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Abstract. A new algorithm was developed to infer particle
size distribution parameters from the Stratospheric Aerosol
and Gas Experiment II (SAGE II) and SAGE III on the In-
ternational Space Station (SAGE III/ISS) extinction spec-
tra using a lookup table (LUT) approach. Here, the SAGE-
based extinction ratios were matched to LUT values, and,
using these matches, weighted statistics were calculated to
infer the median particle size distribution values and higher-
moment parameters as well as quantify the uncertainty in
these estimates. This was carried out by solving for both
single-mode and bimodal lognormal distributions. The work
presented herein falls under two general headings: (1) a the-
oretical study was carried out to determine the accuracy of
this methodology, and (2) the solution algorithm was ap-
plied to the SAGE II and SAGE III/ISS records with a brief
case study analysis of the 2022 Hunga Tonga eruption. This
methodology was demonstrated to be ≈ 25 % accurate for
mode radius and has a minor dependence on particle com-
position. While bimodal solutions were obtained from this
algorithm, we provide a conclusive demonstration of how
and why these estimates are inherently unstable using SAGE
III/ISS extinction spectra alone. Finally, we demonstrated
how the Hunga Tonga aerosol plume evolved in regard to
both size and transport over 18 months after the 2022 Hunga
Tonga eruption. The particle size distribution (PSD) esti-
mates, higher-moment parameters, and uncertainties are new
products within the SAGE III/ISS Level 2 (L2) products, are
currently available for download, and will be merged into the
main SAGE III/ISS release products in a subsequent L2 re-
lease.

1 Introduction

Stratospheric aerosols play a key role in determining the
chemistry (Hofmann and Solomon, 1989; Fahey et al., 1993;
Solomon et al., 1996) and radiative balance (Minnis et al.,
1993; Ridley et al., 2014) of the atmosphere. Recent changes
in the stratospheric aerosol loading (since 2000) have re-
ceived significant attention in the scientific community (Hof-
mann et al., 2009; Vernier et al., 2011; Ridley et al., 2014;
Santer et al., 2014; Vernier et al., 2015; Solomon et al.,
2011; Bourassa et al., 2012). Many global climate mod-
els (GCMs) rely on observational data to represent strato-
spheric aerosols as these GCMs do not have an interac-
tive stratospheric aerosol scheme to model aerosol properties
(Kremser et al., 2016). An accurate representation of strato-
spheric aerosol properties including particle size distribution
(PSD) is therefore important. While there have been other
global stratospheric aerosol measurements available since
the early 1980s, the Stratospheric Aerosol and Gas Experi-
ment (SAGE) series of satellites (McCormick et al., 1979)
has provided a long-term (1979–2005; 2017–present), multi-
wavelength, global record of stratospheric aerosols. To date,
data collected by the SAGE family of instruments have been
instrumental in improving our understanding of chemistry,
radiative balance, and atmospheric dynamics (Lu et al., 2000;
Fadnavis et al., 2013; Dube et al., 2020).

The second SAGE instrument (SAGE II) collected data
between 1985 and 2005, and the current SAGE instrument
on the International Space Station (SAGE III/ISS) began
collecting data in June 2017. The measurement method of
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all SAGE instruments has been occultation: peering through
Earth’s atmosphere to observe how the solar spectrum
changes as a function of altitude. This allows for retrieval
of altitude-dependent number densities for gas-phase species
(e.g., O3, NO2, H2O) as well as a series of aerosol extinction
coefficients (referred to, hereafter, as extinction), which have
an expected precision on the order of ≈ 5 %–10 % (NASA,
2018). The extinction spectra (i.e., how extinction changes
as a function of wavelength) contain limited information re-
garding composition (Knepp et al., 2022) as well as the mi-
crophysical properties (e.g., particle size distributions) for
the aerosol responsible for attenuating the Sun’s light (von
Savigny and Hoffmann, 2020; Wrana et al., 2021, 2023).
These microphysical properties play a key role in regulating
atmospheric chemistry (Hofmann and Solomon, 1989; Fa-
hey et al., 1993; Solomon et al., 1996) and radiative balance
(Minnis et al., 1993; Ridley et al., 2014) in GCMs. Indeed,
extinction spectra have been used to infer aerosol surface
area density (SAD) and effective radius (re) for the SAGE II
instrument (Thomason et al., 1997, 2008; Damadeo et al.,
2013), which was released as a standard product for that
dataset. However, despite the high level of precision in the
aerosol extinction product, the utility of the SAD product was
predominantly limited to deriving SAD in the wake of vol-
canic events since, during background conditions, the uncer-
tainty in the SAD product was potentially > 200 % (Thoma-
son et al., 2008). While SAD and re were released as part
of the SAGE II product, PSD parameters (e.g., mode radius
and distribution width) have never been part of the standard
SAGE product. To date, external groups have been responsi-
ble for developing their own algorithms and methodologies
for extracting this information from the extinction spectra
(e.g., Wang et al., 1989a, b, 1996; Yue, 2000; Bingen et al.,
2004a; Wrana et al., 2021, 2023). Such inferences are chal-
lenging and inherently unstable due to the ill-posedness of
the problem (Fussen et al., 2001). One method to stabilize
the solution space is to apply a smoothness condition that
forces the PSD parameters to vary smoothly with altitude
(Bingen et al., 2004a, b, 2006, 2017). While this method-
ology tends to produce reasonable values, it has not been
evaluated to determine its accuracy or precision. Indeed, val-
idating these products by comparison to in situ observations
(e.g., from aircraft field campaigns or balloon flights) would
be challenging. The challenge in performing “traditional”
validation exercises (e.g., involving aircraft and balloon cam-
paigns) that compare these derived products with in situ ob-
servations comes primarily from differing sampling volumes.
As an occultation measurement, the SAGE instrument peers
through hundreds of kilometers of atmosphere as the instru-
ment scans across the solar disk. Therefore, the question be-
comes how representative the in situ measurements of the
total sampling volume of the SAGE instrument are. Gener-
ally speaking, such intercomparisons often gloss over this by
assuming that the zonal variability in the observed species,
over short timescales, is sufficiently low so as to allow for in-

tercomparison. While this has proven effective in validating
ozone (Wang et al., 2020), similar treatment with aerosol has
yet to consistently yield agreement better that 35 % (Deshler
et al., 2003) due, in part, to the differing sampling volumes
and atmospheric heterogeneity.

An alternative to validating the inferred PSD parameters
using empirical data is to gauge the potential accuracy of
these methods by working in the other direction. By start-
ing with Mie theory, where the microphysical properties are
strictly defined, we can create lookup tables of extinction co-
efficients at SAGE wavelengths for varying combinations of
PSD parameters. These lookup tables can then be used to
identify all PSD parameters that yield matches to a series of
SAGE-observed extinction coefficients (within the precision
of the measurement). This will effectively provide the solu-
tion space of PSD and microphysical properties for SAGE
extinction products. Ultimately, this results in a collection
of PSD parameters for each SAGE profile, with a quanti-
fied error for the PSD estimate. This methodology is de-
scribed below and is applied to the SAGE II and SAGE II-
I/ISS record. The influence of common assumptions are dis-
cussed throughout the paper.

2 Instruments and data

The SAGE family instruments have been described previ-
ously (Mauldin et al., 1985; Cisewski et al., 2014). Briefly,
SAGE instruments use the solar occultation method to mea-
sure the solar attenuation, as a function of wavelength, which
occurs throughout the atmosphere. Standard products include
the number density of gas-phase species (e.g., O3, NO2, and
H2O) as well as aerosol extinction coefficients (385, 450,
525, and 1020 nm for SAGE II and 384, 448, 520, 601, 676,
755, 869, 1021, and 1543 nm for SAGE III/ISS; referenced
as kλ). Herein, the SAGE II v7.0 and SAGE III/ISS v5.3
(June 2017–November 2023, inclusive) products were used.
Analysis was limited to altitudes between the tropopause and
30 km, and the 601 and 676 nm channels were excluded from
the analysis due to ozone interference within those channels
(Wang et al., 2020).

Computing hardware and code

The analysis code was written in Python and relied heavily
on the PyTorch (v1.12.1) library. Because of the nature of
the lookup table (LUT) methodology and the data volume,
extensive parallelization was required to run the code within
a reasonable amount of time. This requirement was most pro-
nounced during the bimodal analysis. Therefore, all of the so-
lution routines as well as the statistical calculations were car-
ried out on an NVIDIA A100 GPU with 80 GB of memory.
While the 80 GB of memory within the A100 was required
for the bimodal analysis, we note that all of the single-mode
solution code could be run on a more modest GPU. Indeed,
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much of the development work was carried out on a Quadro
RTX 3000.

3 Methodology

3.1 Lookup table construction

In this section we present a brief overview of the theoretical
basis for constructing the LUTs as well as justification for
the PSD boundaries used in generating these tables.

The processing time of this algorithm is directly related to
the size of the LUTs. Further, the resolution and extent of the
PSD parameters used to generate the LUTs directly controls
the accuracy of the inferred PSD parameters. This creates a
dilemma: do we sacrifice accuracy for an improved runtime
or improve the accuracy at the cost of runtime? Therefore,
after providing a general overview of the LUT creation we
present brief justifications for the parameters and resolutions
used herein.

Extinction coefficients at each SAGE wavelength (kλ)
were calculated using Mie theory under the assumption that
all particles are spherical and the distribution is single-mode
lognormal. This was done for sulfuric acid aerosol at differ-
ent weight percents (65 %, 70 %, 75 %, and 80 % sulfuric
acid by weight with water comprising the rest of the parti-
cle) using refractive indices reported by Palmer and Williams
(1975), smoke composed of black carbon (BC) using refrac-
tive indices reported by Sumlin et al. (2018), and smoke
composed of brown carbon (BrC) using refractive indices re-
ported by Bergstrom et al. (2002). These refractive indices
are presented in Table 1.

The PSD LUTs were generated by first calculating single
particle extinction efficiencies (Qext (λ,r), where λ was an
array of SAGE wavelengths and r was an array of particle
radii (here, r= [10,11,12, . . .,9999,10000] nm); for deriva-
tion of Qext (λ,r), see Kerker, 1969; Hansen and Travis,
1974, or Bohren and Huffman, 1983). The extinction coef-
ficients were then calculated by multiplying Qext with a se-
ries of single-mode lognormal distributions (P(rm,σ ); here,
the number density (N ) was set to 1 cm−3) followed by in-
tegration (Eq. 1). The lognormal distribution is described
in Eq. (2), where σ is the geometric standard deviation
(sometimes written σg in the aerosol literature and hereafter
referred to as distribution width) and rm is the mode ra-
dius (the median radius of a lognormal distribution is com-
monly referred to as mode radius in aerosol literature; we
adopt this convention here). Lognormal distributions were
calculated for mode radii (rm) that extended from 10 nm
through 1500 nm (1 nm resolution) and distribution widths
that ranged from 1.01 through 2.0 with a resolution of 0.001.
This resulted in three-dimensional lookup tables of extinc-
tion coefficients (i.e., k(λ,rm,σ )) as a function of incident

Figure 1. Example lognormal distributions for three distribution
widths (σ = [1.2,1.5,1.8]) for a mode radius of 100 nm.

light wavelength, mode radius, and distribution width.

k(λ,rm,σ )=
rmax∫
rmin

πr2P(rm,σ )Qext (λ,r)dr (1)

P(rm,σ )=
N

√
2π ln(σ )r

exp

[
(ln(r)− ln(rm))2

−2ln(σ )2

]
(2)

Because the resolution and the range of particle radii and
distribution widths used to create extinction tables play a crit-
ical role in defining the accuracy of the LUTs and the cor-
responding PSD parameters inferred from these LUTs, we
provide a brief justification for the resolution and range of
rm and σ below.

3.1.1 Justification for the extent of particle radii

The extent of particle radii used to create the extinction ef-
ficiency table as well as set the integration boundaries (rmin
and rmax in Eq. 1) was based on the influence large parti-
cles can have, despite their rarity, on the overall extinction.
As an example, three lognormal distributions (rm = 100 nm,
σ = [1.2,1.5,1.8]) are presented in Fig. 1. Here, it is ob-
served that the distribution is Gaussian in log space and that
as the radius gets farther from rm, the corresponding prob-
ability decreases rapidly. What is not obvious from Fig. 1
is that larger particles, despite having a probability equal to
the smaller particles, have a disproportionate influence on
extinction. The reason behind this disparity is the compet-
ing extinction efficiencies as shown in Fig. 2, wherein it is
observed that large particles (e.g., 1 µm) are ≈ 3 orders of
magnitude more efficient at attenuating light than a 70 nm
particle. Logically, one can infer that one large particle can
attenuate light as efficiently as 100–1000 smaller particles;
therefore, large particles, however rare, cannot be ignored
when building the LUTs.

As a further demonstration of the importance of large
particles we carried out a series of simulations to demon-
strate the impact that changing the upper integration bound-
ary (rmax) in Eq. (1) has on k(λ). Here, Qext was calculated
for all radii between 10 nm and 10 µm (1 nm resolution), fol-
lowed by the integration of Eq. (1) using different upper inte-
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Table 1. Complex refractive indices for sulfuric acid and smoke used in the Mie calculations. The smoke refractive index values were based
on data reported in Bergstrom et al. (2002) for BC and Sumlin et al. (2018) for BrC. Sulfuric acid refractive index values are from Palmer
and Williams (1975).

λ (nm) Sulfuric acid (65 %) Sulfuric acid (70 %) Sulfuric acid (75 %) Sulfuric acid (80 %) BC BrC

384 1.436+ 0i 1.442+ 0i 1.448+ 0i 1.454+ 0i 1.75+ 0.50i 1.55+ 1.0× 10−2i

448 1.421+ 0i 1.427+ 0i 1.433+ 0i 1.439+ 0i 1.75+ 0.50i 1.55+ 4.4× 10−3i

520 1.418+ 0i 1.425+ 0i 1.431+ 0i 1.436+ 0i 1.75+ 0.50i 1.55+ 2.6× 10−3i

755 1.413+ 8.66× 10−8i 1.420+ 8.12× 10−8i 1.427+ 7.59× 10−8i 1.431+ 5.55× 10−8i 1.75+ 0.65i 1.55+ 2.0× 10−3i

869 1.412+ 2.01× 10−7i 1.418+ 1.96× 10−7i 1.425+ 1.92× 10−7i 1.428+ 1.74× 10−7i 1.75+ 0.65i 1.55+ 2.0× 10−3i

1021 1.408+ 1.55× 10−6i 1.415+ 1.54× 10−6i 1.421+ 1.52× 10−6i 1.424+ 1.44× 10−6i 1.75+ 0.75i 1.55+ 2.0× 10−3i

1543 1.391+ 1.54× 10−4i 1.397+ 1.48× 10−4i 1.403+ 1.42× 10−4i 1.405+ 1.33× 10−4i 1.75+ 0.90i 1.55+ 2.0× 10−3i

Figure 2. Extinction efficiencies as a function of particle size for
select SAGE aerosol wavelengths.

gration boundaries (k(λ,rmax)). This model was carried out
using three different mode radii (rm = [70,150,500] nm) and
a single distribution width (σ = 1.5). Extinction coefficients
were calculated as a function of the upper integration bound-
ary of Eq. (1) (k(λ,rmax)), and we calculated the percent
difference between these values and the value of k(λ) when
rmax = 10 µm (i.e., k(λ,10µm)). The results of this model are
presented in Fig. 3, wherein it is observed that if the desired
accuracy for k(λ) is 1 % for all channels, then rmax must be
> 525 nm when rm = 70 nm, > 1 µm for rm = 150 nm, and
> 2.4 µm when rm = 500 nm. While changes in σ and/or rm
will modulate the limit of rmax required to achieve 1 % ac-
curacy, the general observation remains the same: choosing
a value of rmax that is too small will invariably bias k(λ) as
well as the inferred PSD values. Therefore, to obviate the
impact of this bias we set rmax to 10 µm.

3.1.2 Justification for the resolution of distribution
widths

The influence that the resolution of the distribution width
(1σ ) had on k(λ) was evaluated as a function of rm and
1σ as shown in Fig. 4. Here, it was observed that if σ = 1.5
(Fig. 4b), rm = 75 nm (i.e., background conditions of the fine
mode per Deshler et al., 2003), and the resolution of the LUT
(1σ ) is 0.01, then the corresponding bias in k(λ) is ≈ 5 %.
It was observed that the σ resolution has less impact as rm

Figure 3. Impact of the upper integration radius boundary on k.
Data were referenced to k(λ,10µm). The distribution width used in
this figure was 1.5. Solid lines, dashed lines, and dot-dashed lines
correspond to mode radii of 70, 150, and 500 nm, respectively.

and σ increased. However, in order to mitigate the bias in-
troduced by 1σ we used a resolution of 1σ = 1× 10−3 in
creating the LUTs. This resolution introduces a bias in k(λ)
on the order of 1 % under small-particle (75 nm) conditions,
which we treat as negligible in the subsequent analysis. We
note that in reality, size distributions are likely bimodal and
the impact of the larger mode on extinction cannot be ignored
as discussed below (e.g., Sect. 4.4). However, neglect of the
coarse mode, with respect to the current discussion of Fig. 4,
results in an overestimation of the LUT-resolution-induced
error. Therefore, the percent differences in Fig. 4 are repre-
sentative of upper bounds.

Justification for the selection of the range of σ cannot be
explained with a single figure. Rather, the range of σ was de-
fined based on the results of a series of sensitivity tests that
are described more fully in Sect. 4. Briefly, part of the sen-
sitivity tests involved varying the range of PSD parameters
used in LUT creation (see Table 2). It was determined that
extending the LUT σ and rm ranges to 2.0 and 1500 nm, re-
spectively, yielded the best performing solutions when com-
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Figure 4. Influence of the distribution width resolution on the corresponding extinction coefficient error. The wavelength used in this simu-
lation was 520 nm. The horizontal dashed line represents the typical background particle size for the fine mode (75 nm).

Table 2. Range of PSD parameters used in determining the optimal
range of σ and rm.

Parameter σ Range rm Range
setting no. (nm)

0 1.01–2.0 10–500
1 1.01–2.0 10–1500
2 1.01–5.0 10–500
3 1.01–5.0 10–1500

pared to theoretical data (see Sect. 4 for an expanded discus-
sion of the corresponding sensitivity study).

3.2 Inferring PSD parameters

3.2.1 Historical background

The necessity of using extinction ratios, as opposed to ex-
tinction coefficients, for eliminating the influence of num-
ber density (N ) and inferring aerosol physical parameters has
been discussed previously (e.g., Thomason et al., 1997; Bin-
gen et al., 2006; Wrana et al., 2021). Therefore, the method
of determining the atmospheric PSD parameters is straight
forward and requires only searching through the LUTs to
identify all PSD parameters that yield extinction ratios that
match extinction ratios from the SAGE records to within the
bounds of the reported uncertainty. Indeed, if measurement
error was negligible, then the PSD parameters could be in-
ferred to a high degree of accuracy. However, this level of
precision is never achieved outside possibly laboratory set-
tings, and making such simplifying assumptions is funda-
mentally flawed. Indeed, the fundamental limitation of in-
ferring PSD parameters from instruments like SAGE is the
under-constrained nature of the problem, which results in a
plethora of potential solutions.

As an illustration of the problem, LUT data were used to
plot two extinction ratios against each other (Fig. 5a). Nom-
inal extinction ratios and their corresponding uncertainties
(0.3± 15 %, 1.2± 10 %) were included as a representative
SAGE data point (the red dot in Fig. 5). All LUT data that
fall within the SAGE error limits are valid solutions (herein

we refer to these values as “within the solution space”). Since
the rm and σ values for each LUT value is known, we can
identify all rm and σ combinations that fall within the so-
lution space. The range and relative frequency of these val-
ues are plotted as normalized probability density functions
in Fig. 5b and c. Here, it is observed that, within the bounds
of uncertainty, the range of rm was [160,360] nm and the
range of σ was [1.25,1.8). While adding more extinction
ratio combinations and decreasing the measurement uncer-
tainty decreases the extent of the solution space, this sim-
ple example demonstrates the problem inherent in inferring
PSD parameters from SAGE data: multiple solutions. There-
fore, the breadth of the solution space demands the following
question be answered: which PSD values are either correct,
most likely, or most representative of reality?

A previous method published by Wrana et al. (2021) an-
swered this by using the PSD values that fell closest to the
SAGE ratios as the solution (i.e., the closest match). They
went on to estimate the error in these PSD values by sam-
pling at eight locations along the error boundaries, as defined
by the propagated errors, and calculating the mean difference
between these peripheral PSD values and those that corre-
spond to the closest match. The challenge in this method is
the highly variable nature of the PSD values that lay along
these boundaries as shown in Fig. 5d and e. Therefore, the er-
ror estimate is highly dependent on where samples are drawn
along the error boundaries.

The key points of Fig. 5 are that the central point is not
necessarily a good estimate of the PSD parameters, that there
is a non-negligible amount of variability in the PSD parame-
ters within the overall solutions space, and that accurate error
estimates cannot be calculated by sampling along the edge of
the solution space. The method presented herein attempts to
overcome these limitations.

3.2.2 Solutions from SAGE data

The overall flow of the solution algorithm is depicted
schematically in Fig. 6. In short, extinction ratios were calcu-
lated and uncertainties were propagated using extinction co-
efficients from SAGE data (for a detailed discussion of wave-
length selection, see Sect. 4). Corresponding extinction ratios
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Figure 5. Visualization of the variability in rm and σ within the error bars (b, c) and along the edges of the error limits (d, e). The errors were
fixed at 15 % and 10 % along the x and y axes, respectively. The dashed red lines in panel (a) represent the solution space for the nominal
SAGE value. The vertical dashed lines in panels (b)–(e) represent the target rm and σ values that correspond to the red dot in panel (a).

were calculated using the LUT data. Similar to the example
provided in Fig. 5a, the SAGE ratios were then used to find
all of the LUT ratios that fell within the propagated uncer-
tainty as well as the corresponding PSD parameters (i.e., rm
and σ ). While Fig. 5a only shows two dimensions (i.e., one
dimension per extinction ratio), the dimensionality of that
figure increases as the number of extinction ratios increases,
leading to a simultaneous solution in all dimensions. As dis-
cussed above, it is important to recall that finding the closest
match in extinction ratios and extracting the corresponding
PSD parameters is not sufficient because all LUT ratios that
fall within the propagated measurement uncertainty are ac-
tual matches to the SAGE ratios. Therefore, a method for es-
timating the PSD values, given the range of values within the
solution space, had to be developed. Here, we used all of the
PSD values within the solution space to calculate weighted
statistics (e.g., mean, median, percentiles) of the PSD para-
meters in an attempt to provide a statistical representation of
the solution space and thereby provide a better quantification
of the uncertainty in the PSD estimates.

The weights used in calculating the weighted statistics
were calculated using the probability density function of
a multivariate normal distribution as described by Eq. (3),
where x is the array of LUT extinction ratios that fell within
the solution space, µ is the array of SAGE extinction ratios,
6 is the covariance matrix, and n is the number of dimen-
sions (i.e., combinations of extinction ratios) of the system.
The diagonal terms in 6 were composed of the propagated
uncertainties from the SAGE data.

The construction of 6 for Eq. (3) requires additional ex-
planation. The covariance matrix is composed of both vari-
ances (i.e., the diagonal terms) and covariances (i.e., the off-
diagonal terms that represent the degree of correlation be-
tween channels). While it is known that the variances in the
SAGE extinction products are correlated, as can be can be
demonstrated by calculating the coefficient of correlation be-
tween the reported errors, quantification of the covariance is
not currently possible. While we cannot quantify the covari-
ance terms, we do know that the covariance will be between

0 and
√
‖u‖‖v‖ (here, u and v represent the uncertainties in

each channel) per the Cauchy–Schwartz inequality as shown
in Eq. (4). While inclusion of the covariance terms did not
significantly change the results, a good-faith estimate of co-
variance was attempted by setting them to mid-range values
of 1

2 ·
√
‖u‖‖v‖.

p(x,µ,6)=
exp

(
−

1
2 (x−µ)

T6−1 (x−µ)
)

√
(2π)ndet(6)

(3)

|〈u,v〉| ≤ ‖u‖‖v‖ (4)

3.2.3 Calculation of N and higher-moment parameters

The PSD parameters that fell within the solution space were
used to calculate higher-moment parameters listed in Table 3.
The generalized moment equation for a lognormal distribu-
tion is shown in Eq. (5), where mi is the ith raw moment
and N is the particle number density. Per Eq. (5), these cal-
culations require knowledge of N . Following the method of
Wrana et al. (2021), we used the PSD parameters within the
solution space to calculate corresponding extinction coeffi-
cients at 1020 nm (assuming a number density of 1 cm−3)
and divided the measured k1020 value by these calculated val-
ues. As can be readily seen from Eqs. (1) and (2), this ratio
results in N . Finally, all of the N , rm, and σ values within
the solution space were evaluated to calculate the parame-
ters listed in Table 3 followed by the calculation of weighted
statistics for these parameters as described above.

mi =N · r
i
m · exp

(
i2ln2σ

2

)
(5)

4 Sensitivity tests

4.1 Composition is correctly assumed

Before applying this method to the SAGE records we sought
to evaluate the accuracy and consistency of this method for
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Figure 6. Chart describing the overall algorithm flow.

Table 3. Description of higher-moment parameters that were calcu-
lated using the inferred PSD parameters and Eq. (5).

Name Symbol Units Equation

Number density N cm−3 m0
Surface area density SAD µm2 cm−3 4πm2
Volume density VD µm3 cm−3 4

3πm3
Effective radius re nm m3

m2

Table 4. Condition definitions and wavelength assignments for ex-
tinction coefficient ratios used in the current study. The asterisk in-
dicates the wavelength combination used in Wrana et al. (2021).

Condition Numerator Denominator
no. wavelengths wavelength

(nm) (nm)

0 520 1021
1 448, 520 1021
2 448, 520, 755 1021
3 448, 520, 755, 869 1021
4 384, 448, 520, 755, 869 1021
5 384, 448, 520, 755, 869, 1543 1021
6 448, 520, 755, 869, 1543 1021
7 520 1543
8 448, 520 1543
9 448, 520, 755 1543
10 448, 520, 755, 869 1543
11 448, 520, 755, 869, 1021 1543
12 520, 755, 869, 1021 1543
13 384, 448, 520, 755, 869 1543
14 384, 448, 520, 755, 869, 1021 1543
15∗ 448, 1543 755

inferring PSD values. This was achieved, from a theoreti-
cal perspective, by using LUT data and involved four overall
steps.

1. Select extinction coefficients from the LUT. These coef-
ficients, which have known PSD parameters, act as the
pseudo-SAGE data.

2. Impose a nominal uncertainty upon the pseudo-SAGE
extinction coefficients, calculate the extinction ratios,
and propagate the errors. Here, the errors were held con-
stant across all wavelengths and the evaluation was re-
peated for errors that ranged from 1 % through 50 %.

3. Run the pseudo-SAGE extinction ratios through the so-
lution algorithm to calculate the inferred PSD statis-
tics. Here, the algorithm uses the same LUT from which
the pseudo-SAGE extinction coefficients were pulled in
step 1.

4. The inferred PSD parameters were compared to the in-
put values to determine how well the two matched.

The overall flow of the algorithm is depicted schematically in
Fig. 6. This evaluation was repeated for a series of extinction
ratio combinations (see Table 4) and LUT boundary condi-
tions (Table 2) to determine which combination yielded the
most accurate results.

Based on the results of this evaluation we determined that
condition no. 5 (Table 4) and particle parameter setting no. 1
(Table 2) yielded the best overall performance. This is not
surprising as this condition used all of the available chan-
nels, which takes advantage of all of the information content
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available in the SAGE data. The results of this simulation are
seen in Fig. 7, where the inferred-to-target ratios were plot-
ted for three different error values (i.e., 50 %, 20 %, and 5 %
error) as a function of the inferred PSD value. The horizontal
red lines in Fig. 7 indicate median values, the boxes extend
from percentiles P25 to P75, and the whiskers indicate P5 and
P95. Here, we chose to plot the inferred-to-target ratio as a
function of the inferred PSD parameter because this is most
applicable to real-world use cases (i.e., where the “real” or
target value is unknown). For example, if the reported errors
in the extinction coefficients were all within 5 % and the in-
ferred mode radius was 100 nm then, per Fig. 7c, we know
that on median the inferred mode radius is ≈ 5 % too high
and that 90 % of the time the inferred value is within ±15 %
of the target value.

While the performance of condition no. 5 was optimal,
it can significantly reduce the number of SAGE extinction
spectra that yield a viable PSD inference (see Fig. 8a and d).
This is caused by two related issues: (1) shorter-wavelength
channels attenuate higher in the atmosphere and result in ex-
tinction ratios that fall outside the LUTs’ range, and (2) using
so many channels increased the chance of having a negative
extinction coefficient (Kovilakam et al., 2023) or an other-
wise invalid value (e.g., set to “fill” values). A similar com-
bination of extinction ratios that excluded the 384 nm chan-
nel was evaluated (condition no. 6). While the performance
of condition no. 6 was comparable to that of condition no. 5,
there was a noticeable decrease in accuracy (not shown). Fur-
ther, excluding the 384 nm channel alone did not significantly
increase the data volume as shown in Fig. 8. While excluding
the 384 nm channel yielded more solutions at lower altitudes,
the failure rate remained > 30 % at mid-latitudes (Fig. 8b
and e). As a final test we evaluated the performance of a con-
dition definition that used only three channels (no. 15, Fig. 8c
and f). This wavelength combination resulted in valid PSD
estimates for more than 90 % of its data at all altitudes and
latitudes. Figure 8 also shows the performance of these three
conditions when only the highest-quality SAGE data were
used (i.e., when the reported error was ≤ 20 %; Fig. 8d–f),
which did not significantly change the data throughput.

The wavelength combinations used by Wrana et al. (2021)
(condition no. 15 in Table 4) had the third best overall per-
formance (see Fig. 9) and had the added benefit of only re-
lying on three extinction channels, which resulted in a ma-
jor improvement in data retention (see Fig. 8c and f). While
this condition lacked the overall accuracy of condition nos. 5
and 6, we determined that its performance was acceptable for
use as an alternate within this method. Therefore, the results
of this evaluation indicate that if we work strictly within the
confines of theory, then condition no. 5 is the optimal choice.
However, applying this method to reality (i.e., where we must
account for measurement uncertainty, the possibility of sat-
urating channels, etc.) we conclude that condition no. 15 is
the optimal choice. This puts us on the horns of a dilemma
where we are forced to choose our concession: do we sac-

rifice latitude and altitude coverage for improved accuracy
(condition no. 5) or sacrifice accuracy for improved cover-
age (condition no. 15)? While further discussion on the reso-
lution of this dilemma is outside the scope of this section, we
will state that a hybrid model that involves a combination of
condition nos. 5, 6, and 15 was used in the application to the
SAGE data, and the reader is directed to Sect. 6 for further
discussion.

In summary, the general observation of Figs. 7 and 9 is
that the accuracy of the PSD solutions became better as the
measurement uncertainty decreased and as the input PSD pa-
rameters become more like an enhanced event (e.g., larger
rm, enhanced SAD). While this is encouraging, it must be
recognized that this simulation is only theoretical in nature
and that the more challenging aspects of real-world aerosol
compositions (e.g., mixed composition particles, multimodal
distributions) and PSD parameters have been neglected. To
help address these limitations we evaluated the impact of as-
suming a wrong composition below.

4.2 Impact of assuming wrong sulfuric acid content

To this point we have neglected to account for varying
aerosol compositions and how making the incorrect assump-
tion about the composition may influence the inferred PSD
parameters. In this section we present the results of a simula-
tion wherein we evaluated the impact of assuming the wrong
weight percent of H2SO4. Because H2SO4 is typically as-
sumed to be 75 %, we use that as the point of reference.

Figure 10 demonstrates the overall impact of assuming an
incorrect weight percent of H2SO4 in the PSD algorithm.
Here, the algorithm searched through the 75 % H2SO4 LUT
to find all extinction ratios within the solution space, whereas
the pseudo-SAGE extinction ratios were pulled from the
65 %, 70 %, and 80 % H2SO4 LUTs (see Fig. 6 for workflow
and Table 1 for refractive indices).

The y axes in Fig. 10 represent the ratio of the inferred
PSD parameter when the LUTs were mismatched to the
inferred PSD parameters when the LUTs were correctly
matched (i.e., both the extinction ratio and algorithm LUTs
were 75 % H2SO4). What this tells us is how much an incor-
rect assumption about the H2SO4 weight percent changes the
inferred PSD parameters as compared to Figs. 7 and 9 (i.e.,
how much worse these estimates are as compared to getting
the composition correct). The extinction coefficient errors
used to create Fig. 10 were set to 20 %. Indeed, the spread in
the inferred PSD parameters narrowed with decreasing error,
and the 20 % error solutions are presented as a representative
example.

The general observation from Fig. 10 is that making in-
correct assumptions about the aerosols’ H2SO4 content has
minimal impact on the inferred distribution widths (all were
within ≈ 1 %–2 % as compared to Fig. 7), and the inferred
rm was most impacted (within±5 %). These deviations were
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Figure 7. Results of the sensitivity study for condition no. 5 (Table 4) and particle parameter setting no. 1 (Table 2) at three different error
values. The red lines indicate median values, the boxes extend from P25 through P75, and the whiskers represent P5 and P95.

Figure 8. Zonal representation of the fraction of SAGE data that yielded PSD estimates. Panels (d)–(f) display the statistic when data with
errors greater than 20 % were removed. The fraction was calculated by dividing the number of successful PSD estimates by the total number
of SAGE extinction spectra within a given altitude and latitude bin.
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Figure 9. Same as Fig. 7 but for condition no. 15.

compounded in the inferred SAD and volume density (VD)
products, which deviated by < 8 %.

We note that overall the influence of incorrect H2SO4 as-
sumptions was consistent across all condition definitions (Ta-
ble 4) with only minor variations. We conclude that incor-
rect assumptions about the H2SO4 content had a minor im-
pact on the accuracy of the inferred PSD parameters (gener-
ally within ±5 %). Since the H2SO4 content of atmospheric
aerosols is, ultimately, unknown we note that this situation
adds an unknown element to the analysis. However, this un-
certainty can be partially mitigated by using concurrent water
vapor and temperature observations to estimate H2SO4 con-
tent at thermodynamic equilibrium (Steele and Hamill, 1981;
Bernath et al., 2023) and will be a topic of study for future
releases of this product.

4.3 Impact of assuming a smoke-free atmosphere when
smoke is present

The performance of the PSD algorithm was evaluated to
determine its accuracy in estimating PSD parameters when
the atmosphere is assumed to consist solely of 75 % H2SO4

when it really has smoke. As stated above, smoke is chal-
lenging to model because of the ambiguity in its composi-
tion and physical properties (e.g., refractive index). While
recent work indicates that stratospheric smoke may be con-
sistent in composition and size distribution (Thomason and
Knepp, 2023), there have been no in situ observations to de-
termine the composition and physical properties of strato-
spheric smoke. Therefore, we conducted the following sim-
ulation under the assumption that most smoke is composed
of brown carbon (BrC) with little contribution from black
carbon (BC) and used the refractive indices of Sumlin et al.
(2018) and Bergstrom et al. (2002) for BrC and BC, respec-
tively (refractive index values in Table 1).

This simulation followed the same methodology as in
Sect. 4.2 but used the smoke LUTs as the extinction ratio tar-
gets (see flow in Fig. 6). Here, we assumed that 90 % of the
particles were composed of 75 % H2SO4 with rm = 75 nm
and σ = 1.5 and that 10 % of the particles were composed of
smoke of various compositions. The labels in Fig. 11 indicate
the relative breakdown of the smoke particles between BrC
and BC.
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Figure 10. Visualization of the impact of getting the weight percent of H2SO4 incorrect. The presented data came from condition no. 5 with
an imposed extinction coefficient error of ±20 %.

While σ was consistently high the deviation in rm was
minimized when the inferred rm was between 100 and
400 nm. This falls in an ideal location as previous studies
have shown that pyroCb-related (pyrocumulonimbus) smoke
particles are typically between 125 and 250 nm (Moore et
al., 2021; Katich et al., 2023). While these studies were con-
ducted in the troposphere (Katich et al., 2023, sampled near
the Arctic lower stratosphere), we take them to be represen-
tative of stratospheric values for this study, though we rec-
ognize that additional in situ sampling would be highly ben-
eficial. Finally, we note that both SAD and VD were signif-
icantly underestimated under reasonable values (e.g., when
SAD≥ 0.1 µm2 cm−3), but these discrepancies effectively
canceled out in the calculation of re. Given these consider-
ations, we must provide a cautionary note when using data
that may be contaminated by the presence of smoke.

4.4 Influence of a second mode: an optical particle
counter (OPC) case study

Expanding the solution space from single-mode to bimodal
distributions greatly expands the number of possible solu-

tions (see Sect. 5 for additional discussion) and expands the
number of variables to solve for. This makes visualization
and interpretation of the results challenging. Therefore, we
limit this section to a higher-level demonstration that pro-
vides the reader with a general understanding of the impli-
cations of incorrectly assuming single-mode distributions.
To aid in this we used the University of Wyoming’s opti-
cal particle counter (UWY OPC) record, which provides bi-
modal PSD parameters at 0.5 km resolution (Deshler, 2023).
This record consists of 150 profiles that were collected over
Laramie, WY (41.3° N, 105.58° W), between 1989 and 2019
and include observations in the wake of major eruptions
such as Mt. Pinatubo (1991) and Raikoke (2019). The OPC
PSD parameters were used to calculate extinction coeffi-
cients at SAGE wavelengths (see Eq. 1) under two condi-
tions: (1) using only the first mode and (2) using both modes.
These OPC-based extinction coefficients were used to create
pseudo-SAGE extinction ratios, which were then fed into the
PSD solution algorithm, which still used a single-mode log-
normal distribution LUT. The uncertainty in the extinction
coefficients was fixed to a highly conservative value of 5 %
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Figure 11. Visualization of the impact of assuming a smoke-free atmosphere when smoke is present. The presented data came from condition
no. 15 with an assumed extinction coefficient error of ±20 %.

(Deshler et al., 2003). Herein the aerosol composition was
set to 75 % H2SO4.

4.4.1 Only using the first OPC mode to calculate
extinction

The OPC-based extinction coefficients were calculated us-
ing only the first mode in the OPC data followed by running
these extinction coefficients through the PSD inference al-
gorithm. This effectively tests the algorithm’s performance
when the number of modes in the atmospheric aerosol distri-
bution matches the number of modes in the LUT.

Figure 12a–f demonstrate how the inferred PSD parame-
ters and microphysical properties compared to those reported
in the OPC record. Here, the inferred values were divided by
the reported OPC values for comparison and the shaded re-
gion represents the median±1.4826 times the median abso-
lute deviation (MAD∗). The median and MAD statistics are
statistically robust alternatives to the mean and standard de-
viation and are less susceptible to impact from outliers (Leys
et al., 2013). Further, when MAD is multiplied by 1.4826,

it is roughly equivalent to 1 standard deviation (Leys et al.,
2013).

It was observed that the inferred rm was consistently over-
estimated by up to ≈ 30 % (on median), though the agree-
ment became better towards the middle stratosphere (20–
25 km). The distribution width provided the best agreement,
while the SAD and VD were consistently underestimated by
≈ 25 %. This resulted in an underestimation of effective ra-
dius (re) on the order of≈ 10 %–20 %. These results are con-
sistent with the initial single-mode evaluation (Figs. 7 and 9).
Therefore, we conclude that if the atmosphere’s aerosol is
distributed within a single-mode lognormal distribution and
the LUT is likewise single-mode lognormal, then the per-
formance remained consistent with the previous theoretical
evaluations. The remaining question is how the performance
changes if the atmosphere’s aerosol distribution is bimodal.

4.4.2 Using both OPC modes to calculate extinction

The analysis was repeated using both OPC modes to calcu-
late the pseudo-SAGE extinction coefficients that were fed
into the PSD inference algorithm. We reiterate that the solu-
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Figure 12. Solution profiles of the inferred PSD parameters and microphysical properties referenced to the reported OPC value. The solid
lines represent the median ratio, and the shaded regions represent the median±MAD∗. The uncertainty imposed on the extinction coefficients
was fixed at 5 %.

tion algorithm is still searching for solutions within single-
mode lognormal LUTs. This tests the viability of inferring
representative single-mode PSD parameters when the atmo-
sphere has aerosol that has a bimodal distribution.

The results of this analysis are seen in Fig. 12g–l, wherein
a stark change from the results in panels (a)–(f) is observed.
Here, the inferred rm, σ , and N were referenced to the first
mode values reported in the OPC record. It was observed
that addition of the second mode significantly increased the

inferred rm, σ , and VD. Overall, this also increased re, espe-
cially at low altitudes, though the middle-stratosphere perfor-
mance remained comparable to that observed in panel (e). Fi-
nally, addition of the second mode reduced the inferred num-
ber density by up to a factor of 10 at low altitude (panels f, l).

While a change in performance was not unexpected, the
degree of influence the second mode had on the inferred
PSD parameters may not be intuitive, especially when one
considers the relative paucity of larger-mode particles (OPC
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number density ratio profiles are shown in Fig. 13d for ref-
erence; see also additional discussion below). To understand
this one must recall the disproportionate influence large par-
ticles have on the overall extinction as shown in Fig. 2. This
is further illustrated in Fig. 13, where panel (a) shows the sec-
ond mode’s contribution to the overall extinction as a func-
tion of the second mode’s rm (labeled r2) for three differ-
ent wavelengths (385, 520, 1020 nm) and two number den-
sity ratios (N2 :N1 = 1× 10−2 and 1× 10−3). Figure 13b
shows the second mode’s contribution to overall extinction
as a function of number density ratios for the same three
wavelengths with the following PSD parameters: r1 = 75 nm,
σ1 = 1.45, r2 = 310 nm, and σ2 = 1.05 (median values from the
OPC record). Panels (c) and (d) aid in interpreting panels (a)
and (b) by presenting quartile profiles for r2 and the number
density ratio as calculated from the OPC record.

What is first observed in Fig. 13a is a rapid increase in the
second mode’s contribution to the overall extinction as par-
ticle size increases, particularly at the longer wavelengths.
However, the shorter wavelengths show an interesting behav-
ior in that their extinction increased rapidly, followed by a
flattening and slight decrease in extinction, which is subse-
quently followed by another rapid increase (this is a product
of resonances in the Mie scattering, notably when r2 equalled
an integer multiple of λ). Indeed, the longer-wavelength data
demonstrate this same behavior, though not on the scale of
this figure. The cause of this flattening is a combination of
the extinction efficiency for the specified particle as well as
the width of the lognormal distribution that was applied prior
to integration. For example, if rm falls near the peak in the
efficiency curve and the distribution width is sufficiently nar-
row, then the integrated efficiency (or extinction) will be ef-
fectively constant as rm changes. Therefore, where this flat-
tening occurs on the x axis of Fig. 13a depends not only on
σ but also on the wavelength and how the number densities
are allocated between the two modes.

This figure also demonstrates that at middle-stratospheric
conditions (20–25 km), where r2 ≈ 350 nm (panel c) andN2 :

N1 ≈ 1× 10−2 (panel d), the second mode accounts for be-
tween ≈ 35 % (λ= 384 nm) and ≈ 85 % (λ= 1020 nm) of
the overall extinction. Further, panel (d) shows that, in the
OPC record, N2 :N1 varied between 1× 10−3 and 1× 10−2

from ≈ 14–25 km. This variation in number density results
in the second mode contributing between 5 % (λ= 384 and
N2 :N1 = 1× 10−3) and ≈ 75 % (λ= 1020 and N2 :N1 =

1× 10−2) of the overall extinction. Therefore, this simula-
tion demonstrates how sensitive the SAGE extinction spec-
trum can be to larger particles even when these particles are
outnumbered 1000 : 1. This results in an inevitable bias in
not only our PSD algorithm but also all algorithms that use
SAGE, as well as SAGE-like, data to infer PSD parameters.
Indeed, it is for this reason that the inferred PSD parameters
in Fig. 12g–l were larger than those in panels (a)–(f). We re-
iterate that the degree of this bias is dependent on numerous
factors and urge caution in trying to disentangle this informa-

Table 5. Range and resolution of PSD parameters used in creating
the bimodal LUTs.

Parameter Range/values Resolution

r1 (nm) 10–1000 10
r2 (nm) 100–2000 10
σ1 1.1–1.8 0.01
σ2 1.01–1.6 0.01
(N1/Ntotal) 1, 0.999, 0.99, 0.975, 0.95, 0.90 n/a
Extinction error (%) 5 n/a

n/a: not applicable.

tion. Ultimately this adds an additional challenge to inferring
PSD parameters from SAGE data, one that cannot be fully re-
solved without incorporation of additional information from
other instruments.

5 Evaluation of the practicality of bimodal solutions

The solution algorithm discussed above was expanded to ac-
commodate a bimodal solution space. Inclusion of the sec-
ond mode is particularly intriguing in light of the discussion
in Sect. 4.4.2. A complicating factor in moving to bimodal
distributions is that number density cannot be completely ig-
nored. Indeed, the dimensionality of the LUTs must be ex-
panded not only to account for the second rm and σ values
but also to account for the relative distribution of particles
across the first and second modes. This expands the number
of PSD parameters that were used to create the LUTs from
two (rm and σ ) to six (r1,2, σ1,2, N1,2) and results in an over-
all expansion in the size of the LUTs. For example, if the
bimodal LUTs were constructed using the same limits and
resolutions that were used in the single-mode analysis, then
the LUT would expand from≈ 41.6×106 values (≈ 160 MB
at 32-bit precision) to more than 1.7× 1015 values (≈ 7 PB
at 32-bit precision; this number assumes a single ratio of N1
to Ntotal). Therefore, the bimodal LUT limits and resolutions
were reduced to accommodate these issues as shown in Ta-
ble 5. The limits of these parameters were informed by the
PSD parameters reported by the UWY OPC record (exclud-
ing data collected between 1 June 1991 and 1 June 1997 to
remove the impact of the Mt. Pinatubo eruption). The OPC-
based statistical profiles are presented in Fig. 14 for refer-
ence.

Similar to the single-mode sensitivity study (Sect. 4) the
bimodal LUTs were tested to determine the feasibility of ac-
curately identifying all six PSD parameters (r1,2, σ1,2, N1,2).
We recognize that the limitations on the range and resolu-
tion of PSD values in these LUTs inevitably influenced the
accuracy of these results (see Sect. 3.1.1 and 3.1.2 for dis-
cussion). Further, we recognize that these limits do not cover
the full range of PSD values reported within the UWY OPC
record. Indeed, if the shaded regions in Fig. 14 were ex-
panded to cover 90 % of the reported values instead of the
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Figure 13. Fraction of the total extinction that comes from the larger mode. Panel (a) plots this fraction as a function of the second-mode
radius (r2) for three wavelengths and two different number density ratios. Panel (b) plots this fraction as a function of number ratio for three
wavelengths using constant bimodal PSD parameters (text inset within the figure). Panels (c) and (d) present the quartile profiles, from the
OPC record (see text for details), for the r2 and number density ratio, respectively.

Figure 14. Profiles of PSD parameters as reported in the University of Wyoming’s OPC record. Data collected between 1 June 1991 and
1 June 1997 were excluded to remove the influence of the 1991 eruption of Mt. Pinatubo. The shaded regions indicate the median±MAD∗.

median±MAD∗ then the range of values would have been
substantially larger. Therefore, we explicitly state that, as
constructed, this simulation is not designed to be applicable
to the full range of possible atmospheric conditions. Rather,
we defined the boundaries of this model using reasonable val-
ues that cover the majority of PSD values as reported in the
UWY OPC record. Further, the intent of this bimodal test is
not to determine, necessarily, how accurately the inferred bi-
modal PSD values are, but it is to determine the stability of
operating within this expanded solution space.

5.1 OPC case study

The OPC record was used to evaluate the performance of the
bimodal solution algorithm in a manner similar to that dis-
cussed in Sect. 4.4, and the results are shown in Fig. 12m–
x. Figure 12m–r show the results when the pseudo-SAGE
extinction coefficients were calculated using only the first-
mode PSD parameters from the OPC data (i.e., tests the per-
formance when the atmospheric aerosol is single mode but
the solution algorithm uses a bimodal LUT). The reader may
question how the second-mode ratios of panels (m) and (n)
were calculated if the OPC-generated extinction spectra only
used the first OPC mode. Here, the inferred PSD parameters

were divided by the first mode of the OPC data. While this
may seem nonsensical, this depiction is important for two
reasons. First, the difference between the r1 and r2 curves
in panel (m) (and the σ1 and σ2 curves in panel n) demon-
strate that the solution algorithm does not try to force both
modes on top of each other (i.e., r1 6= r2 and σ1 6= σ2). The
inferred modes are distinct from each other. Second, this
shows that the inferred first-mode parameters are in better
agreement with the first mode of the OPC data (i.e., the mode
that was used to generate the pseudo-SAGE extinction spec-
tra). This demonstrates that the solution algorithm does not
try to force all of the spectral information into the second
mode and, consequently, minimize the first mode. In gen-
eral, this is a demonstration that the algorithm is performing
as intended. Finally, Fig. 12s–x show the results when the
pseudo-SAGE extinction coefficients were calculated using
both OPC modes (i.e., tests the performance when both the
atmospheric aerosol and the solution algorithm LUT are bi-
modal).

Here, it is observed that mismatching the number of modes
in the LUT and atmospheric aerosol distribution had a mod-
est impact on the estimate of r1 and σ1, though r2 was un-
derestimated by ≈ 90 %. This resulted in a highly unreliable
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Table 6. Range and resolution of target values that were fed into the
bimodal solution algorithm for stability testing.

Parameter Range/values Resolution

r1 (nm) 75–300 25
r2 (nm) 150–800 50
σ1 1.1–2.0 0.1
σ2 1.01–1.8 0.1
(N1/Ntotal) 1, 0.999, 0.99, 0.975, 0.95, 0.90 n/a
Extinction error (%) 2.5 n/a

n/a: not applicable.

estimate of the second mode’s number density (N2, panel r).
While the corresponding SAD and VD estimates were un-
derestimated, this resulted in an inferred re that was within
≈ 25 % of the OPC value (on median) throughout the profile.
Overall, this model indicates that the bimodal solution algo-
rithm provides reasonable estimates for r1 and re despite the
pseudo-SAGE extinction coefficients being built off aerosols
from a single-mode distribution.

A stark change in performance was observed when the
pseudo-SAGE extinction coefficients were created using
both OPC modes (panels s–x). Here, r1 was consistently
overestimated by ≥25 % throughout the profile, while r2 fell
much closer to the 1 : 1 line. The overestimation of r1 is in
agreement with the discussion in Sect. 4.4.2. While the over-
estimation of N2 is not as severe as in panel (r), the algo-
rithm continued to overestimate N2 by a factor of ≈ 5 and
N1 is now underestimated throughout much of the profile.
This translates into an overall improvement of the SAD and
VD parameters, and re were within 25 % above 17 km. Ul-
timately this demonstrates how the second mode dominates
the performance of the solution algorithm.

5.2 Instability of bimodal solutions from a theoretical
perspective

The stability of the bimodal solutions was evaluated in a
manner similar to that discussed in Sect. 4. Extinction co-
efficients were extracted from the LUT for each combination
of PSD parameters in Table 6 and then put into the bimodal
solution algorithm to calculate the inferred PSD parameters.
It is worth noting that while the range and resolution of PSD
values that were used to extract extinction coefficients from
the LUT (Table 6) were reduced, the overall range and reso-
lution of the LUT used to find solutions were consistent with
values in Table 5.

Visualization of the performance in bimodal space is chal-
lenging because of the number of variables. However, the
stability of these results can be elucidated by looking at sum-
mary statistics and comparing with the results of the single-
mode study. These statistics are presented in Table 7.

Here, the data were binned according to the inferred r1 for
both the single-mode and bimodal solutions. To build this ta-

ble we took, for example, all PSD parameters that resulted in
an inferred r1 of 100 nm and calculated percentile statistics
(i.e., P5, P25, P50, P75, P95). Therefore, when the algorithm
infers an r1 of 100 nm for a single-mode distribution, we are
90 % confident that the true (target) value is between 80 and
100 nm (this is in agreement with the results of Sect. 4). In-
deed, throughout the “Single-mode distribution” column of
Table 7 the inferred r1 and target r1 values were in good
agreement (generally within ≈ 10 %), demonstrating the sta-
bility and accuracy of this method when solving for single-
mode parameters.

The bimodal solutions are presented in a similar manner
but include details about the second mode. For example, it is
possible to infer an r1 of 100 nm when the true (target) value
of r1 ranges from 100–150 nm and when the true value of
r2 ranges from 250–800 nm (the high degree of variability in
the target r2 statistics is driven by the varying number density
ratios). Overall, the inferred r1 values are in good agreement
with the median target values (i.e., the output matches the
input) until the inferred r1 exceeded 300 nm. As seen in Ta-
ble 6 the biggest r1 value we used as input for the solution
algorithm was 300 nm, so any inferred r1 greater than 300 nm
should be unexpected. Further, it is interesting to note that in
Table 7 the inferred r1 continued to increase even when the
target radius remained small, especially as the inferred r1 ap-
proached 500 nm. This seemingly unexpected result is due to
the presence of larger particles within the second mode dom-
inating the extinction (as discussed in Sect. 3.1.1 and shown
in Fig. 13) and thereby opening the solution space to non-
sensical values. However, it is important to note that while
the irrationality of these results is obvious under controlled
simulations, we would have no basis for rejecting these re-
sults under real-world conditions. Therefore, we view this as
a conclusive demonstration of potentially significant instabil-
ity in the bimodal solution when the second mode’s particles
are large, demonstrating the infeasibility of accurately infer-
ring bimodal PSD parameters from SAGE data.

5.3 Recommendations for bimodal solution space

The analysis presented in this section demonstrated that bi-
modal PSD parameters can be inferred from the SAGE ex-
tinction spectra and a casual interpretation of Fig. 12 could
lead one to conclude that the situation is hopeful. However,
this subsection is presented to remove ambiguity on the in-
terpretation of the bimodal evaluation.

First, moving to a bimodal solution space comes at an
additional computational cost. Indeed, despite reducing the
LUTs’ PSD ranges and resolutions, as compared to the
single-mode LUTs, the overall runtime increased by more
than 2 orders of magnitude. Therefore, this raised an obvious
question: are bimodal solutions worth the increased runtime?
To address this the reader is encouraged to note the similarity
between panels (g)–(l), where single-mode PSD parameters
were inferred, and panels (s)–(x), where bimodal PSD para-
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Table 7. Mode radius solution percentiles for the single-mode and bimodal distributions. The percentiles (Pi ) indicate the range of target
radii that resulted in the indicated inferred radius. Asterisks indicate values that are limited by the range of target values in the model (see
Table 6). The uncertainty in k was fixed at 5 %.

Single-mode distribution Bimodal distribution

Inferred r1 Target r1 statistics Inferred r1 Target r1 statistics Inferred r2 Target r2 statistics
(±10 nm) (P5, P25, P50, P75, P95) (±10 nm) (P5, P25, P50, P75, P95) (±10 nm) (P5, P25, P50, P75, P95)

80 (70, 70, 80, 80, 90) 80 (100, 100, 100, 137, 150) 720 (567, 662, 725, 787, 800)
100 (80, 90, 90, 100, 100) 100 (100, 100, 100, 100, 150) 650 (250, 600, 650, 700, 800)
120 (100, 110, 120, 120, 140) 120 (100, 100, 100, 100, 150) 655 (350, 600, 650, 712, 800)
140 (120, 130, 140, 140, 160) 140 (100, 150, 150, 150, 150) 710 (250, 600, 700, 750, 800)
160 (150, 150, 160, 160, 180) 160 (100, 150, 150, 150, 150) 660 (250, 500, 650, 700, 800)
180 (170, 170, 180, 180, 190) 180 (100, 150, 150, 150, 200) 540 (300, 387, 500, 600, 750)
200 (190, 190, 200, 200, 210) 200 (100, 150, 200, 200, 250) 600 (300, 500, 600, 700, 800)
220 (210, 210, 220, 220, 230) 220 (100, 150, 200, 250, 300∗) 565 (327, 450, 600, 700, 800)
240 (230, 230, 240, 240, 250) 240 (100, 200, 200, 250, 250) 630 (400, 500, 650, 750, 800)
260 (240, 250, 260, 260, 270) 260 (100, 150, 250, 250, 300∗) 600 (350, 450, 625, 750, 800)
280 (261, 270, 280, 280, 290) 280 (100, 200, 250, 300∗, 300∗) 630 (350, 500, 650, 750, 800)
300 (280, 290, 300, 300, 310) 300 (100, 200, 250, 300∗, 300∗) 645 (400, 550, 675, 750, 800)
320 (300, 310, 320, 320, 330) 320 (100, 100, 250, 300∗, 300∗) 510 (400, 450, 600, 700, 800)
340 (320, 330, 340, 340, 350) 340 (100, 100, 150, 300∗, 300∗) 440 (400, 450, 550, 650, 800)
360 (340, 350, 360, 360, 370) 360 (100, 100, 100, 300∗, 300∗) 505 (400, 450, 500, 700, 750)
380 (350, 370, 380, 380, 390) 380 (100, 100, 100, 225, 300∗) 580 (450, 450, 550, 700, 800)
400 (370, 390, 400, 400, 410) 400 (100, 100, 100, 100, 100) 435 (450, 450, 450, 550, 625)
420 (390, 410, 420, 420, 430) 420 (100, 100, 100, 100, 100) 430 (450, 450, 500, 500, 650)
440 (410, 430, 440, 450, 450) 440 (100, 100, 100, 100, 100) 620 (500, 500, 500, 600, 720)
460 (430, 450, 460, 470, 470) 460 (100, 100, 100, 100, 100) 560 (500, 500, 550, 550, 620)
480 (450, 470, 480, 490, 490) 480 (100, 100, 100, 100, 100) 450 (500, 500, 500, 550, 700)
500 (460, 490, 500, 500, 500) 500 (100, 100, 100, 100, 100) 740 (550, 550, 550, 600, 650)

meters were inferred in Fig. 12. While the bimodal solutions
tended to yield a narrower range of solutions (i.e., the shaded
regions are narrower in panels s–x), the overall similarity in
the median profiles is striking. This indicates that using a bi-
modal solution space did not significantly improve the over-
all accuracy of these solutions.

Second, we demonstrated that the second mode has a dis-
proportionate impact on the first mode’s estimation. While
the overall influence of the second mode, and the correspond-
ing statistics in Table 7, can be modulated by varying distri-
bution widths, number densities, and composition (e.g., what
if the first mode is 125 nm smoke particles and the second
mode is 400 nm sulfuric acid particles?), the overall interpre-
tation is clear: while the OPC analysis looks promising, the
theoretical evaluation in Table 7 demonstrates that there is
not enough information within the SAGE extinction spectra
to sufficiently constrain the solution space to accurately infer
bimodal PSD parameters. Based on these results we conclude
that the cost of inferring bimodal PSD parameters is high and
the benefit is, at best, modest and recommend against using
bimodal PSD solutions based solely on SAGE data.

6 Application to SAGE data

Since this paper is concerned primarily with the algorithm
development and performance, we will not perform an in-
depth scientific investigation of any particular event. Rather,
herein we explain the details of the application of this algo-
rithm to the SAGE II and SAGE III/ISS missions and provide
a high-level overview of the PSD parameters for these mis-
sions. The intention here is to provide the reader with a gen-
eral overview of the performance of this algorithm and the
variability in the PSD parameters over the lifetime of these
instruments. Having established the methodology, more tar-
geted scientific analyses will be the subject of subsequent
publications.

6.1 SAGE II

The PSD algorithm was applied to data collected under the
SAGE II mission using only the 520 : 1021 nm extinction ra-
tio (i.e., condition no. 0 in Table 4) to infer single-mode log-
normal distribution parameters. The 384 nm channel was ex-
cluded following the guidance of Damadeo et al. (2013), and
the 448 nm channel was not included as it is relatively close
to the 525 nm channel and did not significantly improve the
performance. As shown above (i.e., Figs. 7 and 9) the ac-
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Table 8. Notable volcanic and pyroCb events during the SAGE II
and SAGE III/ISS records. Table includes labels used to identify
events in Figs. 15, 16, 18, 19, and 22.

Event name Date Latitude

Nevado del Ruiz (Ne) November 1985 5° S
Kelut (Ke) February 1990 9° S
Mt. Pinatubo (Pi) June 1991 15° N
Cerro Hudson (Ce) August 1991 46° S
Rabaul (Rab) September 1994 4° S
Ruang (Rn) September 2002 2° S
Manam (Mn) January 2005 4° S
Canadian pyroCb (Cw) August 2017 52° N
Ambae (Am) July 2018 15° S
Ulawun (Ul) June 2019 5° S
Raikoke (Ra) June 2019 48° N
Australian pyroCb (Aw) January 2020 27–35° S
La Soufrière (LS) April 2021 13° N
Hunga Tonga (HT) January 2022 20° S

curacy of the inferred PSD values is inversely proportional
to the measurement uncertainty. Therefore, extinction coef-
ficients with uncertainty of > 20 % were excluded from the
analysis. Further, a simple cloud filter was applied, follow-
ing Thomason and Vernier (2013), by excluding all extinc-
tion ratios ≤ 1.4 (we note that cloud filtering did not impact
the aggregate statistics shown below).

The reported k1020, median inferred PSD parameters, and
median inferred microphysical properties during the SAGE II
time period are presented in Figs. 15 and 16 (Northern Hemi-
sphere and Southern Hemisphere, respectively). Notable vol-
canic eruptions, as defined in Table 8, are indicated with la-
bels above panel (a) in both figures as well as vertical dashed
lines within each panel. Here, it is observed that the record
was dominated by two major events: the 1982 eruption of El
Chichón and the 1991 eruption of Mt. Pinatubo. Both erup-
tions resulted in bimodal aerosol distributions (Knollenberg
and Huffman, 1983; Oberbeck et al., 1983; Deshler et al.,
1992, 1993, 2003), which means that the inferred PSD pa-
rameters will be heavily weighted toward the coarser mode
as discussed in Sect. 4.4. However, the general observation
within these figures is that these eruptions led to overall
larger particles (including re), enhanced SAD, enhanced VD,
and enhanced N .

The SAGE II v7.0 product files contained SAD and re es-
timates as described in Thomason et al. (2008) and Damadeo
et al. (2013). Thomason et al. (2008) provided a detailed dis-
cussion on the uncertainty in the inferred SAD values, which
is generally within ±30 % in the main aerosol layer but may
have an overall range in excess of 200 % under light aerosol
loads. The agreement between the current algorithm’s SAD
and re products, as compared to the v7.0 products, is shown
in Fig. 17. Data in Fig. 17 were filtered using the same cri-
teria as in Figs. 15 and 16. Here, panels (a) and (d) present

normalized histograms of the abundance of the v7.0 SAD
and re products, respectively. Panels (c) and (f) present the
relative abundance of the percent difference between the cur-
rent algorithm’s SAD and re estimates and the v7.0 values,
respectively. Finally, panels (b) and (e) present scatterplots,
color-coded by k1020, of the percent difference between the
two algorithms vs. the v7.0 SAD and re, respectively.

Two general observations are made within Fig. 17: first,
as k1020 increased, so too did SAD and re; second, as k1020
increased, the agreement between the two algorithms im-
proved. Further, under enhanced aerosol load (e.g., k1020 >

1× 10−4 km−1) the majority of the SAD and re estimates
were within the ±30 % uncertainties stated in Thomason et
al. (2008). The histograms in Fig. 17 show the relative dis-
tribution of these physical parameters as well as the percent
difference. It is observed that more than half of the SAD esti-
mates were greater than 1 µm2 cm−3 (panel a) and the re had
a broader range (panel d) with four modes at 180, 230, 260,
and 300 nm.

Overall, the PSD estimates from SAGE II were compa-
rable to values observed within the OPC record (see, e.g.,
Deshler et al., 2003), and the SAD and re estimates agree
with the v7.0 products within the stated uncertainty under
enhanced conditions. While this does not provide definitive
validation of this new algorithm, this does demonstrate con-
sistency between this new method and an established product
that is currently in use within the community and provides
confidence in validity of this technique.

6.2 SAGE III/ISS

As discussed in Sect. 4, a combination of condition defini-
tions were used for identifying the PSD parameters in the
SAGE III/ISS record. First, solutions were searched using
condition no. 5 (i.e., all channels except those in the Chap-
puis band). There are several reasons why this condition
would fail to deliver valid solutions, all of which relate to
the input extinction coefficients. For example, if the reported
extinction for any channel is negative or a channel is satu-
rated, then the solution algorithm cannot perform. In the case
that a solution is not found using condition no. 5, the algo-
rithm then excludes the 384 nm channel (condition no. 6) and
makes another attempt to find solutions. The exclusion of the
384 nm channel is, of course, based on the assumption that
the failure of condition no. 5 was due to the 384 nm chan-
nel being either negative or saturated. Finally, in the case that
condition no. 6 fails to find a solution, the algorithm switches
over to condition no. 15 (i.e., the third best performing con-
dition per Sect. 4, data not shown) and makes a final attempt
to find the PSD solutions. If no solutions were found in con-
dition no. 15, then no PSD parameters were provided for that
particular spectrum. After finding solutions the data were fil-
tered to remove the influence of cloud contamination using
the method of Kovilakam et al. (2023). We note that the
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Figure 15. Extinction coefficient (k1020), median inferred PSD parameters, and median inferred microphysical properties for SAGE II data
collected in the Northern Hemisphere. The data were filtered to remove extinction coefficients that had an uncertainty in excess of 20 % or
were indicative of cloud contamination (i.e., k520/k1020 ≤ 1.4).

changes between conditions did not result in step-function-
like changes within the PSD profiles.

The results are shown in Figs. 18 and 19 for the Northern
Hemisphere and Southern Hemisphere, respectively, for the
entire SAGE III/ISS record. The Northern Hemisphere was
dominated by the 2017 Canadian wildfire and the 2019 erup-
tion of Raikoke as well as smaller eruptions (e.g., the 2021

eruption of La Soufrière) and transport from larger events
that occurred in the Southern Hemisphere (e.g., the 2022
eruption of Hunga Tonga). The Southern Hemisphere was
dominated by the 2020 Australian wildfires as well as the
2022 eruption of Hunga Tonga (more discussion below). In-
deed, the impact of the Canadian and Australian wildfires
persisted for≈ 1 and≈ 2 years, respectively. This resulted in
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Figure 16. Same as Fig. 15 but for the Southern Hemisphere.

estimations of large particles and narrow distribution widths
throughout these time periods. However, as discussed above,
these results must be interpreted with caution given the un-
certain composition, phase, and morphology of smoke parti-
cles.

Both hemispheres showed a consistent pattern of smaller
particles formed immediately after the smaller eruptions (i.e.,
Ambae, Ulawun, La Soufrière), while the larger eruptions
produced larger particles. This small-particle formation was

directly correlated with increased number density (panel g)
and inversely correlated with the distribution width (panel f).
However, the Raikoke and Hunga Tonga eruptions, as well as
the major wildfire events, consistently produced larger parti-
cles with smaller distribution widths. While these events did
not yield number densities comparable to the smaller events,
the number densities remained elevated as compared to back-
ground conditions. These results are in agreement with pre-
vious studies (Thomason et al., 2021; Wrana et al., 2023).
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Figure 17. Comparison between the SAD and re estimates from the current algorithm and those in the SAGE II v7.0 product. Data within
these panels were filtered using the same criteria used in Figs. 15 and 16.

Hunga Tonga case study

We now present a brief demonstration of the algorithm’s pro-
ducts in the aftermath of the 2022 eruption of Hunga Tonga.
A more thorough scientific evaluation will be the subject of
a subsequent publication (in progress). Here, we take the op-
portunity to finish the presentation of the statistics that are
output from this method and do a cursory comparison to
balloon-borne optical particle counter observations.

Monthly zonal median plots of the inferred effective radii
are presented in Fig. 20, wherein it is observed that the main
plume contained particles with re > 400 nm, in March 2022,
and this plume was centered near 10° S and 24 km. The
plume was transported predominantly southward, though
some of the particles were caught in the natural north-
ward circulation. While all particle sizes were transported to
lower altitudes as a product of the Brewer–Dobson circula-
tion (especially outside tropical latitudes), the larger particles
showed a disproportionately rapid descent, as compared to
the smaller particles. This is most readily seen when com-
paring Fig. 20a–d with Fig. 20e–h where, regardless of lati-
tude, we observed a partitioning between the largest particles
(> 400 nm) and smaller particles (< 300 nm) over the ensu-
ing year. Here, the plume of the largest particles was cen-
tered at ≈ 20 km near the Equator and descended to lower
altitudes toward the higher latitudes. This is in contrast to the
persistence of smaller particles at higher altitudes, well past
25 km. Finally, we note the apparent growth of particles with
time, predominantly at lower altitudes, where re approached
500 nm in March/June 2023.

The PSD estimates from an individual profile collected on
15 February 2022 are shown in Fig. 21. Before discussing
the content of this figure, it is important to recall the method
we used in inferring the PSD parameters (i.e., extinction co-

efficient LUTs were used to identify all theoretical PSD pa-
rameters that yielded extinction ratios within the propagated
uncertainty in the SAGE III/ISS extinction ratios). This en-
abled us to provide a statistical representation of the PSD
solution space on a point-by-point basis, part of which is the
overall spread in the solution space. This statistical represen-
tation is presented in Fig. 21, with the spread in the solution
space represented by the shaded regions.

Figure 21a contains the extinction coefficient profiles for
three wavelengths, and panel (g) contains the percent errors
in these coefficients. Panels (b) through (f) contain profiles
of the inferred parameters, with the shaded region indicat-
ing the median±MAD∗. Panels (h) through (l) contain the
90 % confidence interval (CI) relative to the median (vertical
dashed lines are guides to the eye and represent the ±10 %
and ±20 % levels).

Three distinct peaks were observed in the extinction pro-
file at 18, 21.5, and 24 km, though the solution algorithm
failed to find any PSD parameters that yielded extinction ra-
tios comparable to the SAGE III/ISS values below 19 km.
Further, the spread in solution space, due to increased extinc-
tion uncertainty (panel g) near 20 km, resulted in less certain
PSD estimates. However, the reported uncertainty in the ex-
tinction coefficients at 24 km was smaller and resulted in a
narrower range of PSD parameter solutions. The estimated
mode radius at 24 km was 345± 20 nm with a distribution
width (σ ) of 1.3± 0.05. We note that the inferred re value at
24 km (410± 5 nm) is in good agreement with the estimate
of 460 nm from data collected by a Portable Optical Particle
Spectrometer (Asher et al., 2023) as well as other recent in-
dependent estimates of re (Khaykin et al., 2022; Legras et al.,
2022; Duchamp et al., 2023). In summary, the variability in
the extinction profiles correlates well with variability in the
PSD, SAD, VD, and re profiles.
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Figure 18. Extinction coefficient (1020 nm, a) and size distribution parameters (b–e) inferred over the entire SAGE III/ISS record for the
Northern Hemisphere.

The CI statistics are a key feature of this methodology
(panels h through l) and provide guidance on the level of con-
fidence of these estimates. For example, looking at the mode
radius data at 24 km we conclude that 90 % of the theoretical
PSD parameters that matched the SAGE III/ISS extinction
ratios (within the bounds of the reported uncertainty) had a
mode radius and distribution width that were within 10 % of
the inferred median value. A similar statement can be made

for the SAD, VD, and re estimates as well. The utility of this
method is that this CI estimation opens an opportunity for
implementing not only the PSD and microphysical products
in chemistry and climate models, but this opens the opportu-
nity for improved uncertainty estimates for the input parame-
ters that drive these models as well as improved uncertainty
estimates for the products that come from these models.
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Figure 19. Same as Fig. 18 but for the Southern Hemisphere.

6.3 Putting the SAGE II results into perspective

As discussed above, the PSD algorithm was applied to the
SAGE II record using the criteria of condition no. 0 (i.e.,
a single extinction ratio). While the overall qualitative be-
havior of those results, as shown in Figs. 15 and 16, were
reasonable, the question remains as to the quantitative relia-
bility of these estimates. To evaluate this we found the PSD
solutions for the SAGE III/ISS data using the criteria of con-

dition no. 0 (hereafter referred to as the “cond0” version) and
compared these results with the values calculated using the
hybrid condition no. 5–6–15 of Sect. 6.2 (hereafter referred
to as the “hybrid” version). The results of this evaluation are
presented in Fig. 22 for the Southern Hemisphere.

Here, it is observed that the two versions are generally
within ≈ 30 % of each other for the higher-moment parame-
ters. The distribution width (σ ) had, by far, the best agree-
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Figure 20. Monthly zonal median effective radii in the months following the Hunga Tonga eruption.

Figure 21. Extinction profiles (a), extinction percent error profiles (g), PSD profiles (b–f), and 90 % confidence interval profiles (h–l). The
horizontal dashed line in panels (a) and (g) represents the tropopause altitude.

ment where the entire record was within 2 %. However, the
rm estimate had mixed results outside the main aerosol layer.
Indeed, the cond0 rm estimates were > 50 % higher than the
hybrid estimates for much of that record. Finally, the N esti-
mates for cond0 were notably lower (i.e., larger percent dif-
ference) outside the main aerosol layer. We note that these

large percent differences were driven by variability of small
numbers. While this results in apparent wild fluctuations on
a relative scale, the absolute variability is small.

Bulk statistics, which represent both the Northern Hemi-
sphere and Southern Hemisphere, are presented in Table 9.
These statistics demonstrate a systematic overestimation in
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Figure 22. Percent difference between PSD products inferred using the hybrid condition no. 5–6–15 and those inferred using only condition
no. 0. The percent difference was calculated by taking 100× (hybrid− cond0)/hybrid.

the rm and re estimates, while the SAD, VD, and σ differ-
ences had medians closer to 0 and inter-quartile ranges that
were within ≈±25 % of the median. The overall interpre-
tation of Table 9 and Fig. 22 is that the cond0 estimates
are in good agreement with the hybrid results within the
main aerosol layer and certainly under elevated aerosol load
(e.g., after Hunga Tonga). However, the agreement is notably
worse outside elevated aerosol conditions. These results are
consistent with the findings of Thomason et al. (2008) re-

garding their discussion of SAD and re estimates (both of
which relied on two wavelengths). While these results are
encouraging for estimating post-eruption PSD parameters,
we were unable to determine a distinct cutoff in k1020 above
which the cond0 estimates were consistently in good agree-
ment with the hybrid products. Finally, while the cond0 pro-
ducts may be useful for observing general trends within the
SAGE II record, users must be aware of this product’s limi-
tations.
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Table 9. Percentile statistics, divided by hemisphere, for the percent difference between the hybrid and cond0 product. The percent difference
was calculated via 100× (hybrid− cond0)/hybrid.

Parameter Northern Hemisphere statistics Southern Hemisphere statistics
(P10, P25, P50, P75, P90) (P10, P25, P50, P75, P90)

rm (−214, −95, −28, 3, 21) (−191, −74, −15, 12, 24)
re (−70, −36, −13, 0, 8) (−65, −31, −8, 3, 9)
SAD (−19, 1, 20, 43, 60) (−21, −7, 12, 39, 58)
VD (−14, −2, 8, 21, 33) (−14, −5, 5, 19, 32)
σ (−13, −3, 4, 14, 22) (−15, −7, 2, 12, 21)
N (−68, −4, 47, 80, 93) (−79, −29, 32, 75, 92)

7 Conclusions

We presented a methodology for inferring particle size distri-
bution (PSD) parameters from SAGE extinction spectra. The
novelty of this methodology is in the statistical representation
of the PSD solution space, which provides the community
with the potential range of PSD and microphysical values
as well as the corresponding confidence intervals. While the
PSD solutions are valuable for climate and chemistry model-
ing, the statistical information provides an additional level of
information previously not available. Indeed, this additional
information allows end users to propagate these uncertainties
through their respective calculations and thereby improve the
error assessment of their end products.

The accuracy of this method was evaluated in terms of
both single-mode and bimodal lognormal distributions as a
function of extinction coefficient uncertainty. We demon-
strated that the inferred single-mode PSD parameters were
within≈±25 % when the extinction error was small (Figs. 7
and 9). Further, we evaluated the impact that incorrect com-
position assumptions had on the single-mode PSD estimates
(Figs. 10 and 11). A key result of this study is that while PSD
parameters can be inferred using extinction spectra from in-
struments such as SAGE, these parameters cannot be repre-
sented by a single number (e.g., mean or median). Rather, the
extinction spectra, within the bounds of measurement uncer-
tainty, can be reproduced by myriad PSD combinations, and
this variability must be reported as done here.

The PSD and microphysical property products were com-
pared to the University of Wyoming’s OPC record. Overall
the two records were in good agreement.

We studied the feasibility of obtaining bimodal solutions
from the SAGE III/ISS spectra alone (Sect. 4.4) and used
the University of Wyoming’s OPC record as a case study to
evaluate the accuracy of these results. While the bimodal so-
lution algorithm returned PSD estimates that were in gen-
erally good agreement with the OPC record, this came at
the cost of significantly increased computation time and with
the caveat that the solution space was heavily biased toward
coarse-mode particles (i.e., the algorithm tried to minimize
r1 and maximize r2). In effect, the algorithm is forcing all of
the finer-mode particles into a regime that SAGE is insensi-

tive to (e.g., / 150 nm per Fig. 2) so that the fine mode, in
effect, could be ignored. Indeed, the coarse-mode particles
dominated even when the fine-mode particles outnumbered
them by more than 100 : 1. We provided a detailed discus-
sion regarding the physical reasoning behind this bias. Based
on this analysis we concluded that the bimodal solution space
is too unstable to provide consistently reliable PSD estimates
without incorporating an additional dataset.

PSD values for both the SAGE II and SAGE III/ISS data
were obtained for the entire data record, and the variability in
these parameters was demonstrated. Herein we showed that
the SAGE II record was dominated by events that yielded
large particles throughout most of its record, while the SAGE
III/ISS record is composed of a mixture of events (volcanic
and pyroCb) that resulted in both smaller and larger particles
as discussed by Wrana et al. (2023). Our surface area den-
sity (SAD) and effective radius (re) estimates for the SAGE
II data were compared to the standard SAD and re products
within the SAGE II v7.0 product. While the v7.0 products
and our products were within the specified uncertainties (i.e.,
±30 % under enhanced aerosol load and±200 % under back-
ground conditions per Thomason et al., 2008), the overall
agreement was better under enhanced conditions.

The SAGE II PSD parameters were inferred using only
a single extinction ratio (condition no. 0), which calls into
question the quality of these estimates due to the limited in-
formation content of two wavelengths. The performance of
condition no. 0 was evaluated by creating PSD estimates
from the SAGE III/ISS record using both condition no. 0
(cond0) and the original hybrid of conditions (using con-
dition nos. 5, 6, and 15). Here, it was determined that the
cond0 estimates were regularly larger than the hybrid esti-
mates, which led to a skew in the overall distribution.

The SAGE III/ISS PSD parameters, the higher-moment
parameters, and the uncertainty estimates represent new
SAGE III/ISS Level 2 products and are available to the com-
munity for download and use (NASA, 2024). Please see the
section “Data availability” for details.

Data availability. The SAGE data used within this study are
available on NASA’s Atmospheric Science Data Center (ASDC;
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https://doi.org/10.5067/ISS/SAGEIII/SOLAR_BINARY_L2-
V5.3, NASA/LARC/SD/ASDC, 2024). The SAGE III/ISS PSD
parameters are available at NASA’s ASDC (NASA, 2024,
https://doi.org/10.5067/ISS/SAGEIII/PSD_L2-V1.1) as stand-
alone files until they are merged into an upcoming major release of
the Level 2 (L2) product. At that point the PSD data will be within
the main SAGE III/ISS record and the stand-alone files will no
longer be updated.
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