-assumed
SRP can be used for these sensors. Here, we specifically as-
sess SRP for the Advanced Baseline Imager (ABI) aboard the
Geostationary Operational Environmental Satellite (GOES)-
16/East (ABIE). First, we find that using MODIS-based SRP
leads to higher biases and artificial diurnal signatures in
aerosol optical depth (AOD) retrievals from ABIE. The pri-
mary reason appears to be that the geostationary orbit (GEO)
encounters an entirely different set of observation geometry
than does LEO, primarily with regard to solar angles cou-
pled with fixed-view angles. Therefore, we have developed a
new SRP for GEO that draws the angular shape of the sur-
face bidirectional reflectance. We also introduce modifica-
tions to the parameterization of both red–SWIR and blue–
red spectral relationships to include additional information.
The revised red–SWIR SRP includes the solar zenith an-

gle, NDVISWIR, and land-type percentage from an ancillary
database. The blue–red SRP adds dependencies on the scat-
tering angle and NDVISWIR. The new SRPs improve the
AOD retrieval of ABIE in terms of overall less bias and mit-
igation of the overestimation around local noon. The aver-
age bias of the DT AOD compared to the Aerosol Robotic
Network (AERONET) AOD shows a reduction from 0.08
to 0.03, while the bias of local solar noon decreases from
0.12 to 0.03. The agreement between the DT and AERONET
AOD is established through a regression slope of 1.06 and a
y intercept of 0.01 with a correlation coefficient of 0.74. By
using the new SRP, the percentage of data falling within the
expected error range (±0.05 %+ 15 %) is notably increased
from 54 % to 78 %.

1 Introduction

Aerosols in the atmosphere strongly influence the earth’s en-
ergy budget by absorbing and scattering solar radiation, and
by acting as cloud condensation nuclei and ice nuclei to alter
cloud micro- and macrophysics (Boucher et al., 2014). They
also play an important role in global atmospheric chemistry
and in the biogeochemical cycle (Kanakidou et al., 2018),
and they affect local air quality as particulate matter. Satel-
lite remote sensing is beneficial for monitoring atmospheric
aerosols on the global scale. Broad coverage makes it pos-
sible to capture the widespread distribution and long-range
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transport of aerosols (Yu et al., 2013), and can help deter-
mine aerosol effects on climate and air quality.

On the basis of satellite observations, numerous efforts
have been made to infer global distributions of aerosol op-
tical properties. The procedure for inferring aerosol load-
ing and characteristics over ocean takes advantage of the
relatively well-known surface reflectance properties of the
ocean surface. It is much more difficult to do the same over
land because the surface is both variable and dynamic. Over
25 years ago, Kaufman and Remer (1994) and Kaufman et
al. (1997b) noted that for vegetation and dark-soiled sur-
faces, the land surface reflectances in some visible (VIS)
wavelengths were highly correlated with each other, and also
with values measured in some shortwave infrared (SWIR)
wavelengths. This led to an aerosol retrieval approach over
land used for MODIS (e.g., Kaufman et al., 1997a), for
which after modifications it is known as the “Dark Target
(DT) aerosol algorithm” (Remer et al., 2008, 2005; Levy et
al., 2013, 2007a, b, 2010).

In the original version (Kaufman et al., 1997a), the sur-
face reflectance parameterization (SRP) assumed that the val-
ues in the 0.47 µm blue and the 0.65 µm red bands were set
to be 1/4 and 1/2 the values in the 2.11 µm SWIR band.
With the current MODIS version, instead of simple ratios,
the spectral relationship includes the slopes and intercepts
of their regressions. In addition, the current SRP includes
dependencies on scene identification. It was noted during
the first years of MODIS on-orbit data collection that bidi-
rectional reflectance introduced angular dependencies in the
SRPs, and these dependencies were parameterized in sub-
sequent algorithm versions as a function of the scattering
angle (Levy et al., 2007b; Remer et al., 2001). This DT re-
trieval algorithm has led to the derivation of a 20+ yearlong
aerosol optical depth (AOD) record that has an outstanding
performance and is relied on by an extensive user commu-
nity. Highly accurate aerosol products of the DT algorithm
have not only contributed to improving our theoretical under-
standing of the role of aerosols in radiation and climate (e.g.,
Boucher et al., 2014), but they have also been used for mon-
itoring surface air quality (e.g., Al-Saadi et al., 2005; Chu
et al., 2003) and a variety of other applications (Remer et
al., 2020).

In order to continue the aerosol data record after the de-
commissioning of the MODIS missions on both Terra and
Aqua, the DT algorithm is being ported to other sensors.
For example, Sawyer et al. (2020) discuss porting DT to the
Visible-infrared Radiometer Suite (VIIRS) which is also on
polar-orbiting satellites in low earth orbit (LEO). The new
advanced imagers observe a similar spectral range (visible
through thermal infrared) as MODIS, but there are generally
fewer bands in total, and the wavelength range of analogous
bands is shifted. Levy et al. (2015) and Sawyer et al. (2020)
showed that with minimal change to SRP and slight adjust-
ments for wavelength band, one could derive a VIIRS AOD
product that had bias statistics similar to the MODIS prod-

uct. Presumably, only small changes were necessary because
VIIRS offers similar observing geometry to MODIS (i.e.,
both MODIS and VIIRS pass over the Equator±1.5 h around
noon).

While retrievals from LEO provide near-daily global
aerosol products, their low frequency of observations limits
the understanding of rapid aerosol changes. By contrast, con-
tinuous imaging by sensors in geostationary orbit (GEO) can
capture diurnal variations of aerosol occurring with human
activity cycles, outbreaks of emission episodes, and long-
range transport (Kim et al., 2020). Saide et al. (2014) showed
that diurnal variations of AOD captured by the Geostation-
ary Ocean Color Imager (GOCI) on board the Geostationary
Korea Multi-Purpose Satellite (GK)-1 (Choi et al., 2018) sig-
nificantly improve surface air quality simulation in Korea in
comparison with only assimilating MODIS DT AOD.

Many imagers in GEO now include the capability to mea-
sure both visible and SWIR reflectance, the DT algorithm
can be adapted to advanced imagers in GEO, such as the Ad-
vanced Himawari Imager (AHI) on board the Japanese Hi-
mawari satellite series (currently Himawari-8 and Himawari-
9) and the Advanced Baseline Imager (ABI) on board the
National Oceanic and Atmospheric Administration (NOAA)
operational Geostationary Operational Environmental Satel-
lite (GOES) series (GOES-16, GOES-17 and GOES-18).
NOAA is already using a DT-like approach to retrieve
aerosol products from ABI (Laszlo et al., 2022; Zhang et
al., 2020), and a DT-SRP is being used within the Yonsei
Aerosol Retrieval (YAER) algorithm to derive AOD from
AHI (Lim et al., 2018).

The NASA DT algorithm has in fact been ported to a
geostationary orbit (GEO) sensor (Gupta et al., 2019) in
order to test a GEO-LEO synergy concept (Making Earth
System Data Records for Use in Research Environments;
MEaSUREs Program, https://www.earthdata.nasa.gov/esds/
competitive-programs/measures/leo-geo-synergy, last ac-
cess: 18 March 2024). This initial (baseline) version of the
ABI DT algorithm accounts for shifted wavelengths in cal-
culating aerosol/Rayleigh lookup tables and cloud mask-
ing. However, this baseline version assumes the values of
the MODIS SRP, with no modifications for the GEO’s very
different observation of the earth’s surface (regional versus
global) and geometry (each site from a fixed sensor view,
but widely varying solar angles). Because there are much
larger differences in ground sampling and viewing geome-
try between LEO and GEO, the SRPs optimized for MODIS
or similar LEO sensors do not appear to be appropriate for
GEO. For example, Gupta et al. (2019) find biases in the DT
algorithm applied to AHI on Himawari-8. Also, when ana-
lyzing the NOAA aerosol product created from ABI, Zhang
et al. (2020) show the need for an empirical correction to im-
prove mean bias and root mean square error (RMSE).

Therefore, assuming that biases in retrievals may be due,
at least in part, to GEO sampling, we use strategies laid out
by Levy et al. (2007b), and focus on GOES-16 ABI, which is
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currently in the GOES-East position near −75° W (denoted
as “ABI East” or “ABIE”). We derive the atmospherically
corrected spectral reflectance (AC-ref) and investigate its an-
gular variation and the variation of land cover type. The re-
sult is a new SRP, and we test this new SRP on ABI data
and compare the aerosol results with the baseline (assumed
MODIS SRP).

This paper is organized as follows. Section 2 introduces
the original DT algorithm for MODIS and a baseline for
GEO sensors. Section 3 compares GEO ABI and LEO
MODIS observations from the perspective of geometric dif-
ferences and identifies an issue in the baseline AOD retrieval
from GEO. Methodologies and input datasets for the atmo-
spheric correction calculation are described in Sect. 4, and
an investigation of the new SRP is conducted in Sect. 5. Sec-
tion 6 presents the performance of the new SRP and com-
pares the newly retrieved GEO AOD with AOD from the
Aerosol Robotic Network (AERONET). A discussion and a
conclusion are presented in Sects. 7 and 8, respectively.

2 Data and methodology

2.1 MODIS Dark Target aerosol retrieval algorithm
and products

Radiance from the sun is absorbed and reflected by con-
stituents of the atmosphere and the surface. Observing from
the top of the atmosphere, a satellite sees the result of those
interactions. For a theoretical scene that is both free of clouds
and shadows, as well as free of trace gas absorptions, the top-
of-atmosphere (TOA) radiance is composed only of surface
and aerosol/molecular scatterings.

MODIS, aboard the Terra and Aqua sun-synchronous
polar-orbiting satellites, measures radiance of earth-viewing
scenes in 36 spectral bands spanning the deep blue at 0.41 µm
to thermal infrared (TIR) at 14 µm. Each MODIS obtains
near-global coverage twice a day, once during daytime and
once at night at nominal spatial resolutions of 0.25–1.0 km,
providing geolocated, calibrated spectral radiances known as
the “Level-1B” (L1B) data. The MODIS DT aerosol algo-
rithm uses subsets of the spectral bands and follows separate
logic to derive aerosol properties over land and the ocean.

For MODIS, we denote these bands as blue, green, red,
NIR1, NIR2, SWIR1 and SWIR2, centered, respectively,
near 0.47, 0.55, 0.65, 0.86, 1.24, 1.64 and 2.11 µm. These are
all in-window regions with negligible or correctable trace gas
absorption. The DT algorithm takes these L1B data, aggre-
gates them intoN×N boxes of pixels, and performs gas cor-
rections along with cloud and other maskings, leading to an
estimate of TOA cloud-free, gas-free reflectance in the seven
wavelength bands. The nominal resolution of thisN×N box
is 10 km. We denote this “vector” of multi-band reflectance
as the “Mean_Reflectance”. We use this Mean_Reflectance
to perform the aerosol retrieval, and the results and the diag-

nostics collectively are contained in the Level-2 (L2) product.
For MODIS, this L2 product is commonly known as MxD04
(with the x=O for MODIS on Terra and x=Y for MODIS on
Aqua). The latest standard version of the MODIS L2 product
is archived as Collection 6.1 (C61).

Although both land and ocean retrievals are based on a
lookup table (LUT) inversion approach, each uses its own
set of assumptions and appropriate Mean_Reflectance vec-
tor as input. This study focuses on the over-land part of
the DT algorithm that uses the Mean_Reflectance_Land
vector. Details of the DT land algorithm are well de-
scribed online (https://darktarget.gsfc.nasa.gov/, last access:
18 March 2024) and in previous DT algorithm studies (Levy
et al., 2007b, 2010, 2013; Gupta et al., 2016; Remer et
al., 2005), but we summarize them here.

To retrieve the over-land aerosol characteristics, the sig-
nal from the atmosphere must be separated from the sig-
nal originating from the land surface beneath. The unique
aspect of the DT algorithm lies in how the algorithm as-
sumes the surface reflectance to make that separation – and
the assumptions about the surface are known as the SRP.
Based on low-flying aircraft measurements, Kaufman et al.
(1997a) found that the values of surface reflectance in the
blue (e.g., 0.47 µm) and red (0.65 µm) wavelengths were ap-
proximately 1/4 and 1/2, respectively, of the surface re-
flectance in the SWIR2 (2.11 µm) over natural surfaces such
as vegetation and dark soils. Physically, this relationship
was expected based on the relative balance between absorp-
tion of visible radiation by chlorophyll versus absorption of
SWIR2 radiation by the water within the vegetation (Kauf-
man et al., 1997b). Since aerosol (especially fine-sized par-
ticles indicative of anthropogenic or burning processes) is
often nearly transparent at 2.11 µm, MODIS essentially ob-
serves the 2.11 µm surface reflectance. That initial estimate
of 2.11 µm surface reflectance leads to an easy estimate of the
0.47 and 0.65 µm surface reflectance. This SRP (blue= 1/4
of SWIR2, red= 1/2 of SWIR2), was coded into the at-
launch MODIS algorithm (Kaufman et al., 1997a; Remer et
al., 2005).

Although the initial MODIS aerosol product compared
well to the direct observations of AOD by sunphotometry
(Chu et al., 2002; Remer et al., 2005), Levy et al. (2005)
found some systematic biases that suggested revisiting SRP.
The result was, when regressing blue, red and SWIR2 val-
ues, the best-fit slopes were different from the original ratios,
and there were non-zero y intercepts. Furthermore, the vari-
ability of the BlueRed and RedSWIR y offsets and slopes
appeared to depend on the observation geometry and surface
type (Levy et al., 2007b). As a result, the current version of
the MODIS-DT algorithm includes SRPs which also depend
on scattering angle (2) and surface “greenness” in the form
of a normalized difference vegetation index (NDVI) based on
NIR2 and SWIR2 channels (1.24 and 2.11 µm),

NDVISWIR =
(
ρm

NIR2− ρ
m
SWIR2

)
/
(
ρm

NIR2+ ρ
m
SWIR2

)
, (1)
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where ρm
NIR2 and ρm

SWIR2 are the measured TOA reflectances
in the NIR2 and SWIR2 wavelengths, respectively. The cur-
rent version of the algorithm (e.g., MODIS Collection 6.1)
uses SRPs as follows (writing SWIR instead of SWIR2 for
simplicity):

ρs
Red = ρ

s
SWIR× slopeRedSWIR+ y intRedSWIR,

ρs
Blue = ρ

s
Red× slopeBlueRed+ y intBlueRed ,

(2)

where,

slopeRedSWIR = slopeNDVISWIR
RedSWIR + 0.0022− 0.27,

y intRedSWIR =−0.000252+ 0.033,

slopeBlueRed = 0.49 ,

and y intBlueRed = 0.005,

(3)

where in turn,

slopeNDVISWIR
RedSWIR = 0.58, if NDVISWIR < 0.25,

slopeNDVISWIR
RedSWIR = 0.48, if NDVISWIR > 0.75 ,

slopeNDVISWIR
RedSWIR = 0.58− 0.2(NDVISWIR− 0.25) ,

if 0.25≤ NDVISWIR ≤ 0.75 .

(4)

The scattering angle (2) is defined as

2= cos−1 (−cosθ0 cosθ + sinθ0 sinθ cosϕ) , (5)

where θ0, θ , and ϕ are the solar zenith angle (SZA), the
viewing zenith angle (VZA) and the relative azimuth an-
gles (difference between the solar and sensor azimuth angles,
RAA), respectively. Note that the NDVISWIR is calculated
from TOA-measured (superscript “m”) reflectance, but the
SRP involves surface (superscript “s”) reflectance. We can
interpret the subscripts as “red from SWIR” and “blue from
red”, respectively.

For Collection 6.1 of the MODIS product, Gupta et
al. (2016) added a correction to the slopeNDVISWIR

RedSWIR and
y intNDVISWIR

RedSWIR to account for an urban surface. The urban cor-
rection takes into account the pixels with urban percentage
(UP) larger than 20 % as follows:

where NDVISWIR < 0.20

slopeNDVISWIR
RedSWIR = 0.78 and y intNDVISWIR

RedSWIR =−0.02,

if 20%≤ UP< 50%,

slopeNDVISWIR
RedSWIR = 0.66 and y intNDVISWIR

RedSWIR = 0.02,

if UP≥ 50% , (6)

slopeNDVISWIR
BlueRed = 0.51, if 20%≤ UP< 50%

slopeNDVISWIR
BlueRed = 0.52, if UP≥ 50% (7)

and where NDVISWIR ≥ 0.20

slopeNDVISWIR
RedSWIR = 0.62 and y intNDVISWIR

RedSWIR = 0.0,

if 20%≤ UP< 70% ,

slopeNDVISWIR
RedSWIR = 0.65 and y intNDVISWIR

RedSWIR = 0.0,

if UP≥ 70% . (8)

slopeNDVISWIR
BlueRed = 0.47,

if 20%≤ UP< 70%

slopeNDVISWIR
BlueRed = 0.48,

if UP≥ 70%. (9)

For MODIS, UP is defined as the percentage of pixels
(500 m) identified as urban land cover type. The dataset of
land cover type (MCD12Q1) is introduced and described in
Sect. 2.4.

This SRP is used as a constraint within the DT re-
trieval algorithm. The rest of the retrieval algorithm, includ-
ing LUT calculation, gas correction, cloud masking, aerosol
model assumption and retrieval, is described in Levy et
al. (2007a, 2013) and Patadia et al. (2018).

The current assumptions for MODIS_SRP were derived
by performing atmospheric correction (AC) of the mean
of the aggregated TOA Mean_Reflectance_Land vector
(MODIS Level-2 MOD04/MYD04 products) over globally
distributed AERONET sites. Even though we confirmed the
basic SRP for use in Collection 6.1 (e.g., Levy et al., 2013),
there have been both increases in AERONET coverage as
well as a much larger dataset of Mean_Reflectance_Land.
Yet, the ABIs are regional in coverage, which means that
only a subset of global AERONET sites can be observed by
any single ABI. Therefore, for a comparison with the ABI
datasets described in the next section, we perform AC on the
subset of the AERONET sites that are observed by the corre-
sponding ABI. We also constrain this analysis to the MODIS
data (Aqua, MYD04 products) between 2015 and 2019. Sin-
gle wavelength outputs from this exercise are known as “AC-
ref”, which will be regressed to derive the SRP. Section 2.3
introduces AERONET data and a description of their collo-
cation with ABI observations.

2.2 ABI and baseline Dark Target aerosol retrieval
algorithm

The ABI is a multi-band sensor aboard the GOES-R series
of geostationary satellites. The GOES-R series currently in
orbit includes GOES-16 (launched as GOES-R in Novem-
ber 2016) operating at the GOES-East position at 75° W,
GOES-17 (launched as GOES-S in March 2018) operating
at the GOES-West position at 137° W until January 2023,
and GOES-18 (launched as GOES-T in March 2022) that
replaced GOES-17 as GOES-West in January 2023. Since
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2019, all ABI observations use a scanning pattern that results
in “full-disk” images every 10 min.

Each ABI has 16 channels, ranging from blue (0.47 µm) to
thermal infrared (13.3 µm), and they vary in spatial resolu-
tion between 0.5, 1, and 2 km (at subsatellite point). The red
channel (0.64 µm) is observed at 0.5 km (subsatellite point),
while the blue (0.47 µm), near infrared (NIR1; 0.86 µm)
and SWIR1 (1.61 µm) bands are observed at 1 km, with the
remainder (including SWIR2; 2.24 µm) observed at 2 km.
Note, ABI has neither a green (∼ 0.55 µm) nor a 1.24 µm
NIR2 band, in contrast to MODIS. As all ABIs include blue,
red and SWIR2 channels (0.47, 0.64 and 2.24 µm) similar
to MODIS, our initial assumption was that the MODIS SRP
could be used for both ABIE (on GOES-East) and ABI-W
(on GOES-West).

With that in mind, we follow the Gupta et al. (2019) ap-
proach for AHI and apply this to ABI. The initial or “base-
line” version of the DT aerosol algorithm on ABI generally
follows the same logic as that on MODIS. The DT algorithm
for ABI has key differences from that used for MODIS, in-
cluding the following:

1. Aerosol/Rayleigh LUTs and gas corrections are pre-
calculated for the ABI-specific wavelength bands, and
aerosol types are assumed to have a spectral refrac-
tive index with the same values as analogous wave-
lengths on MODIS (e.g., ABI→MODIS wavelengths:
0.47→ 0.47, 0.64→ 0.65, 2.24→ 2.11 µm). Note that
the over-land retrieval does not require a green band re-
flectance as input, although it uses the same “indexed”
AOD at 0.55 µm.

2. Using the observed L1B spectral reflectance and radi-
ance data, the DT algorithm takes several steps for pre-
processing and data aggregation. For both MODIS and
ABI, we take N ×N aggregations of native-resolution
pixels to create a box of 10 km. The difference is
that ABI has one higher-resolution band. The common
MODIS resolution is 0.5 km whereas GEO is 1.0 km.
The ABI bands are aggregated by 10× 10 px at 1 km to
create a 10 km box, unlike the MODIS algorithm, which
uses 20× 20 px at 0.5 km to create the 10 km box.

3. Cloud and ice/snow masking are modified to account
for the lack of 1.24 µm and some of the TIR bands.
Details on the pixel masking for MODIS are de-
scribed in DT ATBD (https://darktarget.gsfc.nasa.gov/
atbd-land-algorithm, last access: 18 March 2024) and
Shi et al. (2021), and the modification for GEO is de-
scribed in Gupta et al. (2019).

4. The NDVISWIR test uses NIR1 (0.86 µm) rather than
NIR2 (1.24 µm) for comparison with SWIR2 (2.24 µm)
due to the lack of a 1.24 µm channel and the shift of
this SWIR2 “2 µm channel” (from 2.12 to 2.24 µm).
While not as “aerosol-free”, vegetation reflects 0.86 µm

similar to 1.24 µm (Miura et al., 1998). Let us denote
NDVILEO_SWIR as NDVISWIR defined in Eq. (1), and
define NDVIGEO_SWIR as

NDVIGEO_SWIR =
(
ρm

NIR1− ρ
m
SWIR2

)
/
(
ρm

NIR1+ ρ
m
SWIR2

)
. (10)

According to Karnieli et al. (2001) and Jin et al. (2021),
both NDVISWIR and NDVIGEO_SWIR are well correlated
with NDVI and yet are less affected by atmospheric ef-
fects. We also conducted a study to check the consistency
between NDVILEO_SWIR and NDVIGEO_SWIR (Appendix A).
NDVIGEO_SWIR matches NDVILEO_SWIR in dense vegeta-
tion where both NDVISWIRs are high but falls to lower val-
ues at the low end in scenes with less vegetation coverage.
Accordingly, in the SRP, the NDVIGEO_SWIR increases the
number of cases assigned to the low NDVISWIR category
(NDVISWIR < 0.25) from 25.5 % to 41.5 %. This means that
without modifying the threshold on NDVIGEO_SWIR the SRP
will be encountering pixels never used before by the DT al-
gorithm. The red surface reflectance will be parameterized
differently in areas with less vegetation, which may lead to
differences between DT-GEO and DT-LEO retrievals. It re-
quires a new NDVI threshold or SRP improvement for the
DT-GEO retrieval.

For convenience, we denote NDVISWIR regardless of the
difference in wavelength hereafter. We apply this baseline
DT-GEO algorithm to ABI observations to derive L2 full-
disk aerosol products at 10 km× 10 km nominal resolution,
which therefore includes its own “Mean_Reflectance_Land”
vector (of TOA cloud-cleared, gas-corrected reflectances).
Nominally, ABI produces six full-disk images every hour
in default full-disk scan mode. However, to reduce data vol-
ume, we work here with one image per hour and limit to full
disk the data collected between July 2019 and June 2020.
For ABI, 1 year is sufficient to produce the necessary statis-
tics because of the higher temporal resolution of ABI. Again,
note that while the baseline DT-ABI algorithm uses the SRP
defined by MODIS, AC of the Mean_Reflectance_ Land is
expected to lead to an improved definition of SRP for ABI.

2.3 AERONET AOD and collocation criteria

The globally distributed AERONET network has provided
aerosol optical properties for ∼ 30 years (Giles et al., 2019),
and has expanded to nearly 540 active sites worldwide. The
AERONET AOD dataset is widely used as ground truth for
satellite retrievals because of its well-defined accuracy, in-
strument quality control and strict regular calibration. The
uncertainty of an AOD measurement from a newly cali-
brated field instrument under cloud-free conditions is less
than ±0.01 for wavelengths longer than 0.44 µm (Giles et
al., 2019; Eck et al., 1999). Here, we utilize the Level-2.0
all-point, sun-observed AODs provided by the AERONET
Version-3 algorithm and interpolate AERONET-provided
spectral AODs to AOD at 0.55 µm using a quadratic fit in
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log–log space (Eck et al., 1999). The AERONET AOD at
0.55 µm is then used for two different purposes.

1. The AERONET AODs are used to generate an AC-
ref from MODIS and ABIE observations. In this case,
data are adopted where AOD at 0.55 µm is less than
0.2 and the Ångström exponent (AE) (0.44–0.675 µm)
is greater than 1.0. The AOD and AE are limited to
avoid bias in AC-ref, which can be caused by the aerosol
model assumption. Cases where coarse-mode particles
(AE< 1.0) dominate are masked out to avoid a large
discrepancy in spectral AOD change between realistic
assumptions and aerosol model assumptions.

2. The AERONET AODs are also used to validate the DT-
derived AOD.

Spatiotemporal criteria for the satellite-AERONET colloca-
tions are as follows. For the AC-ref calculation, AERONET
observations within ±15 min of the satellite overpass
(MODIS or ABIE) are collocated with satellite-derived TOA
reflectance within a ±0.3° rectangular grid centered over an
AERONET site. Here, a relatively large spatial range was es-
tablished to capture TOA reflectance influenced by diverse
land cover types and to mitigate potential cloud contamina-
tion. The AC-ref dataset consists of the spatial mean of TOA
reflectance, spectral AOD from AERONET, land cover types
present with the range, and observation geometries. Figure 1
displays the number of data used for the AC-ref calculation
at each AERONET site. For the purpose of AOD validation,
a temporal criterion of ±15 min for AERONET AOD and
a spatial criterion of a ±0.2° rectangular grid for DT AOD
are applied. The spatiotemporal collocation window follows
standard DT validation practice used in the MEaSUREs pro-
gram.

2.4 Land cover type

MODIS Land Cover Type (MCD12Q1) Version 6 products
provide global land cover types from the Terra and Aqua
combined measurement at a yearly interval with 500 m
sinusoidal grid resolution (https://lpdaac.usgs.gov/products/
mcd12q1v006/, last access: 18 March 2024). There are
land cover indices classified from six different classifica-
tion scheme. In this study, the classification of the Interna-
tional Geosphere–Biosphere Programme (IGBP; Belward et
al., 1999; Sulla-Menashe and Friedl, 2018) is applied to in-
vestigate the changes in the spectral relationship owing to
land cover type. The IGBP index classified 16 land cover
types including forests (index 1–5), shrublands (index 6–7),
savannas (index 8–9), grasslands (index 10), permanent wet-
lands (index 11), croplands (index 12), urban and built-up
lands (index 13), cropland/natural vegetation mosaics (in-
dex 14), permanent snow and ice (index 15), barren land (in-
dex 16) and water bodies (index 17).

We first assign the percentage land type (%land type, here-
after) to the AC-ref derived at each AERONET site, using the

Figure 1. Map of AERONET with available observations (AOD
at 550 nm< 0.1, AE> 1.0) between July 2019 and June 2020, the
time window for ABIE AC-ref calculation. The color represents the
number of valid observations which meet the criteria and are applied
to the AC_ref calculation.

same 0.3° distance around the AERONET station as done to
calculate AC-ref. For the retrieval processing, a 0.1°× 0.1°
gridded map of land cover type is derived. The collocation
process is explained in detail in Sects. 5.2.1 and 6.1.

3 Analysis of baseline DT-ABI algorithm

3.1 Differences in viewing geometries

MODIS (and its follow-on VIIRS sensors) provide global
aerosol coverage, but by observing a given ground target at
approximately the same time every day. To observe more
rapid aerosol changes, as well as to characterize the aerosol
diurnal cycle, we use imagers on GEO satellites. However,
there are great differences between the observation geometry
of ABI and MODIS. In a sun-synchronous polar-orbiting or-
bit, MODIS views a given ground target from a wide variety
of VZA and RAA over a period of several weeks, while SZA
varies slowly. By contrast, ABI views each earth scene from
a constant VZA, while the sun moves from sunrise to sun-
set introducing a variable SZA. Figure 2a maps the VZA of
ABIE, which is constant for all images. On the other hand,
Fig. 2b and c show that the MODIS VZA varies, even on
consecutive days. For example, when observing the GSFC
AERONET site (red circle in Fig. 2), the VZA of ABIE is
fixed at 45.42°, whereas the VZA of MODIS changes from
15.88 to 51.11°.
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Figure 2. (a) Full-disk coverage of ABIE with VZA (< 72°) for each pixel and (b, c) MODIS VZAs for the same region on 2 consecutive
days (1–2 September 2019). The red circle indicates the location of the GSFC AERONET site [38.99° N, −76.84° E].

Figure 3 shows frequency distributions of the scatter-
ing angle, SZA, VZA and RAA of ABIE and MODIS (on
Aqua) observations at the GSFC AERONET site (38.99° N,
−76.84° E). The data cover 5 years (2015–2019) of MODIS
observations and 1 year (2019) of ABIE observations. In
general, ABIE measures various solar angles as it provides
multiple images for a location throughout a day. Figure 3a
shows the SZA varying from 10° (noon during the summer
solstice) to 90° (sunrise/sunsets all year), with the most fre-
quent observations having SZA in the range of 60–70°. With
the sun moving from horizon to horizon during the day, the
RAAs vary from 60 to 180° with the median value of 125.8°
(Fig. 3c). This is from VZA fixed at 45.42° (Fig. 3e). Thus,
under the fixed VZA condition, the scattering angle of ABIE
measurements changes in accordance with the variations of
solar angles.

Compared to ABIE, MODIS measures limited solar an-
gles because it flies in a sun-synchronous polar orbit. As both
Terra or Aqua observe GSFC approximately±1.5 h from lo-
cal solar noon, MODIS does not observe sunrise or sunset
(SZA= 90°). Thus Fig. 3b shows that MODIS SZA is rela-
tively evenly distributed between 20 and 70°, unlike ABIE
SZA, which peaked in the range of 60–70°. The RAAs
showed a bimodal distribution that peaked at 50 and 130°
(Fig. 3d) and was absent in the range between 60 and 120°.
Meanwhile, MODIS measures at various VZA conditions
in the range of 0–60°. Accordingly, the scattering angle of
MODIS is synchronized with the VZA variation rather than
the limited solar angle variability. Although both scattering
angle distributions in Fig. 3g and h cover a similar angular
range, the main factor determining the variation is not the
same.

Based on a comparison of observation geometries, it ap-
pears that LEO observations using the DT technique are more
favorable for retrieving AOD than GEO observations are.
First, high SZA observations introduce greater uncertainty
in AOD retrieval. Increased path length at high SZA makes

Figure 3. Frequency distributions of sun-and-sensor geometries for
(a, c, e, g) ABIE and (b, d, f, h) MODIS measurements at the GSFC
AERONET site: (a, b) SZA, (c, d) RAA, (e, f) VZA, and (g, h) scat-
tering angle.
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it difficult to separate the aerosol contribution from other at-
mospheric components. The high SZA also can lead to un-
certainty in AC-ref calculations and make the SRP analysis
more difficult. Second, GEO observations are more likely to
observe the “vegetative hot spot”. This is when the solar di-
rection coincides with the observation direction (2≥ 175°),
resulting in a large increase in surface reflectance at each
wavelength. Li et al. (2021) show that ABIs observe hot spots
frequently. The brighter surface overwhelms the aerosol con-
tribution to the TOA reflectance and increases the uncer-
tainty in AOD retrieval. Figure 3g also shows that ∼ 4 % of
ABIE observations are performed at high scattering angles
(> 168°), whereas ∼ 1 % of MODIS observations reach that
extreme at GSFC. The broad range of geometries leads to
a difficulty in GEO AOD retrieval (Ceamanos et al., 2023)
because the sensitivity to aerosols varies significantly dur-
ing the day (Luffarelli and Govaerts, 2019; Ceamanos et
al., 2019).

3.2 Bias in current ABI AOD and why we suspect
surface reflectance

We apply the baseline DT-ABI algorithm to ABI obser-
vations on GOES-16 (ABIE) and GOES-17 (ABI-West,
ABIW) from August to September 2019 on an hour-by-hour
basis. Figure 4 displays bias in the retrieved AOD versus
AERONET AOD in each hour and SZA. Most obvious is
that the DT AODs retrieved from both ABIE (Fig. 4a) and
ABIW (Fig. 4b) show a time-dependent bias variation and
have a peak in the error near local noon. However, the bias
calculated from each sensor shows different time distribu-
tions. Figure 4c and d illustrate that the DT bias overall in-
creases as SZA decreases, but with differences depending
on the scattering direction between the sun and the satellite.
ABIE AOD exhibits a higher bias in the morning (Fig. 3c),
as shown by the time dependence showcasing a distribution
skewed toward the morning (Fig. 4a). By contrast, ABIW
AOD shows a greater bias in the afternoon than in the morn-
ing (Fig. 4d), aligning with the afternoon-skewed distribution
(Fig. 4b). This time dependence is consistent in that the bias
is relatively large when the direction in which the satellite
faces the earth’s surface matches the direction in which sun-
light arrives. In other words, the AOD bias is also influenced
by the RAA, showing a reduced bias during low RAA condi-
tions when the surface appears relatively dark due to shadows
cast by the canopy.

We hypothesize that the diurnal signature in bias be-
tween each ABI and AERONET arises because the view-
ing geometry of the GEO sensor has different features
than that from the LEO sensor (Fig. 3). For GEO sen-
sors, a particular ground site is always observed with a
fixed VZA (Figs. 2a and 3e) while the sun angles change
over time. By contrast, from LEO sensors, a particular
ground target will be observed from a variety of view-
ing zenith angles, while the solar zenith angle is rela-

Figure 4. Bias of DT AOD compared to AERONET values. The
DT AODs are retrieved from (a, c) GOES 16 ABI (ABIE) and
(b, d) GEOS 17 ABI (ABIW) from August to September 2019. The
biases are then calculated using data from all available AERONET
sites and are aggregated for each (a, b) local solar time and
(c, d) SZA. The symbols represent the median value and the vertical
bars display the range between the first and the third quartile of the
AOD bias at each bin. In panels (c) and (d), the biases derived for
morning and afternoon are differentiated by a symbol (circle: AM,
triangle: PM). Blue represents the backward scattering direction,
while black indicates the forward scattering direction.

tively constant during a season. Since MODIS has a 16 d
orbit repeat cycle (https://ladsweb.modaps.eosdis.nasa.gov/
missions-and-measurements/modis/, last access: 18 March
2024), any residual bias escaping the LEO SRP compensa-
tion for anisotropic surface reflectance by assuming a depen-
dency on the scattering angle will be averaged out over the
MODIS 16 d repeat cycle but it will be reinforced day after
day with ABI.

From this point of view, we suspect that while assuming
that the scattering angle represents the anisotropic reflectance
pattern may work for MODIS on average, it would induce a
large bias to GEO retrievals at local noon and/or dawn and
dusk. This means we should consider a new SRP for ABI
observations, paying more attention to the details of the ob-
servational geometry than just the scattering angle. We must
remember that from the view of the GEO sensor, each VZA
matches up to a specific land cover type according to loca-
tion. Differences in sensor specifications, such as wavelength
shift and calibration status, may also necessitate reformula-
tion of the SRP. We will proceed with creating this new SRP
and then show that it reduces biases and mitigates the diurnal
signature of the bias in retrieved AOD.
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4 Atmospheric correction

4.1 Calculating atmospherically corrected reflectance
(AC-ref)

To develop a new SRP, we require a dataset of spectral sur-
face reflectance. To a first approximation, the wavelength-
dependent reflectance measured by a sensor at the TOA
reflectance ρ∗λ is the sum of contributions by the atmo-
sphere only (known as the path reflectance) and the surface–
atmosphere interaction (Kaufman et al., 1997a):

ρ∗λ = ρ
a
λ+

FdλTλρ
s
λ(

1− sλρs
λ

) . (11)

Here, the first term ρa
λ is the atmospheric path reflectance,

which consists of molecular and aerosol extinction, and the
second term represents the interaction of the atmosphere and
the underlying surface. Fdλ is the normalized downward flux
for zero surface reflectance, equivalent to total downward
transmission, and Tλ is the total upward transmission; sλ is
the atmospheric backscattering ratio, and ρs

λ is the surface
reflectance. Note that for this equation, we assume that there
is no “extra” radiation arising from adjacent scenes (e.g.,
clouds) and that there is no absorption by trace gases. Also,
note that this equation has been simplified for readability, al-
though all terms have angular dependence. Given a radiative
transfer model (RTM) with knowledge of the aerosol type
and loading, one can calculate all properties of the atmo-
spheric contribution (e.g., ρa

λ, Fdλ, Tλ, and sλ).
By rephrasing Eq. (11), surface reflectance, ρs

λ, can be
written as shown in Eq. (12). If the ρ∗λ is the observation,
and we somehow “know” the properties of the aerosol plus
Rayleigh atmosphere (e.g., measured from AERONET), we
can determine the ρs

λ. This process is known as AC, and the
ρs
λ derived from Eq. (12) is referred to as AC-ref:

ρs
λ =

(
ρ∗λ − ρ

a
λ

)
/
(
sλ

(
ρ∗λ − ρ

a
λ

)
+FdλTλ

)
. (12)

The AC-ref is an estimate of that surface reflectance, ob-
tained by using an RTM to “subtract” the atmospheric con-
tribution from observed TOA values, given the knowledge
of molecular scattering angle aerosol properties (Vermote
et al., 1997). By calculating this surface reflectance in dif-
ferent wavelengths, we can determine the spectral relation-
ships that we need for the DT aerosol retrieval algorithm.
Let us focus on performing AC for ABIE only and com-
pare it with the corresponding AC using MODIS observa-
tions over the ABIE domain. We assume that the TOA re-
flectance is the 10 km× 10 km Mean_Reflectance_Land pa-
rameter contained in the L2 aerosol product, which in turn
corresponds to gas-absorption-corrected, cloud-masked and
outlier-removed statistics of the original (L1B) spectral re-
flectance. The aerosol loading (e.g., spectral AOD) is ob-
served by AERONET, and the RTM assumes the “continen-
tal” (Remer et al., 2005) model to derive the spectral path

Figure 5. Flowchart of calculating atmospherically corrected re-
flectance (AC-ref). The DT-LUT was created using the RT3 code,
assuming a black Lambertian surface.

reflectance and other atmospheric terms in Eq. (12). This pro-
cess is summarized by the flowcharts in Fig. 5.

We need to atmospherically correct the blue, red and
“2 µm” (2.11 µm for MODIS or 2.24 µm for ABIE) band to
obtain surface reflectance at those wavelengths. AERONET
measures AOD at several wavelengths in the visible so
we calculated the second-order polynomial fit of spectral
AOD between visible and SWIR channels. Interpolating
AOD to the specific blue and red bands for MODIS or
ABIE introduces minimal error. However, since there are
no AERONET AOD measurements near 2 µm, we must ex-
trapolate. Among the collocation dataset meeting the crite-
ria outlined in Sect. 2.3, 84 % includes valid AOD observa-
tions at 1.64 µm, and thus a second-order polynomial fit can
be used to estimate the AOD at 2 µm with reasonable con-
fidence. The second-order fit is also applied to the 16 % of
cases with the longest observation wavelength of 1.02 µm. In
this case, the extrapolation may induce greater error in the
AOD estimation. Meanwhile, we use the generic continental
(Remer et al., 2005) model that provides spectral scattering
and absorption properties, including a one-to-one relation-
ship between extinction at all wavelengths in question. Al-
though there are still uncertainties, by restricting the AC to
situations where AOD at 0.55 µm is less than 0.2 and AE
is greater than 1.0, assuming the continental model, and ex-
trapolating AERONET AOD where possible, we reduce the
uncertainty related to aerosol model assumption for deriving
AC-ref. In Appendix B, we tested the changes in the spectral
ratio with respect to the aerosol model assumption. The re-
sults show that different aerosol model assumptions lead to
minor changes in the spectral relationship.
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Figure 6 shows scatter plots of AC-ref for different wave-
lengths obtained from the GSFC AERONET site from 1 year
of ABIE observations. The AC-ref in the red wavelength
(Fig. 6a) and blue wavelength (Fig. 6b) overall are strongly
correlated with the AC-ref in the SWIR and red wave-
length, respectively, as currently assumed in the DT algo-
rithm (Eq. 2). However, rather than being constant, regres-
sions for both wavelength pairs change with SZA and corre-
late poorly when SZA is very high (> 75°).

4.2 Testing the AC-ref for the DT algorithm

Here, we use the results shown in Fig. 5 to test whether the
SRPs help to improve the ABIE DT retrieval. Although the
regression quality varies with SZA, to a first approximation
we see that both BlueRed and RedSWIR vary nearly mono-
tonically with SZA. We use this relationship to determine
whether an SRP that includes SZA might improve the DT
retrieval, at least at the GSFC site. Figure 7 shows the re-
sults of this pilot study, using these new SRPs as compared
with the AOD retrieved from the baseline SRPs at GSFC.
Figure 7a shows correlations between the DT AODs and
AERONET AODs, and Fig. 7b represents the biases in DT
AODs for each hour. The baseline DT AOD correlates well
with AERONET AOD with a correlation coefficient of 0.91,
but it is positively biased with a slope of 1.44 and a y inter-
cept of 0.01. Diurnal bias variation reveals a peak near noon,
as in the comparison shown in Fig. 4a. This pilot study shows
us that modification of SRPs varying with SZA mitigates the
bias peak at noon (Fig. 7b). The new AOD shows a signif-
icant improvement in that 92.62 % of retrieval falls within
the expected error (%EE) range (±0.05 %+ 15 %) (Levy et
al., 2013), compared to 50.82 % of the baseline AOD falling
within the %EE.

While there is circularity in this test, with validation be-
ing done with the formulation dataset, there are many steps
between formulation and validation and this test shows us
(a) consistency through all those steps and (b) that changing
the SRP assumption causes a response in the retrieval of the
right order of magnitude to correct the bias.

5 Spectral relation parameterization

5.1 Comparison of SRP between MODIS and ABIE

To compare this study with the SRPs used in the current
MODIS algorithm and to derive new SRPs for ABIE, we re-
turn to the large database of AC-ref, where at each colloca-
tion spectral AC-ref is used to calculate the parameters of the
spectral AC-ref relationships.

Figure 8a repeats the study by Levy et al. (2007b)
with more recent data (2015–2019 and over the ABIE re-
gion only), confirming the presence of non-zero offsets in
the MODIS SRP. Even with a very different sampling of
AERONET data in this study (ABIE region only, different

period), the overall red/SWIR and blue/red relationships are
very similar to the earlier regressions. Figure 8b applies the
same AC-ref technique but for the ABIE observations. While
the slopes and y offsets are overall similar to those observed
when regressing MODIS, the visible and SWIR relationships
are more scattered, with a significantly reduced correlation
coefficient.

With MODIS, the variability in the relationship between
visible and SWIR AC-ref is controlled by parameterizing
with the NDVISWIR_LEO and the scattering angle as ex-
plained in Sect. 2.1. We repeat the entirety of the Levy et
al. (2007b) study with the recent MODIS data of the ABI
field of view (Western Hemisphere) only, as well as with the
ABIE data. The results are presented in Figs. 9 and 10. The
panels in Fig. 9 show changes in the overall ratios (forced
through zero) when separated into three bins of NDVISWIR
(NDVILEO_SWIR or NDVIGEO_SWIR), whereas the panels in
Fig. 10 show the values of regression (slope and y inter-
cept) for each of the 20 bins of the scattering angle. AC-ref is
sorted according to the scattering angle, binned into an equal
number of bins, and regression parameters are calculated for
each bin. The mean of each bin is plotted against a scattering
angle.

For MODIS (e.g., Figs. 9a, c and 10a, d), the overall pat-
terns remain similar to the equations shown in Sect. 2.1.
In Fig. 9a, the slope decreases from 0.60 to 0.52 with an
increase in NDVISWIR from 0.25 to 0.50 as in Eq. (4).
The blue–red slopes are almost independent of NDVISWIR
(Fig. 9b), as in the current MODIS DT algorithm (Eq. 4).
For the scattering angle, the slope and y intercept change
(Figs. 10a and 9d, red) with the rate of decrease/increase
not very differently from those in Eq. (3). Note that the
SRPs described by Eq. (3) also include a term dependent on
NDVISWIR that is not explicitly accounted for in the anal-
ysis in Fig. 10, and thus exact dependencies on scattering
angle are not expected to be identical. In Fig. 10a, we see
that indeed the scattering angle dependence of parameters
between blue and red is much weaker than their red–SWIR
counterparts. In conclusion, we find that the SRPs derived in
this study from the MODIS AC-ref database at AERONET
stations in the Western Hemisphere agree with expectations
of the dependence on scattering angle and NDVISWIR being
used in the current MODIS DT algorithm that was derived
several years ago from a global database.

On the other hand, the spectral relationships of ABIE AC-
ref are different from the MODIS relationships. First, it is
seen that the blue–red relationship has a variability that can-
not be expressed as a constant. In Fig. 9d, the slope between
blue and red is significantly higher when the NDVISWIR is
greater than 0.5. We also find s clear scattering angle depen-
dence in the slope and y intercept for the blue–red AC-ref
relationship from Fig. 10b and e (blue). It can be presumed
that the blue–red correlations show greater scatter in Figs. 8b
and 9d due to the changes in the spectral relationship with
viewing geometry.
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Figure 6. Relationships between (a) red and SWIR AC-ref and (b) blue and red AC-ref obtained from the GSFC AERONET site from July
2019 to June 2020. Color represents SZA and solid lines show linear regression for eight SZA groups. Each group has equal data points
(144).

Figure 7. Validation of DT AOD retrieved from ABIE at GSFC in September 2019. (a) Scatter plots between ABIE AOD and AERONET
AOD and (b) diurnal changes in the bias between them. Orange and black indicate different assumptions in surface reflectance parameter-
ization (SRP); orange represents the DT AOD retrieved assuming the baseline DT SRPs, and blue represents the tested AOD adopting the
SRPs obtained from the AC-ref of ABIE (Fig. 6). The symbols indicate the median of the bias, and the vertical bars represent the first and
the third quartiles.

While the change in slope between the red and SWIR AC-
ref by NDVISWIR (Fig. 9b) shows the similarity with the
MODIS relationship, in Fig. 10b, its dependency on scatter-
ing angle presents differently. Unlike the MODIS slope that
increases linearly with the increase in the scattering angle,
the ABIE slope shows a weak scattering angle dependence.
In particular, when the scattering angle is higher than∼ 150°,
the slope is significantly lower than that of MODIS. Since the
angle dependence shown in Fig. 10a is sufficiently similar
to the current DT assumption, comparing Fig. 10a and 10b
shows that the current SRP overestimates the red slope and
underestimates the blue slope when the scattering angle is
high. This in turn leads to high bias in backscattered condi-
tions near noon, as shown in Fig. 4.

While the red-vs.-SWIR regression shows a weak depen-
dence on the scattering angle, the regression changes linearly
with SZA in Fig. 10c and f. As SZA increases, the slope in-
creases, and the intercept decreases. The linear dependence is
also evident in the blue–red relationship, although the points
slightly deviate from linearity when SZA is high (> 70°).
There are multiple possibilities for the large differences be-
tween ABIE and MODIS SRP parameters. One is that the
wavelengths are different. MODIS blue, red and SWIR chan-
nels are centered near 0.47, 0.65 and 2.11µm, while corre-
sponding ABIE channels are centered near 0.47, 0.64 and
2.24 µm, respectively. To test the impact of the wavelength
shift, we used surface reflectance obtained from the ASTER
spectral library (Baldridge et al., 2009), which includes 2300
spectra of a wide variety of materials covering 0.35–2.5 µm
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Figure 8. AC-ref in the visible channel (0.47 and 0.66 µm for MODIS and 0.47 and 0.63 µm for ABIE) compared with SWIR AC-ref (2.12 µm
for MODIS and 2.24 µm for ABIE). The (a) MODIS AC-ref consists of 5 years of observations from 2015 to 2019 over the ABIE field of
view, while the (b) ABIE AC-ref is for 1 year from July 2019 to June 2020. Blue and red indicate red–SWIR and blue–SWIR relationship,
respectively.

Figure 9. The AC-ref relationships (a, b) between red and SWIR and (c, d) between the blue and red channel as a function of NDVISWIR.
The left panels indicate the relationship for MODIS and the right panels indicate the relationships for ABIE. The regression equation is
forced through zero. Red refers to low NDVISWIR values, green to medium and blue to high values. Each AC-ref group for NDVISWIR is
divided equally into eight bins and is displayed with the mean (symbols) and standard deviation (vertical bars) of each bin.
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Figure 10. Regression between visible and SWIR AC-ref of (a, d) MODIS and (b, c, e, f) ABIE. Slope (a, b, c) and y intercept (d, e, f) of
regression are plotted as a function of (a, b, d, e) scattering angle and (c, f) SZA. The data were sorted according to scattering angle/SZA and
put into 20 groups of equal size (736 for MODIS and 3899 for ABIE). The blue squares and red circles indicate the red–SWIR and blue–red
ratio, respectively.

with 0.001 nm resolution. We integrated bidirectional re-
flectance from 340 vegetation tree cases and 174 vegetation
shrub cases for the specific wavelength pairs of each MODIS
and ABI. The conclusion was that the wavelength shifts from
MODIS to ABI result in negligible differences in the red–
SWIR relationship, while the blue–red slope decreases by
10 % from 0.86 to 0.77 and the y intercept increases from
0.001 to 0.003. These differences are not large enough to ex-
plain the differences between the ABIE and MODIS SRP, as
seen in Fig. 10.

The second and more likely reason for the differences is
that ABIE and MODIS have very different viewing geome-
tries, as discussed in Sect. 3.1. While the scattering angle
parameterization in the MODIS and baseline ABIE algo-
rithm is meant to adjust the SRP parameters to account for
anisotropic reflectance effects, spectral anisotropy is obvi-
ously more complex than can be modeled by a single pa-
rameter (e.g., Gatebe and King, 2016). The ABIE coupling
of view angle with location has apparently accentuated the
biases remaining from the one-parameter formulation, while
the MODIS mixing of view angles over each location has
mitigated these biases. Note that Remer et al. (2001) find
a strong view angle dependence on the observed ratios of
visible to SWIR, but that averaging over the range-of-view
angles would bring observed ratios closer to the 1/4 and

1/2 values expected at the time of their study. The Remer
et al. (2001) study also found dependencies on land surface
type and season.

5.2 Surface reflectance parameterizations for ABI-East

5.2.1 Land Type

In Sect. 5, we discussed that, for ABIE observations, vari-
ability between visible and SWIR AC-ref (Fig. 8b) does not
clearly depend on the scattering angle. Spectral AC-ref rela-
tionships change with solar angles at a given location (e.g.,
Fig. 6) but appear different at different sites. Therefore, we
explore whether there may be other parameters to explain the
surface reflectance relationships. One possibility is to use a
more explicit parameterization based on surface type.

The DT SRP attempts to account for land cover type (and
seasonal changes) using the NDVISWIR (Eq. 4) and scatter-
ing angle (Eq. 3) as a proxy for bidirectional reflectance. This
appears to be sufficient for MODIS, where SZAs and vegeta-
tion conditions both co-vary on seasonal scales. Differences
in day-to-day viewing geometry help to remove overall bi-
ases caused by the SRP. Nonetheless, there was enough re-
maining bias over non-uniform and isolated urban surfaces
that the MODIS-DT retrieval added a correction based on
UP (Gupta et al., 2016).
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The ABIE geometry presents a very different problem in
that every ground location is isolated – there is no “averag-
ing” of viewing angle. Thus, unlike MODIS (or another LEO
sensor), one may not be able to assume a generalized depen-
dence on the scattering angle for all ground target locations.
Of course, the pathological limit is that there is a unique
bidirectional reflectance distribution function (BRDF) and
functional dependence of the solar angle at every location
viewed by ABIE. Developing this “map”, however, would be
extremely expensive (time-wise and computationally), and
would require similar efforts to develop these descriptions for
ABIW, AHI and any future regionally observing geostation-
ary imagers. Therefore, we attempt to simplify this problem
by separating the globe into three canopy types (two vegeta-
tion types plus urban) that represent the darker surfaces used
for DT retrieval. From there, we develop a three-tiered SRP
and test whether that can be used for ABIE and other GEO
sensors.

According to the IGBP index, we classify surfaces dom-
inated by deciduous or evergreen forest (IGBP index 1–4)
as closed vegetation (CV) and other vegetation (IGBP index
5–10, 12, 14) as open vegetation (OV). Figure 11 shows the
global map of the IGBP index and percentage of each land
cover type (%land type) at 0.1°× 0.1° resolution, which are
obtained from the MCD12Q1 products at 500 m resolution.
By counting individual IGBP indices from all sub-grid pix-
els, we obtain the most frequent IGBP index (Fig. 11a) and
percentage of CV (Fig. 11b), OV (Fig. 11c) and urban type
(Fig. 11d) in a grid box. OV dominates over most of the
global land mass. CV is dominant in 17.6 % of non-water,
ice-free and non-barren pixels, and is generally concentrated
near the Equator. Meanwhile, the urban type is dominant in
0.7 % of the situations and is sporadically distributed.

Figure 11 shows that multiple land types can exist simulta-
neously in a grid box in most cases where the surface proper-
ties are not uniform over a wide range. Since AC-ref is based
on the contribution from each type, it can be assumed that
the spectral AC-ref relationship is dependent on the %land
type of the area for which the AC-ref is calculated, just as the
urban percentage changes the SRP in the current algorithm.
We intend to create an SRP for each land type, OV and CV,
in the same manner that UP is used in the current DT algo-
rithm. We will do this in two steps. First, we develop the land
type SRP. Second, we apply the new SRP to the retrieval.

The SRP analysis clusters the AC-ref dataset into three
land types. Each cluster integrates cases where the land type
occupies more than 10 %, allowing us to observe changes in
SRP corresponding to alterations in the percentage of each
type. In the retrieval process, the algorithm now assumes a
homogeneous surface, even when the surface is heteroge-
neous. The algorithm reads the %land type maps (Fig. 11)
and identifies the highest percentage land type in each pixel.
The algorithm uses OV by default and adjusts the SRP where
the %CV or %UP is higher than the %OV. For example, if
we assume a grid box is covered by 20 %urban, 50 %CV and

30 %OV, the algorithm chooses CV and calculates the SRP
for 50 %CV by using the multiple linear regression described
in Sect. 5.2.2. The contribution of the other 50 % of the pixel
is not considered here. Accordingly, the following unfortu-
nate case will be possible. If the pixel is filled with 40 %CV,
30 %OV and 30 %urban, the pixel is identified as CV even
though 60 % of the pixel is covered by other types. Ideally,
a weighting function that takes into account significant per-
centages of all surface categories would be preferable, and
such a weighting function will be investigated in a subse-
quent study. This section describes the process of creating
the SRPs specific to each land type, leaving further descrip-
tions of the application of SRP to Sect. 6.1.

In Fig. 12, we plot the red and SWIR AC-ref relationship
by land type. A population of AC-ref shown by gray dots
was categorized into three group as described before, and a
linear regression was fitted for each AC-ref group. AC-ref
in each group was binned into 10 equal bins, and the mean
and standard deviation of each bin was calculated and shown
by colored circles and vertical bars. The CV is dark at both
SWIR and red wavelengths and has a lower slope compared
to the OV and urban type. Meanwhile, for urban type, red-
vs.-SWIR AC-ref is higher than the other land surface types,
causing a higher slope than the other two groups. Since OV
encompasses all the various land cover types that are not clas-
sified as CV or urban and since it dominates the statistics,
the regression of this type is similar to the overall correla-
tion where no surface type is specified, as shown in Fig. 8b
(red). In Fig. 13, we look for dependencies of the regression
by plotting the slope against SZA, NDVISWIR and the differ-
ent land cover type percentages. In this figure, we simplified
the regression to force the y intercept to 0 and we display
the derived slope to make it easier to see the linearity of the
regression change with the parameters. For vegetative sur-
face, slopes from the red–SWIR regression range between
0.4 and 0.6, and slope variability is well captured by pa-
rameterization using NDVISWIR. The slope of the CV group
shows a weak dependence on the parameters, with a slight
decrease observed with increasing NDVISWIR (Fig. 13b, red)
and %CV (Fig. 13c, red). When the surface becomes even
darker, where NDVISWIR is greater than ∼ 0.6, the regres-
sion tends to lose its sensitivity to the NDVISWIR. The slopes
of the OV group behave similarly, but the dependence on
NDVISWIR and %OV is stronger compared to the CV group.
An increase in vegetation percentage is expected to corre-
spond to a darkening of the visible surface reflectance, and
thereby it decreases the red-vs.-SWIR slope. The urban slope
also decreases as NDVISWIR increases, but as %urban in-
creases, the slope increases due to the greater contribution
of high reflectance from human-made structures. The slope
is high when SZA is low for OV and urban groups, but in the
CV group, a weak positive change is shown.
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Figure 11. A global map of (a) the most frequent International Geosphere Biosphere Program (IGBP) indexes within a 0.1°× 0.1° grid
box and the percentage of the sub-grid index classified into (b) closed vegetation, (c) open vegetation, and (d) urban type. The IGBP index
indicates (1) evergreen needleleaf forests, (2) evergreen broadleaf forests, (3) deciduous needleleaf forests, (4) deciduous broadleaf forests,
(5) mixed forests, (6) closed shrublands, (7) open shrublands, (8) woody savannas, (9) savannas, (10) grasslands, (11) permanent wetlands,
(12) croplands, (13) urban and built-up lands, (14) cropland/natural vegetation mosaics, (15) permanent snow and ice, (16) barren land and
(17) water bodies.

Figure 12. Linear regressions between red and SWIR AC-ref clas-
sified into three land cover types: closed vegetation (CV, red), open
vegetation (OV, green) and urban (black). Each AC-ref group is di-
vided equally into 10 bins and is displayed with the mean (symbols)
and standard deviation (vertical bars) of each bin. The gray dots
represent a population of ACref which is not distinguished by land
type.

5.2.2 Multiple linear regression for red and SWIR
relationship

Previously, we discussed the inability to parameterize the an-
gular dependence of the SRP with only scattering angle in
the same way as is done with the current MODIS DT algo-
rithm (Fig. 10). We also discussed that the correlation be-
tween visible and SWIR AC-ref obtained from ABIE varies
with land cover type (Fig. 12), and we investigated the de-
pendency on NDVISWIR and %land type (Fig. 13). Based on
the above analysis, for the red and SWIR relationship, we in-
troduce a new SRP that takes into account SZA, NDVISWIR
and %land types through multiple linear regression. In this
way, anisotropic reflectance is parameterized as a function of
SZA as before, but that relationship is modified simultane-
ously by NDVISWIR and %land. Also, the urban correction
is no longer being performed as an add-on process as it is in
the current MODIS DT algorithm.

Like the current MODIS DT algorithm, this study aims to
parameterize the regression coefficients of spectral relation-
ships of surface reflectance. We predict the slope and y inter-
cept as a function of input parameters and then derive the red
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Figure 13. The regression slope between red and SWIR AC-ref. The slopes are calculated for three land types, and show changes depending
on (a) SZA, (b) NDVISWIR and (c) % land type. For each group of closed vegetation (CV, red), open vegetation (OV, green), and urban
(gray), AC-ref is equally divided into 12 bins according to the x parameter. Among the 193 AERONET sites used for the collocation, 40 sites
corresponded to CV, 169 sites to OV and 55 sites to urban.

surface reflectance from the SWIR surface reflectance based
on those coefficients. Table 1 summarizes the multiple linear
regression (MLR) between input parameters and the coef-
ficients for each land type. Each MLR coefficient listed in
the table represents the change in predicted value per unit
change in the predictor, holding all other input variables con-
stant. The constant is equal to the predicted value when all
the input parameters are zero. That is, according to the MLR
coefficient, the key factor to change the spectral relationship
is NDVISWIR for OV and urban type, but it can be seen that
%land type plays an important role in CV and urban con-
ditions. Note that while the MLR coefficients for SZA and
%land type seem small, the value of SZA and %land type
ranges from 0 to 70 and from 0 to 100, respectively, whereas
the value of NDVISWIR ranges from 0 to 1. Multiplying MLR
coefficients by typical values can place the influence of SZA
on the same scale as the land parameters.

Taking an OV-dominated pixel as an example, based on
the MLR coefficients provided in Table 1, the slope and y in-
tercept can be predicted using the following equations:

slopeOV
RedSWIR = 0.0014×SZA− 0.4477×NDVISWIR

+ 0.0001×%OV+ 0.6729, (13)

y intOV
RedSWIR=−0.0003×SZA+ 0.0411×NDVISWIR

− 0.0001×%OV− 0.0041. (14)

For a given NDVISWIR and %OV, the MLR yields a high red-
to-SWIR ratio when SZA is low.

5.2.3 New SRP for blue and red relationship

The blue and red relationship does not change significantly
with land type. We account only for the NDVISWIR depen-
dence and angular change which are shown in Figs. 9 and 10.
The blue and red relationship is parameterized as a linear
function of scattering angle for three NDVISWIR groups, as
shown in Fig. 14.

In Fig. 14, the ratio of blue to red is close to 0.6 un-
der backscattering conditions and is not significantly dis-
tinguished according to NDVISWIR. The blue–red relation-
ship of the three NDVISWIR groups is differentiated in terms
of dependence on the scattering angle. The slope decreases
slightly as the scattering angle decreases when NDVISWIR
is lower than 0.5, whereas when NDVISWIR is high, the
transition from backward to forward scatter increases the
slope. It is seen that the ratio is as high as 1 under the
forward-scattering condition. The high NDVISWIR mostly
corresponds to dense vegetation such as tropical forests and
crops at their peak growth status. The forest canopy induces
shadow-driven reflectance in forward scattering, which dark-
ens the blue and red reflectance and consequently yields a
one-to-one regression between them.

6 Results

6.1 Applying the new SRP in the DT algorithm

The newly developed SRPs are applied to the DT algorithm
for ABIE, and performance is tested in terms of predicted
surface reflectance and retrieved AOD. The visible surface
reflectances predicted from the AC-ref at the SWIR wave-
length obtained from ABIE observations are compared with
the visible AC-ref in Sect. 6.2, and the AODs retrieved from
the modified DT algorithm for ABIE by adopting the new
SRPs are validated with AERONET AOD in Sect. 6.3.

The ABIE-DT algorithm follows the same flow as de-
scribed in Sect. 2.1 but assumes the new SRP for both red
and blue surface reflectance estimation. As different SRP as-
sumptions are made depending on the land cover type, a clas-
sification of land type is performed based on an ancillary map
of %CV, %OV and %urban before estimating the surface re-
flectance. Considering the 10 km resolution of DT retrieval,
we applied the map of %land type derived from a 0.1°× 0.1°
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Table 1. Summary of new surface reflectance parameterization for the DT-GEO algorithm. Multiple linear regression consisting of three
parameters, SZA, NDVISWIR, and %land type, predicts the regression slope and y intercept between red and SWIR surface reflectance. The
value listed refers to the regression coefficient and the number in parentheses indicates 1σ of the coefficients.

Closed vegetation SZA NDVISWIR %land type Const

Slope (1σ ) 0.0015 (0.0006) 0.0181 (0.0540) −0.0013 (0.0003) 0.4439
y int (1σ ) −0.0002 (0.0001) −0.0125 (0.0062) 0.0000 (0.0000) 0.0172

Open vegetation SZA NDVISWIR % land type Const

Slope (1σ ) 0.0014 (0.0005) −0.4477 (0.0563) 0.0001 (0.0003) 0.6729
y int (1σ ) −0.0003 (0.0001) 0.0411 (0.0084) −0.0001 (0.0003) −0.0041

Urban SZA NDVISWIR % land type Const

Slope (1σ ) 0.0013 (0.0006) −0.3890 (0.0620) 0.0018 (0.0005) 0.5976
y int (1σ ) −0.0003 (0.0001) 0.0369 (0.0091) −0.0001 (0.0001) 0.0024

Figure 14. The change in the blue and red relationship with NDVISWIR and scattering angle. Color indicates NDVISWIR divided into three
levels.

grid box in the same manner as we used to produce the maps
in Fig. 11. The classification process finds the %CV, %OV
and %urban from the nearest grid box for each location, then
assigns the pixel to be CV or urban if the %CV or %urban is
higher than the others. In the case of an equal percentage of
two different types in a grid, we put priority in the order of
urban, CV and OV. For example, if %CV and %urban each
occupy 40 % of the area, the pixel is assigned as urban. If
none of the conditions are met, the DT retrieval assumes OV
as the default.

6.2 Comparison of predicted surface reflectance

Figure 15 shows the comparison between the predicted sur-
face reflectance and AC-ref in blue and red, respectively. It
also compares the performance of the new SRP with that of
the baseline SRP applied to the MODIS DT algorithm. In
Fig. 15a, it is seen that the baseline SRP overestimates the red
surface reflectance in CV but underestimates it in OV. In ur-
ban, the predicted surface reflectance correlates closely with
AC-ref, but with a higher root mean square error (RMSE)
than other land types. The surface reflectance predicted by

the new SRP (Fig. 15b) represents a smaller RMSE in CV
and urban compared to the baseline product. It also brings
the predicted surface reflectances closer to the atmospheri-
cally corrected values. When it comes to prediction of blue
surface reflectance, both the baseline and new SRP produce
estimated surface reflectances that underestimate AC-ref, but
the new SRP lowers the RMSE relative to the original values
for all land surface types.

There is a degree of circularity in comparing the result-
ing estimated surface reflectances with the same data from
which they were derived. However, many factors come into
play during the derivation and there is no guarantee that es-
timated reflectances will match the AC-ref any better than
those derived from the baseline SRP. However, the first ba-
sic step is to prove that the estimated reflectances do indeed
match the statistics of their formulation dataset. As such, the
results presented in this section are a necessary but not com-
prehensive proof of the new parameterization.
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Figure 15. Comparisons between predicted surface reflectance and AC-ref for the (a, b) red and (c, d) blue channels. Panels (a) and (c) show
the predicted surface reflectance achieved from the baseline DT SRP and panels (b) and (d) show the predicted surface reflectance using the
new DT-GEO SRP. The predicted surface reflectance is sorted by AC-ref and equally divided into 10 bins. The symbols and vertical bars
represent the mean and standard deviation in each bin respectively, and color indicates land type: (red) CV, (green) OV, and (gray) urban.

6.3 Comparison of DT-GEO AOD and AERONET
AOD

The goal of the new SRP is not to derive surface reflectance,
but to improve the AOD retrieval from GEO observations.
Therefore, we use the new SRP in the DT algorithm applied
to ABIE, which provided the formulation dataset, but also
its sister sensor ABIW, which remained independent of the
derivation.

Figure 16 shows the new DT-GEO AOD retrieval from
ABIE on 6 September 2019, with a 3 h interval between
13:00 and 22:00 UTC. An aerosol plume crossing from
north to south over Missouri is captured from the re-
trieval (Fig. 16.a–d), and other small plumes are detected
around Houston and Louisiana as well. We select two
AERONET sites adjacent to the aerosol path and compare

the new AOD with the baseline AOD and AERONET AOD
(Fig. 16e and f). At NEON_KONZ [39.10° N, −96.56° E],
both the baseline and the new AOD follows the decreas-
ing AERONET AOD between 14:00 and 23:00 UTC, albeit
with a positive bias. The AOD at IMPROVE_MammothCave
[37.13° N,−86.15° E] is as low as 0.1 at 13:00 UTC, but con-
sistently increases as the aerosol plume approaches and peaks
at 23:00 UTC. Comparing the DT AODs, the new AODs are
mostly lower than the baseline AODs, especially during local
noon hours (17:00–19:00 UTC).

The initial issue with the DT algorithm applied to the ABI
sensor data is shown in Fig. 4, where we noticed an overall
high bias that was at a maximum at around noon. Figure 17
illustrates the mitigation of the diurnal signature of the high
AOD bias when applying the new SRP. The red dots recreate
the original diurnal pattern from Fig. 4, and the black dots
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Figure 16. Three-hour interval map (a–d) displaying the new DT AOD retrieved from ABIE on 6 September 2019. A comparison is made
between the new DT AOD and the baseline DT AOD as well as the AERONET AOD at two locations: (e) NEON_KONZ [39.10° N,
−96.56° E] and (f) IMPROVE_MammothCave [37.13° N, −86.15° E]. Black squares indicate AERONET AOD [550 nm], open blue circles
represent the baseline DT AOD [550 nm] and closed red circles denote the new DT AOD [550 nm]. The AERONET sites are marked on the
map with gray circles.

are the result of the new SRPs. The bias from AERONET
of the new retrieved AOD is lower and less time dependent
than the original. The new SRP alleviates the AOD bias when
SZA is low (Fig. 4c vs. Fig. 17c) but shows less improvement
at dusk/dawn. Although the new SRP was developed using
AC-ref obtained from ABIE, applying the new SRP to the
ABIW DT retrieval also mitigates the high AOD bias around
noon as shown in Fig. 17b. Thus, the ABIW results provide
independent validation of the success of the new SRPs.

Figure 18 displays the average bias of the retrieved AOD
against AERONET at each AERONET site. Figure 18a and b
are side by side comparisons of the results of the old and
new SRPs, respectively for ABIE. The products of ABIW are
compared in Fig. 18c and d. The ABIE AOD retrieved from
the MODIS DT algorithm (Fig. 18a) agree with AERONET
AOD with differences ranging between 0.0 and 0.2 at most
stations. The positive bias is also prominent in ABIW AOD
across western North America. Figure 18b and c show that
the retrievals using the new SRP decrease the bias in both
ABIE and ABIW AOD. However, the DT-GEO algorithm
still overestimates AOD across most of western North Amer-
ica and some random locations. At some locations across the

region, a positive bias turns into a negative one, but not below
−0.05. The overall picture is one of improvement with sta-
tions closest to the subsatellite point with the smallest SZA
at noon seeing the largest success.

The scatter plots in Fig. 19 compare the DT AODs with
AERONET AOD. By applying the new SRP, the %EE has
been improved from 50.53 % to 75.57 %, and the regression
slope is closer to 1. Figure 20 shows the same plots as seen
in Fig. 17 but for three specific AERONET sites – GSFC,
NEON Harvard and PNNL – which are dominated by urban
(44.09 %), mixed forests (47.57 %) and croplands (86.87 %),
respectively. The AERONET sites are observed from ABIE
with a fixed VZA of 45.42, 49.38 and 68.99°, respectively.
The new SRP reduces the AOD bias at the three AERONET
sites but has less impact on the mitigation of the time de-
pendence at PNNL. The AOD retrieved at PNNL may have
greater uncertainty in that the site is located at the high VZA
near the boundary of the ABIE observing disk and the crop-
land surface contributed to the bright reflectance.
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Figure 17. Comparison of the bias in the baseline DT AOD and the new DT AOD. The DT AODs are retrieved from (a, c) GOES 16 ABI
(ABIE) and (b, d) GEOS 17 ABI (ABIW) from August to September 2019. The biases are then calculated using the collocated AERONET
AOD from sites within the sensor disk scan and aggregated by (a, b) local solar time and (c, d) SZA. In the upper panels, the biases in the
new DT AOD (black) are overlaid on the biases of the (red) baseline AOD. The symbols represent the median value and the vertical bars
display the range between the first and the third quartile of the AOD bias at each bin. The bottom panel shows the bias range of the new DT
AOD for each SZA bin (10° interval division). The bias is derived for morning and afternoon and is differentiated by symbols (circle: AM,
triangle: PM). Blue represents the backward scattering direction, while black indicates the forward scattering direction.

7 Discussion

The DT algorithm does not require building a database of
surface reflectance using several years of satellite observa-
tions and thus is quickly adaptable to new sensors. This is
because it constrains surface reflectance dynamically in real
time. The constraint is based on a physical connection be-
tween light absorption in the visible and SWIR wavelengths
in plant leaves and bare soil. The physical connection leads
to empirically derived spectral relationships between surface
reflectance in different bands. The surface reflectance param-
eterization (SRP) approach can be valid for any sensor. How-
ever, differences in viewing geometries between LEO and
GEO sensors introduced an issue in the SRP parameteriza-
tion. We explore this issue by calculating surface reflectance
from TOA reflectance measured by a LEO sensor (MODIS)
and a GEO sensor (ABIE) using atmospheric correction at
AERONET sites.

In the MODIS case, using the most recent 5 years of obser-
vations confirmed the same SRPs and the same dependency
on scattering angle established 20 years ago. However, an
assessment of ABIE AC-ref determined that the GEO SRPs
were inconsistent with the MODIS-based SRPs. At the out-
set these differences could be attributed to either spectral dif-
ferences in the wavelength bands of each instrument or to
the viewing geometry differences between LEO and GEO.
A sensitivity study proved that spectral differences cannot
explain the magnitude of the differences that we see. How-
ever, a remarkable difference between the SRPs of MODIS
and ABIE was seen in the dependence on the scattering an-
gle, which suggests geometrical differences play a signifi-
cant role. The inconsistency increases bias in visible surface
reflectance when the scattering angle is higher than 150°.
We note that for ABIE, the relative azimuth angle (RAA)
range at each site spans 40–180°. Meanwhile, the MODIS
RAAs are limited to two sectors: 40–70 and 120–150°. For
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Figure 18. Bias maps of (a, c) the baseline DT AOD and (b, d) the new DT AOD retrieved from (a, b) ABIE and (c, d) ABIW for August–
September 2019. The bias represents the average of the absolute difference between DT AOD and AERONET AOD.

MODIS, within each sector the variety of VZA encountered
dilutes geometrical differences for average values. Most im-
portantly, MODIS never measures RAA> 150° near the veg-
etative hotspot.

The key to the differences between MODIS and ABIE is
based on the fact that GEO and LEO measurements have
different viewing geometries, and changes in scattering an-
gles are driven by different factors in each sensor. In ABIE,
the solar angle varies, but VZA stays constant at each lo-
cation, while MODIS measures a narrow range for the so-
lar angle while observing a wide range of VZA. This has
two implications. First, for ABIE, because VZA is constant
at each site, the geometry is convolved with surface charac-
teristics such as land cover. Thus, a dependence of SRP on
the scattering angle in the ABIE analysis may be a proxy for

land cover type. Second, ABIE encounters different combi-
nations of VZA, SZA and RAA that MODIS never encoun-
ters. The baseline parameterization appears to continue to
serve MODIS DT well, suggesting that the decreased abil-
ity of the baseline parameterization to serve ABIE may lie in
the new geometrical combinations that are now appearing in
ABIE.

Although MODIS DT SRP accounts for angle-dependent
bidirectional reflectivity, it is imperfect for modeling
anisotropy for a variety of conditions. The connection to the
vegetative hot spot as the source of the differences in the
spectral relationships of MODIS and ABIE suggests that ig-
noring surface cover characteristics could be the root cause
of lingering uncertainties in the MODIS DT SRP and the rea-
son for the poor performance of ABIE. One way to illustrate
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Figure 19. Comparison of the AERONET AOD and the DT AOD retrieved from ABIE from August to September 2019 across all collocated
AERONET stations within the sensor disk scan. The DT AOD is retrieved by applying (a) the baseline and (b) the new SRP, respectively.
The color indicates the number density of the scatter plot.

Figure 20. Comparison of the bias in the DT AOD at GSFC, NEON_Harvard, and PNNL AERONET site. The bias is calculated from the
DT baseline and new retrieval from August to September 2019. The range of bias for each time is expressed as a vertical bar connecting the
first and third quartiles, and the median bias is shown by a symbol. Color indicates the baseline (red) and the new AOD (black).

the convolution between geometry and surface properties in
the ABIE data is to examine in detail the situation in differ-
ing land covers. Figures 12 and 13 demonstrate that AC-refs
classified into open vegetation (OV), closed vegetation (CV),
and urban have different spectral relationships. The regres-
sion coefficients between red and SWIR AC-ref vary with
land cover type and show a dependence according to the ho-
mogeneity of land cover and NDVISWIR. The blue and red
spectral relationship does not differ significantly according
to land cover, but unlike the DT–MODIS relationship, the
variability according to NDVISWIR is evident.

We note that even the LEO DT algorithm began to ex-
plicitly address land cover type in its SRP when that land
cover was urban, beginning with Collection 6.1 but it con-
tinued to group all vegetation types together. However, with
GEO, the novel geometry that includes the vegetation hot
spot and convolves VZA with a specific location requires a

separate SRP for at least two vegetation categories. In this
study, an improvement in SRP was achieved by applying the
%land type parameterization, which distinguishes between
open and closed canopy. However, it still does not fully char-
acterize the surface BRDF, potentially resulting in residual
angular bias in the surface reflectance and AOD. To ensure
consistent DT retrievals across both LEO and GEO plat-
forms, it is advisable to conduct a full characterization of the
surface BRDF using a combined GEO–LEO AC-ref dataset.
This dataset should cover a range of VZA, SZA and RAA for
each specific location.

The approach to calculating %land type also requires im-
provements in that there is a discrepancy between the map
of %land type and the ground pixels observed from the GEO
sensor. Concerns about spatial discontinuity in the AOD re-
trieval according to categorization of land cover type need to
be addressed as well.
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We acknowledge the need for further research to improve
AC-ref accuracy. This should address concerns related to
spatial resolution, uncertainties in high SZA conditions and
assumptions regarding aerosol models.

8 Conclusion

The new GEO sensors – Advanced Himawari Imager (AHI)
on the Himawari satellite, the Advanced Baseline Imagers
(ABIs) on the GOES-East and GOES-West sensors and the
Advanced Meteorological Imager (AMI) on the Geostation-
ary Korea Multi-Purpose Satellite-2A – offer the aerosol
community an unprecedented opportunity to explore the tem-
poral characteristics of aerosols with applications for air
quality monitoring, resolving a developing smoke plume
near its fire source, the co-evolution of aerosols and con-
vective clouds on time scales of the convection and other
possibilities. However, the same robust aerosol product that
the community has come to expect from MODIS and VIIRS
must be produced from the GEO sensors. Most importantly,
any biases found in the retrieved AOD must be diurnally con-
stant otherwise the very phenomena of interest to the com-
munity can be aliased by the diurnal signature in the error of
the product.

We began this study with a baseline version of the DT al-
gorithm for GEO sensors including ABI. This includes LUTs
that account for shifted wavelengths and modifications to
cloud masking due to different resolutions and missing wave-
lengths. Based on our experience with porting to VIIRS, we
assumed that the SRPs used for MODIS would be appropri-
ate for the GEO sensors. Previous to this study, an initial eval-
uation of the baseline GEO algorithm applied to AHI showed
a correlation with collocated AERONET AOD and mean bias
and RMSE only marginally less accurate than MODIS AOD
at the same stations and time period (Gupta et al., 2019).
These were encouraging results that propelled the baseline
GEO algorithm to be applied to ABIE and ABIW with the
same SRPs, and for the resulting ABI AOD to be included in
a global product consisting of AOD derived from three GEO
sensors and three LEO sensors. Initial validation of ABIE
and ABIW, as part of this merged product, show overall val-
idation statistics comparable to MODIS, especially in terms
of the percentage within expected error (%EE), but with a
higher bias.

In this study we specifically examined the diurnal sig-
nature of differences with collocated AERONET AOD and
found a distinctive diurnal signature of the bias with an am-
plitude of 0.10. The work done in the present study has fo-
cused on reducing the diurnal signature of the AOD bias
against AERONET, which will strengthen the applicability
of the DT-ABI products for characterization of aerosol di-
urnal properties. While the baseline algorithm produces a ro-
bust and reasonable global product, by developing a new SRP
from ABIE atmospherically corrected reflectances we may
be able to cut the overall positive biases in half to 0.01–0.08
and more importantly flatten the amplitude of the diurnal sig-
nature to less than 0.05. The new SRP parameterization was
applied to ABIE measurements, the same dataset that was
used for its formulation, but it was also tested with ABIW
measurements that provide an independent verification. The
ABIE results are slightly better than the ABIW results, as
expected, but the independent ABIW results conform to the
same error bars described above: a positive bias of less than
0.08 and a flattened diurnal signature with an amplitude of
less than 0.05. We have not applied this new SRP to AHI or
other GEO satellite sensors. Because AHI views a different
part of the globe with different vegetation, topography and
soil types than do the ABI sensors, this specific parameteriza-
tion fine-tuned for the Americas may not work as well for the
AHI view of Asia and Oceania. With their temporal promise,
GEO sensors are essentially regional instruments by defini-
tion. It is possible that to maximize the capability of each
GEO sensor, individual parameterizations may be necessary
and regional versions of the DT algorithm may be more ap-
propriate. A balance must be found between regional tuning
and the goal of maintaining global consistency so as not to
lose the ability to characterize the global aerosol system as a
whole.

The investigation of the validity of applying the SRPs de-
veloped here for AHI and the question of balancing regional
tuning with a global perspective are beyond the scope of this
study. For now, we have a robust algorithm for the over-
land retrieval of aerosol that can be applied to the ABI in-
struments. The algorithm parameterizations are based on un-
derstood physics of spectral light absorption and scattering
by vegetative canopies. The parameterization described here
will be implemented into the DT package, available ABI ob-
servations will be processed and the product made publicly
available.
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Appendix A: NDVILEO_SWIR vs. NDVILEO_SWIR

We conducted a study to check the consistency between
NDVILEO_SWIR and NDVIGEO_SWIR. The study is based on
the MODIS TOA reflectance, which has both a 0.86 and
a 1.24 µm channel. We derived the indices for 3.5 years
(01.2017–06.2020) at six selected AERONET sites (Ta-
ble A1) covering different land cover types.

Table A1. List of locations used for the NDVIGEO_SWIR and NDVILEO_SWIR comparison test.

Location Latitude (° N) Longitude (° E) Dominant land type (IGBP classification) %land type

Alta_Floresta −9.87 −56.10 Savannas 45.64
Amazone_ATTO_Tower −2.14 −59.00 Evergreen broadleaf forests 98.36
GSFC 38.99 −76.84 Urban and built-up 44.09
La_Paz −16.54 −68.07 Grasslands 74.46
NEON_WREF 45.82 −121.95 Evergreen broadleaf forests 93.33
Rio_Branco −9.96 −67.87 Savannas 62.78

Figure A1 shows that NDVILEO_SWIR and NDVIGEO_SWIR
have a good consistency with linear regression as follows:

NDVIGEO_SWIR = 1.30×NDVILEO_SWIR− 0.20. (A1)

Figure A1. Comparison of NDVIGEO_SWIR and NDVILEO_SWIR
derived from MODIS (Aqua) TOA reflectance at six locations from
January 2017 to June 2020. Color indicates the location. The names
and numbers shown in the legend indicate the dominant land types
and their occupancy at each location.

Appendix B: AC-ref change with aerosol model
assumption

In order to test the impact of the aerosol model assump-
tion, we compared the AC-refs derived assuming different
aerosol models. There are two groups of AC-ref obtained at
the GSFC AERONET site. The first AC-ref group is the same
as the one described in Sect. 4.1. It was derived by feeding
the TOA reflectance and AOD to the LUT inversion by as-
suming the continental model.

The second group is derived by using the 6 sV simulation.
We provided the TOA reflectance, AOD, particle size distri-
bution (PSD), and refractive index (RI) in the 6 sV AC pro-
cess, and obtained the AC-ref. For the process, we first inte-
grated the ABIE TOA reflectance, AERONET direct AODs
and AERONET inversion parameters (PSD and RIs), which
are obtained from the GSFC AERONET site between July
2019 and June 2020. The study employs an inversion product
with a hybrid scanning scenario, ensuring accurate parame-
ters under the following conditions (Sinyuk et al., 2020):

1. Single scattering albedo (SSA) and refractive index:
440 nm AOD larger than 0.4 and SZA larger than 25°.

2. PSD: 440 nm AOD larger than 0.02 and SZA larger than
25°.

Due to the accuracy criteria and lower measurement fre-
quency, the AERONET inversion products are available less
frequently than the AERONET direct measurement, and re-
trievals of refractive index cannot be expected at low AOD
which meet the condition of AC-ref calculation. Therefore,
we allowed a wide time window (±1 h) for the collocation
with an assumption that the aerosol model does not change
drastically within 2 h.
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Figure B1. The changes in the visible-vs.-SWIR relationship with
scattering angle. The red and blue represent the red-vs.-SWIR and
the blue-vs.-red relationship, respectively, and the symbols compare
the aerosol model assumption in the AC-ref calculation. Square:
LUT-based continental model assumption; circle: 6 sV-based inver-
sion of AC-ref using the AERONET inversion products.

Here, we have two groups of AC-ref which are derived
by assuming a fixed continental model and a near real-time
aerosol model. Then we analyzed the visible-vs.-SWIR re-
lationships, as shown in Fig. B1. In Fig. B1, the regres-
sion slopes (with forced zero y intercept) of red vs. SWIR
and blue vs. red AC-ref pairs are plotted as a function of
scattering angle. The symbols represent the aerosol model
assumption (square: continental model, circle: AERONET
inversion-based model), while the color represents the wave-
length pair (red: red vs. SWIR, blue: blue vs. red). For
both wavelength pair, the aerosol model assumption does
not make a meaningful change in terms of the value of the
slope and its dependence on scattering angle. Note that the
result can be different where the location is impacted by other
aerosol types such as biomass burning.

Data availability. The Dark Target (DT) algorithm has been ported
to ABIs and produces aerosol data as part of the NASA MEa-
SUREs project (ROSES-2017; https://www.earthdata.nasa.gov/
esds/competitive-programs/measures/leo-geo-synergy, NASA,
2024c). The resulting products are accessible through https:
//ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/
applications/geoleo/ (NASA, 2024b). The NOAA GOES-R Se-
ries Advanced Baseline Imager (ABI) Level 1b Radiances can
be obtained via https://doi.org/10.7289/V5BV7DSR (GOES-
R Calibration Working Group and GOES-R Series Program,
2017) and https://doi.org/10.1175/BAMS-D-15-00230.1 (Schmit
et al., 2017). The AERONET direct sun measurement data
used in this study are available via the AERONET website
https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html
(NASA, 2024a) and https://doi.org/10.5194/amt-12-169-2019
(Giles et al., 2019). MODIS Land Cover Type (MCD12Q1)

Version-6 products are accessible through NASA EOS-
DIS Land Processes Distributed Active Archive Center
(https://doi.org/10.5067/MODIS/MCD12Q1.061, Friedl and
Sulla-Menashe, 2022).
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