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Abstract. The most reliable areal precipitation estimation
is usually generated via combinations of different measure-
ments. Path-averaged rainfall rates can be derived from com-
mercial microwave links (CMLs), where attenuation of the
emitted radiation is strongly related to rainfall rate. CMLs
can be combined with data from other rainfall measurements
or can be used individually. They are available almost world-
wide and often represent the only opportunity for ground-
based measurement in data-scarce regions. However, deriv-
ing rainfall estimates from CML data requires extensive data
processing. The separation of the attenuation time series into
rainy and dry periods (rain event detection) is the most im-
portant step in this processing and has a high impact on
the resulting rainfall estimates. In this study, we investigate
the suitability of Meteosat Second Generation Spinning En-
hanced Visible and InfraRed Imager (MSG SEVIRI) satellite
data as an auxiliary-data-based (ADB) rain event detection
method. We compare this method with two time-series-based
(TSB) rain event detection methods. We used data from 3748
CMLs in Germany for 4 months in the summer of 2021 and
data from the two SEVIRI-derived products PC and PC-Ph.
We analyzed all rain event detection methods for different
rainfall intensities, differences between day and night, and
their influence on the performance of rainfall estimates from
individual CMLs. The radar product RADKLIM-YW was
used for validation. The results showed that both SEVIRI
products are promising candidates for ADB rainfall detec-
tion, yielding only slightly worse results than the TSB meth-

ods, with the main advantage that the ADB method does not
rely on extensive validation for different CML datasets. The
main uncertainty of all methods was found for light rain.
Slightly better results were obtained during the day than at
night due to the reduced availability of SEVIRI channels at
night. In general, the ADB methods led to improvements for
CMLs performing comparatively weakly using TSB meth-
ods. Based on these results, combinations of ADB and TSB
methods were developed by emphasizing their specific ad-
vantages. Compared to basic and advanced TSB methods,
these combinations improved the Matthews correlation coef-
ficient of the rain event detection from 0.49 (or 0.51) to 0.59
during the day and from 0.41 (or 0.50) to 0.55 during the
night. Additionally, these combinations increased the num-
ber of true-positive classifications, especially for light rain-
fall compared to the TSB methods, and reduced the number
of false negatives while only leading to a slight increase in
false-positive classifications. Our results show that utilizing
MSG SEVIRI data in CML data processing significantly in-
creases the quality of the rain event detection step, in partic-
ular for CMLs which are challenging to process with TSB
methods. While the improvement is useful even for applica-
tions in Germany, we see the main potential of using ADB
methods in data-scarce regions like West Africa where ex-
tensive validation is not possible.
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1 Introduction

Rainfall is the most important variable for hydrology and
water management. It is characterized by high variability
in space and time, especially in the case of convective rain
events. The quality of hydrological modeling results depends
heavily on high-resolution and reliable areal rainfall data (Fu
etal.,2011; Bruni et al., 2015; Rafieeinasab et al., 2015; Cris-
tiano et al., 2017).

There are a variety of rainfall measurement methods that
serve as a basis for the derivation of rainfall fields, each with
specific advantages but also drawbacks. Rain gauges can pro-
vide point measurements of precipitation with high accuracy,
but they are prone to errors due to wind and evaporation
(Sevruk, 2006) and primarily lack spatial representativeness
(Pollock et al., 2018).

Satellite data provide areal precipitation estimates almost
worldwide with a spatial resolution of the order of several
kilometers. But they suffer either from a poor temporal res-
olution like the GPM core satellite that has a revisit time of
approximately 1d in the tropics or from heterogeneous data
quality and delayed availability like merged satellite products
such as IMERG (Hou et al., 2014). Additionally, complex re-
trieval and calibration algorithms have to be applied, which
cause additional uncertainties (Maggioni et al., 2016).

Weather radars derive areal precipitation estimates with a
high resolution of 5 min and 1 km (Atlas, 1990; Bartels et al.,
2004; Winterrath et al., 2012). However, the calculation of
rain rates from radar reflectivity is non-trivial (Uijlenhoet
etal., 2003; Steiner et al., 2004), and false echoes, clutter, and
other measurement effects cause further problems (Villarini
and Krajewski, 2010; Wagner et al., 2012; Wagner, 2018).
Schleiss et al. (2020) showed that radar data tend to underes-
timate particularly heavy rainfall in Scandinavian countries.
Nevertheless, gauge-adjusted radar products are considered
to be one of the best possible data basis for spatial rainfall
estimates because they leverage the advantages from indi-
vidual measurement devices (Bartels et al., 2004; Winterrath
et al., 2012).

The opportunistic sensing of rainfall with commercial
microwave links (CMLs) was first demonstrated in Israel
(Messer et al., 2006) and the Netherlands (Leijnse et al.,
2007). In recent years CML rainfall estimation has become
available on country-wide scales (Overeem et al., 2016; Graf
et al., 2020). Rainfall attenuates the microwave radiation be-
tween two antennas of a CML. The relationship between at-
tenuation and rainfall is close to linear for signals between 10
and 40 GHz (Atlas and Ulbrich, 1977). CMLs have already
proven their potential as stand-alone rainfall sensors in mul-
tiple regions of the world (Overeem et al., 2013; Rios Gaona
etal., 2015; Overeem et al., 2016; D’ Amico et al., 2016; Graf
et al., 2020; Roversi et al., 2020; van de Beek et al., 2020;
Djibo et al., 2023).

Additionally, the path-averaged rainfall information from
CMLs can complement conventional measurement methods
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(Liberman et al., 2014; Haese et al., 2017; Graf et al., 2021).
Kumah et al. (2022), for instance, derived rain intensities
from MSG satellite data by a random forest algorithm trained
with CML rainfall estimates. For regions with sparse obser-
vation networks like most parts of Africa, where radar data
are missing and even station data are only sparsely available,
CMLs can deliver additional ground-based rainfall estimates
(Djibo et al., 2023). Thus, the use of CML data is a good
opportunity to reduce the gap in the global availability of
climate information, as recently emphasized by UNFCCC
(2022).

The detection of rain events in CML attenuation time se-
ries is an important processing step for several reasons. First,
it defines the rainy periods for which a baseline has to be
defined, typically from preceding dry time steps. Second, it
filters fluctuations that are not caused by rain but by other dis-
turbances, e.g., from refraction, multi-path propagation, or
mast sway (see Chwala and Kunstmann, 2019 for a detailed
list). For an overview of available rain event detection meth-
ods, we divide them into two categories: time-series-based
(TSB) methods and methods based on auxiliary data of rain-
fall patterns (ADB). ADB methods that are based on globally
available data like the satellite data presented in this study
are especially promising for CML processing in regions with
otherwise sparse rainfall information.

Examples of TSB methods are the simple threshold mod-
els (Leijnse et al., 2008), an approach using the rolling stan-
dard deviation (Schleiss and Berne, 2010), Markov switching
models (Wang et al., 2012), or short-term Fourier transform
approaches (Chwala et al., 2012). Messer and Sendik (2015)
provide a detailed description of these approaches. Machine
learning approaches to distinguish between wet and dry time
steps emerged in recent years, usually outperforming the pre-
vious methods (Habi and Messer, 2018; Polz et al., 2020;
Song et al., 2020). The “nearby-link” approach (Overeem
et al., 2016) is a hybrid TSB and ADB method because
it compares CML attenuation time series of neighboring
CMLs. Similar to CMLs, satellite microwave links (SMLs)
can be exploited to derive rainfall estimates. SML process-
ing also includes rain event detection and several methods
are available (Giannetti et al., 2019; Giro et al., 2022).

Data sources in ADB methods can be weather radar
(Overeem et al., 2011) or satellite data (van het Schip et al.,
2017; Kumah et al., 2021). Regarding satellite data, geo-
stationary satellites such as MSG SEVIRI offer a temporal
resolution of 15min at 4 x 6 km spatial resolution in mid-
latitudes. These data are also used as areal precipitation (Roe-
beling et al., 2008; Roebeling and Holleman, 2009), although
the derivation of precipitation from Vis and IR channels is
often uncertain. According to NWC SAF (Lahuerta Garcia,
2021), even a distinction between light, moderate, and heavy
precipitation is difficult. That is why they determine the prob-
ability of precipitation in their post-processed SEVIRI prod-
ucts.
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The study by van het Schip et al. (2017) analyzed applying
post-processed SEVIRI products as a wet—dry indicator in
the Netherlands. They evaluated the resulting rainfall maps
for 12d and found improvements compared to not separat-
ing the time series into wet and dry periods but a decreased
performance compared to radar-based rain event detection.
However, they did not compare the methods for individual
CMLs, different rainfall intensities, or day and night peri-
ods for which the satellite products use different channels
and methodologies. They also did not combine their ADB
method with a TSB method.

Kumah et al. (2021) obtained improved rain intensities for
convective rain events when applying MSG SEVIRI data for
rain event detection of CML data. However, their results are
based only on one CML in Kenya for daytime and for rain
intensities above 0.5mmh~!. The limitation of both stud-
ies regarding the analyzed period, the number of CMLs, in-
tensity classes, and day and night differences hinders the
transferability of their results. None of the rain event detec-
tion methods presented can provide a high-quality classifi-
cation for CML datasets with varying characteristics (e.g.,
sparse or dense network, various temporal resolutions, differ-
ent frequency ranges). CMLs with frequencies below 10 GHz
which are commonly deployed in sparse CML networks in
rural sub-Saharan Africa still pose great challenges for all
available rain event detection methods. Yet, these regions are
often associated with a high potential for CML as the sole
source of rainfall estimates.

In this study, the precipitation products PC (Precipitating
Clouds) and PC-Ph (Precipitation Clouds from Cloud Phys-
ical Properties), which are computed by NWC SAF using
data from the SEVIRI radiometer on board the geostationary
satellite METEOSAT, are used to classify CML attenuation
time series in rainy and dry periods. In addition to compar-
ing ADB (based on PC and PC-Ph) and TSB (CML time se-
ries processing) methods, this study presents a novel way of
combining TSB and ADB rain event detection approaches
to improve rain event detection. To analyze the applicability
of such new rain event detection methods, datasets of high
data quality are necessary. The present analysis is based on
country-wide CML data from 4 months in the summer of
2021 in Germany. As a reference, a high-resolution gauge-
adjusted radar product is used.

The research questions of this investigation are as follows:
(1) are PC and PC-Ph products suitable as wet—dry indicators
for CML data? (2) Do the results vary with rain intensity?
(3) Are there noticeable differences between day and night?
(4) Can a combination of TSB and ADB rain event detection
methods outperform TSB-only and ADB-only methods?

2 Data

This study is based on CML, weather radar, and SEVIRI
data in Germany covering the period from 30 April 2021 to
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Figure 1. Scatter density plot showing the distribution of length and
frequency of the 3748 CMLs in Germany that are used in this study.

10 September 2021. Table 1 summarizes the properties of
these products.

2.1 CML data

The CML dataset consists of a subset of CMLs operated by
Ericsson in Germany. For the period analyzed, 3748 CMLs
were available for more than 30 % of the time and thus con-
sidered in this study. The path length of the CMLs varies
between 0.2 km and about 30 km, and the frequencies range
from 10 to 40 GHz, with shorter CMLs using higher frequen-
cies (see Fig. 1). The transmitted signal level (TSL) with a
power resolution of 1 dB and the received signal level (RSL)
with a power resolution of 0.3 dB are instantaneously mea-
sured every minute using a custom real-time CML data ac-
quisition system (Chwala et al., 2016). The total loss (TL) is
the difference between TSL and RSL. Each CML consists of
two sublinks for two-way data transmission. The processing
of the data is described in Sect. 3.2.

2.2 Weather radar data

RADKLIM-YW is a gauge-adjusted, climatologically cor-
rected radar product of the German Meteorological Service
(DWD). The hourly adjustment with data from automatic
rainfall stations is identical to that of the RADOLAN-RW
product (Bartels et al., 2004; Winterrath et al., 2012). Daily
sums are adjusted with daily measurements of manual rain-
fall stations and climatology-based corrections of spokes and
range dependencies are carried out (Winterrath et al., 2018).
RADKLIM-YW data have a temporal resolution of 5min
and a spatial resolution of 1km covering Germany with
1100 x 900 grid cells. According to Kreklow et al. (2020),
the range-dependent effects, which are particularly strong in
winter, are reduced. This improves rainfall patterns and bet-
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Table 1. Overview of rainfall sensors and products.

Sensor Product Spatial resolution Temporal  Data points (including

(longitude x latitude) resolution missing values)
C-band weather radar RADKLIM-YW  1km x 1km 5 min 30808 350 000
MSG SEVIRI PC & PC-Ph 34-5.1km x 4.0-6.4km  15min 1330560000
CML - 3748 CML paths 1 min 765649270

ter represents orography compared to RADOLAN-RW. At
the same time, however, a slight underestimation of the total
rainfall was determined.

RADKLIM-YW is used to validate the binary classifica-
tions of rain event detection methods and the rainfall esti-
mates derived from CMLs using these methods. To compare
the gridded RADKLIM-YW with the CMLs, we averaged
the grid for each individual CML path weighted by the length
of intersecting path segments in each pixel. RADKLIM-YW
was aggregated to a resolution of 15 min. For the usage as a
binary wet—dry reference, we used a rainfall intensity thresh-
old of 0.1 mmh~" at the 15 min resolution. All values below
0.1 mmh~! were considered dry.

To answer research question (2), on whether the per-
formance of rain event detection methods shows a rain
rate dependency, we define intensity classes and group
the 15min radar rainfall intensities. The classes light
(0.1-2.5mmh~"), moderate (2.5-10.0mmh~!), and heavy
(more than 10.0mmh~1!) rainfall are based on the DWD
(2023a) classification. Light rainfall is further subdivided
into the classes lightl (0.1-1.0 mmh~') and light2 (1.0-
2.5mmh~!). Values below 0.1 mmh~! are considered dry.
The resulting classes are shown in Fig. 7.

2.3 SEVIRI data

The Spinning Enhanced Visible and Infrared Imager (SE-
VIRI) radiometer from the geostationary satellite ME-
TEOSAT provides image data in two visible (Vis), one high-
resolution Vis, and nine infrared (IR) channels including one
near-infrared channel (NIR). The channels range from 0.5 to
14.4 um with a resolution of 3 km at the sub-satellite point.
The high-resolution channel is not used for our purposes.
Every 15min a calibrated image of the full Earth disk (lat
—81 to 81°, long —79 to 79°) is available (Schmid, 2000).
No spaceborne radar or radiometer for precipitation measure-
ment is on board, such as for GPM (Hou et al., 2014). Precip-
itation products are derived based on two approaches: either
by regression of different channels and adjustment to precip-
itation measurements or, more sophisticatedly, by deriving
microphysical parameters (Roebeling et al., 2008; Hernanz
et al., 2019). For the calculation of microphysical parame-
ters, the 0.6 um channel (Vis) and the 1.6 um channel (NIR)
are mandatory (Roebeling et al., 2008).

The first product, PC-Ph, is derived from the microphysi-
cal parameter effective radius (Reff) and cloud optical thick-
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ness (COT) during daytime. At night, when visible channels
are missing, it is calculated by a regression of IR and wa-
ter vapor (WV) channels. The second product, PC, relies on
different regression functions of available SEVIRI channels,
including Vis, IR, and WV channels during daytime and only
IR and WV channels at night. The definition of daytime and
nighttime is derived from the variable pccond that is provided
for both PC and PC-Ph. Both products are provided by NWC
SAF. Recent data are freely available, but long-term records
must be requested individually.

We chose both products for this study because they pro-
vide the probability of precipitation in percent: PC in in-
crements of 10 and PC-Ph in increments of 1 %. Compared
to a pure precipitation product, the precipitation probabil-
ity products enabled us to consistently alter the classifica-
tion threshold similar to how it can be done for certain TSB
methods. Example time series of the precipitation probabil-
ity are shown in Fig. 2b and c. More detailed descriptions and
the evaluation of the two products are available from Thoss
(2014), Hernanz et al. (2019), and Lahuerta Garcia (2019).
Similar to RADKLIM-YW, we derived PC and PC-Ph values
along the CML paths. The validation of PC or PC-Ph wet and
dry labels is based on the path averages of RADKLIM-YW.

3 Methods
3.1 Rain event detection
3.1.1 Individual methods for rain event detection

We used two existing time-series-based (TSB) methods as a
baseline for rain event detection. The first one is based on the
rolling standard deviation of total loss (TL). Time steps for
which the standard deviation of a 60 min rolling window ex-
ceeds a certain threshold are considered wet. This approach
was originally suggested by Schleiss and Berne (2010), who
used a fixed threshold. Later, Graf et al. (2020) determined
the threshold based on the 80th percentile of the 60 min
rolling standard deviation of TL multiplied by a scaling fac-
tor of 1.12 that adapted the threshold to the general amount of
noisiness of each CML. This method will be called RS. The
second method is a machine learning approach based on a
convolutional neural network (CNN) that was trained to clas-
sify TL time series into rainy and dry time steps from Polz
et al. (2020). This model provides a continuous probability

https://doi.org/10.5194/amt-17-2165-2024
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Figure 2. Example time series of 5 d showing the probability of rainy time steps from (a) convolutional neural network (CNN), (b) PC, and
(c) PC-Ph for the total loss (TL) time series in (d). The dashed lines in (a), (b), and (c¢) represent the thresholds that separate the probabilities
into rainy and dry time steps. Higher thresholds (CNN94, PC30, PC-Ph30) lead to a conservative rain event detection, classifying only time
steps as rainy which have a high probability of being rainy; in contrast, low thresholds (CNN10, PC10, PC-PhO1) lead to a liberal rain event
detection, and only time steps that are very likely dry are dry. Additionally, the combination of PC10 with CNN and PC variants as rain event

detection methods is shown in (d).

between 0 and 1 that describes the likeliness that a time step
is rainy. Therefore, the choice of threshold that divides the
probability values into rainy and dry time steps determines
whether the classification is more liberal or conservative. We
adopted the classification threshold of 0.82, which was found
to be optimal by Polz et al. (2020). This method will be called
“CNN”. Figure 2a shows an example of the CNN probability
and the three thresholds used later in the combination of rain
event detection methods. Both TSB approaches were com-
pared in Polz et al. (2020) based on hourly data with a signif-
icantly better performance of CNN compared to RS. Identi-
cally to Polz et al. (2020), we computed RS and CNN based
on 1 min TL data.

We used PC and PC-Ph products from SEVIRI data as
ADB rain event detection by applying a threshold on their
precipitation probabilities. We used the thresholds 30 %,
20 %, 10 %, and 0.1 %. The last threshold represents proba-
bilities greater than 0 %. The abbreviations for the thresholds
are, e.g., P30 or PO1, and the abbreviations for the specific
data sets of PC and PC-Ph are, e.g., PC10 or PC-Ph10. We
forward-filled the 15 min classification to a 1 min resolution
in the CML processing described in Sect. 3.2. This temporal
resolution is necessary for the two TSB methods and other
CML processing methods such as WAA compensation and
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baseline estimation as they were developed and tested for this
resolution (Graf et al., 2020).

3.1.2 Combinations of rain event detection methods

The main goal of this study is to improve rain event detec-
tion compared to already available methods by combining
TSB and ADB methods. Using TSB methods, detecting light
rain events is more difficult than detecting strong rain events
because it is harder to differentiate smaller attenuation from
fluctuations induced by other factors than rain. ADB meth-
ods do not use TL for rain event detection, overcoming this
issue, but in the case of SEVIRI, uncertainties are introduced
by the indirect measurement principle and the difficulties of
separating light rain from no rain. We therefore propose com-
bining TSB and ADB methods to exploit their advantages.
We use different probability thresholds for CNN and the two
SEVIRI products to derive rain event detection variants with
either high confidence in the correct classification of rainy
time steps or high confidence regarding dry time steps. The
thresholds used are shown in Fig. 2. CNN10 and PCO1 are
liberal variants in the sense that they classify rainy time steps
already for low probabilities, potentially introducing many
false positives (FPs). Hence, time steps that are predicted to
be dry have a lower chance of being false negative (FN). In

Atmos. Meas. Tech., 17, 2165-2182, 2024
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contrast, CNN94 and PC30 are considered conservative vari-
ants because they only classify time steps with a very high
probability as rainy. This leads to a low number of FPs while
introducing more FNs.

Our procedure of combining the rain event detection vari-
ants consists of five individual steps presented in Fig. 3 and
algorithm 1 shown in Fig. A1. We combined either CNN and
PC or CNN and PC-Ph. In the following, the combination of
CNN and PC is explained. In step 1, we choose a method
with an intermediate threshold as a starting point which is ei-
ther CNN82, PCO1, or PC10. Step 2 uses the dry time steps
from the liberal variant PC10 (even if it was used as the start-
ing point) that has a high confidence for dry time steps to
replace rainy time steps from step 1. Steps 3 and 4 use time
steps with high confidence of being rainy from CNN94 and
PC30 to replace time steps classified as dry after step 2. In
step 5, dry time steps from CNN10 are used to replace previ-
ously rainy time steps. The combination of CNN and PC-Ph
is identical using PC-Ph with the same thresholds instead of
PC. The results of six combinations are shown in Fig. 5. We
named the combinations based on their initial product used
for step 1 as the other steps were identical for each combina-
tion, e.g., PC10-combined.

In total, we will evaluate two TSB methods (RS and CNN),
eight ADB methods (derived from the two SEVIRI products
PC and PC-Ph with four thresholds, respectively), and six
combinations of TSB and ADB methods.

3.2 CML data processing

Deriving rainfall estimates from CMLs is a delicate matter
(Uijlenhoet et al., 2018). Various research groups developed
individual CML processing methods that depend on, e.g., the
sampling strategy of data. The most important aspects of data
processing are briefly outlined hereafter, while a more de-
tailed description of the processing steps can be found in Graf
et al. (2020). We removed default values and outliers that
were outside the range [—10, 40] dB for TSL and [-99, 0] dB
for RSL from the analysis. The total path loss along the CML
(TL) was then calculated as TSL minus RSL. We interpolated
gaps in TL time series of up to 5 min to obtain a more con-
tinuous data availability.

For the rain event detection, we used two TSB methods,
two ADB methods with four different thresholds, and six
combinations of TSB and ADB methods. As SEVIRI is only
available with a 15 min resolution, we resampled their clas-
sification to a 1 min resolution with a forward-fill. We com-
puted the following processing steps for each rain event de-
tection method on a 1 min basis to derive individual rainfall
estimates. The baseline attenuation was dynamically identi-
fied from the preceding dry period of each rain event to derive
the rainfall-induced attenuation along the path. The baseline
was determined by the last dry time step of the TL time series
and was set to be constant during the rain event. As water on
the CML antenna covers can lead to additional attenuation,

Atmos. Meas. Tech., 17, 2165-2182, 2024

M. Graf et al.: Combination of CML rain event detection with MSG SEVIRI

this so-called wet antenna attenuation (WAA) effect has to be
compensated for. We used the WAA correction from Leijnse
et al. (2008). In this physical approach, the WAA depends
on antenna cover properties (refractive index and thickness),
microwave frequency, and rain intensity. We used the param-
eters given by Leijnse et al. (2008). The rainfall rate was de-
rived from WAA-corrected attenuation using the k—R rela-
tion. The parameter settings for the k—R relation were taken
from ITU recommendations (ITU-R, 2005). From a purely
practical point of view, we only evaluated data from the first
of the two available sublinks.

For comparison with the reference, the binary classifica-
tions from the TSB methods and all resulting rain rates were
resampled to a 15 min resolution. We believe that a resam-
pling to 15 min and the fact that RADKLIM-YW is adjusted
to rain gauges suffice for overcoming the potential tempo-
ral mismatch between radar- and ground-based CML obser-
vations. The evaluation with a 15 min resolution might lead
to worse results than one on an hourly basis. But for future
applications of SEVIRI products for CML processing in re-
gions with sparse reference data like sub-Saharan Africa, this
high temporal resolution is advantageous.

3.3 Statistical measures

The radar rainfall estimates at a 15 min resolution serve as
the ground truth for the computation of the scores listed be-
low. For binary classification scores, the ground truth is con-
sidered wet if the path-averaged radar rain rate (rr) along
the CML path is larger than 0.1 mmh~'. The Pearson cor-
relation coefficient (PCC) is used to evaluate the quality, in
terms of the linear correlation, of different CML rainfall esti-
mates (rcm) derived by using the proposed methods for rain
event detection:

Z (rref — Tref) (Feml — Teml)
\/Z (Fref —@)2\/2 (reml — %)2

where the 7 indicates the mean of a quantity. The relative bias
(RB) is then used to measure an over- or underestimation that
cannot be derived from the PCC:

_ > (Feml = Trer)
eref '

Binary classification scores are based on the confusion ma-
trix:

TP FP \ [ WET/wet DRY/wet
FN TN /~ \ WET/dry DRY/dry )’

PCC =

6]

RB ()

3)

with uppercase and lowercase denoting observed events and
predictions, respectively. The correctly assigned wet time
steps are called “true positives” (TPs) and the correctly as-
signed dry times steps are “true negatives” (TNs). False pos-
itives (FPs) represent the number of time steps where rain
event detections are incorrectly assigned wet time steps, and
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Step 1

Start with well-performing
classification (CNN82, PO1 or P10)

Set wet time stepsto dry

Step 2 l

Set dry time steps to wet

where P01 is dry

Step3 where is wet
Step 4 Set dry time stgps to wet

where is wet
Step 5

Set wet time stepsto dry

where CNN10is dry

Conservative variants = more dry
events

More confidence that
wet classifications are correct

Wet-dry = more wet
classification events
choice More confidence that

dry classifications are correct

Figure 3. Flowchart for building a combination based on TSB and ADB rain event detection methods This stepwise approach starts with
an already well-performing classification as a starting point. Then, during each step, time steps that have a high likelihood of being dry (or
we) from a very liberal (or conservative) classification from the two methods used are added to the previous classification. If PC is used as a
starting point, steps 2 and 4 also use PC. The same is true for PC-Ph. For CNN82 as a starting point, we computed one variant with PC and
one with PC-Ph. An algorithmic description of this flowchart can be found in Fig. Al.

false negatives (FNs) represent the number of incorrect dry
time steps. The confusion matrix fully explains the perfor-
mance of a classifier, but since the interpretation of four in-
dividual numbers is not straightforward, the computation of
additional scores is necessary. The first simplification is to
reduce it to the pair of true-positive rate (TPR, Eq. 4), which
is the probability of a positive event being predicted positive,
and the false-positive rate (FPR, Eq. 5), also called the “false-
alarm rate”. We include both scores since the importance of
a high TPR or FPR may be weighted differently depending
on the application of the CML rainfall rates.

TP
TPR= — )
(TP +EN)
FP
FPR= — 5)
(FP +TN)

In this paper, we focus on improving the overall perfor-
mance of rain event detection and thus use the Matthews cor-
relation coefficient (MCC, Eq. 6), which is more robust to
influences of the skewed distribution of wet and dry classes
(the ratio is roughly 1:20). The MCC is high only if the de-
tection performance for both wet and dry classes is high.

(TP-TN — FP - FN)
MCC = (6)
/(TP + FP)(TP + FN)(IN + FP)(IN + FN)

The classifier accuracy (ACC, Eq. 7) is used to analyze the
performance for the different rainfall intensity classes and
gives the percentage of the time steps in the intensity class
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that were detected as wet (or dry for the dry class).

(TP +TN)
ACC = 7)
(TP + FP + FN +TN)

4 Results

In this section, we first compare the ADB products derived
from Meteosat-SEVIRI with the weather radar reference to
assess their suitability as wet—dry indicators within the pro-
cessing of CML data. Subsequently, we analyze the relative
performance of ADB and the combination of ADB and TSB
methods with respect to the performance of established TSB
methods. Then, we analyze the performance regarding dif-
ferent rain intensity classes and investigate the influence of
different rain event detection methods on the performance of
individual CMLs. All the rain event detection methods pre-
sented here were used in combination with the CML process-
ing routine described in Sect. 3.2, and the resulting datasets
were compared with the path-averaged weather radar refer-
ence on a 15 min basis. All scores computed for all methods
and the full dataset are additionally shown in the Appendix
(see Table B1).

4.1 Rain event detection performance of the PC and
PC-Ph SEVIRI product

To assess the quality of the SEVIRI products, they can be

compared directly to the weather radar reference. To over-
come the issue of their different grid sizes and to assess their

Atmos. Meas. Tech., 17, 2165-2182, 2024
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quality for their use in CML processing, we compared SE-
VIRI and RADKLIM-YW data as path averages along the
CML paths. To compare the PCC of the different SEVIRI-
based products and the applied thresholds, processing the
CML rainfall rates according to Sect. 3.2 was performed us-
ing the SEVIRI wet—dry indicator.

Figure 4 compares the performance of the PC and PC-Ph
products according to the TPR, FPR, MCC, and PCC scores.
The highest TPR (0.83 during the day and 0.9 during the
night) was achieved by the lowest threshold for PC and PC-
Ph (PO1), which also showed the highest FPR (0.14 during
the day and 0.22 during the night). For PC, the TPR and
FPR were increased during the night, but for PC-Ph, only the
FPR was significantly increased during the night, except for
the P30 version which also showed a higher nighttime TPR.
Both the TPR and FPR decreased with increasing threshold,
which is due to the decreasing number of positive predic-
tions. The ratio of TP 4 FP and TP + FN describes how many
more time steps a method predicted as wet compared to the
reference. Accordingly, PCO1 showed 195 % (151 % for PC-
PhO1) more wet time steps than the radar data, and PC30
showed the opposite behavior with 36 % (52 % for PC-Ph30)
fewer wet time steps than the reference (see Table B1 in the
Appendix).

The MCC shown in Fig. 4, which measures the overall
classification performance, showed that the P10 threshold
yields the best results for PC during the day and night. The
best results for PC-Ph were achieved by the P10 threshold
during daytime and by the PO1 threshold during nighttime.

Figure 7b shows the accuracy of PC and PC-Ph. The ac-
curacy increases with a higher threshold, whereas the relative
bias shown in Fig. 7d becomes more negative with higher ab-
solute values, suggesting an increasing underestimation com-
pared to the radar. This is due to an increasing number of TN
and FN predictions.

When computing CML rainfall rates based on the PC and
PC-Ph wet—dry labels, the highest PCC was achieved using
the PO1 threshold with values around 0.72. P10 showed only
marginally lower scores. When higher thresholds were ap-
plied, the performance decreased more severely. Overall, PC
showed slightly higher scores than PC-Ph and the perfor-
mance during daytime was equal to or better than the per-
formance at nighttime.

According to this analysis, POl and P10 were the most
promising thresholds to apply for SEVIRI-based, pure ADB
wet—dry detection. Both PC and PC-Ph show good classifi-
cation and regression scores for these thresholds. Because of
the bad PCC, P30 is not suitable as a threshold for a stand-
alone ADB method and we did not analyze its performance
any further. However, we did use it for wet labels with high
confidence in the combination algorithm.
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4.2 Comparison of ADB (PC and PC-Ph), TSB, and
combined rain event detection methods

Due to the increased number of products that are evaluated in
this subsection, we limit the analysis to using only the MCC
as a measure of classification performance since it gives the
best summary of the confusion matrix in one scalar value.
Figure 5 shows an analysis that was carried out for the two
TSB methods RS (gray) and CNN (green) and for six ADB
methods using the three lowest thresholds (0.1, 10, and 20) of
PC (blue) and PC-Ph (orange). The SEVIRI products, PC and
PC-Ph, performed similarly well to the CNN and RS meth-
ods during daytime, with MCC scores ranging from 0.49 to
0.51. The best performance during daytime was achieved by
PC-Ph10 and the worst by PC-Ph20. During nighttime, the
CNN outperformed the ADB methods, while the standard
deviation approach showed a similar performance to PC and
PC-Ph except for the higher P20 threshold, which showed
the worst performance. Probabilities of 20 % and above (not
shown here) showed even worse results.

At night, the results of RS were worse than during the day.
One reason could be dew formation on the CML antenna
cover, causing an increasing signal attenuation resulting in
increased standard deviation, which leads to false classifica-
tion as wet. The CNN did not show differences between day
and night, suggesting that it coped better with this issue. The
SEVIRI-based products also showed slightly worse results
during nighttime, but this was most likely due to the lack of
three SEVIRI channels in the Vis and NIR at night.

SEVIRI-based rain event detection with probabilities of
up to 10 % provided a similar performance to RS and CNN
during the daytime but performed worse than CNN during
the night.

Figure 6 shows an example time series of TL, TP, FP, and
FN classifications and the rainfall rate of the PC10 and CNN
methods as well as the combined method PC10-combined.
It can be seen that the choice of rain event detection method
has an impact on the resulting rainfall rate. The combined
method improves the classification performance and corre-
lation of rainfall rates compared to the pure ADB and TSB
methods.

In addition to the individual TSB and ADB methods, Fig. 5
shows six different combined methods (purple and red) that
are composed of CNN, PCO1, or PC10 as a starting point and
done for either PC or PC-Ph. As before, PC is shown on the
left and PC-Ph on the right.

The main difference among the combinations is that PC
data performed better than PC-Ph during daytime and similar
at nighttime. CNN and PC(-Ph)10 were the best-performing
TSB and ADB methods and were, therefore, compared with
the combined products. PC10-combined showed the largest
overall improvements with an MCC of 0.59 compared to
0.52 (CNN) and 0.52 (PC-Ph10) during daytime and 0.55
compared to 0.50 (CNN) and 0.41 (PC10) at nighttime.
PC10-combined also showed the lowest relative bias of
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Figure 4. Performance metrics of the binary rain event classification (TPR, FPR, and MCC) and the rainfall rates (PCC) of the PC (blue) and
PC-Ph (orange) products compared to the radar reference. The results of each score are presented for different thresholds (x axes) and split
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Figure 5. Matthews correlation coefficient (MCC) of pure TSB, ADB, and combined methods. PO1, P10, and P20 refer to the respective PC
and PC-Ph thresholds. The results are split into day (light colors) and night (dark colors). The best-performing day and night products of

each group are marked with a triangle.

—2.1 % compared to PCO1-combined with 2.6 % and CNN-
combined with —10.8 % (see Fig. 4d). The relative bias was
also lower than that of pure TSB or ADB methods. In the
following, we concentrate on PC10-combined to evaluate
the performance gain using a combination of ADB and TSB
methods in more depth for different intensity classes and in-
dividual CMLs.

PC10 showed the best performance when combined with
the CNN method (described and shown in the next section)
and is thus used as a new ADB method for all final results in
the following sections.

4.3 Performance of rain event detection methods for
different rain intensity classes

Figure 7 shows the accuracy and relative bias for the TSB,
ADB, and combined methods. The relative bias is, for all
individual intensity classes, a percentage of the average ref-
erence rainfall rate (mean over all classes) such that Fig. 7c
is the sum of the classes shown in Fig. 7d.

It can be observed that for all methods the accuracy in-
creased with increasing intensity and that the CNN per-
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formed better than RS for all intensities, which confirms the
results of Polz et al. (2020) for the same CML network but a
different period. Therefore, we omit RS in the remaining Re-
sults section. Overall, all rain event detection methods lead
to an underestimation of light to heavy rainfall, which was
only partly compensated for by an overestimation from FPs
(dry class).

PC performed better than PC-Ph for light to moderate in-
tensity and similar for heavy intensity but had a lower accu-
racy for the dry class, suggesting more FPs for PC when the
same threshold was chosen.

Although more methods are shown, we will focus on
the best TSB (CNN), ADB (PC10), and combined (PC10-
combined) methods from here on to sharpen the analysis.

For the lowest class, lightl, we observed large differences
in accuracy with 60.1 % (CNN), 73.2 % (PC10), and 77.8 %
(PC10-combined), while the accuracy was similar for the
highest class, heavy, with 93.7 % (CNN), 91.0 % (PC10), and
94.3 % (PC10-combined). The TSB and combined methods
showed a similar dry accuracy, which was higher than for the
ADB methods.
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The positive relative bias due to FPs (Fig. 7c dry class)
is similar for CNN (11.3 %), PC10 (8.9 %), and PC10-
combined (12.7 %). The relative bias for the light, moderate,
and heavy classes is negative (underestimation) for all meth-
ods but has a smaller absolute value for PC10-combined.
For example, the bias for the light2 class is —7.1 % (CNN),
—8.4% (PC10), and —4.4% (PC10-combined). Overall,
PC10-combined (—2.1 %) shows a much lower bias than
the TSB and ADB methods of CNN (—11.5 %) and PC10
(—20.8 %).

Figure 8 shows histograms of the occurrence and accumu-
lated rainfall amount of CNN, PC10, and PC10-combined us-
ing logarithmic bin widths to be able to visualize differences
for all intensity classes. PC10-combined showed the high-
est count of TPs and the lowest count of FNs. Despite this,
the number of FPs was lower than for PC10. PC10 showed
a similar TP count as CNN but also has the highest number
of FPs. The CNN was the most conservative method with the
lowest number of FPs. The average rainfall amount per count
per CML was different for TPs and FPs. TPs occurred for
higher rainfall rates, and therefore this average was 0.43 mm
(CNN), 0.39 mm (PC10), and 0.40 mm (PC10-combined).
FPs occurred for lower rainfall rates, and therefore the aver-
age was 0.09 mm (CNN and PC10 combined) and 0.07 mm
(PC10). The average missed rainfall per FN, as measured by
the radar reference, was 0.16 mm (CNN), 0.21 mm (PC10),
and 0.15 mm (PC10-combined).

To analyze the confidence of individual methods for light,
moderate, and heavy rainfall predictions, we computed the
probability of a positive prediction coinciding with the ref-
erence (i.e., the ratio %}). For the lightl class, PC10-
combined was the most confident method with 0.56 com-
pared to 0.55 and 0.53 (CNN and PC10). For the light2 and
moderate classes, PC10 was the most confident and CNN
was the least confident method. For the heavy class, CNN
was the most confident and PC10-combined was the least
confident method.

4.4 Influence of chosen rain event detection method on
individual CMLs

The results so far were based on metrics that we computed
using all CML data. The performance of individual CMLs
might, however, differ from this mean behavior, and system-
atic differences between CMLs that compare well or badly
with the reference are possible. Therefore, scatterplots of the
MCC and PCC calculated for each CML individually are
shown to compare CNN and PC10 with PC10-combined in
Fig. 9. For the majority of CMLs, the MCC and PCC could be
improved by using PC10-combined instead of the best TSB
(CNN) and ADB (PC10) method. The average of the MCCs
using PC10 (or CNN) was increased from 0.44 (or 0.51) to
0.56. The CMLs with the worst MCC from CNN were im-
proved most when using the combination. For PCC the im-
provement was smaller (from 0.75 (0.78) to 0.79) but still af-
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fected more than 80 % of all CMLs. While PC10-combined,
compared to PC10, improved the PCC by up to 0.36 for indi-
vidual CMLs, the largest improvement from CNN to PC10-
combined was 0.15. CMLs with the worst PCC could not be
improved by using PC10-combined.

Compared to the overall PCCs of PC10, CNN, and PC10-
combined shown in Table B1, the mean of all CML PCCs is
slightly higher for all three products. This means that individ-
ual CMLs have a higher linear correlation with the reference
than the full dataset. Therefore, one can assume that individ-
ual CMLs show different biases that could not be compen-
sated for by any of the methods.

5 Discussion

5.1 Suitability of PC and PC-Ph products as wet—dry
indicators for CML data

The performance of PC and PC-Ph as wet—dry indicators for
CML data was analyzed in Sect. 4.1 and compared with TSB
methods in Sect. 4.2. The results showed that the classifica-
tion scores were only slightly lower than for the TSB meth-
ods. In general, the probability threshold had a larger influ-
ence on the rain event detection than the differences between
PC and PC-Ph. Both products showed better performance for
smaller probability thresholds. The linear correlation (PCC)
of derived CML rainfall rates with the reference was high-
est when the threshold was lowest, which is due to the lower
impact of FPs on PCC compared to FNs. This is surprising
because a more liberal classification than using PCO1 was not
possible. Usually, extremely liberal or conservative methods
are assumed to perform badly, which was the case for conser-
vative thresholds P20 and higher. For the SEVIRI products,
this does not seem to be the case. One reason might be that
the cloud mask, which both products use, has a good perfor-
mance over Europe and therefore has a high probability of
true-dry detection, resulting in a low number of FPs in gen-
eral and thus also for low thresholds.

In summary, PC and PC-Ph products perform surprisingly
well as wet—dry indicators for CML data. Since these ADB
methods are independent of the CML data, they can signifi-
cantly improve the rain event detection step for noisy CMLs
where erratic fluctuations hamper TSB methods. One lim-
itation of the approach based on SEVIRI data is that the
temporal resolution can be more than 1 magnitude lower
than the resolution of the CML data (e.g., 15 min vs. 1 min).
However, the recently launched Meteosat Third Generation
(MTG) satellites with the Flexible Combined Imager (FCI)
will improve the temporal resolution from 15 min of MSG
SEVIRI to 10 min.
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5.2 Performance of a combination of TSB and ADB
rain event detection methods compared to
TSB-only and ADB-only methods

The combined method was able to outperform both pure
ADB and TSB methods in detecting rain events. It was able
to make a good trade-off between conservative and liberal
methods used in the combination, which was shown by the
superior MCC scores. Figure 6 illustrates how such an im-
provement can be achieved, for example, by reducing FNs
that lead to a reset of the baseline at a higher level that ulti-
mately leads to rainfall rates that are too small for PC10.

The choice of a starting method for the combination only
had a small impact on the results because most, but not all,
initial predictions are overwritten in the combination pro-
cess. The best MCC and lowest bias were achieved by PC10-
combined, which is why it was chosen for a more detailed
comparison of scores for individual CMLs.

PC10-combined improved the MCC and PCC scores for
the vast majority of all CMLs, and only single outliers
achieved better scores using the pure ADB or TSB method.
Thus, we conclude that the combination algorithm is robust
against varying CML behavior. A limitation of the proposed
combination is that CNN relies on 1 min instantaneously
sampled CML data. However, a similar combination of ADB
with other TSB methods that can handle, for example, the
common 15 min “min-max” sampling should be easily ap-
plicable following the logic presented in Fig. 3.
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5.3 Performance differences between day and night

We observed a notable classification performance drop dur-
ing nighttime for PC and PC-Ph, but also for RS. For PC and
PC-Ph this day and night difference is very likely due to the
missing SEVIRI channels in the Vis range at night. The cal-
culation of microphysical variables is mainly based on these
channels. Their absence consequently limits the reliability of
all derived precipitation products. According to Fig. 4, this
effect significantly increases the rate of positive predictions.

While CNN was able to perform equally well during night-
time, the other TSB method RS showed a decreased per-
formance. One possible explanation could be the formation
of dew on the antennas during nighttime that can regularly
be observed in CML time series as a slowly increasing (af-
ter sunset) and decreasing (after sunrise) attenuation. The
more sophisticated pattern recognition algorithm of the CNN
method seems to be able to correctly classify these periods
as dry. The combined methods utilized the high confidence
of the CNN and reduced the day and night difference.

However, the PCC results for PC and PC-Ph showed that
a decrease in MCC during the night did not lead to a worse
correlation of derived rainfall rates.

5.4 Performance for different rainfall intensity classes

Our results confirmed that the detection performance is much
higher for moderate and heavy compared to light rainfall.
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Figure 9. Scatter density comparison of the combination of ADB and TSB methods (PC10-combined) with pure ADB (PC10, (a, b)) and
TSB (CNN, (¢, d)) methods using the Matthews correlation coefficient (MCC, (a, ¢)) and the Pearson correlation coefficient (PCC, (b, d)).
Each score is computed individually for each CML. The red point is the mean of the respective metrics of all CMLs per product.

This was already shown for TSB methods by Polz et al.
(2020) and is now also confirmed for the ADB methods
based on PC and PC-Ph. The TSB methods have to distin-
guish between rainfall signal and noise, which can become
similar for low rainfall intensities. The ADB method using
SEVIRI data suffers from its indirect measurement princi-
ple and may have difficulties in distinguishing between pre-
cipitation and non-precipitating clouds, particularly for light
rain.

The contribution of the different intensity classes to the
overall relative bias in Fig. 7 shows that the overestimation
due to FPs in the dry class is smaller to the underestimation
in the positive intensity classes where FNs are one major fac-
tor for missed rainfall. This way, all methods except PCOI1-
combined show an overall negative bias. One additional ex-
planation for the overall negative bias could be a compensa-
tion for WAA that is too large. Tiede et al. (2023) described
strong WAA fluctuations during long-lasting rain events, a
fact that is not considered in the WAA compensation method

https://doi.org/10.5194/amt-17-2165-2024

we chose (or any other available method). Therefore, there
is some uncertainty in WAA compensation, which influences
the bias.

Although PC10 was more liberal, i.e., generally favoring
positive predictions, the CNN was more confident in the pre-
diction of heavy rainfall. The combined method increased
the performance for low-rain-rate TPs compared to the TSB
method because of the higher confidence of the ADB method
with only a small increase in the count and rainfall amount
through FPs. Therefore, we confidently claim that PC10-
combined was able to improve the detection performance for
the dry and for all positive intensity classes.

6 Conclusions

In this study, we aimed to address the questions of whether
satellite-derived precipitation products are suitable indica-
tors for rain event detection in CML data with respect
to day/night differences and different rain intensities, and
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whether combinations of TSB and ADB methods show an
additional added value. We achieved this by using PC and
PC-Ph from MSG SEVIRI in an ADB rain event detection
and compared the results with two TSB rain event detection
methods. Then, we combined the most promising variants
in such a way that the most confident detection method was
used for any given time step.

The results clearly show that PC and PC-Ph products from
MSG SEVIRI can be used for the detection of rain events
in CML attenuation time series. They performed almost as
well as the TSB methods during daytime and worse than
CNN during nighttime. Minor differences between the SE-
VIRI products PC and PC-Ph exist, but the chosen threshold
of precipitation probability dominated the overall behavior.
An improved PC-Ph product has been available since April
2022, potentially making its application in rain event detec-
tion even more attractive (Lloren¢ Lliso and José Alberto
Lahuerta, NWC SAF, personal communication, 2023).

However, the performance of ADB methods based on SE-
VIRI was lower at night than during the day due to the lack
of the three SEVIRI channels (Vis and NIR). Since CNN did
not show a decrease in quality at night, it would be logical to
vary the rain event detection for daytime and nighttime. We
did not aim for such a temporal variation in order to avoid
inconsistencies in the resulting time series. Compared to the
ADB and CNN, the RS method does not show particular ad-
vantages, except for the easy application.

The quality of the rain event detection methods clearly
depended on the rain intensity, with a better performance
for moderate and heavy rain than for light rain. For flood
forecasting, light rain is often negligible, but this is not the
case for water balance analyses. Additionally, the increas-
ing threat of droughts in the context of climate change also
requires a high-quality representation of light rain. Low rain-
fall intensities show a large potential for improvement, and
major differences in this study were also obtained there.

The effort to use ADB is greater than for TSB methods
because the processing of additionally needed satellite data
can be time-consuming. However, the global availability of
the data allows for the unified processing of CML datasets
from different countries and we assume that extensive re-
calibration is not needed. Stepwise combinations with TSB
methods that need to be adjusted to the characteristics of the
CML data, as presented here, do need re-calibration and thus
increase the effort. The additional improvements shown by
the combinations are promising and justify the effort. There
is a multitude of possibilities when combining different rain
event detection methods. Using methods like the nearby-link
approach or using different thresholds depending on data
quality or rainfall intensity is also possible in future appli-
cations.

In principle, combinations of multiple TSB methods are
possible and may lead to improvements. However, we rec-
ommend applying a combination of TSB and ADB meth-
ods to exploit the advantages of both approaches: TSB meth-
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ods are easy to apply and provide precise results where the
separation of noise and rainfall signals is obvious, whereas
ADB methods show a better performance for noisy or un-
stable CML time series due to their independence of the ac-
tual CML signal. Burkina Faso, for example, has only a few
rainfall stations but several hundred CMLs. Most CMLs out-
side the capital Ouagadougou are long (> 20 km) and use fre-
quencies around 7 GHz. Their time series are quite noisy and
show large fluctuations from sources other than rain. With
abundant information from geostationary satellites and the
methods presented in this work, we expect to extract useful
ground-based rainfall information from such CMLs in this
region with scarce rainfall data.

Appendix A: Additional figures

Algorithm 1
Combination of TSB and ADB methods. Example of CNN-PC-combined.

1: t + CNN82

2: if - is dry then

3 t  dry > high confidence in dry predictions
4: if CNN94 is wet then

5: t < wet > high confidence in wet predictions
6: if PC30 is wet then

7 t + wet > high confidence in wet predictions
8 if - is dry then

9: t < dry > high confidence in dry predictions

Figure Al. Algorithm describing the combination CNN-PC-
combined of PC and CNN starting with CNN82. A given time step
of CML data that needs to be processed is denoted by . The differ-
ent wet—dry methods give a wet or dry prediction for this time step
as described in Sect. 3.1.1.
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Table B1. Confusion matrix values TP, FP, TN, and FN as well as classification scores ACC and MCC and regression scores PCC and RB
for all methods considered. For each metric the best score is written in bold font.

Group Method TP FP TN FN ACC MCC PCC RB
Time series RS 2086257 2761086 36939753 1487374 0902 0449 0.657 —0.165
based (TSB) CNN 2511242 3125653 36575186 1062389 0.903 051 0742 —-0.115
Aux. data PCO1 3103560 7412469 32288370 470071 0.818 0.438 0.73 —0.07
based (ADB) PC10 2809793 5525566 34175273 763838 0.855 0452 0.707 —0.208
PC20 2100523 3258161 36442678 1473108 0.891 0423 0.636 —0.455
PC30 1136635 1205697 38495142 2436996 0.916 035 0509 -0.719
PC-PhO1 2860243 6112184 33588655 713388 0.842 0439 0.731 —0.159
PC-Ph10 2029703 2703467 36997372 1543928 0902 0441 0.689 —0.417
PC-Ph20 1376271 1408014 38292825 2197360 0917 0392 0.637 —0.587
PC-Ph30 893173 815028 38885811 2680458 0.919 0.324 058 —0.711
Combined CNN-PC-combined 2676762 2727541 36973298 896869 0916 0.566 0.746 —0.108
PCO1-combined 3122738 4379019 35321820 450893 0.888 0.555 0.742 0.026
PC10-combined 3010509 3762008 35938831 563122 09 0566 0.743 —0.021
CNN-PC-Ph-combined 2529058 2588598 37112241 1044573 0916 0.548 0.747 —0.134
PC-Ph0O1-combined 3003963 3988729 35712110 569668 0.895 0.553 0.743  -0.017
PC-Ph10-combined 2656801 2865316 36835523 916830 0913 0.554 0.746 —0.114

Data availability. CML data were provided by Ericsson Germany
and are not publicly available. RADKLIM-YW was provided
by the German Weather Service (DWD) and is publicly avail-
able:  https://opendata.dwd.de/climate_environment/CDC/grids_
germany/5_minutes/radolan/reproc/2017_002/ (last access: 28 July
2023; DWD, 2023b). The PC and PC-Ph products were provided
by Lloreng Lliso and José Alberto Lahuerta, who are affiliated with
NWC SAF. Recent data are shown at https://www.nwcsaf.org/web/
guest/nwc/geo-geostationary-near-real-time-v2021  (last access:
20 December 2023; NWC SAF, 2023) and long-term records must
be requested individually from NWC SAF. For general information
about NWC SAF please contact us at safnwchd @aemet.es.
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