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Abstract. We developed a low-cost methane sensing node
incorporating two metal oxide (MOx) sensors (Figaro En-
gineering TGS2611-E00 and TGS2600), humidity and tem-
perature sensing, data storage, and telemetry. We deployed
the prototype sensor alongside a reference methane analyzer
at two sites: one outdoors and one indoors. We collected
data at each site for several months across a range of envi-
ronmental conditions (particularly temperature and humid-
ity) and methane levels. We explored calibration models to
investigate the performance of our system and its suitabil-
ity for methane background monitoring and enhancement
detection, first selecting a linear regression to fit a sensor
baseline response and then fitting methane response by the
sensor deviation from baseline. We achieved moderate accu-
racy in a 2 to 10 ppm methane range compared to data from
the reference analyzer (RMSE < 0.6 ppm), but we found that
the sensor response varied over time, possibly as a result of
changes in non-targeted gas concentrations. We suggest that
this cross sensitivity may be responsible for mixed results in
previous studies. We discuss the implications of our results
for the use of these and similar inexpensive MOx sensors for
methane monitoring in the 2 to 10 ppm range.

1 Introduction

With the well-known importance of methane emissions to
climate change, scientists and engineers are working to de-
velop low-cost sensor networks and monitoring methods,

with motivations and applications summarized by Aldhafeeri
et al. (2020). Researchers and commercial entities have ex-
plored a variety of sensor mechanisms for methane, including
optical, pyroelectric, and chemiresistive devices, among oth-
ers (Aldhafeeri et al., 2020). Due to their low cost, metal ox-
ide (MOx) semiconductor sensor elements are appealing can-
didates for inexpensive sensor network development (Cho et
al., 2022).

MOx sensor implementation poses a variety of techni-
cal challenges, and laboratory calibrations may not translate
to real-world applications (Barsan et al., 2007). In particu-
lar, environmental factors such as humidity and interfering
gasses are difficult to incorporate in a lab setting (Wang et
al., 2010). Poor selectivity for target gasses is a challenge of
particular relevance to our current study; this is a well-known
problem with a variety of possible solutions, including sen-
sor array or “e-nose” configurations in which a set of sensors
with different target gasses are used as an ensemble to iden-
tify the species in gas compositions (Ponzoni et al., 2017;
Cheng et al., 2021).

A variety of previous studies have explored the TGS MOx
sensor product line from Figaro Engineering for methane
detection. In particular, the TGS2600 and TGS2611-E00
sensors have promising reports in the literature (Collier-
Oxandale et al., 2018; van den Bossche et al., 2017). The
TGS2611-E00 is marketed for methane detection in alarms,
leak monitoring, and similar applications (Figaro USA, Inc.,
2013); the TGS2600 is marketed as a general-purpose air
contaminant sensor for use in air quality monitors and similar
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devices (Figaro USA, Inc., 2022b). Both are low-cost sens-
ing elements available for around USD 20 each from elec-
tronic component distributors (Maritex Co., September 2023
prices).

Previous work has found TGS2611-E00 to perform rea-
sonably well when calibrated and tested in a laboratory set-
ting, with error within±1.7 ppm across a 2 to 9 ppm methane
concentration (van den Bossche et al., 2017). Several field
experiments have found useful performance for detecting
methane concentrations in a higher range; among them, Cho
et al. (2022) found TGS2611-E00 effective above 100 ppm
concentrations in a laboratory calibration and field experi-
ment, and Jørgensen et al. (2020) reported success in the
2 to 100 ppm range in the field. Riddick et al. (2022) suc-
cessfully detected large changes in methane concentrations,
corresponding to natural gas leaks. Shah et al. (2023) pro-
vided an in-depth examination of TGS2611-E00 calibration,
including the important observation that laboratory calibra-
tions may not generalize to different ambient conditions in
the field. All of the previous studies note that environmen-
tal conditions, particularly humidity levels, affect sensor re-
sponse; Shah et al. (2023) also provided some evidence that
ambient gas makeup plays a significant role in sensor behav-
ior.

TGS2600 has also found positive results for methane de-
tection in some studies. Eugster and Kling (2012) reported a
general sensor correspondence with methane trends in a field
study, although with a low R2 of 0.19. Other papers found
better performance (Collier-Oxandale et al., 2018; Riddick et
al., 2020; Eugster et al., 2020; Casey et al., 2019) but gener-
ally with complicated algorithms required and in some cases
with notable differences in performance between laboratory
and field settings (Riddick et al., 2020) or from site to site
(Collier-Oxandale et al., 2018).

The previously mentioned studies explore a range of
methane concentrations. We focus in this paper on a low con-
centration range, which we define as ranging from the at-
mospheric background of approximately 2 to 10 ppm. Our
previous laboratory work suggests that TGS2611-E00 has
some methane response in this range and that TGS2600 does
not (Furuta et al., 2022). It is unclear from previously pub-
lished work whether these sensors are viable for monitoring
the 2 to 10 ppm range in real-world settings and whether
these sensors are therefore usable in low-cost sensing net-
works for monitoring small fugitive emissions and similar
low-concentration applications.

To better understand the viability of low-cost MOx sensors
for monitoring methane in this low concentration range, we
designed an inexpensive sensor node complete with teleme-
try and data logging, deployed the node in an outdoor setting
and an indoor setting with a range of methane concentrations
for several months each, and then characterized the sensor re-
sponse to both environmental conditions and methane levels.
We present the full design for our sensor node and mention
its strengths and shortcomings. We highlight several difficul-

ties in monitoring this low methane concentration range with
MOx sensors, and we discuss the suitability of the sensing
approach for the concentration range of interest.

2 Methods

2.1 Sensing system design

We designed and built a system consisting of two MOx sen-
sors, a relative humidity and temperature sensor, data storage
and telemetry, and power supplies and interfacing circuitry.
We implemented the system on two printed circuit boards
(PCBs), with one PCB holding the sensors and associated cir-
cuitry and the other PCB holding the data storage and teleme-
try components, as described in full in Appendix A. The total
parts cost of our system was under USD 200.

We chose TGS2611-E00 (Figaro USA, Inc., 2013) and
TGS2600 (Figaro USA, Inc., 2022b) MOx sensors from
Figaro Engineering Inc. as our primary sensing elements.
Based on our previous work, we expected TGS2611-E00 to
respond reasonably well to methane and TGS2600 to show a
weak or no response to methane in the concentration range
of interest (Furuta et al., 2022). By including both sensors,
we hoped to allow our calibration algorithm to compensate
for non-methane interfering gasses that might be detected by
both TGS2600 and TGS2611-E00.

TGS2611-E00 is designed with an integrated filter, which
is intended to remove interfering gasses such as alcohol (Fi-
garo USA, Inc., 2013). TGS2600 has no such filter. Ac-
cording to the manufacturer, TGS2611-E00 is sensitive to
methane, hydrogen, and ethanol, in order of magnitude of re-
sponse (Figaro USA Inc., 2023); TGS2600 is sensitive to hy-
drogen, ethanol, iso-butane, carbon monoxide, and methane,
again in order of sensitivity (Figaro USA Inc., 2022a). Ac-
cordingly, including both sensors may help to reduce the
effect of hydrogen, ethanol, or other interfering gasses not
characterized by the manufacturer, although iso-butane, car-
bon monoxide, or other unknown gasses might cause a re-
sponse in TGS2600 that is not present in TGS2611-E00.

MOx sensors require stable power supplies for accurate
readings, with previous studies noting that power supply fluc-
tuations compromise performance (van den Bossche et al.,
2017; Shah et al., 2023). Our overall system ran from a 5 V
DC power supply; to ensure high stability for the sensing el-
ements, we operated them at 4.8 V derived from an onboard
precision voltage regulator. We burned in the sensors and reg-
ulator for a week prior to data collection to allow any ini-
tial reactions in the sensing elements or the sensors’ internal
heaters to stabilize, as well as to ensure the system was stable
and functioning properly before deployment.

MOx sensors vary in resistance in response to target
gasses, as well as in response to interfering gasses, water va-
por, and other factors. To convert this variation to a voltage
signal that could be easily digitized, we placed the sensors
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in voltage divider configurations against selected reference
resistors. For maximum sensitivity, the reference resistance
value should be close to the expected sensor resistance; we
used results from our previous work to choose reference re-
sistor values of 15 k� for TGS2600 and 75 k� for TGS2611-
E00 (Furuta et al., 2022). We digitized the voltage output for
each divider using an ADS1115 16-bit analog-to-digital con-
verter (Texas Instruments, Inc.).

To confirm power supply stability, we also digitized the
sensor power supply voltage. Our system performed well in
both sections of the experiment, with 95 % of all data show-
ing a sensor supply voltage within ±0.25 mV of the mean
and 99.99 % of all data showing a supply voltage within
±0.80 mV of the mean across the full dataset.

We recorded relative humidity and temperature using an
SHT31-DIS sensor (Sensirion AG), which produced digi-
tized readings with 2 % relative humidity accuracy and 0.2 °C
temperature accuracy.

An M0 Adalogger microcontroller module (Adafruit In-
dustries) controlled the overall system and recorded readings
every 5 to 6 s to an SD card. We used a Boron microcon-
troller module (Particle Industries, Inc.) as a cellular mo-
dem for telemetry; the Boron module also provided accurate
timestamps for the data logger. The microcontroller module
included a cellular data service sufficient for our needs with-
out recurring cost. We found one brief period of corrupted
readings, likely due to SD card malfunctioning, which we
removed from the dataset. We did not note any other obvious
problems with the system functioning.

We mounted the electronics inside a small enclosure with
holes cut to allow air entry, as seen in Fig. 1a. We screened
the opening to prevent debris, insects, or other objects from
entering the case. Our system operated passively, without an
air pump. The passive operation caused some lag in the sen-
sor response, as described further in Appendix A; the system
responded within minutes to a large methane enhancement
but took considerably longer to return to baseline afterwards.

We provide full schematics and a detailed electronic de-
scription of the sensing system in Appendix A.

2.2 Experimental design

We characterized the sensing system at two different sites,
with a co-located LI-7810 methane analyzer (LI-COR, Inc.)
as a reference device. The LI-7810 monitors methane, wa-
ter vapor, and CO2 using optical spectroscopy with precision
better than 1 ppb for methane and 50 ppm for water vapor,
with a frequency of one reading per second (LI-COR Inc.,
2023). We did not use the CO2 measurements for this paper.
Figure 1 depicts the experimental sites and setup.

2.2.1 Outdoor site: ambient levels with short controlled
releases

Our first site was an urban yard in the Cooper neighbor-
hood of Minneapolis without any notable known sources of
methane or interfering gasses nearby; our intention for this
site was to characterize our sensor’s performance close to
background methane levels. We located our sensing system
and the reference analyzer’s sample intake near the house ex-
terior, as seen in Fig. 1c and d. The reference analyzer drew
samples through approximately 3 m of tubing: as we later
averaged the data to a 10 min timescale, we considered the
resulting sampling lag of less than 30 s to be negligible for
the purpose of our analysis.

The background methane concentration at our research
site as measured by the LI-7810 was approximately 2 ppm,
with a minimum observation of 1.98 ppm. We had no expec-
tation of elevated levels. To provide some range of methane
concentrations, we performed a small number of controlled
releases in the vicinity of our sensor setup from a 2.5 %
methane gas cylinder balanced with air. In August 2022 we
released methane eight times through a 2 L min−1 regulator
for 30 s each and once for 15 s. In October and November
2022 we released methane 40 times through a 0.1 L min−1

regulator for 10 min each. These releases produced a maxi-
mum 10 min averaged methane value of 5.8 ppm, with most
of the releases producing methane concentrations between 3
and 4.5 ppm as measured by the reference analyzer.

2.2.2 Indoor site: methane leaks and elevated levels

Our second site was indoors in the Biosystems Engineering
building at the University of Minnesota, Twin Cities campus,
approximately 5 km from our outdoor site. We placed our
sensing system and reference analyzer close to a benchtop
classroom-scale demonstration anaerobic digester, as shown
in Fig. 1b, with the reference analyzer drawing air from di-
rectly next to the sensor node. The digester was located in a
large workshop area, and we expected a variety of methane
levels resulting from small leaks or larger pulses when
biomass was added to the digester or when methane was
removed. We also expected possible emissions of methane,
VOCs, hydrogen sulfide, and nitrous oxide along with other
unknown gasses from surrounding labs, some of which were
working on fermentation, manure processing, and other bio-
processing projects. Since this site was indoors, we expected
a narrower range of temperatures and humidities than at our
outdoor site.

We collected data from the outside site from July to
November 2022 and from the indoors site from January to
May 2023.
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Figure 1. Panel (a) shows the sensor node construction, which is described fully in Appendix A. Panel (b) is the indoor study site with the
sensor node and reference analyzer placed close to a demonstration anaerobic digester. Panel (c) is the outdoor study site, with panel (d)
showing the positioning of the sensor node and reference analyzer intake.

2.3 Data processing

The reference analyzer showed clock drift over the sampling
periods, which we noted and corrected. We converted the raw
MOx sensor readings to resistance values using the recorded
supply voltages and known voltage divider resistor values.
We associated the reference and sensor data by their times-
tamps.

The indoor portion of data collection saw several large,
short methane spikes which exceeded the specified range of
the reference analyzer; as we were unable to guarantee data
quality in these periods, we dropped all data within a 1 h win-
dow of a methane value exceeding the reference analyzer up-
per limit of 100 ppm. We chose the relatively long window
to ensure that both the reference analyzer and sensor node
had returned to baseline conditions after each spike. The out-
side experiment lost records from the reference analyzer for
2 weeks, leading to a gap in the data. Our sensor experienced
power failures on several occasions through the experiment,
as well as sporadic downtime to allow for data retrieval. As
the MOx sensors have internal heaters which require some
time to stabilize, we removed 2 h of data after each reboot;
we illustrate the full warm-up behavior in Appendix A.

To reduce the effect of any lag between our passive sen-
sor node and the active-sampling reference analyzer and

to smooth any extremely short-duration spikes that our
diffusion-based sensor node might fail to capture, we chose
to perform our analysis on the dataset averaged in consecu-
tive 10 min values.

Our research interest is the low methane concentration
range, which we define as background to 10 ppm, with a
background concentration of approximately 2 ppm in our lo-
cation. We removed averaged data with concentrations above
10 ppm as well as the data immediately following; this re-
sulted in removing 31 of 15 688 records for the inside set and
3 of 14 333 records for the outside set.

2.4 Sensor calibration

MOx sensors have well-known sensitivities to water vapor
and other environmental conditions. Previous studies, as well
as manufacturer data sheets, have often related methane to
the sensor response using a baseline value, which represents
the expected sensor response to environmental conditions
other than methane (Figaro USA, Inc., 2013; Eugster and
Kling, 2012; Riddick et al., 2022; Shah et al., 2023). Methane
is then fit by an equation using the sensor deviation from the
expected baseline value. We proceeded with this two-step ap-
proach as follows.
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First, we estimated the baseline TGS2611-E00 sensor re-
sponse without methane enhancements by fitting the re-
sponse as a function of environmental conditions for time
periods where the measured methane concentration was be-
low 2.3 ppm. We chose 2.3 ppm a priori as a threshold be-
low which the sensors should be unable to detect methane
changes based on our prior work (Furuta et al., 2022). We ex-
amined the effect of several environmental parameters: tem-
perature, water vapor concentration, and elapsed sensor run-
ning time. We chose to include sensor run time to incorpo-
rate any effects of sensor aging, defining run time as the to-
tal time the sensor was switched on since the beginning of
the experiment; this time parameter also potentially included
any effects from other environmental parameters we were not
equipped to measure, such as interfering, non-target gasses.

Our experiment collected both water vapor concentrations
and relative humidity data from the reference analyzer and a
PCB-mounted sensor, respectively. Relative humidity is de-
pendent on water vapor concentrations and temperature, as
well as atmospheric pressure, and our previous work found
water vapor concentrations to predict sensor response bet-
ter than relative humidity (Furuta et al., 2022); accordingly,
we decided a priori to include water vapor concentrations, as
measured by the LI-7810, and not relative humidity as a pos-
sible term in our analysis. This decision is further supported
by previous work, as described in Shah et al. (2023).

After evaluating the possible regressions, we selected
Eq. (1) as the best-performing fit for the TGS2611-E00 base-
line across the inside, outside, and combined datasets, again
fitting only data with methane concentrations below 2.3 ppm.
We provide a detailed description of the equation selection
process in Appendix B.

log(baseline)= β0+β1 log(H2O)+β2T +β3 log(time) (1)

Our sensing system included a secondary sensor, the
TGS2600, which we previously found to not respond to
methane in the concentration range of interest (Furuta et al.,
2022). We examined whether including this sensor in the
baseline prediction could improve accuracy, most likely by
accounting for non-target interfering gasses. Adding this sen-
sor to Eq. (1) produced Eq. (2) as a possibly improved can-
didate for the baseline regression.

log(baseline)= β0+β1 log(H2O)+β2T

+β3 log(time)+β4 log(TGS2600) (2)

The TGS2611-E00 sensor response is expected to deviate
from the predicted baseline response as a result of methane
levels. Over a large range, this deviation will likely take the
form of a power function (Shah et al., 2023); however, in the
limited range we examined we chose a linear fit for simplic-
ity as shown in Eq. (3a). We rearrange this equation to predict

methane levels in Eq. (3b).

TGS2611
baseline

= α+βCH4, (3a)

CH4 =
1
β

TGS2611
baseline

−
α

β
. (3b)

We used the combination of Eq. (3) with either Eq. (1) or
Eq. (2) to calibrate the TGS2611-E00 response to methane.
We evaluated the performance of each component as well as
examined challenges for the calibration method.

3 Results

3.1 Collected data

Figure 2 plots the time series of cleaned, 10 min averaged
data for the two experiments. As mentioned previously, data
loss from the reference analyzer led to a 2-week gap in late
August and early September. Both experiments had occa-
sional smaller gaps not visible on the plots due to power fail-
ures, system downtime for data collection, methane spikes
exceeding the reference analyzer specifications, and similar
causes.

The outside experiment captured a range of temperatures
and humidities over its 113 d span. The experiment began
in summer, with associated high temperatures and water va-
por concentrations; the end of the experiment was in autumn,
with colder temperatures and lower water vapor levels. The
temperature sensor was inside the system’s enclosure, which
experienced consistently higher temperatures than the out-
side air.

Some fluctuations in methane concentrations are visible in
the outside dataset. We observed a diurnal cycle in methane
levels with the reference analyzer for some periods of the ex-
periment; we give an example of this cycle in Appendix C.
Several unplanned sharp spikes occurred beyond our con-
trolled releases, which may have been due to residential gas
leaks or similar events.

The inside experiment ran for 111 d, beginning in winter
and ending in spring. During winter, the location was heated
to a relatively consistent temperature without added humid-
ity. Accordingly, the temperatures were more stable than in
the outside experiment, with overall lower water vapor lev-
els and relative humidities. As with the outside sensor, the
recorded temperatures were inside the sensor node enclosure,
which was warmer than the ambient air.

Figure 3 shows data distributions and correlations be-
tween the different measured variables for the two portions
of the experiment. In the outside experiment, the TGS2611-
E00 and TGS2600 sensors were highly correlated (Pear-
son’s r = 0.97), and both were strongly correlated with wa-
ter vapor levels (|r|> 0.8) and temperature (|r|> 0.7). The
sensors were not obviously correlated with methane levels
(|r| ≤ 0.14).
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Figure 2. Time series of both experiments, with internal sensor node temperatures (a), water vapor concentration and relative humidity (b),
methane data collected by the reference analyzer (c), and MOx sensor responses (d).

Sensor performance can be influenced by cumulative sen-
sor run time in a variety of ways, which we will examine in
more detail. We chose to capture this parameter as elapsed
run time, representing the cumulative time the sensor had
been powered on since the beginning of the outside exper-
iment.

As seen in Fig. 3, sensor response was strongly correlated
with elapsed time (r > 0.7) in both the inside and outside ex-
periments. Due to seasonal changes, elapsed time was itself
correlated with both water vapor concentrations and temper-
atures (which were themselves also correlated), as outdoor
temperature and water vapor levels are higher in summer than
in winter. Accordingly, it is possible that some portion of the
sensor-time correlation was due to the well-known sensitivity
to water vapor or due to an effect from temperature.

The MOx sensors were again strongly correlated with each
other in the inside experiment (r = 0.88). Sensor correlation
with water vapor concentrations (|r|> 0.5) was stronger than
with temperature (|r|> 0.3), and the sensors were correlated
moderately with elapsed time (|r|> 0.5). Neither sensor
showed a strong correlation with methane levels (|r| ≤ 0.12).

3.2 Baseline sensor response

As described previously, we examined the baseline
TGS2611-E00 response to environmental conditions. Our
experiment recorded four parameters with potential effect on

sensor response besides methane: temperature, water vapor
concentration, relative humidity, and time. We used water
vapor concentration and ignored relative humidity a priori
based on our previous work (Furuta et al., 2022). Our first
candidate baseline equation used these environmental factors
to predict TGS2611-E00.

Our second candidate equation included a secondary sen-
sor, TGS2600, which we have previously found not to re-
spond to methane at low concentrations (Furuta et al., 2022);
we hoped to remove the influence from non-target gasses
and other unexpected factors by including TGS2600 in the
baseline response. We selected all data with a measured
methane concentration below 2.3 ppm, a value slightly above
the background levels of approximately 2 ppm at our re-
search locations, as the targets for our baseline regressions
and compared the performance of the two baseline equations.

As previously described, we selected Eq. (1) as the best-
performing regression without TGS2600. This regression
closely fit the baseline TGS2611-E00 response, again defined
as the sensor response for all datapoints with methane levels
below 2.3 ppm. We obtained R2 values of 0.97, 0.91, and
0.89 for the outside, inside, and combined datasets, respec-
tively, and root mean square error (RMSE) values of 1.46,
1.56, and 2.81 k�, respectively.

The regressions capture the overall trend in the baseline
response, as seen in Fig. 4a and c but with considerable vari-
ance. As shown by the color-coding, time appears to have
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Figure 3. Correlations and data distributions for the outside (a) and
inside (b) datasets. The upper triangle shows correlations (Pearson’s
r); the lower triangle shows pair plots between variables; the diag-
onal line shows histograms for each variable.

an important effect on sensor response, supporting the inclu-
sion of time in Eq. (1); for example, in the inside dataset in
Fig. 4a, which had relatively little variation in humidity and
temperature, the sensor shows a markedly different baseline
response at different time periods of the experiment.

We then added the TGS2600 sensor response to the base-
line equation as a potentially stronger regression. We have
previously found that TGS2600 does not strongly respond
to methane in the 10 ppm concentration range (Furuta et al.,
2022). Accordingly, we hoped that the TGS2600 response
would allow the baseline fit to accommodate unknown envi-
ronmental effects, such as changes in ambient non-targeted
gas concentrations, without affecting the relationship be-
tween the baseline fit and methane levels. Adding a term for
TGS2600 produced Eq. (2), which we again fit for the low-
methane data subsets.

Adding the TGS2600 term improved R2 to 0.99, 0.98, and
0.98, and RMSE to 0.71, 0.73, and 1.21 k� for the inside,
outside, and both datasets, respectively. As seen in Fig. 4e
and g, the regressions still show some error, but the fit is
closer than with Eq. (1), suggesting that Eq. (2) outperforms
Eq. (1) for predicting the TGS2611-E00 baseline response.

Even with the additional sensor term, the accuracy of the
regressions varies with time period, as can be seen in the col-
oring of Fig. 4. For example, the baseline at the beginning of
the inside experiment in Fig. 4e has a worse fit than the base-
line closer to the end of the experiment. To attempt to capture
this change, we next examined a piecewise fit with respect to
time for the baseline response. We divided the inside and out-
side subsets into 10 sections each, equally by number of dat-
apoints, with each section corresponding to approximately
10 d (as the outside dataset has missing data, the sections are
not all the same length of time). We then fit Eqs. (1) and (2) to
each section and then collected the overall fits and evaluated
RMSE and R2.

The piecewise Eq. (1) approach resulted in R2 of 0.98 and
0.99 and RMSE of 0.78 and 0.89 k� for the inside and out-
side subsets, respectively. The piecewise fit is better than the
full-dataset approach, but some obvious issues are still visi-
ble, such as variation in the fit in Fig. 4b with later elapsed
times.

The piecewise fit for Eq. (2) resulted in R2 better than
0.99 for both sets, and RMSE of 0.30 and 0.54 k� for the in-
side and outside data, respectively. The piecewise Eq. (2) fit
is the best quality of the options considered, with relatively
minor error and a stronger fit than Eq. (1). For the inside
dataset, the time variable was non-significant in 2 of the 10
piecewise subsets (p= 0.08 and 0.49), and the intercept was
non-significant in one subset (p= 0.90); otherwise, all terms
were significant in all subsets (p≤ 0.001). Accordingly, we
believe that including sensors to monitor non-target gasses
and regularly recalibrating the baseline sensor response to
capture changing environmental conditions will be helpful in
deploying TGS2611-E00 and similar sensors.

As the piecewise Eq. (2) provided the best fit of the
baseline regression candidates examined, we used it to pro-
duce the estimated baseline TGS2611-E00 response for our
methane calibration.
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Figure 4. Results of TGS2611-E00 baseline regressions for the datasets, filtered to only include data below 2.3 ppm of methane, resulting in
3717 inside datapoints (a, b, e, f) and 13 030 outside datapoints (c, d, g, h). The system run time from the beginning of the outside experiment
in days is coded as color. Panels (a)–(d) show the fit for Eq. (1), and panels (e)–(h) show those for Eq. (2), both with regressions over the full
filtered datasets (a, c, e, g) and piecewise by time (b, d, f, h).
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3.3 Methane response

We examined the relationship between the sensor to baseline
ratio and methane levels. As the inside dataset had a wider
range of methane concentrations than did the outside set, we
first fit only the inside data.

The TGS2611-E00 sensor response relative to the pre-
dicted baseline given by the piecewise Eq. (2) should be
proportional to methane levels. Accordingly, we use Eq. (3)
to estimate methane levels from the sensor response. We fit
Eq. (3a) on the inside dataset, and then we rearrange the
terms to produce Eq. (3b), which we evaluate for R2 and
RMSE. The fit on the inside dataset shows moderate per-
formance, with R2

= 0.46 and RMSE= 0.65 ppm. As seen
in Fig. 5a, the fit is noisy but captures methane trends. The
largest errors occur in the low concentration range, with the
model both overpredicting and underpredicting some data-
points. The low concentration range is also overrepresented
in the dataset. Despite this, the model does not have notable
bias in either the lower or higher concentrations.

Our baseline regression used datapoints below 2.3 ppm
of methane to produce a fit. If we evaluate the fit for
methane only on datapoints above 2.3 ppm, excluding those
used to produce the baseline, we find R2

= 0.39 and
RMSE= 0.58 ppm.

The 1 % of points with the worst fit, which we designate
as outliers as highlighted in Fig. 5b, dominate the model
error; neglecting these points, we find the reasonable per-
formance of R2

= 0.63 and RMSE= 0.53 ppm. Considering
only the non-outlier points above 2.3 ppm of methane, we
find R2

= 0.58 and RMSE= 0.59 ppm. Some of the outlier
data appear to have related trends, such as the group of over-
predicted points in the upper left part of Fig. 5b. To better un-
derstand the cause of these errors and to understand possible
difficulties for our model, we examined these outlier points.
We found three main explanatory features of the outlier data.

First, as seen in Fig. 5c, we calculated the absolute change
in methane concentration with the data immediately before
and after each point, and we took the larger change of the
two. Some of the outliers show a large rate of change; as our
system is passive and relies on natural air movement and gas
diffusion, it is possible that our sensor node did not respond
to changes quickly enough to track the relatively rapidly
shifting methane concentrations for these points. As previ-
ously mentioned, we analyzed the data as a series of 10 min
averages: 40 % of the outliers show a rate of change greater
than 1 ppm per 10 min; 31 % exceed 2 ppm per 10 min; and
6 % exceeded 5 ppm per 10 min. For the full dataset, 5.1 %,
1.7 %, and 0.16 % show the same rates of change, respec-
tively, suggesting that the outliers are considerably more
likely to occur during periods of rapidly changing concen-
trations.

Second, as noted previously, the methane concentrations
exceeded the limits of our reference analyzer on several oc-
casions. After each such spike, we removed 1 h of data to

allow the systems to stabilize and resume normal function-
ing. We had additional gaps from occasional power failures
or system downtime for data collection; 7 % of the outliers
fell immediately after such data gaps, as compared to the
0.34 % of all points which occurred after a gap. Our cali-
bration model tended to overpredict these points, as seen in
Fig. 5d, suggesting that possibly our sensor node was still
encountering a higher concentration in the sensing chamber
than in the ambient air.

Finally, we found three runs of consecutive outlier points,
highlighted in Fig. 5e – these periods each had a stretch of
outlier points without breaks for one to several hours each.
These three events showed patterns that appeared to be re-
lated, and so next we examine them in more depth. Together,
these three events account for 45 % of the outliers.

The three explanatory categories had some overlap – some
data from one of the anomalous events might have had a high
rate of change, for example. In total, 87 % of the outliers ei-
ther belonged to one of the three consecutive events, fell af-
ter a data gap, had a rate of change greater than 1 ppm per
10 min, or some combination.

Figure 6 plots the three consecutive outlier events. The
first two events – on 17 and 19 March – show similar be-
haviors: in both cases the TGS2600 sensor exhibits a sharp
and strong response to something other than methane or wa-
ter vapor, without the TGS2611-E00 sensor responding. As
the TGS2611-E00 has a filter to remove certain interfering
gasses and the TGS2600 does not, we speculate that this
response is likely the result of an unknown, non-target gas
pulse. This strong signal causes an error in the baseline re-
gression, leading to an erroneous methane prediction.

The third event, on 22 March, shows different behavior.
Typically, the MOx sensors respond inversely to both water
vapor levels and methane; in the depicted event, both sen-
sors show an unexpected response through the day that is
both stronger in magnitude and mostly in the opposite di-
rection from the expected water vapor response. The sen-
sor response is also much larger than we expected from the
depicted methane fluctuations. We speculate, again, that the
sensors were responding to some unknown gas, with a grad-
ual release through the day and slow dissipation overnight.

Finally, we attempted the same approach on the outside
dataset, fitting the baseline with the piecewise Eq. (2) and
then predicting methane with Eq. (3b). As noted above,
the baseline regression produced a strong fit, but the fit for
methane did not capture any trend and failed to perform
better than simply predicting the dataset mean; 97 % of the
outside data had a methane concentration between 1.98 and
2.5 ppm, as compared with the 45 % of the inside data in the
same range; as the RMSE for our inside methane model was
greater than 0.5 ppm, the outside data appear to cover too
small of a range to accurately fit.

The outside data cover a much wider temperature and wa-
ter vapor range than the inside data, with substantial daily
fluctuations. It is possible that fitting the baseline regression
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Figure 5. Methane fit results (a), 1 % outliers (b), points colored by rate of methane change (c), occurrence after a data gap (d), and the three
events in March discussed in the text (e).

Figure 6. Time series plots of the three anomalous events. The light purple highlights represent consecutive periods of outlier points, as
described in the main text.

piecewise by temperature and water vapor would yield better
results than by time, but as the baseline regression quality is
already strong it is unlikely that a change in algorithm will
produce acceptable performance in this small methane range.

3.4 Methane regression sensitivity to baseline fit

We fit the TGS2611-E00 baseline response with Eqs. (1) and
(2), both over the full dataset and piecewise over time in-
tervals – as a reminder, Eq. (2) included the TGS2600 sensor
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response as a term, while Eq. (1) did not. We derived the sen-
sor methane response using the piecewise Eq. (2) baseline fit.

To examine whether this baseline fit is critical for sensor
performance, we performed the methane calibration routine
we described for the four possible baseline fits on the inside
dataset, with results shown in Fig. 7. All of the regressions
capture some trend in the methane response, but only the
Eq. (2) piecewise fit (the approach we examined in detail
previously) has positive R2, indicating that predicting the
dataset mean for each point would perform better than the
other regressions; the other baseline equations lead to poor
methane predictions in the low range, causing a poor over-
all fit. The methane fits using the full and piecewise Eq. (1)
baseline produced R2 values of−1.79 and−2.95 and RMSE
values of 1.47 and 1.75 ppm, respectively, and the fit with the
full Eq. (2) baseline produced an R2 of −0.48 and RMSE of
1.07 ppm. Accordingly, it appears that tracking the changes
in sensor baseline response to environmental conditions will
be critical to successful field deployment.

4 Discussion

4.1 Sensor baseline determination and methane fit

We found that we could closely fit the baseline TGS2611-
E00 response to environmental conditions at background
methane levels. Water vapor, temperature, and sensor
run time appear to largely determine the sensor baseline
(R2> 0.9). The baseline fit performs better if approached
piecewise with respect to time. The piecewise approach
caused discontinuities between baseline predictions at the
edge of adjacent calibration periods; a more sophisticated ap-
proach might interpolate regression parameters between cal-
ibration points, but we accepted the simple method as suffi-
cient for this paper.

The sensor deviation from baseline showed a clear trend
with methane levels, without notable bias, but with substan-
tial uncertainty. The model appears adequate to capture sub-
stantial shifts in methane concentration, but it appears too
noisy to monitor small changes. Our model can likely distin-
guish 2 ppm from 10 ppm, but appears unable to distinguish,
for example, 2 ppm from 3 ppm. We speculate that some of
the model’s error is caused by changes in non-targeted ambi-
ent gas concentrations; previous studies have also noted this
effect (Shah et al., 2023). We also believe that the passive na-
ture of our sensor node may have caused a slower methane
response than the active sampling reference analyzer, as seen
in Appendix A; adding a pump to our sensor node would
likely improve temporal resolution and reduce this lag or
mismatch. Our sensor design showed excellent power sup-
ply stability and had good electrical resolution; accordingly,
we think it is unlikely that the electronics contributed sub-
stantially to model error.

Our fit for methane as a function of sensor response
showed moderate performance in the 2 to 10 ppm range we
examined. Our calibration equation captured methane trends
(neglecting outliers, R2

= 0.63), but the previously men-
tioned difficulties and resulting outlier points led to compro-
mised performance (with outliers, R2

= 0.46). As the base-
line fit was piecewise with respect to time, attaining this level
of performance may require frequent recalibration of the sen-
sor response to environmental factors.

We were similarly able to closely predict the baseline sen-
sor response for our outside dataset, which predominantly
had data close to background levels (2 ppm methane), but
were not able to capture methane trends. We believe that this
is likely a limitation of the sensors themselves, and that con-
centrations in the background to 2.5 ppm range, as encoun-
tered in our urban site, will be a poor application for this
technology.

Various authors have claimed that TGS-series sensors re-
quire moderate relative humidity to operate consistently, with
a threshold given of approximately 40 % (Eugster and Kling,
2012; van den Bossche et al., 2017; Riddick et al., 2022).
Our inside dataset, with which we found moderate success
in fitting sensor response to methane levels, had a maximum
relative humidity of 18 % with a mean of 10 %; the low hu-
midity levels were due to the large, heated, but not humid-
ified study location in winter. As discussed previously, al-
though humidity influences sensors’ performance, it appears
that unmonitored parameters other than humidity were also
responsible for sensing difficulties; accordingly, it is not ap-
parent that low humidity poses a fundamental problem for
the application of TGS2611-E00 or similar sensors.

4.2 The importance of time

Some previous studies have found that different algorithms
or parameters were required at different time periods, or that
models developed in the lab demonstrated compromised per-
formance in field experiments (Collier-Oxandale et al., 2018;
Riddick et al., 2020; Shah et al., 2023). Some time-related
factor, then, may be important for sensor response. Time was
a significant parameter in our fit for sensor baseline response
in two ways: first, including a parameter for elapsed sensor
lifetime improved the model quality, and second, fitting the
baseline piecewise over shorter time spans led to better per-
formance.

To examine the nature of the piecewise fit, we fit Eq. (2)
over the full dataset (both outside and inside) split into 20
sections. The time chunks for the piecewise fit are not nec-
essarily of equal temporal length due to gaps in the data but
instead each contain the same number of datapoints. As seen
in Fig. 8, the best-fit regression coefficients change in a non-
monotonic manner, although with some apparent visible pat-
terns.

We speculate that the change in best-fit parameters for the
sensor baseline over time is due to changing environmental
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Figure 7. Sensor calibration results using the different baseline regression approaches.

Figure 8. Best-fit regression coefficients for Eq. (2), fit across the combined dataset. As described in the text, the Time axis is not to scale.
Panel (a) is the intercept; panels (b)–(d) are environmental parameters and time, and panel (e) is the non-methane responding MOx sensor.
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parameters that our setup was unable to measure, such as in-
terfering gasses or ambient air makeup; sensor aging may
play a role as well, but as the coefficients change in a non-
monotonic manner aging may not be a primary cause.

We suggest that previous difficulties implementing these
sensors may have resulted from similar issues. Determining
whether other ambient gasses, sensor aging, or other factors
are responsible will require further investigation. We believe
this underlying issue is the next problem to address for the
practical use of these sensors for methane monitoring, and
that deployment in more extensive sensor arrays targeting
different gasses will improve methane monitoring results.

4.3 TGS2600 performance for methane sensing

Some previous studies have used TGS2600 to monitor
methane levels. We repeated our analysis, exchanging
TGS2600 and TGS2611-E00 in Eqs. (1) and (2) for the back-
ground fit, and then again attempting to fit methane response
as a function of the TGS2600 to background fit ratio.

We found that we could closely fit the sensor baseline re-
sponse, with R2 of 0.98 and RMSE of 0.73 k� for the mod-
ified piecewise Eq. (2), closely comparable to the values of
0.99 and 0.71 k� for TGS2611-E00. For the modified piece-
wise Eq. (1), we found R2 of 0.91 and RMSE of 1.53 k�.
However, both possible fits (with the Eq. 1 or Eq. 2 base-
lines) for methane had negative R2 values (−29.0 and−26.9
for the fits using Eqs. 1 and 2, respectively), indicating that
simply predicting the data mean would perform better. Both
fits had RMSE worse than 4.5 ppm. This result is consistent
with our previous work showing little to no response from
TGS2600 in the 2 to 10 ppm concentration range (Furuta et
al., 2022). Accordingly, we believe that TGS2600 does not
have promise for methane sensing in the near-background
concentration range.

The inability of TGS2600 to sense low concentrations of
methane may be beneficial if it is included in a sensor array
with TGS2611-E00 and other sensors; possibly, such a sen-
sor array could reduce any effect of non-target gas species,
and give greater insight into gas compositions than possible
with a single sensor.

5 Conclusions

Our sensor node demonstrates the feasibility of a low-cost,
high-performance implementation of the TGS2611-E00 or
similar MOx sensors. Our system design provided stable op-
erating conditions for the MOx sensors for over half a year
of field tests and could be powered by an inexpensive battery
and solar panel in a stand-alone deployment. Our unit had
a parts cost of under USD 200; future revisions could eas-
ily reduce costs further by implementing the data logger and
telemetry from components rather than using off-the-shelf
microcontroller modules.

We found TGS2611-E00 to respond to methane, consis-
tent with our previous work (Furuta et al., 2022). Contrary to
some previous studies but consistent with our previous work,
we did not find TGS2600 to respond to methane in the stud-
ied 2 to 10 ppm range using the algorithms we examined.

Our results suggest that similar sensor networks may be
worth investigating for applications with wider methane con-
centrations of interest than our 2 to 10 ppm range, such as
around landfills, animal agriculture and manure processing,
wastewater treatment, fossil fuel infrastructure, or other near-
source settings. Our sensor response correlates with methane
levels with moderate accuracy (RMSE< 0.6 ppm) in the 2
to 10 ppm range, but caution is necessary to account for
environmental factors. Our system was unable to capture
methane trends in the 2 to 3 ppm range in our outdoor test,
which featured both lower methane levels and wider humid-
ity and temperature variation than our indoor setting. This
variation will be typical in outdoor deployments in many cli-
mates and poses challenges for the sensors.

In addition to MOx sensors’ well-known sensitivity to wa-
ter vapor levels, we found that sensor performance varied
over time, possibly in response to changing ambient gas com-
positions, sensor aging, or other unmeasured environmental
changes. We believe that this sensitivity will limit the ability
of these or similar sensors to accurately monitor low methane
concentrations in many real-world settings without further
work to detect and correct for other gasses or environmental
factors. We believe that this behavior may ultimately deter-
mine the lower limit for practical deployment of these sen-
sors as standalone units.

Our results could possibly be improved by filtering or
monitoring and accounting for interfering gasses. Convert-
ing our system to active sampling with the addition of a pump
could also help reduce the system’s lag time, and might allow
the unit to capture sharper methane peaks. Even with these
improvements, it is likely that these MOx sensors will be bet-
ter suited to methane concentrations above the 2 to 10 ppm
range we examined.

Appendix A: Sensor node electronic design, startup
behavior, and lag

A1 Sensor node design

Our sensor node consists of two circuit boards: a main con-
troller board and a sensor board. The two boards are con-
nected via a cable. The main board is responsible for teleme-
try, data storage, and system control; the sensor board allows
for up to two Figaro MOx sensors, a relative humidity and
temperature sensor, and power regulation for the Figaro sen-
sors. The full device is pictured in Fig. 1a of the main text.

Figure A1 shows the sensor circuit board. Digital commu-
nication between the controller and sensor boards is provided
via I2C with a high voltage of 3.3 V. The Figaro MOx sen-
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Figure A1. Schematic for the sensor circuit board.

sors are specified with a 5± 0.2 V supply (Figaro USA, Inc.,
2013, 2022b). We provide a 5 V supply from the controller
board; however, as power supply stability is critical to ac-
curate sensor readings, we further regulate the supply with
component U3, a precision voltage regulator with a fixed
4.8 V output. As discussed in the main text, this arrangement
proved stable over the course of the experiment.

The MOx sensors U1 and U2 are implemented in voltage
divider configurations with R1 and R2, which were chosen to
approximately match the expected sensor resistances, as dis-
cussed in the main text. The output voltages from the dividers
are digitized by U4, a 16-bit ADC. We also digitize the 4.8 V
supply through R3 and R4, allowing us to correct for any
drift and to evaluate the regulator performance. U4 contains
an internal precision voltage reference. The ADS1115 has a
resolution of 188 µV, corresponding to a resolution of 12�
against the 75 k� reference resistor and 2.3� against the
15 k� reference resistor when the sensor resistances equal
the references.

We sense temperature and relative humidity using U5, an
integrated, digital-output chip. U4 and U5 communicate with
the controller board via I2C; as U4 is operating at 4.8 V, level
shifting is required for communication with the 3.3 V con-
troller device. We provide level shifting via Q1, Q2, and the
associated pull-up resistors R7 and R8.

All capacitors on the board are provided for power supply
bypassing to reduce noise and instability, and all were X7R
dielectric ceramic capacitors.

Figure A2 provides the schematic for the main board. U1
is a complete microcontroller module, including a processor,
3.3 V power regulator, SD card socket for data storage, and
supporting circuitry. We use U1 as the main controller for
the whole system, as well as for data storage. U2 is a micro-
controller module with a cellular modem; we only use this
board for telemetry and as a networked clock. We only used
the telemetry data to remotely check that the system was op-
erating correctly, and our analysis used the locally stored 5 s
scale data.

Q1 through Q3 and their supporting components are pro-
vided to optionally drive a fan, pump, heater, or other similar
devices; we did not use these components for the current ex-
periment, and we left them unpopulated on the circuit board.
As with the sensor board, we placed capacitors C1 through
C3 to bypass the power supply for lower noise and greater
stability; all three were aluminum electrolytic capacitors.

Figures A3 and A4 show the board layouts. Both boards
are four-layer stacks. For clarity, the inner two layers con-
taining ground and power planes have been omitted from the
figures. We are aware of one mistake on the board layout:
J1 on the sensor board should be reversed. For our prototype
unit, we simply reversed the cable connection to this part. As
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Figure A2. Schematic for the main board.

Figure A3. Circuit layout for the sensor board.

Figure A4. Controller board layout.
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Figure A5. System behavior for every time the device was powered
on over the course of the experiment. Each startup incident is color-
coded consistently between the panels.

mentioned previously, the fan, pump, and heat components
on the main board were not used or populated for this exper-
iment but are provided in the layout for future development.
We hand-soldered and assembled the boards for this experi-
ment.

A2 System startup behavior

Figure A5 shows the startup behavior of the system for the
first 5 h of each time the system was powered up over the
course of the experiment, including both the indoor and
outdoor sections. In most of the cases, the system appears
to have fully stabilized relatively quickly, with an initial
warmup curve of a less than half an hour.

A3 Sensor lag

As discussed in the main text, our sensor node operates pas-
sively, without a pump, and accordingly has some lag in its
response. To illustrate this effect, Fig. A6 shows raw sen-
sor data collected around a series of large methane spikes
in the indoor portion of our experiment, along with methane
and water vapor data collected by the reference analyzer. The
sensor node responds quickly to the spike’s enhancement, but
takes longer to return to baseline after the spike has passed.

Figure A6. Raw data around a series of large methane spikes, illus-
trating the sensor lag.

Appendix B: Baseline regression equation selection

As discussed in the main text, we examined different pos-
sible regressions to fit the TGS2611-E00 response to base-
line environmental conditions other than methane. We fit the
regressions on the datasets filtered to only include points
with methane concentrations less than 2.3 ppm, which we as-
sumed would be too small of an enhancement over the 2 ppm
background for the sensor to respond. For the inside dataset,
3717 of the 15657 points were below the 2.3 ppm threshold,
and for the outside dataset 13 030 of the 14 330 points were
included.

As explained in more detail in the main text, we have
four possible factors for the TGS2611-E00 baseline regres-
sion: water vapor concentration, temperature, elapsed sensor
run time, and TGS2600 response. We also examined factors
transformed by the natural log, chosen as a standard regres-
sion transformation; we adjusted the log-transformed time
variable by a negligible amount to account for zero values.
We fit all regressions possible from Eq. (B1) on the inside
data and outside data, and both sets together. As our regres-
sion results, shown in the main text, did not show clear bias
in their residuals, we did not consider further transformations
beyond the log.

y = α+β1x1+β2x2+β3x3+β4x4, (B1)
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Table B1. The three best-performing baseline regressions for each dataset with or without TGS2600 as a term, sorted within each category
by RMSE.

Dataset Regression R2 RMSE
(ppm)

Outside log(TGS2611)∼ log(H2O)+ T + log(time) 0.97 1.46
log(TGS2611)∼ log(H2O)+ log(T )+ log(time) 0.97 1.52
TGS2611∼ log(H2O)+ log(T )+ log(time) 0.97 1.53

Inside log(TGS2611)∼ log(H2O)+ log(T )+ log(time) 0.91 1.52
log(TGS2611)∼ log(H2O)+ T + log(time) 0.91 1.54
TGS2611∼ log(H2O)+ log(T )+ log(time) 0.90 1.63

Both log(TGS2611)∼ log(H2O)+ T + time 0.90 2.50
TGS2611∼ log(H2O)+ T + time 0.90 2.61
TGS2611∼ log(H2O)+ log(T )+ time 0.90 2.71

Outside log(TGS2611)∼ log(H2O)+ T + log(time)+ log(TGS2600) 0.99 0.71
TGS2611∼ log(H2O)+ log(T )+ log(time)+TGS2600 0.99 0.75
log(TGS2611)∼ log(H2O)+ log(T )+ log(time)+ log(TGS2600) 0.99 0.76

Inside log(TGS2611)∼ log(H2O)+ log(T )+ log(time)+ log(TGS2600) 0.98 0.71
log(TGS2611)∼ log(H2O)+ T + log(time)+ log(TGS2600) 0.98 0.71
log(TGS2611)∼ log(H2O)+ log(T )+ time+ log(TGS2600) 0.98 0.76

Both log(TGS2611)∼ log(H2O)+ T + log(time)+ log(TGS2600) 0.98 1.21
TGS2611∼ log(H2O)+ log(T )+ log(time)+TGS2600 0.98 1.27
TGS2611∼ log(H2O)+ T + log(time)+TGS2600 0.98 1.27

where y ∈ {TGS2611, log(TGS2611)}, x1 ∈

{H2O, log(H2O)}, x2 ∈ {T , log(T )}, x3 ∈ {time, log(time+
0.0001)}, and x4 ∈ {TGS2600, log(TGS2600)}. We eval-
uated each regression for R2 and RMSE. Regressions
using the log-transformed TGS2611-E00 response as
the target were transformed back to linear space prior
to evaluating performance. We show the performance
of the three best regressions on each dataset without
TGS2600 and the three best with TGS2600 (equivalent
to β4 in Eq. B1 taking a zero or non-zero value, respec-
tively) for each dataset in Table B1, chosen by lowest
RMSE. The regressions are shown in shorthand; for
example, log(TGS2611)∼ log(H2O)+ T + log(time) is
shorthand for the regression equation log(TGS2611)=
α+β1 log(H2O)+β2T +β3 log(time+ 0.0001).

As seen in Table B1, several equations occur repeatedly; in
particular, the top three equations without TGS2600 are the
same for the inside and outside datasets, in different orders
but with similar RMSE and R2 values. As log(TGS2611)∼
log(H2O)+ T + log(time) performs well for both the in-
side and outside datasets and as it performs best across the
datasets with the added log(TGS2600) term, we chose this
regression to use as our Eq. (1) in the main text and the ver-
sion with added log(TGS2600) to use as Eq. (2).

Appendix C: Diurnal patterns in methane levels

We observed diurnal patterns in methane levels in some por-
tions of the outside dataset, as seen in Fig. C1c1, with in-
creases in methane levels at night and lower levels in the day.
The time period depicted was a rainy week; diurnal patterns
were smaller or absent in dry periods.

Methane levels at our inside site also fluctuated, as seen
in Fig. C1c2. These fluctuations appeared to be primarily the
result of interactions with the anaerobic digester, with pulses
occurring when the digester was opened for feeding or gas
removal. The digester also likely released methane sporad-
ically when internal pressure was released through its pres-
sure relief system, which was simply a tube submerged in
several inches of water.

https://doi.org/10.5194/amt-17-2103-2024 Atmos. Meas. Tech., 17, 2103–2121, 2024



2120 D. Furuta et al.: A low-cost sensor node for near-background methane

Figure C1. Examples of short periods of the outside (a1–d1) and inside (a2–d2) experiments.

Code and data availability. Code and data are available at
https://doi.org/10.13020/CDVH-E012 (Furuta et al., 2023).
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