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Abstract. The Measurements Of Pollution In The Tropo-
sphere (MOPITT) is an ideal instrument to understand the
impact of (1) assimilating multispectral and joint retrievals
versus single spectral products, (2) assimilating satellite pro-
file products versus column products, and (3) assimilating
multispectral and joint retrievals versus assimilating individ-
ual products separately. We use the Community Atmosphere
Model with chemistry with the Data Assimilation Research
Testbed (CAM-chem+DART) to assimilate different MO-
PITT carbon monoxide (CO) products to address these three
questions. Both anthropogenic and fire CO emissions are op-
timized in the data assimilation experiments. The results are
compared with independent CO observations from TROPO-
spheric Monitoring Instrument (TROPOMI), the Total Car-
bon Column Observing Network (TCCON), NOAA Carbon
Cycle Greenhouse Gases (CCGG) sites, In-service Aircraft
for a Global Observing System (IAGOS), and Western wild-
fire Experiment for Cloud chemistry, Aerosol absorption and
Nitrogen (WE-CAN). We find that (1) assimilating the MO-
PITT joint (multispectral; near-IR and thermal IR) column
product leads to better model–observation agreement at and
near the surface than assimilating the MOPITT thermal-IR-
only column retrieval. (2) Assimilating column products has
a larger impact and improvement for background and large-
scale CO compared to assimilating profile products due to
vertical localization in profile assimilation. However, pro-
file assimilation can outperform column assimilations in fire-

impacted regions and near the surface. (3) Assimilating mul-
tispectral and joint products results in similar or slightly bet-
ter agreement with observations compared to assimilating the
single spectral products separately.

1 Introduction

With the increasing availability of satellite remote sens-
ing instruments measuring atmospheric composition, there
is potential to produce multispectral retrievals of several
species, making use of thermal infrared (TIR) and near-
infrared (NIR) radiances from colocated instruments on the
same satellite, such as IASI (Infrared Atmospheric Sound-
ing Interferometer) and GOME-2 (Global Ozone Monitor-
ing Experiment-2) on the European MetOp satellites (Cuesta
et al., 2013), or flying in close formation, such as on
the NASA A-train and NOAA’s JPSS (Joint Polar Satel-
lite System), e.g., OMI (Ozone Monitoring Instrument, Lev-
elt et al., 2018), AIRS (Atmospheric Infrared Sounder, Fu
et al., 2018), OMPS (Ozone Mapping and Profiler Suite,
Flynn et al., 2014), TROPOspheric Monitoring Instrument
(TROPOMI, Veefkind et al., 2012), and CrIS (Cross-track
Infrared Sounder, Fu et al., 2016). TIR retrievals use ther-
mal contrast, while NIR retrievals use reflected solar radi-
ance from the surface. Taking MOPITT as an example, the
TIR retrieval can provide vertical profiles with limited sen-
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sitivity to the surface, while the NIR retrieval only provides
a total column product with some sensitivity to the surface
(Fig. 1).

The multispectral products have shown considerable in-
creases in the vertical sensitivity of the retrievals for
lowermost-tropospheric ozone (O3) (e.g., Worden et al.,
2007; Natraj et al., 2011; Fu et al., 2018), carbon monox-
ide (CO) (Worden et al., 2010; Fu et al., 2016), and
methane (CH4) (Schneider et al. 2022). Multispectral re-
trievals could be made using the colocated overpass made by
low-Earth-orbit and geostationary satellites such as, Geosta-
tionary Interferometric Infrared Sounder (GIIRS, Zeng et al.,
2023), Geostationary Environment Monitoring Spectrome-
ter (GEMS, Kim et al., 2020), Geostationary Extended Ob-
servations (GeoXO; Kopacz et al., 2023), and Tropospheric
emissions: Monitoring of pollution (TEMPO, Chance et al.,
2019). Table 1 shows the developed and potential multispec-
tral products (e.g., Mettig et al., 2022). It is important to
understand the value of assimilating a multispectral prod-
uct versus assimilating a single-spectral-range product and
the value of assimilating a multispectral product versus sep-
arately assimilating single-spectral-range products that are
used to retrieve the multispectral products.

Total column observations of O3, CO, and nitrogen diox-
ide (NO2) are now routinely assimilated in operational cen-
ters such as in the European Copernicus Atmosphere Mon-
itoring Service (CAMS) program at the European Centre
for Medium-Range Weather Forecasts (Inness et al., 2019,
2022). In addition, recently launched geostationary satellites
such as GEMS and TEMPO will provide column products
at high temporal resolution. While the satellite profile prod-
ucts are in general considered to contain more vertical in-
formation, it is important to understand the impacts of as-
similating column products versus assimilating profile prod-
ucts and to understand what information is potentially missed
by only assimilating column products. For example, Jiang et
al. (2017) compared emission updates following the assimi-
lation of the Measurements of Pollution in the Troposphere
(MOPITT) lowermost surface profile, the tropospheric pro-
file, or the columns and identified errors indicative of model
transport error impacts on emission estimates.

The MOPITT instrument on board the NASA Terra satel-
lite is an ideal instrument to address these questions. MO-
PITT retrieves total column amounts and vertical profiles
of CO using both thermal infrared (TIR) and near-infrared
(NIR) measurements. In addition, MOPITT also provides the
multispectral TIR–NIR joint product, which has enhanced
the sensitivity to near-surface CO (Deeter et al., 2011, 2013;
Worden et al., 2010). By comparing the results of assimilat-
ing different combinations of MOPITT CO products, we will
be able to address these questions.

To conduct the data assimilation experiments, we use
the Community Atmosphere Model with chemistry and the
Data Assimilation Research Testbed (Anderson et al., 2009).
CAM-chem+DART has been previously used to assimilate

MOPITT profile products (A. F. Arellano et al., 2007; Barré
et al., 2015; Gaubert et al., 2016, 2017, 2020, 2023). Here we
present the first assimilation of MOPITT column products
within CAM-chem+DART. This new capability also allows
us to assimilate other satellite column products of CO and
other chemical species in the future. Anthropogenic and fire
emissions are optimized separately in the data assimilation
experiments.

This paper aims to understand the impacts of (1) assim-
ilating multispectral and joint products versus single spec-
tral products, (2) assimilating satellite profile products ver-
sus column products, and (3) assimilating multispectral and
joint products versus assimilating individual products sepa-
rately. The paper is organized as follows: Sect. 2 describes
CAM-chem, DART, and methods, Sect. 3 describes datasets
used for result evaluation, Sect. 4 presents data assimilation
diagnostics, Sect. 5 shows comparisons between data assimi-
lation results and independent observations, Sect. 6 discusses
optimized emissions and CAM-chem simulations with up-
dated emissions, Sect. 7 is discussion, and Sect. 8 concludes
the study.

2 Methods and data

2.1 MOPITT products

The Measurements of Pollution in the Troposphere (MO-
PITT) instrument on board the NASA Terra satellite has pro-
vided both thermal infrared (TIR) and near-infrared (NIR) ra-
diance measurements since March 2000 (Deeter et al., 2003).
CO total column amounts and volume mixing ratio (VMR)
profiles (10 vertical layers) are retrieved from the radiance
measurements. TIR is used to retrieve the MOPITT TIR CO
total column product and the MOPITT TIR CO vertical pro-
file product; NIR is used to retrieve the MOPITT NIR CO
column product. Besides the TIR-only and NIR-only prod-
ucts, multispectral (JNT) products are also provided by MO-
PITT by jointly retrieving from TIR and NIR. JNT retrievals
provide both the MOPITT JNT CO total column product and
the MOPITT JNT CO vertical profile product. JNT products
have enhanced the sensitivity to near-surface CO (Deeter et
al., 2011, 2013; Worden et al., 2010). MOPITT products can
be accessed through https://search.earthdata.nasa.gov/search
(last access: 26 March 2024). In this study, we assimilate
daytime MOPITT version 9 products (Deeter et al., 2022)
of TIR profile, TIR column, NIR column, JNT profile, and
JNT column in our experiments.

We use the error-weighted average of the MOPITT data
within 1°× 1° model grid and 6-hourly bin (i.e., super-
observations). Averaged daily numbers of daytime total
super-observations from MOPITT TIR, NIR, and JNT prod-
ucts during 16 July to 14 August 2018 are shown in Fig. 2.
The NIR product only covers the land, while TIR and JNT
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Figure 1. Averaging kernel (AK) rows for MOPITT retrieval types TIR only, NIR only, and multispectral TIR+NIR. Global average of AKs
during July and August 2018 are shown.

Table 1. Developed and potential multispectral satellite retrievals. Shown in the table are satellites, their NIR and/or TIR spectral ranges (in
µm), and potential chemical species from the multispectral retrievals.

Morning overpass Afternoon overpass Geostationary

MOPITT (2.3 & 4.7)
(CO)

AIRS (3.75–15.4) + OMI (0.27–0.5)
(O3)

GIIRS (East Asia) (0.55–14.2) +
TROPOMI (2.3–2.4)
(CO, O3)

IASI (3.6–15.5) + GOME2 (0.24–0.79)
(O3)

TES (8.7–10.5) + OMI (0.27–0.5)
(O3)

GEMS (East Asia) (0.3–0.5) +
IASI (3.6–15.5)
(O3)

GOSAT (0.75–15) + TES (8.7–10.5)
(O3)

GEMS (East Asia) (0.3–0.5) +
CrIS (3.9–15.4)
(O3)

CrIS (3.9–15.4)+ GOSAT-2 (0.3–14.3)
(CO, CH4)

TEMPO (N America) (0.29–0.74) +
IASI (3.6–15.5)
(O3)

CrIS (3.9–15.4)+ TROPOMI (2.3–2.4)
(CO, O3, CH4)

TEMPO (N America) (0.29–0.74) +
CrIS (3.9–15.4)
(O3)

products cover the land and ocean. Over the ocean, the JNT
product is the same as the TIR product (Worden et al., 2010).

Data assimilation requires observation errors associated
with the quantity assimilated. MOPITT provides three types
of uncertainties and/or errors: total error, measurement er-

ror, and smoothing error in the products. Total error includes
both measurement error and smoothing error. Since our ob-
servation operators include the smoothing by the MOPITT
averaging kernels and the prior profiles, we only use the
measurement error rather than total error provided by MO-
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Figure 2. Daily number of super-observations per day and per grid
from MOPITT (a) TIR, (b) NIR, and (c) JNT products during
16 July to 14 August 2018. Total Carbon Column Observing Net-
work (TCCON) sites are marked by yellow stars and NOAA Carbon
Cycle Greenhouse Gases (CCGG) sites are marked by pink circles.

PITT for both column and profile products as smoothing er-
ror is already addressed by observation operators in the sys-
tem (Rodgers, 2000). Specifically, for MOPITT profile prod-
ucts, measurement error is provided by the variable “Mea-
surementErrorCovarianceMatrix”, while for MOPITT col-
umn products, measurement error is provided by the variable
second column of the variable “RetrievedCOTotalColumn-
DiagnosticsDay”.

2.2 CAM-chem

The Community Earth System Model (CESM) is a global
Earth system model that includes atmosphere, land, ocean,
and ice components (Danabasoglu et al., 2020). CAM-chem
(Emmons et al., 2020; Tilmes et al., 2019) is a global
chemistry–climate model as a configuration of CESM ver-
sion 2.2 (https://www2.acom.ucar.edu/gcm/cam-chem, last
access: 29 March 2024). CAM-chem accounts for physical,
chemical, and dynamical processes with a spatial resolution
of 1.25° in longitude and 0.95° in latitude as well as 32
vertical layers with ∼ 8 layers in boundary layer and ∼ 10
layers in the free troposphere (Tang et al., 2023). We use
the default MOZART-TS1 chemical mechanism, which in-
cludes comprehensive tropospheric and stratospheric chem-
istry with ∼ 220 chemical species and 528 reactions (Em-
mons et al., 2020). The aerosol scheme used is the four-
mode version of the Modal Aerosol Module (MAM4; Liu
et al., 2016).

We use the CAMS-GLOB-ANT v5.1 inventory (Soulie
et al., 2023) for anthropogenic emissions and FINNv2.4
(Wiedinmyer et al., 2023) for fire emissions. CAMS-GLOB-
ANT v5.1 provides monthly emissions, and we generated
daily files from the interpolation of the monthly values. The
FINNv2.4 inventory provides daily fire emissions that are
used directly. We update CO emission input files using the
relative surface flux increments at every MOPITT CO assim-
ilation step (6-hourly).

2.3 DART

DART is an open-source community facility for efficient en-
semble data assimilation (https://dart.ucar.edu/, last access:
26 March 2024). It is developed and maintained at the Na-
tional Center for Atmospheric Research (NCAR). DART has
been coupled with Community Atmosphere Model (CAM)
for global meteorological data assimilation (CAM+DART;
Raeder et al., 2012, 2021). Based on CAM+DART, the capa-
bility of chemical data assimilation using CAM-chem online
chemistry and DART is developed and applied for scientific
research (CAM-chem+DART; A. F. Arellano et al., 2007;
Barré et al., 2015; Gaubert et al., 2016, 2017, 2020). Here, we
use the ensemble adjustment Kalman filter approach (EAKF;
Anderson, 2001, 2003). The forecast ensemble is generated
by 30 CAM-chem simulations with different initial condi-
tions and emissions. The assimilation is performed using
DART and produces an ensemble of optimized initial con-
ditions and emissions, as described in Gaubert et al. (2023).
Specifically, the state vector includes CO initial conditions
and CO emission fluxes that are ascribed to fires and anthro-
pogenic sources. We use the ensemble mean at the forecast
and the analysis step in the sections discussing our results.
The ensemble mean of the forecast is denoted by

xf =
1
N

∑N

j=1
x
f
j , (1)
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where xf is the ensemble mean of the “forecast”, N is the
ensemble size, and xfj is the forecast value of the j th en-
semble member. In our runs, DART uses EAKF, a determin-
istic ensemble square root filter, for the analysis step. Un-
less noted otherwise, our setup is the same as in Gaubert
et al. (2023). We slightly change the emission update to in-
clude a correction to the previous day (t − 1) in order to
smooth the emission increments. Briefly, we apply multi-
plicative covariance inflation to the forecast ensemble be-
fore each analysis step to adjust the total error (model and
observations) using the given observation error as a refer-
ence (Anderson, 2007, 2009). The inflation parameter is also
sequentially updated (El Gharamti 2018) and varies in both
space and time. Localization is commonly used in ensemble-
based data assimilation to address insufficient ensemble sam-
ple size. Since the correlation is expected to decrease as sep-
aration increases, it empirically reduces the impact of an ob-
servation on the model state variable as a function of dis-
tance using the Gaspari–Cohn localization function (Gaspari
and Cohn, 1999). The spatial localization horizontal half-
width is 600 km and the vertical half-width is 1200 m. The
main difference between the profile and the column assimi-
lation resides in the vertical localization. For each MOPITT
retrieval, profile products have multiple observations at dif-
ferent layers but their impacts are vertically localized around
100 hPa. Therefore, not all vertical layers will be impacted.
For the column data assimilation, there is no vertical local-
ization in the column data assimilation except that the strato-
spheric (top five) levels are not updated, as in the CO profile
and meteorological DA. All vertical levels will be impacted
by a single column value. In this case, if the mismatch is due
to an underestimation of surface emissions rather than weak
vertical transport, updating the upper-tropospheric CO might
lead to erroneous adjustments in CO abundance.

Forward operators (denoted as H in DA terminology) are
applied to project model field to observation space (i.e., ex-
pected observations). We use the forward operators intro-
duced in Barré et al. (2015), consisting of (i) estimating the
log of a pressure-weighted partial column volume mixing ra-
tio that corresponds to the MOPITT grid and (ii) applying
the MOPITT averaging kernel and prior information as men-
tioned in Sect. 2.1. In this study, we introduce an observation
operator to assimilate the MOPITT columns in DART. That
is, we estimate the retrieved column C (molecules cm−2) us-
ing the MOPITT prior column Ca and following Eq. (3) of
the MOPITT version 9 user guide:

C = Ca+ a(xCAM-chem− xa), (2)

where xCAM-chem and xa are the modeled and the MOPITT
a priori profiles expressed as log10(VMR), and a is the total
column averaging kernel. In this study, we assimilate both
MOPITT profile and column products and compare the re-
sults.

2.4 Data assimilation experiments setup

There are six CAM-chem+DART runs (Fig. 3). The first run
is the spin-up and control run that starts on 1 July 2018. The
spin-up and control run only assimilates meteorological ob-
servations and the state vector consists of wind, temperature,
specific humidity, and surface pressure. Besides the spin-up
and control run, there are five experiment runs that assimi-
late different MOPITT CO product(s) to update model CO.
Note that the experiment runs assimilate not only MOPITT
CO products but also meteorological variables as in the spin-
up and control run. The chemical state vector (CO and CO
emissions) and the meteorological state vector do not impact
each other. However, the updated meteorology due to me-
teorological data assimilation will impact the transport and
possibly chemistry of CO during the forecast step. The five
experiment runs are

1. column JNT assimilation (Exp1-CJ),

2. profile JNT assimilation (Exp2-PJ),

3. column TIR assimilation (Exp3-CT),

4. column TIR and column NIR assimilation (Exp4-
CT+CN), and

5. profile TIR and column NIR assimilation (Exp5-
PT+CN).

These five experiment runs are designed to address a few sci-
entific questions.

– The comparisons of Exp1-CJ and Exp2-PJ will show
the impacts of the assimilation of satellite profile versus
column products.

– The comparisons of Exp1-CJ and Exp3-CT will show
the difference caused by the TIR-only product versus
the joint product.

– The comparisons of Exp1-CJ and Exp4-CT+CN
will show the impacts of assimilating joint products
(TIR+NIR) versus assimilating them separately for col-
umn products.

– The comparisons of Exp2-PJ and Exp5-PT+CN will
show the impacts of assimilating joint products
(TIR+NIR) versus assimilating them separately for pro-
file products.

The experiment runs start on 16 July 2018 and are initial-
ized with the spin-up and control run. Each experiment runs
for 35 d considering the cost and constraint of computational
allocation. The first 20 d (11–15 July 2018) are CO spin-
up and the last 15 d (31 July to 14 August 2018) are used
for result analyses. The 15 d period is selected based on the
spin-up time – as shown by fractions of observations rejected
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Figure 3. Setup of the CAM-chem and DART data assimilation ex-
periments.

by the assimilation system (Fig. 4). Quality checks are com-
mon in data assimilation as the algorithms are employed op-
erationally for near-real-time forecasting. We use the stan-
dard option in DART to do such quality checks. The abso-
lute value of the difference between the observed value and
the prior ensemble mean estimate is divided by the expected
value of this difference. That expected value is the square
root of the sum of the specified observation error variance
and the prior ensemble variance. If this ratio is greater than
a threshold, the observation is not used. The threshold ra-
tio used here is 3, which is commonly used for large tro-
pospheric applications in DART (e.g., Gaubert et al., 2023).
Systematic errors are larger at the beginning of the spin-up,
explaining the higher rejection rate. As the assimilation pro-
ceeds and the forecast bias is reduced, the rejection rate goes
down. The experiments finished spinning up around 31 July.
Each CAM-chem+DART run includes 30 ensemble mem-
bers. These 30 ensemble members have different initial con-
ditions and emissions to represent model uncertainties. The
analysis step is done every 6 h. Anthropogenic and fire emis-
sions are optimized separately on a daily basis following the
method described in Gaubert et al. (2020, 2023).

2.5 CAM-chem simulations with updated emissions

To evaluate the updated emissions from the DA experiments,
we conduct CAM-chem simulations for the same period
using the ensemble mean of the updated fire and anthro-
pogenic emissions. Hourly output is used for these simula-
tions. Specifically, we conduct six CAM-chem simulations:

– S1: simulation with emissions from Exp1-CJ,

– S2: simulation with emissions from Exp2-PJ,

– S3: simulation with emissions from Exp3-CT,

– S4: simulation with emissions from Exp4-CT+CN,

– S5: simulation with emissions from Exp5-PT+CN, and

– SControl: simulation with original CAMS and FINN
emissions.

3 Datasets used for result evaluation

3.1 TROPOspheric Monitoring Instrument
(TROPOMI)

We use CO column retrieved from TROPOMI on board
the ESA’s Sentinel-5 Precursor (Veefkind et al., 2012)
to evaluate model results. The spatial resolution of CO
retrievals is ∼ 5.5 km× 7 km (Veefkind et al., 2012;
Borsdorff et al., 2018). TROPOMI CO data can be down-
loaded from https://sentinels.copernicus.eu/web/sentinel/
data-products/-/asset_publisher/fp37fc19FN8F/content/
sentinel-5-precursor-level-2-carbon-monoxide (last access:
26 March 2024). The TROPOMI Level 2 CO (Apituley
et al., 2018) is used here. The TROPOMI data are filtered
following Landgraf et al. (2020). To compare the model
results with TROPOMI CO, we interpolate model outputs
spatially and temporally to match the locations and times
of TROPOMI CO retrievals and then apply TROPOMI CO
total column averaging kernels to the interpolated model CO
profiles to obtain modeled total CO columns (Apituley et al.,
2018). TROPOMI CO data were compared to MOPITT CO
in Martínez-Alonso et al. (2020). TROPOMI and MOPITT
data show good agreement in terms of temporal and spatial
patterns with global average biases < 4 % between all
MOPITT CO column products (TIR, NIR, and JNT) and
TROPOMI. TROPOMI CO values were slightly lower than
MOPITT in most regional comparisons.

3.2 The Total Carbon Column Observing Network
(TCCON)

TCCON is a network of ground-based Fourier transform
spectrometers that record direct solar spectra in the NIR
spectral region (Wunch et al., 2011; Laughner et al., 2023).
TCCON data have been previously used to evaluate MOPITT
products (e.g., Hedelius, et al., 2019). Column-averaged mix-
ing ratios of chemical species such as CO2, CH4, N2O,
and CO are retrieved from these spectra. We use CO col-
umn data from the TCCON GGG2020 data release (https:
//tccondata.org/2020, last access: 26 March 2024; TCCON
Team, 2022) to evaluate model results. Data from 18 TCCON
sites are used (Buschmann et al., 2022; García et al., 2022;
Hase et al., 2022; Iraci et al., 2022; Kivi et al., 2022; Liu et
al., 2022; Morino et al., 2022a, b, c; Notholt et al., 2022; Pol-
lard et al., 2022; Shiomi et al., 2022; Té et al., 2022; Warneke
et al., 2022; Wennberg et al., 2022a, b; Wunch et al., 2022).
We interpolate model results to TCCON data locations and
time and apply TCCON averaging kernels to model results
for proper comparisons.

3.3 NOAA Carbon Cycle Greenhouse Gases (CCGG)
sites

We use the atmospheric CO dry-air mole fractions from the
NOAA GML Carbon Cycle Cooperative Global Air Sam-
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Figure 4. Time series of the fractions of observations rejected by the assimilation system (%) due to the fact that they are too far from the
ensemble mean.

pling Network (https://gml.noaa.gov/aftp/data/trace_gases/
co/flask/surface/, last access: 26 March 2024; Petron et al.,
2022). Event data are used. The reference scale is WMO
CO_X2014A. We interpolate model results to CCGG site lo-
cations and time for proper comparisons. Note that on aver-
age, each site only has data on ∼ 4 d and approximately nine
data points in total from 16 July to 14 August 2018.

3.4 In-service Aircraft for a Global Observing System
(IAGOS)

IAGOS is a European research infrastructure developed for
operations on commercial aircraft to monitor atmospheric
composition (Petzold et al., 2015). The IAGOS instrument
package 1 measures CO as well as O3, air temperature, and
water vapor (https://www.iagos.org/iagos-core-instruments/
package1/, last access: 26 March 2024). CO is measured by
infrared absorption using the gas filter correlation technique
(precision: ±5 %, accuracy: ±5 ppb). Here we use vertical
profiles of CO from IAGOS for model evaluation. We use
CO profiles in North and West Africa, tropical Asia, East
Asia, Europe, eastern North America, western North Amer-
ica, Central and South America, and the Middle East and
conduct evaluation in these regions separately. CO profiles
used and regions are shown in Fig. S2. Note that IAGOS pro-
files are divided into regions based on their locations; how-
ever, the IAGOS profiles in a region are not representative of
the whole region due to coverage (Fig. S2).

3.5 Western wildfire Experiment for Cloud chemistry,
Aerosol absorption and Nitrogen (WE-CAN)

The WE-CAN field campaign was conducted over the north-
western US during July–September 2018 (https://data.eol.
ucar.edu/project/WE-CAN, last access: 26 March 2024).
There were 16 research flights of the NCAR/NSF C-130 re-
search aircraft during the campaign. Our experiment runs
start on 16 July and end on 14 August. We compare the
model results to measurements from flights on 31 July and 2,
3, 6, 8, 9, and 13 August. We use 1 min averaged CO (Picarro
G2401-mc) data. Model results are interpolated to match lo-
cations and time of the observations, and then both interpo-
lated model results and observations are averaged back to the
model spatial resolution (1.25° in longitude and 0.95° in lat-
itude), 6-hourly bins, and 50 hPa vertical layers. This is be-
cause the model spatial and temporal resolutions are much
lower than observations and model results cannot reproduce
the high variability in the raw observations.

4 Diagnostics of the assimilation results

4.1 Observation space diagnostics

4.1.1 Fractions of observations rejected by the
assimilation system

In all five experiments, the assimilation improves the agree-
ment between model forecast and observations of not only
the MOPITT products assimilated but also the MOPITT
products that were not assimilated. Assimilating MOPITT
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CO column product(s) improves model agreement with MO-
PITT CO profile product(s) and vice versa. Figure 4 shows
time series of the fraction of observations rejected by the as-
similation system (%) when they are too far from the model
ensemble mean. The decreasing fractions with time indicate
more observations being accepted by the model; i.e., obser-
vations and modeled values are getting closer in later time
steps. For a MOPITT product that is not assimilated in an ex-
periment run, it is still used in the “evaluation mode”, where
the ensemble is run through the observation operator but
not assimilated. Therefore, the hypothetical fraction of ob-
servations rejected is still calculated for the MOPITT prod-
uct for that experiment run, even though these observations
are not assimilated. For the spin-up and control run, there is
no significant trend for the fractions of rejected observations
(Fig. 4f). For the five experiments, the fractions of rejected
observations decrease with time. Assimilating (Fig. 4a–e)
any MOPITT product(s) improves model agreement with
all five MOPITT CO products regardless of whether they
are column or profile products. When only assimilating col-
umn products (Exp1-CJ; Exp3-CT; and Exp4-CT+CN), the
fraction of rejected observations decreases faster than that
when assimilating both profile and column products (Exp5-
PT+CN). For experiments that assimilate profiles (Exp2-PJ
and Exp5-PT+CN), the fractions of rejected observations
decrease slower than the other three experiments that only
assimilate column products (Exp1-CJ, Exp3-CT, and Exp4-
CT+CN). This is expected because profile assimilation has
a relatively smaller impact than column assimilation overall
due to vertical localization.

4.1.2 Reduced centered random variable (RCRV) and
chi-square statistics χ2

We use the RCRV as a diagnostic of the ensemble bias (Can-
dille et al., 2007). It has been previously used to validate as-
similation results (e.g., Gaubert et al., 2014). Mean RCRV
for P observations is defined by the ratio between the inno-
vation and its associated error:

RCRV=
1
P

∑P

i=1

yo
i −Hx

f
i√

σ 2
o,i + σ

2
f,i

, (3)

where yo
i is the value of ith observation, Hxfi gives the ex-

pected observation from the model, σ 2
o,i is the observation

error variance, and σ 2
f,i is the ensemble variance. The mean

of the RCRV represents the weighted bias of the forecast,
and hence a value close to 0 indicates the ensemble is rep-
resentative (i.e., error variances are comparable to the inno-
vations). Figure 5 shows daily RCRV. For a given experi-
ment, only RCRV of MOPITT product(s) assimilated in the
experiment is shown here. In most cases RCRV is close to
zero, indicating that the ensemble is representative. The only
exception is the NIR column product in Exp4-CT+CN and
Exp5-PT+CN.

Chi-square statistics (χ2) are also used to verify an effec-
tive assimilation by comparing error specifications and their
balance with actual model–observation mismatch (Ménard
and Chang, 2000). They have been previously used to evalu-
ate assimilation results (e.g., Gaubert et al., 2016; Sekiya et
al., 2021). Mean RCRV for P observations is defined as

χ2 =
1
P

∑P

i=1
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f
i )

2
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o,i + σ

2
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. (4)

A value lower than 1 indicates an overfitting of the obser-
vations, while a value higher than 1 suggests an underesti-
mation of the actual model and observation mismatch. Daily
χ2 is also shown in Fig. 5. The χ2 values are all higher than
1, indicating an underestimation of the actual model and ob-
servation mismatch. However, χ2 decreases with time and
gradually approaches 1, indicating that the degree of such
underestimation decreases with time.

4.2 Model space diagnostics

We analyze the impacts of assimilating MOPITT CO prod-
ucts by comparing the experiment runs with the control and
spin-up run, which effectively isolate the signal resulting
from the CO assimilation. Figure 6 shows the spatial distribu-
tion of CO difference caused by assimilation (CO from fore-
cast of experiment minus CO from the control and spin-up
run) for the five experiments (15 d average). At the surface,
the spatial distributions of CO difference are similar among
the five experiments. In line with Gaubert et al. (2023), the
five experiments show overall higher CO in the Northern
Hemisphere and lower CO in the tropics and India com-
pared to the control and spin-up run. Exp2-PJ and Exp5-
PT+CN reduce CO in California, which is not the case for
other experiments. Exp2-PJ and Exp5-PT+CN are the only
two experiments that involve profile product assimilation. In
addition, profile JNT is retrieved with profile TIR and col-
umn NIR; therefore, Exp2-PJ is expected to assimilate simi-
lar information as Exp5-PT+CN. In addition, when compar-
ing Exp1-CJ and Exp1-PJ, column assimilation has a larger
downwind impact (e.g., the ocean between Africa and South
America). At 500 hPa, the five experiments still show overall
higher CO in the Northern Hemisphere compared to the con-
trol and spin-up run. However, Exp2-PJ and Exp5-PT+CN
that involve profile assimilation have lower CO values than
the other three experiments, especially in the high latitudes.
At 200 hPa, the spatial distribution of the CO difference
caused by assimilation is smallest in Exp2-PJ, followed by
Exp5-PT+CN. On the contrary, for the other three experi-
ments which do not involve profile assimilations, the spa-
tial distribution of the CO difference caused by assimilation
is relatively large, i.e., assimilating MOPITT profile prod-
uct(s) only slightly changes CO values at 200 hPa, whereas
assimilating MOPITT column product(s) changes CO values
at 200 hPa dramatically. This is expected as vertical distri-
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Figure 5. Time series of (a–g) the daily mean of reduced centered random variable (RCRV) and (h–n) daily mean chi-square. For each
experiment, only the RCRV and chi-square of the MOPITT product that was assimilated are shown.

bution is often an advantage of profile DA that column DA
cannot represent.

Assimilating profile products has different vertical impacts
from assimilating column products (Fig. 7). Overall, the two
experiments that involve profile assimilation (Exp2-PJ and
Exp5-PT+CN) seem to be close to each other, while the
other three experiments that only involve column assimila-
tion (Exp1-CJ, Exp3-CT, and Exp4-CT+CN) also exhibit
similarities among themselves. Globally speaking, experi-
ments that assimilate only column product(s) have a larger
impact at and near the surface compared to experiments that
assimilate only profile product(s) (Fig. 7a and b). This is rea-
sonable because profile assimilation is more localized verti-
cally. Regional speaking, the impacts of the five experiments
vary across continents.

The difference caused by assimilating profile products is
in general smaller than the difference caused by assimilat-
ing column products. The exceptions are Africa and South
America where the two experiments that assimilate profiles
have lower CO than the three experiments that only assim-
ilate columns between 900 and 600 hPa. CO over the two
regions is dominated by fire emissions during the experiment
period. It is known that FINN overestimates fire emissions in
the tropics (Wiedinmyer et al., 2023; Gaubert et al., 2023),
among CO which is transported to upper levels through fire
plume rise and tropical convection. This overestimation be-
tween 900 and 600 hPa is corrected by assimilating MO-
PITT CO products, especially profile products that captured
CO plumes between 900 and 600 hPa. Exp2-PJ and Exp5-
PT+CN have some relatively small differences over some
regions even though profile JNT is retrieved with profile TIR
and column NIR. For example, over North America, Exp2-PJ
has lower CO values than Exp5-PT+CN. Exp1-CJ and Exp4-
CT+CN are in general similar with some exceptions. For ex-
ample, over Africa between 900 and 600 hPa, the CO profile
from Exp1-CJ is closer to Exp3-CT than Exp4-CT+CN.

5 Comparisons with independent observations

5.1 TROPOMI

To evaluate the results, we compare the CO from DA
forecasts with independent observations. Comparisons with
TROPOMI CO column retrievals are shown in Fig. 8. The
control run underestimates background CO in the Northern
Hemisphere, while it overestimates CO near fire source re-
gions in the tropics and Southern Hemisphere. Compared to
the control run, all five of the experiments show improved
agreement with TROPOMI CO by increasing background
CO in the Northern Hemisphere and reducing CO near fire
source regions in the tropics and Southern Hemisphere. The
spatial distributions of the mean biases from the three ex-
periments with only column assimilation are close, while
those from the two experiments with profile assimilation are
close. The two experiments with profile assimilations have
smaller improvement for background CO in the Northern
Hemisphere. This is reasonable because profile assimilation
has a relatively smaller impact than column assimilation due
to tight vertical localization. However, near the fire source
regions, the two experiments with profile assimilations have
lower biases than the three experiments with only column as-
similation. This is the case not only in Africa, South Amer-
ica, and tropical Asia (Fig. 8), but also in California (fire re-
gion) and Nevada (downwind of the fire region), USA, dur-
ing the study period, which is the fire season in the region
(Fig. S5). This indicates that profile assimilation can out-
perform column assimilations in circumstances with fire im-
pacts, which is likely due to transport errors and fire plume
rise that requires vertical information to resolve plume loca-
tions.

5.2 TCCON

Overall, the control run tends to underestimate CO and the
five experiments all agree better with TCCON observations
compared to the control run but still underestimates CO
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Figure 6. The 15 d (31 July–14 August 2018) average of the difference in CO (forecast of experiment minus control run) for the five
experiments at the model surface as well as 500 and 200 hPa. Note that the color scales for the model surface as well as 500 and 200 hPa are
different.
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Figure 7. Vertical profile of the 15 d (31 July–14 August 2018) average difference in CO (forecast of experiment minus control run) over
different regions.

Figure 8. The 15 d (31 July–14 August 2018) mean biases (ppb) of modeled CO against CO columns from the TROPOspheric Monitor-
ing Instrument (TROPOMI) for the five experiments and the control run. TROPOMI averaging kernels are applied to model CO for the
comparisons.
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in general (Fig. 9). Column assimilations (Exp1-CJ, Exp3-
CT, and Exp4-CT+CN) significantly overestimate CO at
pasadena01 and edwards01 sites in California, USA, during
26 July to 4 August 2018, likely due to fire impacts. The
significant overestimation is not seen in the two experiments
with profile assimilations (Exp2-PJ and Exp5-PT+CN). This
is consistent with the comparison results with TROPOMI and
implies that profile assimilation can outperform column as-
similations in fire-impacted regions. The model–observation
discrepancies overall decrease with time. A time series of
TCCON and modeled CO columns is shown in Fig. S6.

5.3 CCGG sites

All experiments show improved agreement with surface in
situ CO observations from CCGG sites compared to the con-
trol run (Fig. 10), as shown by higher correlations (0.6–
0.65 versus 0.56) and lower model biases (0.7–4.91 versus
8.6 ppb). As for RMSE, however, the experiments do not
reduce RMSE compared to the control run (34–50 versus
36 ppb). Exp1-CJ has the lowest mean bias (5.7 ppb), while
Exp5-PT+CN has the highest correlation (0.79).

Spatial distributions of model bias in CO (ppb) against CO
observations from CCGG sites are shown in Figs. S7–S10.
The UTA CCGG site is close to the two TCCON sites in
California, USA (pasadena01 and edwards01). All five ex-
periments significantly underestimate CO at the UTA sur-
face site during 26 July to 4 August 2018, whereas the five
experiments overestimate CO compared to the two TCCON
sites (Fig. 9). This inconsistency is likely due to (1) the UTA
CCGG site measuring CO at the surface, while the TCCON
sites measure column total CO, and the fact that (2) there are
only two data points during that period at the UTA site that
are not comparable to the sampling of the two TCCON sites.

5.4 IAGOS

Globally, all five experiments agree better with IAGOS CO
profiles compared to the control run (Fig. 11a). At the 900–
1000 hPa layer, Exp2-PJ has the lowest bias, followed by
Exp4-CT+CN. At layers above 800 hPa, the three experi-
ments with only column assimilation have lower bias. CO
biases of Exp1-CJ and Exp4-CT+CN are very similar us-
ing that of Exp3-CT as a reference. This is expected as the
column JNT product contains similar information as the col-
umn TIR product and column NIR products together. Above
200 hPa, all five experiments overall agree better with IA-
GOS CO compared to the control run. However, experiments
involving profile assimilation do not show obvious differ-
ences compared to experiments only involving column as-
similation above 200 hPa. Over most regions, the five ex-
periments show improved agreement with IAGOS data ex-
cept for tropical Asia and Central and South America where
the five experiments have similar or larger biases (Fig. 11).
Over North and West Africa, the control run has a positive

bias, whereas the five experiments have negative biases be-
low 500 hPa, indicating that the system might overadjust in
the region. The comparisons with IAGOS show that the ex-
periments overall perform better in the Northern Hemisphere
than in the tropics.

5.5 WE-CAN

The experiments do not show improvement from the con-
trol run when compared to airborne measurements from WE-
CAN (Fig. 12). This is expected because the airborne mea-
surements during WE-CAN aimed to sample fire plumes and
include extremely high CO concentrations which are chal-
lenging for a 1° global model to capture, not to mention the
output is 6-hourly.

The experiments show lower model bias than the control
run (−24 to −48 versus −52 ppb); however, the difference
between Exp2-PJ and Exp5-PT+CN from the control run is
small. The correlation and RMSE of the experiments are not
improved. The subtle improvement in the mean bias is likely
driven by large-scale adjustment rather than improvement in
resolving flight-scale features.

6 Emissions

6.1 Emission updates

Assimilating profile products (Exp2-PJ and Exp5-PT+CN)
tends to lead to a larger change to the emissions compared to
only assimilating column products (Exp1-CJ, Exp3-CT, and
Exp4-CT+CN). As shown previously, profile assimilation
can outperform column assimilations near the surface due
to vertical localization. Different CO concentrations at and
near the surface resulted in different emission updates be-
tween profile assimilation and column assimilation. The five
experiments overall increase anthropogenic CO emissions,
while they reduce fire CO emissions (Fig. 13). For anthro-
pogenic emissions, the two experiments that assimilate CO
profiles (Exp2-PJ and Exp5-PT+CN) significantly increase
anthropogenic CO emissions from ∼ 500 to ∼ 700 Tg yr−1

globally in August, which is not the case for the other exper-
iments. Anthropogenic emissions in India are reduced by the
experiments, while in East Asia they are increased (Fig. 14).
Fire emissions are reduced by the five experiments in Africa
and South America, and the reduction is the largest for the
two experiments that assimilate CO profiles (Figs. 13 and
14). This is consistent with the conclusion in Wiedinmyer
et al. (2023), which found that fire emissions in FINNv2.4
over Africa are too high and were consequently reduced in
FINNv2.5. The experiments overall increase fire emissions
in North America, indicating that FINNv2.4 underestimates
fire emissions in the region during the assimilation period.
Fire and anthropogenic emissions can have different injec-
tion heights and impact different vertical levels. This is espe-
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Figure 9. Mean biases (ppb) of modeled CO against CO columns from the Total Carbon Column Observing Network (TCCON) for the five
experiments and the control run. TCCON averaging kernels are applied to model CO for the comparisons. Spatial locations of TCCON sites
can be found in Figs. 3 and S1. A time series of TCCON and modeled CO can be found in Fig. S4.

cially the case for regions with strong convection (e.g., cen-
tral Africa).

6.2 CAM-chem simulations with updated emissions

We compared the CAM-chem simulations with updated
emissions and original emissions to CO observations from
TROPOMI, TCCON, CCGG sites, IAGOS, and WE-CAN
(Figs. S11–S18). The five simulations with updated emis-
sions overall show better agreement with observations com-
pared to the control run with original emissions. Simulations
using emissions from profile assimilation experiments (sim-
ulations S2 and S5) in general perform better than column as-
similation, especially near the surface (S17) and in fire source
regions (Figs. S11, S12, and S14). This is consistent with the
evaluation of DA experiments. This indicates that assimilat-
ing satellite profiles can perform better near the surface and
have a larger impact on emissions compared to only assimi-
lating column products.

7 Discussion

7.1 Assimilating multispectral product versus
TIR-only product

The comparisons between Exp1-CJ and Exp3-CT demon-
strate the impacts of assimilating satellite multispectral and
joint products versus TIR-only products. Overall, when com-

paring to independent CO column observations, assimilating
joint products does not show clear improvement from assim-
ilating TIR-only products (Figs. 8 and 9). However, when
comparing to independent CO profile observations or sur-
face CO observations, assimilating joint products leads to
better model–observation agreement at and near the surface
(Figs. 10 and 11). This is reasonable as the joint MOPITT
product has enhanced sensitivity to near-surface CO (Wor-
den et al., 2010).

7.2 Assimilating profile product versus column product

The comparisons between Exp1-CJ and Exp2-PJ demon-
strate the impacts of assimilating satellite multispectral and
joint products versus TIR-only products. The fractions of re-
jected observations for Exp3-CT decrease slower than Exp1-
CJ due to vertical localization when assimilating profile
products. For the same reason, assimilating column products
has a larger impact on the analysis compared to assimilating
profile products. Therefore, Exp2-PJ with profile assimila-
tion has smaller improvement for background and large-scale
CO in the Northern Hemisphere (Fig. 8) compared to Exp1-
CJ with column assimilation. However, assimilating profile
products can have different vertical impacts from assimilat-
ing column products (Fig. 7). Profile assimilation can outper-
form column assimilations in fire-impacted regions and near
the surface (Fig. 11).

Assimilating profile products tends to lead to a larger
change to the emissions compared to only assimilating col-
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Figure 10. Comparisons of modeled CO (ppb) and CO observations (ppb) from the NOAA Carbon Cycle Greenhouse Gases (CCGG) sites
during 31 July to 14 August 2018 for the five experiments and the control run. Spatial locations of CCGG sites can be found in Figs. 3 and S1.
A spatial distribution of model bias in CO against CO observations from CCGG sites can be found in Fig. S5.

umn products. Simulations using emissions from profile as-
similation experiments in general perform better than column
assimilation, especially near the surface and in fire source re-
gions.

7.3 Assimilating multispectral product versus
assimilating TIR and NIR separately

For multispectral and joint products, we also compare the
impacts of assimilating the joint product directly versus as-
similating the single spectral products separately. MOPITT
column JNT products are retrieved from MOPITT column
TIR and column NIR products, while MOPITT profile JNT
products are retrieved from MOPITT profile TIR and NIR
products. Therefore, we compare Exp1-CJ to Exp4-CT+CN
and Exp2-PJ to Exp5-PT+CN for demonstration. In general,
assimilating multispectral and joint products results in simi-
lar or slightly better agreement with observations compared
to assimilating the single spectral products separately. This
is the case for both assimilating profile products (Exp2-PJ
versus Exp5-PT+CN) and column products (Exp1-CJ ver-
sus Exp4-CT+CN). In addition, assimilating multispectral
and joint products is more computationally efficient than as-
similating single spectral products separately. These two rea-

sons point to the benefit of developing multispectral and joint
products for CO as well as other species such as O3 and CH4
and assimilating them into DA systems.

7.4 Limitation

Here we only conduct experiments for 15 d as the number of
experiments and computational cost prohibit longer simula-
tions. A previous study performed longer simulations for one
experiment that assimilated the MOPITT profile product for
a whole year (Gaubert et al., 2016) and found that there is
no significant seasonal change in the performance of CAM-
chem+DART. If observations of roughly the same qualities
and quantities are available in other years, the performance
of the DA might be expected to be similar. However, more re-
search is needed to fully understand the impact of (1) assim-
ilating multispectral and joint products versus single spectral
products, (2) the comparison of satellite profiles and satellite
columns with DA, and (3) assimilating multispectral prod-
ucts or each product separately. This study provides guidance
for future work on the assimilation of multispectral satellite
retrievals of atmospheric composition using MOPITT as a
demonstration. However, whether the conclusions based on
MOPITT CO are applicable to other species (e.g., CH4 and
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Figure 11. Mean biases (ppb) of modeled CO against CO profiles from the In-service Aircraft for a Global Observing System (IAGOS)
measurements for the five experiments (colored lines) and the control run (black line) at different vertical levels. Locations of IAGOS CO
profiles can be found in Fig. S2.

Figure 12. Mean biases (ppb) of modeled CO against airborne CO observations from the Western wildfire Experiment for Cloud chemistry,
Aerosol absorption and Nitrogen (WE-CAN) field campaign for the five experiments and the control run at different vertical levels.
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Figure 13. Updated (a–g) CAMS anthropogenic CO emissions and (h–n) FINNv2.4 fire CO emissions as a result of assimilating different
MOPITT products. The emissions from the spin-up and control run are the unchanged original emissions of CAMS and FINNv2.4.

O3) needs further study. Nevertheless, the results and con-
clusions presented in this study are valid and shed light on
the impacts of assimilating different satellite products of the
same atmospheric composition.

The CAM-chem+DART experiments in this study overall
show improvement in background and large-scale CO distri-
butions compared to the control and spin-up run, as shown by
the comparisons with global observations such as TROPOMI
and TCCON. However, CAM-chem+DART improvement
on small-scale features is challenging due to limitation in
model resolution, as shown by the comparisons with airborne
measurements during WE-CAN. A higher-resolution DA
system is needed to resolve these features. We are currently
developing the capability of DA using MUSICA+DART,
which will address this issue (Pfister et al., 2020). MUSICA
has already been shown to better resolve fires at higher res-
olution while still addressing global-scale impacts (Tang et
al., 2022, 2023).

8 Conclusions

We conduct six CAM-chem+DART assimilation runs for
15 d (31 July to 14 August 2018) to understand the impact
of (1) assimilating multispectral products versus single spec-
tral products, (2) assimilating satellite profile products ver-
sus column products, and (3) assimilating multispectral prod-
ucts versus assimilating individual products separately. The
DA runs include one control run that only assimilates me-
teorological variables and five experiment runs that assim-
ilate meteorological variables and different MOPITT prod-
uct(s), namely Exp1-CJ, Exp2-PJ, Exp3-CT, Exp4-CT+CN,
and Exp5-PT+CN. We then compare the results with in-
dependent CO observations from satellite, ground-based re-
mote sensing, surface, and aircraft observations (TROPOMI,
TCCON, CCGG sites, IAGOS, and WE-CAN). Fire and an-
thropogenic emissions of CO are also optimized in the DA
experiments. We conduct five CAM-chem runs with the five
sets of optimized emissions to understand the impacts of as-
similating different MOPITT products. We also conduct one
additional CAM-chem run with original emissions for refer-
ence. The main findings are as follows.
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Figure 14. Updates to the (a) CAMS anthropogenic CO emissions and (b) FINNv2.4 fire CO emissions as a result of assimilating the
MOPITT column JNT product. Updates are calculated as CO from the experiment minus CO from the control run. Panels (c–j) are similar
to (a–b) but for other experiments.
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1. Assimilating MOPITT profile products improves model
agreement with MOPITT column products and vice
versa.

2. All five DA experiments show improved agreement with
CO observations from TROPOMI, TCCON, CCGG
sites, and IAGOS compared to the control and spin-
up run. Assimilating the MOPITT joint column prod-
uct leads to better model–observation agreement at and
near the surface than assimilating the MOPITT TIR-
only column product.

3. Assimilating profile products tends to lead to a larger
change to the emissions compared to only assimilat-
ing column products. The five experiments overall in-
crease anthropogenic CO emissions while reducing fire
CO emissions. The five CAM-chem simulations with
updated emissions overall show better agreement with
observations compared to the control run with original
emissions. Simulations using emissions from profile as-
similation experiments in general perform better than
column assimilation, especially near the surface and in
fire source regions.

4. Assimilating column products has larger impacts and
improvement for background and large-scale CO com-
pared to assimilating profile products due to vertical lo-
calization in profile assimilation. However, profile as-
similation can outperform column assimilations in fire-
impacted regions and near the surface.

5. Assimilating multispectral and joint products results in
similar or slightly better agreement with observations
compared to assimilating the single spectral products
separately. Assimilating multispectral and joint prod-
ucts is also more computationally efficient than assim-
ilating single spectral products separately. Therefore, it
is advantageous to develop multispectral and joint prod-
ucts for CO as well as other species (e.g., O3 and CH4)
and assimilating them into DA systems.

Code availability. Code generated in this study can be accessed via
https://doi.org/10.5281/zenodo.10882836 (Tang, 2024).

Data availability. MOPITT products can be accessed through
https://search.earthdata.nasa.gov/search (last access: 26 March
2024; https://doi.org/10.5067/TERRA/MOPITT/MOP02T.009,
NASA/LARC/SD/ASDC, 2024a; https://doi.org/10.5067/
TERRA/MOPITT/MOP02J.009, NASA/LARC/SD/ASDC,
2024b; https://doi.org/10.5067/TERRA/MOPITT/MOP02N.009,
NASA/LARC/SD/ASDC, 2024c). TROPOMI CO data can
be downloaded from https://doi.org/10.5270/S5P-bj3nry0
(Copernicus Sentinel-5P, 2021). TCCON data can be found
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Wunch et al., 2022). NOAA GML Carbon Cycle Cooperative
Global Air Sampling Network data can be accessed through
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(last access: 26 March 2024; Petron et al., 2022). IA-
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