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Abstract. The High lAtitude sNow Detection and Estimation
aLgorithm for ATMS (HANDEL-ATMS) is a new machine-
learning (ML)-based snowfall retrieval algorithm for Ad-
vanced Technology Microwave Sounder (ATMS) observa-
tions that has been developed specifically to detect and quan-
tify high-latitude snowfall events that often form in cold, dry
environments and produce light snowfall rates. ATMS and
the future European MetOp-SG Microwave Sounder offer
good high-latitude coverage and sufficient microwave chan-
nel diversity (23 to 190 GHz), which allows surface radio-
metric properties to be dynamically characterized and the
non-linear and sometimes subtle passive microwave response
to falling snow to be detected. HANDEL-ATMS is based on
a combined active–passive microwave observational dataset
in the training phase, where each ATMS multichannel ob-
servation is associated with coincident (in time and space)
CloudSat Cloud Profiling Radar (CPR) vertical snow pro-
files and surface snowfall rates. The main novelty of the
approach is the radiometric characterization of the back-
ground surface (including snow-covered land and sea ice)
at the time of the overpass to derive the multichannel sur-
face emissivities and clear-sky contribution to be used in the
snowfall retrieval process. The snowfall retrieval is based on
four different artificial neural networks (ANNs) for snow wa-
ter path (SWP) and surface snowfall rate (SSR) detection
and estimate. HANDEL-ATMS shows very good detection
capabilities, POD = 0.83, FAR= 0.18, and HSS= 0.68, for
the SSR detection module. Estimation error statistics show
a good agreement with CPR snowfall products for SSR>
10−2 mm h−1 (RMSE= 0.08 mm h−1, bias= 0.02 mm h−1).
The analysis of the results for an independent CPR dataset

and of selected snowfall events is evidence of the unique ca-
pability of HANDEL-ATMS to detect and estimate SWP and
SSR also in the presence of extremely cold and dry environ-
mental conditions typical of high latitudes.

1 Introduction

Snowfall retrieval is one important topic in the atmospheric
science field. On a global scale, snowfall represents only 5 %
of the total global precipitation, but it is predominant above
60–70° N/S (Levizzani et al., 2011). In recent years, sev-
eral studies have highlighted the strong influence of global
warming on snowfall distribution and regimes, especially at
high latitudes (J. Liu et al., 2012; Y. Liu et al., 2012; Bin-
tanja and Selten, 2014; Vihma et al., 2016). However, global
snowfall quantification is a challenging topic in weather sci-
ence. Ground-based instruments such as rain gauges or snow
gauges provide only punctual measurements which cannot
fully capture the spatial variability in precipitation phenom-
ena (Kidd et al., 2017); moreover, the variability in snowflake
shape and density strongly influences particle fall speed and
trajectory and therefore reduces the gauge-based measure-
ment accuracy of falling snow, especially compared to rain
measurements (Skofronick-Jackson et al., 2015). Weather
radars can provide areal measurements of precipitation –
the rate estimation is based on the conversion of the mea-
sured backscattered radiation to precipitating hydrometeor
content – but such operations present some technical limi-
tations (Kidd and Huffman, 2011). Finally, most of the re-
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gions where snowfall is predominant – such as Greenland,
Siberia, Canada, and Antarctica – are uninhabited or oth-
erwise sparsely populated areas where weather observation
networks are very scarce or totally absent. Therefore, the de-
velopment of satellite-based methods for snowfall retrieval
is necessary for global monitoring of snowfall. Passive mi-
crowave (PMW) sensors on board polar-orbiting satellites
can be exploited for snowfall detection purposes because the
microwave (MW) signal is directly responsive to the spa-
tial distribution and microphysics properties of precipitation-
sized hydrometeors in the clouds; at the same time, the use
of PMW sensors guarantees a high spatial coverage and high
temporal resolution (Kidd and Huffman, 2011).

PMW snowfall detection and quantification are typically
based on the ability to interpret the snowfall scattering sig-
nature in the high-frequency channels (> 90 GHz), which
respond more effectively to ice microphysics and are less
prone to surface effects than low-frequency channels, and
to distinguish it from the clear-sky (surface and atmosphere)
contribution (e.g., Panegrossi et al., 2017). However, several
factors make the PMW snowfall signal ambiguous and the
relationship between multichannel measurements and sur-
face snowfall intensity highly non-linear, especially in ex-
tremely cold/dry environmental conditions (Panegrossi et
al., 2022). The snowfall scattering signal is relatively weak
and is highly dependent on the complex microphysical prop-
erties of snowflakes (Kim et al., 2008; Kulie et al., 2010;
Kongoli et al., 2015), it is often masked by supercooled liq-
uid water emission signal (Wang et al., 2013; Battaglia and
Delanoë, 2013; Panegrossi et al., 2017; Rysman et al., 2018;
Battaglia and Panegrossi, 2020; Panegrossi et al., 2022), and
it can be contaminated by the extremely variable background
surface emissivity (Liu and Seo, 2013; Takbiri et al., 2019;
Rahimi et al., 2017), especially in cold and dry conditions
typical of the high-latitude regions (Camplani et al., 2021).
In this context, the availability of the latest-generation MW
radiometers, such as the conically scanning radiometer GPM
Microwave Imager (GMI) and the cross-track scanning ra-
diometer Advanced Technology Microwave Sensor (ATMS),
whose channels cover a wide range of frequencies, offers
new possibilities for global snowfall monitoring. The mul-
tichannel PMW observations can be used for both a dynamic
radiometric characterization of the background surface – us-
ing the low-frequency channels (< 90 GHz) – and for the
detection and the estimation of snowfall using the high-
frequency channels (> 90 GHz) (Panegrossi et al., 2022).

The PMW capability to characterize physically and ra-
diometrically the background surface varies from sea to
land, especially for the identification of cold/frozen surfaces.
As far as the ocean is concerned, sea ice detection using
PMW observations has been a well-documented topic in the
remote-sensing science field since the 1970s. This is due to
the strong contrast between sea ice (≈ 0.9) and open-water
(≈ 0.5) emissivity values at the MW low-frequency range
(∼ 19 GHz) (Comiso, 1983). Other studies highlighted the

ability to discriminate between different types of ice using
a set of low-frequency window channels because the dif-
ferences between the emissivities of the different types of
sea ice increase with increasing frequency: in particular, at
higher frequencies (30–50 GHz) the contrast between the
emissivity of “new” ice and “old” ice increases, with a de-
crease in the emissivity at higher frequencies for “older” sea
ice (Comiso, 1983; Ulaby and Long, 2014). Moreover, it has
been observed that the simultaneous presence of open water
and sea ice causes a decrease in the low-frequency-channel
emissivity: the observed emissivity can be regarded as a lin-
ear combination of the emissivity spectra of sea ice and open
water (Ulaby and Long, 2014). As far as continental areas are
concerned, the detection of snow-covered land surfaces us-
ing MW measurements becomes more difficult. In dry con-
ditions, a snowpack acts as a volume scatterer: the scatter-
ing effect is dependent on the grain size and shape and on
the depth of the snowpack (Clifford, 2010). However, the
presence of liquid water can mask the scattering signature
(Mätzler and Hüppi, 1989). At the same time, large areas of
Greenland and Antarctica, while covered by dry snowpacks
throughout the year, do not show a significant difference be-
tween the two ATMS low-frequency channels. Finally, some
snow-free areas, such as rocky mountains and cold deserts,
present a scattering signature very similar to that of the snow-
pack (see Grody and Basist, 1996). Therefore, the detection
of snow-covered areas is very complex. A set of several tests,
each of which identifies snowpacks characterized by differ-
ent physical and radiometric characteristics, may be used.

This paper describes the development of a machine-
learning-based algorithm for snowfall retrieval (the High
lAtitude sNowfall Detection and Estimation aLgorithm for
ATMS, HANDEL-ATMS), exploiting Advanced Technology
Microwave Sounder (ATMS) radiometer multichannel mea-
surements and using the CloudSat Cloud Profiling Radar
(CPR) snowfall products as a reference. The algorithm has
been developed by focusing on the typical conditions of high-
latitude regions: low humidity, low temperature, presence of
snowpack on land or sea ice over the ocean, and light snow-
fall intensity.

The main novelty of the approach is the exploitation of
ATMS’ wide range of channels (from 22 to 183 GHz) to ob-
tain the dynamic radiometric characterization of the back-
ground surface at the time of the overpass. The derived sur-
face emissivities are used to infer the clear-sky contribution
to the measured brightness temperatures (TBs) in the high-
frequency channels in the snowfall retrieval process. This ap-
proach is similar to the work of Zhao and Weng (2002) for
Advanced Microwave Sounding Unit (AMSU) observations
limited to non-scattering surfaces (i.e., ocean and vegetated
land); however, the application to surfaces with a very com-
plex and time-varying emissivity (such as snow cover and
sea ice) required a far-away, more advanced algorithm tak-
ing advantage of machine learning techniques. Moreover, the
algorithm also exploits an observational dataset composed
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of ATMS multichannel observations and coincident (time
and space) CloudSat CPR vertical snow profiles and surface
snowfall rates (hereafter the ATMS-CPR coincident dataset).

Several snowfall retrieval algorithms for cross-track scan-
ning radiometers have evolved in the last 20 years starting
from the Advanced Microwave Sounding Unit-B (AMSU-
B) (Zhao and Weng, 2002; Kongoli et al., 2003; Skofronick-
Jackson et al., 2004; Noh et al., 2009; Liu and Seo, 2013)
and Microwave Humidity Sounder (MHS) (see Liu and Seo,
2013; Edel et al., 2020) and evolving to ATMS (Kongoli et
al., 2015; Meng et al., 2017; Kongoli et al., 2018; You et
al., 2022; Sanò et al., 2022). Some of them are based on
radiative transfer simulations of observed snowfall events
(Kongoli et al., 2003; Skofronick-Jackson et al., 2004; Kim
et al., 2008) or on in situ data (Kongoli et al., 2015; Meng
et al., 2017; Kongoli et al., 2018), while others are based
on CPR observations (Edel et al., 2020; You et al., 2022;
Sanò et al., 2022) or a combination of the above (Noh et
al., 2009; Liu and Seo, 2013). In the last 5 years, there has
been an increasing use of machine learning (ML) approaches
trained with CPR-based coincidence datasets. These ap-
proaches have proven to be very effective for snowfall re-
trieval. On the one hand, ML techniques are suitable to han-
dle the complex, non-linear PMW multichannel response to
snowfall (Rysman et al., 2018; Edel et al., 2020; Sanò et
al., 2022). On the other hand, the use of CPR-based datasets
overcomes some of the limitations deriving from the use
of cloud radiation model simulations, which are particularly
challenging for snowfall events. However, some limitations
of the radar product used as a reference and issues related
to the spatial and temporal matching between the CPR and
the PMW radiometer measurements introduce some uncer-
tainty. Moreover, the 2-C-SNOW-PROFILE (2CSP) product
is based on assumptions on snow microphysics, uses opti-
mal estimation to retrieve snow parameters, uses a simplified
radar reflectivity equation, and is affected by CloudSat CPR
limitations as outlined in Battaglia and Panegrossi (2020).

As far as ATMS is concerned, the ML-based Snow re-
trievaL ALgorithm fOr gpM–Cross Track (SLALOM-CT)
(Sanò et al., 2022) has been developed within the EU-
METSAT Satellite Application Facility for Hydrology (H
SAF) in preparation for the launch of the EPS-SG Mi-
crowave Sounder (MWS). Similarly to HANDEL-ATMS, it
is trained on an ATMS-CPR coincidence dataset. SLALOM-
CT is the evolution for cross-track scanning radiometers of
the Snow retrievaL ALgorithm fOr GMI (SLALOM) (Rys-
man et al., 2018, 2019), which was the first ML algorithm
for snowfall detection and retrieval for GMI trained and
tested on GMI-CPR coincident observations made available
in the NASA GPM-CloudSat coincidence dataset (Turk et
al., 2021a). One of the novelties in the SLALOM (SLALOM-
CT) approach is the use of the GMI (ATMS) low-frequency
channels to better constrain the snowfall retrieval to the char-
acteristics of the surface at the time of the overpass (Turk
et al., 2021b). SLALOM-CT is based on a modular scheme;

i.e., four separate modules are used for snowfall detection,
supercooled water layer detection, snow water path (SWP)
estimates, and surface snowfall rate (SSR) estimates. The
predictor set is composed of ATMS TBs and some environ-
mental variables: 2 m Temperature (T2 m), Total Precipitable
Water (TPW), and principal components derived from tem-
perature and humidity profiles.

However, none of the algorithms mentioned here were tai-
lored specifically to the extreme conditions typical of high
latitudes. The present work aims to develop an algorithm for
snowfall detection and estimation by exploiting the large fre-
quency range typical of the last-generation radiometers and
to obtain a dynamic radiometric characterization of the back-
ground surface at the time of the satellite overpass in order to
highlight the complex relationship between upwelling radia-
tion and snowfall signature, which makes the detection very
difficult in the typical conditions of high latitudes.

This article is organized as follows: Sect. 2 provides back-
ground information on ATMS and CPR, on the methodology
used to build the coincidence dataset, and on the machine
learning approaches used to develop the algorithm. In Sect. 3
the algorithm structure is described. In Sect. 4 the overall per-
formance scores are reported and analyzed, a case study is
analyzed, and a comparison with SLALOM-CT is reported.
Section 5 is dedicated to the summary of the main results and
to the conclusions.

2 Instruments and methods

2.1 Advanced Technology Microwave Sounder (ATMS)

ATMS is a total-power cross-track scanning radiometer
within 52.7° off the nadir direction. It has a total of 22 chan-
nels, with the first 16 channels primarily used for tempera-
ture sounding from the surface to about 1 hPa (45 km) and
the remaining channels used for water vapor sounding in
the troposphere from the surface to about 200 hPa (10 km)
and for cloud properties and precipitation retrieval. There
are two receiving antennas: one serving channels 1–15 be-
low 60 GHz and the other for channels above 60 GHz. The
beamwidth changes with frequency and is 5.2° for chan-
nels 1–2 (23.8–31.4 GHz), 2.2° for channels 3–16 (50.3–
57.29 and 88.2 GHz), and 1.1° for channels 17–22 (165.5–
183.3 GHz). The corresponding nadir resolutions are 74.78,
31.64, and 15.82 km, respectively. The outmost field of view
(FOV) sizes are 323.1 km× 141.8 km (cross-track× along-
track), 136.7 km× 60.0 km, and 68.4 km× 30.0 km, respec-
tively (Weng et al., 2012). ATMS is currently carried by three
near-polar-orbiting satellites, Suomi National Polar-orbiting
Partnership (SNPP), NOAA-20, and NOAA-21, providing
global coverage including polar regions. Each satellite revis-
iting time is equal to 12 h at the Equator, but drops to 100 min
over the polar regions, ensuring a very high temporal resolu-
tion for the research area of interest in this work. Moreover,
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the operational nature of the mission guarantees observations
for the next decades. It is worth noting that the polarization of
ATMS channels is not defined as vertical or horizontal but as
“quasi-vertical” or “quasi-horizontal”. The “quasi” prefix is
used to indicate that ATMS (and any other cross-track scan-
ner) measures vertical or horizontal polarization only when
looking at nadir and a mixture of V and H polarization for
off-nadir scan angles.

2.2 Cloud Profiling Radar (CPR)

CPR is a 94 GHz nadir-looking radar on board CloudSat.
CloudSat was launched on 28 April 2006; the W-band
(94 GHz) Cloud Profiling Radar (CPR) operations began on
2 June 2006. CPR has been acquiring the first-ever continu-
ous global time series of vertical cloud structures and ver-
tical profiles of cloud liquid and ice water content with a
485 m vertical resolution and a 1.4 km antenna 3 dB foot-
print. The reference CloudSat snowfall product is the 2C-
SNOW-PROFILE (2CSP) product (Version 5 is used in this
work). It provides estimates of snowfall characteristics for
each observed profile. In particular, it provides an estimate
of the snow water path (SWP), i.e., the total snow water con-
tent integrated over the atmospheric column, and of the sur-
face snowfall rate (SSR) (Stephens et al., 2008). The SWP is
also estimated when there is no snowfall at the ground level;
therefore, the presence of the SWP is not always linked to
the SSR, especially in warmer near-surface conditions (Wood
and L’Ecuyer, 2018). 2CSP has several limitations, such as
the contamination of the signal in the lowest 1000–1500 m
of the profile due to ground-clutter; the underestimation of
the heavy snowfall due to attenuation of the radar signal in
these conditions; the limited temporal sampling (although
it is higher in the polar regions); and the day-only opera-
tion mode since 2011, which limits its use during the winter
seasons (Milani and Wood, 2021; Panegrossi et al., 2022).
However, 2CSP has been demonstrated to be more accu-
rate than GPM Dual-frequency Precipitation Radar (DPR)
snowfall products (Casella et al., 2017) and is in good agree-
ment with estimates obtained by ground-based radars (e.g.,
Mroz et al., 2021), although it is affected by underestimation
for medium-heavy snowfall events. Moreover, the polar or-
bit and the W-band high sensitivity make CPR suitable for
snowfall monitoring at higher latitudes (as demonstrated in
several studies, e.g., Kulie et al., 2016; Milani et al., 2018)
typically characterized by light/moderate intensity (Behrangi
et al., 2016). These features appear to be an advantage com-
pared to the GPM-Core Observatory (GPM-CO), which pro-
vides observations only between 67° N and 67° S, and to the
Ku- and Ka-band DPR, has low sensitivity, and is not suit-
able to effectively detect light snowfall events (Casella et
al., 2017).

2.3 ATMS-CPR coincidence dataset

The present study is based on a coincidence dataset between
CPR and ATMS observations between January 2014 and Au-
gust 2016. The same dataset has been used for the develop-
ment of SLALOM-CT (Sanò et al., 2022). Each coincidence
comes from observations from CloudSat CPR and ATMS
within a maximum 15 min time window. In the period con-
sidered within the dataset, only the SNPP satellite was in or-
bit, so the dataset is composed only of observations obtained
from ATMS on board this satellite. Moreover, the elements in
the dataset have been selected by removing all corrupted data
and by applying an additional filter based on the minimum
distance between the instantaneous field of view (IFOV) cen-
ters (22 km) of CPR and ATMS. The zonal distribution of
the coincidences is due to the orbital geometry of CloudSat
and SNPP, which are both sun-synchronous with a relatively
small difference in the satellite height (i.e., about 689 and
833 km for CloudSat and SNPP, respectively). Therefore, the
coincidence dataset is built from longer orbit fragments (of-
ten semi-orbits) and by a very large number of elements near
the poles. There is an asymmetry in the CPR sampling be-
tween the Northern and the Southern hemispheres that can be
observed in the dataset due to the CPR daytime-only mode
operation since 2011, which influences mostly the acquisi-
tions in the southern polar region (Milani and Wood, 2021).

The database has been built considering the horizontal res-
olution of the high-frequency channels of ATMS. The CPR
snowfall product used as a reference is the 2CSP (V5) prod-
uct. Some model-derived variables, specifically the Total Pre-
cipitable Water (TPW), the 2 m Temperature (T2 m), the Skin
Temperature, the Freezing Level Height, and the tempera-
ture and humidity profiles, have been added to the dataset
to be used as ancillary parameters. Both 2D and 3D envi-
ronmental variables have been obtained from the European
Centre for Medium-Range Weather Forecasts (ECMWF). In
particular, they are obtained from the CPR ECMWF-AUX
product where the set of ancillary ECMWF atmospheric state
variable data is associated with each CloudSat CPR bin (the
product is described by Partain, 2022). Moreover, a cloud
cover fraction index, which indicates the fraction of CPR ob-
servations where cloud is observed in the total CPR observa-
tions within each ATMS pixel, is added to the dataset.

Information about the presence of supercooled water is
added to the coincidence dataset to be used towards the cor-
rect interpretation of the snowfall signal in the presence of
supercooled water layers. The supercooled water informa-
tion has been extracted from the DARDAR product (DAR-
DAR, 2023; Delanoë and Hogan, 2010). DARDAR, which
stands for raDAR+liDAR, combines CPR radar and Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar
observations, on board the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) satellite, and
estimates both the cloud water phase and the ice water con-
tent and ice particle effective radius (Battaglia and Delanoë,
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2013; Ceccaldi et al., 2013). In particular, the coincidence
dataset includes an index indicating the presence of super-
cooled cloud liquid water within each ATMS pixel, calcu-
lated as the fraction of DARDAR observations where super-
cooled water within and on the top of the cloud is observed
to the total DARDAR observations within each pixel.

The association of ATMS TBs and CPR products has been
done by averaging the CPR snow products with a Gaussian
function approximating the ATMS high-frequency antenna
pattern (varying with the scan angle). It is worth noting, how-
ever, that the ATMS IFOV is undersampled by the narrow
swath of the CPR (see Sanò et al., 2022 for details). More-
over, it is worth noting that CPR 2CSP limitations for snow-
fall detection and estimation (see Sect. 2.2) might affect the
ATMS-based snowfall estimates.

In this work, the dataset has been filtered based on humid-
ity (TPW< 10 mm), temperature (T2 m < 280 K), and eleva-
tion conditions (the working limits of the PMW Empirical
Cold Surface Classification Algorithm (PESCA), see Cam-
plani et al., 2021), leading to a good representation of the
higher latitudes with 80 % of the dataset elements located
above 60° N/S. The dataset is made of 2.14× 106 elements,
including 1.07× 106 elements with falling snow (2CSP
SWP> 0 kg m−2) and 9.99× 105 with snowfall at the sur-
face (2CSP SSR> 0 mm h−1). The training and test phases
have been conducted by randomly splitting the dataset, with
one-third of the elements in the training and two-thirds of the
elements in the test dataset.

2.4 Machine learning approaches

The algorithm is based on different machine learning (ML)
techniques. Moreover, clustering techniques have been used
to characterize the background surface from a radiometric
point of view. In particular, an unsupervised clustering tech-
nique has been used to identify emissivity clusters with small
internal variability, and a supervised clustering technique has
been used to identify an emissivity spectrum based on other
parameters.

2.4.1 Artificial neural networks

The HANDEL-ATMS snowfall detection and estimation
modules have been developed using feedforward multilayer
neural network architectures, i.e., a neural network architec-
ture where the neurons are arranged in layers. This archi-
tecture, which is defined by the number of layers, the num-
ber of neurons for each layer, and the transfer function of
each neuron, has to be designed beforehand. The weights
of connection links and the bias values for each layer are
estimated with a training process, based on the Levenberg–
Marquardt algorithm (Sanò et al., 2015). The specific net-
work architectures and the training and optimization proce-
dure of the HANDEL-ATMS algorithm are described in de-
tail in Sect. 3.2.

2.4.2 Self-organizing maps

The unsupervised clustering method used for the background
surface classification is the self-organizing map (SOM)
method (Fausett, 1994; Kohonen, 2012). The characteristic
of this method is that classes that are close to each other from
a topological point of view can be considered similar also
from a physical and radiometric point of view (Munchak et
al., 2020). SOMs have been used in previous studies for the
classification of the background surface by creating clusters
based on emissivity values (Prigent et al., 2001; Cordisco et
al., 2006; Prigent et al., 2008; Munchak et al., 2020).

2.4.3 Linear discriminant analysis

Several supervised clustering methods have been tested in
this study, such as the linear discriminant analysis (LDA), the
quadratic discriminant analysis, the classification tree, and
the nearest neighbor method. The final choice came down to
linear discriminant analysis (see Hastie et al., 2009) because
this method guarantees satisfactory accuracy in the results,
with a difference between the performances of the training
and the test phase which is not too significant and a compu-
tational effort which is not too high.

3 Algorithm description

The configuration of HANDEL-ATMS is summarized in the
flowchart in Fig. 1. The process begins with the classifica-
tion of the background surface using the PMW Empirical
Cold Surface Classification Algorithm (PESCA; see Cam-
plani et al., 2021). Then, the surface emissivity spectra are
derived through a refinement process based on LDA, and
these are used to estimate clear-sky simulated TB (TBsim)
using the ECMWF-AUX atmospheric temperature and water
vapor profiles. Then, the differences between the clear-sky
simulated TB and the ATMS observed TB (TBobs) are eval-
uated (1TBobs−sim =TBobs−TBsim). Four artificial neural
networks (ANNs) are then applied to a predictor set con-
sisting of ATMS TBobs, 1TBobs−sim, a surface classification
flag, and other ancillary parameters (elevation and ATMS
viewing angle for the final version). Finally, the pixels clas-
sified with the presence of snowfall by the detection modules
are used in the estimation modules, while for no-snowfall-
flagged pixels the SWP value is set to 0 kg m−2 and the SSR
value is set to 0 mm h−1. In the following sections, the main
blocks of the algorithm are described in detail.

3.1 Surface classification and emissivity spectra
estimation

3.1.1 PESCA design and performances

The dynamic classification and radiometric characterization
of the background surface at the time of the satellite over-
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Figure 1. HANDEL-ATMS workflow diagram (please refer to the
text for details).

pass is based on PESCA exploiting ATMS low-frequency
channels (Camplani et al., 2021). The algorithm discrimi-
nates between frozen and unfrozen surfaces (sea ice and open
water, snow-covered land and snow-free land) and identifies
10 surface classes (4 over ocean, 5 over land, 1 for coast).
The algorithm has been tuned against the NOAA AutoSnow
product (Romanov, 2019), which gives daily maps of sea
ice and snow cover. For each ATMS observation, a flag re-
porting the AutoSnow class percentage (sea ice, open wa-
ter, snow-covered land, snow-free land) has been calculated,
and a threshold has been applied to discriminate between sea
ice and open water pixels (sea ice AutoSnow class> 10 %)
and between snow-covered and snow-free land pixels (snow-
covered land AutoSnow class> 50 %). ATMS pixels have
been classified into land, ocean, and coast pixels using a
land–sea mask.

The land module discriminates between snow-free land
and snow-covered land and identifies four different snow
cover classes (Perennial, Winter Polar, Thin, and Deep Dry).
It is based on a decision tree that makes use of a limited num-
ber of inputs: the ratio between TB23QV and TB31QV (ratio);
the difference between TB23QV and TB88QV, or Scattering
Index (SI); and 23 GHz pseudo-emissivity (pem23) (i.e., the

ratio between the 23 GHz observed TB and the near-surface
temperature value). The module has been described by Cam-
plani et al. (2021).

As far as the ocean module is concerned, a simple rela-
tionship to distinguish between sea ice and open water ob-
servations has been identified. In Fig. 2 a Cartesian plane
where the x axis represents 23 GHz observed TBs and the
y axis represents the T2 m is shown. In the figure, each point
represents a pseudo-emissivity value, and the color describes
the mean AutoSnow sea ice percentage within each bin (see
Fig. 2a). It is possible to observe that open water (0 % of sea
ice, blue) and sea ice (100 % of sea ice, red) are characterized
by very different pseudo-emissivities. There is a transition
area between open water and sea ice pseudo-emissivity val-
ues for IFOVs where both open water and sea ice are present.
The simple relationship for sea ice identification is reported
in panel (a) as a green line where the condition for sea ice
identification is defined by Eq. (1).

TB23QV > T2 m− 96K (1)

Downstream of the sea ice/open water identification, in-
formation about sea ice characteristics is obtained from the
analysis of the two low-frequency pseudo-emissivity values
(pem23 and pem31) (defined as the ratio between the ob-
served TB and the near-surface temperature value), which
can be considered a good approximation of sea-ice emissivity
for low-frequency channels especially in cold and dry condi-
tions. In Fig. 3a it is possible to observe that there are sea-
ice-classified observations characterized by the contempo-
rary presence of open water and sea ice above the bisector of
the plane and in correspondence with low emissivity values.
In Fig. 3b, where the color represents sea ice occurrences,
the presence of one cluster is evident, in correspondence with
high pseudo-emissivity, with two “tails” above and below the
bisector. This behavior has been used to identify three differ-
ent sea ice classes (New Sea Ice, Broken Sea Ice, and Mul-
tilayer Sea Ice) using a nearest neighbor method based on
a set of reference points that define the areas of interest for
each sea ice class. In Fig. 3c a classification representation is
reported, where the markers represent the reference points.
The labels of the classes have been chosen by analyzing their
physical properties and by comparing the estimated emissiv-
ity spectra with those reported in previous studies (Hewison
and English, 1999; Munchak et al., 2020).

PESCA’s upper working limits for T2 m and TPW have
been established to 280 K and 10 mm, respectively (see Cam-
plani et al., 2021, for details). Moreover, the land module
does not work in the high-elevation areas outside the polar
regions (surface elevation> 2500 m for latitude< 67° N/S)
because ATMS’ low spatial resolution does not allow de-
piction of the small-scale snow cover variability that charac-
terizes the orographic regions. An analysis carried out using
the ATMS-CPR coincidence dataset highlights that the pres-
ence of cloud cover does not influence the overall PESCA
performances (not shown). Within these well-defined limits,
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Figure 2. Sea ice detection representation on a 23 GHz TB–T2 m
plane. The color represents the mean AutoSnow sea ice percent-
age within each bin (a) and the observation occurrence (b). The
green (a) and red (b) lines represent the discriminant equation
(Eq. 1) between sea ice and ocean.

PESCA manages to optimally discriminate between sea ice,
open water, snow-free land, and snow-covered land. The sta-
tistical scores of PESCA identification of sea ice and snow
cover (using AutoSnow as a reference truth) are summarized

Figure 3. Sea ice detection and classification: relationship between
31 GHz pseudo-emissivity (y axis) and 23 GHz pseudo-emissivity
(x axis). The color represents the mean AutoSnow sea ice percent-
age within each bin (a), the observation occurrence (b), and the
PESCA classification (Multilayer (ML), Broken, and New Sea Ice)
with the nearest neighbor markers (c). The continuous green lines
in panels (a) and (b) represent the bisector.

in Table 1. In particular, the probability of detection (POD),
the false alarm ratio (FAR), and the Heidke skill score (HSS)
are reported. POD, FAR, and HSS are defined by Eqs. (2),
(3), and (4).

POD=
h

h+m
(2)

FAR=
f

f +h
(3)

HSS=
2(h× cn− f ×m)

(h+m)× (m+ cn)+ (h+ f )(f + cn)
, (4)

where h represents the hits, f represents the false alarms, m
represents the misses, and cn represents the correct negatives.
PESCA manages to optimally detect the presence of a frozen
background (sea ice over the ocean, snow-covered land over
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Table 1. PESCA overall statistical scores.

Ocean module Land module

POD 0.99 0.98
FAR 0.01 0.01
HSS 0.98 0.72

the continental part) at the time of the satellite overpass. It is
important to underline that the variability in the HSS com-
pared to POD and FAR is due to the different number of cor-
rect negatives. An analysis of the physical characteristics of
the PESCA classes has been conducted by considering the
mean T2 m and the geographical and seasonal distribution as-
sociated with each class. For corresponding information on
the land classes, please refer to Camplani et al. (2021). As
far as sea ice is concerned, the New Sea Ice class, which is
detected during the winter at high latitudes and for low tem-
peratures, represents the sea ice that forms during the winter.
The Broken Sea Ice class, which is predominant in the lower
latitudes and whose occurrence increases during spring, rep-
resents the co-presence of sea ice and water. The Multilayer
Sea Ice class, which is detected only at high latitudes, for
very low temperatures, and constantly throughout the year,
represents the ice pack typical of those regions and extremely
cold conditions.

In Table 2 the number of PESCA class occurrences, the
percentage of snowfall observations, and the most signifi-
cant environmental characteristics in the ATMS-CPR coin-
cident dataset are reported. It can be observed that the Land
and Ocean classes are characterized by the warmest/moistest
conditions and by the most intense snowfall events (on aver-
age), while the Perennial and Winter Polar Snow classes and
the New and Multilayer Sea Ice classes are characterized by
the coldest/driest environmental conditions and by the light-
est snowfall events (on average). The Thin Snow and Broken
Sea Ice classes show intermediate environmental conditions
and snowfall intensity values. It is also interesting to high-
light that a mismatch between the percentage of SWP and
SSR observations is observed mostly over the Ocean class
and less frequently over other classes (Land, Thin Snow, and
Coast), where warmer and moister environmental conditions
are found.

3.1.2 PESCA emissivity spectra estimation

The emissivity spectra of each class have been estimated by
applying PESCA to the cloud-free (0 % CPR cloud mask
fraction) ATMS observations in the ATMS-CPR dataset sat-
isfying PESCA working limits. The ATMS clear-sky TBs
measured for each PESCA surface class have been used as
input to an inverse radiative transfer model (RTM) based on
plane-parallel approximation (Ulaby and Long, 2014) and
the Rosenkranz (1998) gas absorption model. The emissivity
spectra have been estimated by calculating the mean and the

Figure 4. Emissivity spectra for PESCA sea classes. The con-
tinuous lines represent the mean values of the emissivity, while
the shaded areas represent the standard deviation calculated at the
ATMS reference frequencies (23.8, 31.4, 50.3, 88.2, 165.5, and
183.3± 7 GHz) represented by the dots.

standard deviation of the emissivity values for each class (ex-
cluding the values lower than the 10th percentile and higher
than the 90th percentile). The emissivity spectra dependence
on the ATMS viewing angle for polarized surfaces has been
neglected because an analysis of such dependence in the
ATMS-CPR coincidence dataset has shown that it is not sig-
nificant (emissivity difference smaller than 0.05 for angles
up to 52.7°). This is due to the fact that cross-track scanning
radiometers measure a signal (off-nadir) that derives from a
mixture between the two polarizations (e.g., quasi-vertical,
QV, and quasi-horizontal, QH). As a consequence, although
the emissivities of polarized surfaces, such as open water sur-
faces, are strongly influenced by the viewing angle, the emis-
sivity variation is compensated by the effect of the mixture
of the two polarizations (Felde and Pickle, 1995; Prigent et
al., 2000; Mathew et al., 2008; Prigent et al., 2017).

The estimated spectra are shown in Figs. 4 and 5 for
Ocean and Land classes, respectively (the coast has also
been considered as a separate class; however, its spectrum
is not shown in Figs. 4–5). It is possible to observe that
the classes are well-characterized from a radiometric point
of view, showing distinct behavior of the emissivity spec-
tra (e.g., the mean values). However, all the classes present
significant standard deviations at high frequency, and some
classes – such as the snow classes and the Broken Sea Ice
class – present a high value of standard deviation also at low
frequency.

The clear-sky RTM simulations based on the mean emis-
sivity values estimated for each class have been compared
to the coincident observed clear-sky TBs, but the RMSE be-
tween simulated and observed clear-sky TBs appeared to be
too high to implement a robust signal analysis (> 10 K). For
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Table 2. Environmental characteristics for each PESCA class (test dataset): the number of occurrences, the mean TPW and T2 m values, the
percentage of SWP/SSR observations (over the total occurrences), and the mean SWP and SSR values are shown.

Class TPW T2 m # % SWP % SSR SWP SSR
(mm) (K) obs obs obs (kg m−2) (mm h−1)

Ocean 6.2 273 3.9× 105 79 64 0.046 0.071
New Sea Ice 3.2 255 2.1× 105 38 38 0.033 0.050
Broken Sea Ice 5.2 266 1.4× 105 57 57 0.044 0.073
Multilayer Sea Ice 4.5 260 9.9× 104 43 43 0.033 0.051
Land 5.3 270 2.8× 104 43 41 0.043 0.068
Perennial Snow 1.6 248 3.6× 105 31 31 0.022 0.035
Winter Polar Snow 2.1 245 6.0× 104 32 32 0.033 0.048
Deep Dry Snow 3.8 261 1.1× 105 50 50 0.040 0.066
Thin Snow 4.5 267 1.8× 104 54 53 0.041 0.070
Coast 4.0 259 3.1× 105 47 46 0.043 0.068

Figure 5. Same as Fig. 4 but for PESCA land classes.

this reason, a refinement process for the emissivity spectra
estimation based on machine learning techniques has been
developed downstream of the PESCA classification.

The refinement process has been based on a combination
of an unsupervised classification technique (SOM) and a su-
pervised technique (LDA). The unsupervised classification
identifies clusters characterized by the minimum inner vari-
ability from a radiometric point of view. The supervised tech-
nique, instead, has the goal to identify the previously ob-
tained clusters and the associated emissivity spectra by using
only input variables that are not affected by the presence of
clouds. The final emissivity spectra are estimated as the mean
emissivity for each frequency within each cluster identified
by the supervised technique. Therefore, as a first step, the
emissivity spectra have been clusterized in order to minimize
the emissivity variability in each cluster by arranging the re-
trieved emissivity values for six ATMS channels (23.8, 31.4,
50.3, 88.2, 165.5, and 183.31± 7 GHz) in a one-dimensional
SOM architecture. Then, an LDA model has been trained us-

ing the previously obtained clusters as a reference and us-
ing the PESCA input parameters (pem23, pem31, ratio, and
SI), some environmental parameters (TPW, T2m, and surface
pressure (Psurf)), and ancillary variables (latitude (lat), Julian
day (jd), altitude (DEM), and the maximum solar height dur-
ing the day (Hsun)) as input. The use of the LDA is necessary
to associate an emissivity spectrum to all the observations
that are classified by PESCA, independently of the presence
of clouds. It is worth noting that the whole predictor set of
the LDA has resulted in being redundant; therefore, a subset
of the predictors has been selected for each class. The accu-
racy of the LDA classification is given by the ratio between
the number of hits (observations where LDA identifies the
associated SOM class) and the total number of observations;
it can be regarded as an indicator of the effectiveness of the
LDA model in rebuilding the SOM results.

The evaluation of the refinement process is based on the
comparison between the simulated clear-sky TBs and the ob-
served clear-sky TBs. For each PESCA surface class, the
number of clusters that simultaneously lowers the errors
(RMSE) between the simulated and observed clear-sky TBs
at high frequency (without lowering the classification accu-
racy too much) is chosen.

In Table 3 the number of clusters, the predictors selected,
the accuracy, the RMSE, and the percentage normalized root
mean squared error (NRMSE%) (Gareth et al., 2013) esti-
mated on the test dataset are reported for the 165.5 GHz
channel. NRMSE% is defined by Eq. (5).

NRMSE% =

(
RMSE
σ
× 100

)
, (5)

where σ represents the standard deviation of the measured
clear-sky TBs dataset in each PESCA class. It can be re-
garded as an indicator of the effectiveness of the refinement
process.

For some classes, such as the Ocean class, the refinement
process leads to low RMSE values (< 4 K). For other classes,
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Table 3. Classification Refinement – Parameters.

Class n clusters Accuracy 165.5 GHz 165.5 GHz Predictor set
RMSE (K) NRMSE%

Ocean 2 0.9 3.37 44 Psurf−TPW− T2 m
New Sea Ice 3 0.74 4.52 48 SI− T2 m−Psurf− ratio− jd− pem23
Broken Sea Ice 16 0.56 5.34 41 pem23−TPW−SI−Psurf
Multilayer Sea Ice 9 0.53 4.38 34 pem31−SI−TPW− T2 m− pem23−Psurf
Land 2 0.87 4.57 52 DEM − jd − TPW
Perennial Snow 8 0.65 5.98 54 pem23− jd−SI− pem31− lat
Winter Polar Snow 5 0.76 5.87 37 pem31−SI− lat−Hsol− pem31− jd
Deep Dry Snow 15 0.34 6.77 45 SI−pem31− ratio
Thin Snow 3 0.78 6.03 39 SI−ratio− lat
Coast 13 0.43 6.80 44 SI−pem23− pem31−DEM− T2 m

such as Deep Dry Snow and Broken Sea Ice, RMSE re-
mains> 5 K even with a high number of clusters, although
there is a significant reduction compared to the initial vari-
ance in each class (NRMSE% < 50). This is due to the vari-
ability in snow-covered background within each class; in the
worst-case scenario, the limited number of predictors is in-
sufficient to infer the emissivity spectrum at high frequency.
Overall, the refinement process allows us to obtain a general
improvement in the accuracy of the dynamic emissivity es-
timation for the PESCA classes; however, for some classes,
the high-frequency channel uncertainty remains significant.
The emissivity spectra obtained by PESCA refinement are
used as inputs for the RTM to obtain clear-sky simulated TBs
(TBsim) to be compared to the actual observations (TBobs).
The comparison between clear-sky simulated TBs and ob-
served TBs allows us to highlight and interpret the MW sig-
nal in the presence of snowfall.

In Fig. 6, the snowfall signal is represented as a func-
tion of the SWP for the 165.5 GHz channel and differ-
ent PESCA classes. The red lines and shaded areas repre-
sent the mean values and standard deviations of the differ-
ence between observed TBs and clear-sky simulated TBs
(1TBobs−sim = TBobs−TBsim) for SWP bins calculated for
observations where 2CSP SWP> 0 kg m−2. The blue lines
represent the uncertainty due to surface emissivity variabil-
ity in each PESCA class. They are centered on the estimated
bias for each class (close to 0 K), and the dashed lines corre-
spond to the standard deviation of 1TBobs−sim in clear-sky
conditions. A clear scattering signal (1TBobs−sim < 0) is ob-
served over all the classes considered for intense snowfall
events (SWP> 1 kg m−2). For lower SWP values, the sig-
nal is more ambiguous and changes with the background
surface. While over Land there is a clear scattering signal
for SWP> 0.1 kg m−2, over the Perennial Snow class a scat-
tering signal can be observed only for SWP> 0.5 kg m−2.
For SWP< 0.1 kg m−2, the mean 1TBobs−sim for snowfall
observations is less than its standard deviation in clear-sky.
This is due mainly to the emissivity variability in each sur-
face class and to the error introduced by the use of model-

derived temperature and water vapor profiles in the RT
simulations. However, while for the Land class the mean
1TBobs−sim < 0 K can be explained as a predominant scat-
tering effect for all SWP values, for the Perennial Snow class
the mean1TBobs−sim > 0 K can be interpreted as a predomi-
nant emission signal with respect to the radiatively cold back-
ground (see Fig. 5). The Thin Snow class shows an inter-
mediate behavior: for SWP< 0.1 kg m−2 the red shaded area
within the RMSE limits (blue lines) of the RT simulations
denotes the difficulty in interpreting the signal, while a clear
scattering signal can be observed for SWP> 0.3 kg m−2. As
far as the Ocean and New Sea Ice classes are concerned, a
clear scattering signal is visible only for high SWP values
(> 1 kg m−2), while for low SWP values a significant emis-
sion signal is observed. The emission effect observed over
ocean and sea ice is likely generated by supercooled cloud
liquid water. The ubiquitous presence of supercooled water
layers in snow clouds (Wang et al., 2013; Battaglia and Pane-
grossi, 2020), especially over oceans (Battaglia and Delanoë,
2013), generates an emission effect that is particularly signif-
icant over radiatively cold surfaces (such as Perennial Snow,
Ocean, and New Sea Ice at high frequency; see Fig. 4) and
can mask or overcome the weak scattering signal generated
by falling snow, especially in light snowfall events. It is also
important to underline that the DARDAR product identifies
mostly supercooled water layers at the cloud top (Rysman et
al., 2018; Panegrossi et al., 2017), while it has been shown
that the impact of supercooled water layers embedded in the
clouds can be very significant on the measured TBs at MW
high-frequency window channels (Battaglia and Panegrossi,
2020; Panegrossi et al., 2022).

3.2 ANN design for snowfall retrieval

The snowfall detection and estimation modules have been
based on ANNs. Four ANNs have been developed: two for
the detection of SWP and SSR and two for the SWP and SSR
estimate. The performances of more than 50 architectures
have been tested by varying the number of layers, the num-
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Figure 6. Snowfall signature at 165.5 GHz as a function of SWP for
five PESCA surface classes. The red lines and shaded areas repre-
sent the mean values and standard deviations of 1TBobs−sim (i.e.,
the snowfall signature), while the blue lines are centered on the esti-
mated bias and standard deviation of1TBobs−sim in clear-sky con-
ditions for the corresponding PESCA surface class.

ber of neurons for each layer, and the activation functions.
The final architecture for all modules is composed of four
layers: an input layer with a neuron number equal to the pre-
dictor number, a hyperbolic tangent function as the activation
function, a first hidden layer (60 neurons), a hyperbolic tan-
gent function, and a second hidden layer (30 neurons) with a
sigmoid function (for more information about the neural net-
work characteristics, see Sanò et al., 2015). At the same time,
several predictor sets have been tested, combining in differ-
ent ways ATMS TBobs, 1TBobs−sim, PESCA surface class,
ATMS angle of view, ancillary information (surface elevation
from a digital elevation model), and model-derived environ-
mental variables (T2 m, TPW, and the Freezing Level Height).
In Table 4 the statistical scores of the algorithm performance
for the SSR detection module obtained for different predic-
tor sets are reported. It is possible to see that the best per-
formance is obtained when the predictor set is composed of
ATMS TBobs and 1TBobs−sim (besides the PESCA surface
flag, the pixel surface elevation, and the cosine of the view-
ing angle). In particular, there is a notable improvement in
the detection capabilities with respect to a predictor set com-
posed of ATMS TBobs and environmental parameters, which
is used in other approaches such as that of SLALOM-CT. On
the other hand, the simultaneous use of both the 1TBobs−sim

and the environmental parameters shows scores almost equal
to that obtained by using only 1TBobs−sim. This indicates
that the computation of the multichannel clear-sky TBs at the
time of the overpass through the estimation of the dynamic
surface class emissivity spectra and its deviation from the
measured TBs plays a fundamental role in snowfall retrieval,
in particular in cold/dry environmental conditions. It pro-
vides essential information for the ANN to be able to exploit
the subtle snowfall-related signal in ATMS measurements.
This is the most innovative aspect of HANDEL-ATMS.

Based on these results, the final set of predictors for
HANDEL-ATMS is composed of the TBobs in 16 ATMS
channels (1–9 and 16–22; channels 10–15 have not been
considered because their weighting function peaks above
the tropopause), the corresponding 1TBobs−sim, the PESCA
classification flag, the pixel elevation (obtained from a
DEM), and the cosine of the viewing angle.

4 Results

4.1 HANDEL-ATMS performances

In Table 5 the statistical scores of HANDEL-ATMS detection
module performances are reported in terms of POD, FAR,
and HSS. These statistical scores – and the plot reported in
the next figures – have been calculated for the test dataset.

In Figs. 7 and 8 the dependence of HANDEL-ATMS
snowfall detection statistical scores on TPW and T2 m is re-
ported. In both figures, it is possible to observe that the
SWP detection capabilities improve (with an increase in
POD and HSS and a decrease in FAR) with increasing hu-
midity and temperature. This is due to the combined effect
of a stronger scattering signal associated with more intense
snowfall events – linked to moister and warmer environmen-
tal conditions, as can be observed in Fig. 12 and Table 2
– and to the lower transmissivity of the atmosphere which
masks the background surface signal, reducing its impact and
the uncertainties linked to its variability. On the other hand,
colder and drier conditions are usually linked to background
surface types characterized by high radiometric variability
such as the Perennial Snow and Winter Polar Snow classes,
which cause uncertainty in emissivity estimation. It is possi-
ble to observe that in Fig. 7 SSR detection capabilities show
a maximum HSS value for TPW between 3 and 5 mm, and
then there is a slight decrease due to the decrease of POD.
A similar situation can be observed in Fig. 8, where HSS
reaches a maximum between 250 and 275 K, and it is lower
than for SWP. This is due to the fact that PMW measure-
ments respond mostly to the snow in the atmospheric col-
umn, and in moister/warmer conditions the presence of snow
in the atmosphere is not always linked to surface snowfall.
In both cases, it is worth noting that, also considering very
dry (TPW≈ 2 mm) or very cold (T2 m≈ 240 K) conditions,
HANDEL-ATMS shows good detection capabilities, in spite
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Table 4. HANDEL-ATMS SSR detection performance: statistical scores for different predictor sets. The statistical scores have been calcu-
lated for the test dataset.

Predictor set POD FAR HSS

1TBobs−sim+ ancillary parameters 0.75 0.29 0.48
TBobs+ ancillary parameters 0.81 0.18 0.65
TBobs+ environmental var + ancillary parameters 0.82 0.17 0.68
TBobs+1TBobs−sim+ ancillary parameters 0.84 0.16 0.69

Table 5. HANDEL-ATMS detection performance: SWP and SSR
detection module statistical scores. The statistical scores have been
calculated for the test dataset.

POD FAR HSS

SWP 0.85 0.15 0.70
SSR 0.84 0.16 0.69

of the uncertainties linked to the modeling of the background
surface and the weakness of the signal in such conditions.
In Fig. 9 the dependence of HANDEL-ATMS snowfall de-
tection statistical scores on SWP and SSR values retrieved
by CPR 2CSP is reported. Only POD is reported because
the statistics are calculated for snowfall observations only
(2CSP SWP> 0 kg m−2 and 2CSP SSR> 0 mm h−1). It is
possible to observe that, also considering very low SWP and
SSR values (SWP≈ 0.001 kg m−2, SSR≈ 0.001 mm h−1),
HANDEL-ATMS manages to detect around 60 % of the
snowfall events.

The detection capabilities are influenced both by the typi-
cal environmental conditions of each PESCA class and by the
uncertainties linked to the emissivity estimation. In Fig. 10
the statistical scores of the algorithm performance, calcu-
lated by considering each PESCA class for both the SWP
and the SSR detection module, are reported. It can be ob-
served that, also considering specifically the classes asso-
ciated with extremely dry and cold environmental condi-
tions such as Perennial Snow or Winter Polar Snow (see
Camplani et al., 2021 and Table 2), where the detection
is more problematic due to low snowfall intensity (see Ta-
ble 2) and to the uncertainties in the emissivity retrieval (see
Table 3), HANDEL-ATMS has good detection capabilities
(POD and FAR values greater than 0.7 and less than 0.25, re-
spectively, for both SWP and SSR). On the other hand, for
surface classes characterized by the highest emission esti-
mation uncertainties, such as Deep Dry Snow, the statistical
scores are coherent with the general scores and better than
those obtained in presence of extremely dry/cold environ-
mental conditions. Therefore, it is possible to conclude that
the extremely cold/dry environmental conditions have more
influence on the detection than the uncertainties on clear-sky
emissivity estimation do. Generally, these results provide ev-

Figure 7. Dependence of HANDEL-ATMS SWP and SSR detec-
tion statistical scores on TPW calculated for the test dataset. Each
star represents the statistical score value for a different 1 mm bin of
TPW. The left y axis reports POD, FAR, and HSS values, while the
right y axis reports the number of total and snowfall observations in
the test dataset.

idence that HANDEL-ATMS can be used to analyze snowfall
occurrence in the polar regions.

The error statistics of the two estimation modules are re-
ported in Table 6 in terms of bias; RMSE; and the coefficient
of determination R2, which is defined by Eq. (6).

R2
= 1−

RMSE2

SD2 (6)

It is worth noting that the biases are negligible for both mod-
ules while RMSE values are comparable to the light events
recorded in the dataset. Moreover, as expected, RMSE and
R2 values are respectively higher and lower for the SSR
module than for the SWP module. In Fig. 11 the density
scatterplots between the SWP and SSR values retrieved by
HANDEL-ATMS and 2CSP corresponding values are re-
ported. For both modules, an overestimation can be observed
for very light snowfall (SWP< 10−2 kg m−2 and SSR<
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Figure 8. Same as Fig. 7 but for T2 m bins.

Figure 9. Dependence of HANDEL-ATMS SWP and SSR POD
on SWP/SSR values. Each star represents the statistical score value
for different SWP/SSR bins. The left y axis reports POD values,
while the right y axis reports the number of snowfall observations
in the test dataset. Only POD has been reported because the index
has been calculated for observations where CPR 2CSP detects the
presence of SWP/SSR.

10−2 mm h−1), while there is a very good agreement for
higher SWP and SSR values. In order to relate these results to
the environmental conditions, Fig. 12 shows the dependence
of HANDEL-ATMS snowfall estimation error statistics and
of SWP and SSR on TPW. The curves represent, for each
1 mm TPW bin, the mean 2CSP SWP or SSR computed, the
RMSE, and the relative bias (the ratio between the bias and
the SWP/SSR mean value for each bin). As expected, TPW
and snowfall intensity are strongly correlated. An increase in

Figure 10. Same as Fig. 7 but for PESCA surface classes. Each star
represents the value of the statistical score for each surface category.

Table 6. HANDEL-ATMS estimation performance: SWP and SSR
estimation module error statistics. The error statistics have been cal-
culated for the test dataset.

RMSE Bias R2

SWP (kg m−2) 0.047 0.001 0.72
SSR (mm h−1) 0.079 0.002 0.61

the absolute RMSE can be observed as TPW increases, and
it is larger than the SWP/SSR mean value for TPW< 8 mm.
A similar behavior can be observed by analyzing the depen-
dence of HANDEL-ATMS snowfall estimation error statis-
tics on T2 m (not shown). A very moderate overestimation is
observed for TPW< 8 mm and for lower SWP and SSR val-
ues (< 0.1 mm h−1), with relative bias around 5 % (up to 8%
only for extremely low TPW values and very low number of
observations, see Fig. 7), while underestimation (relative bias
up to −5 %) is observed for higher TPW values and higher
SWP and SSR values. Generally, light snowfall events are
linked to the very cold/dry environmental conditions typical
of high-latitude regions. Therefore, the algorithm also man-
ages to estimate the very light SWP and SSR typical of high
latitudes but tends to slightly overestimate snowfall intensity
in such conditions.

From the analysis of Figs. 7–12, it can be concluded that
HANDEL-ATMS has good detection capabilities (also for
extremely light snowfall), but it shows some limitations in
correctly estimating its intensity, with slight overestimation
of the very light snowfall typical of high latitudes.
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Figure 11. 2D histogram reporting HANDEL-ATMS SWP (a) and SSR (b) estimation (y axis) and 2CSP estimation (x axis). The color bar
represents the number of observations for each HANDEL ATMS/2CSP bin (test dataset). The dashed violet line represents the bisector.

Figure 12. Dependence of HANDEL-ATMS SWP and SSR esti-
mation on TPW calculated for the test dataset. Each star represents
the value of the statistical score for different 1 mm TPW bins. The
left y axis reports the RMSE and the mean intensity SWP and SSR
value for each 1 mm TPW bin, while the right y axis reports the rel-
ative bias, calculated as the ratio between the bias and the SWP/SSR
mean value for each bin.

4.2 A case study: Greenland – 24 April 2016

The case study reported corresponds to the observation of
a moderately light snowfall event over the central part of
Greenland that occurred on 24 April 2016. ATMS overpass
is between 14:51:23 and 14:57:47 UTC, while the CPR over-
pass is between 15:05:25 and 15:11:45 UTC, with a time dif-
ference of 14 min and 2 s. This event presents several charac-
teristics typical of high latitudes, such as light snowfall rate,
dry and cold atmospheric conditions, and the presence of a

frozen background surface – a typical case of interest for the
application of HANDEL-ATMS.

In Fig. 13 PESCA classification is reported. The entire ter-
ritory of Greenland, except for a narrow area on the south-
western coast, is identified as a snow-covered surface: the
PESCA identifies the Perennial Snow class in the central
part of Greenland and along the CloudSat track and the Po-
lar Winter Snow class near the northern shoreline. CloudSat
passes over the central part of the island, and the CPR track
is along the central part of the ATMS swath.

In Fig. 14 a synopsis of the event along the CPR track is
reported, showing T2 m and TPW; the 2CSP SWP and SSR
values; and the cross-section of CPR reflectivity, with the
DARDAR supercooled water information superimposed (in
magenta). Moreover, the PESCA surface classification and
the TBs of the main ATMS high-frequency channels along
the CloudSat track are also shown. The event is character-
ized by dry conditions (TPW< 5 mm) and T2 m below 273 K,
except over the coast. CPR observes a cloud system associ-
ated with the snowfall event between 68 and 76° N; DAR-
DAR detects the presence of a supercooled water layer at the
cloud top between 68 and 72° N and indicates the presence
of supercooled droplets embedded in the deeper cloud asso-
ciated with the more intense snowfall. According to the 2CSP
product, a light shallow snowfall system is found in the in-
ner part of the island, while deeper, more intense snowfall,
with a peak of intensity between 72 and 76° N, is found near
the shoreline. As far as the associated ATMS observations
are concerned, an increase in the 88 and 165 GHz TBs is ob-
served in correspondence with the supercooled water layer,
while only a slight decrease in 165.5 and 183.31± 7 GHz
TBs can be observed in coincidence with the snowfall inten-
sity peak.

In Fig. 15 the maps of the TBobs at 165.5 GHz (top panel)
and the 1TBobs−sim at 165.5 GHz (bottom panel) are re-
ported. In the top panel, it is possible to observe that, de-
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Figure 13. Greenland, 24 April 2016. The ATMS overpass is between 14:54 and 14:58 UTC, while the CPR overpass is between 15:05 and
15:12 UTC. Map of the PESCA background surface classification. The dotted green line represents the CloudSat track.

spite the snowfall event, there is not a clear TB scattering
signal in the area where 2CSP detects snowfall (70–76° N,
40–70° W); instead, a slight increase in the TBs can be ob-
served in the area where DARDAR detects the supercooled
water layer at the cloud top. The map of 1TBobs−sim shows
an emission signal (1TBobs−sim > 0) over the central part
of the ATMS swath due to the combined effect of the emis-
sion by the supercooled liquid water layers at the cloud top,
as evidenced by DARDAR (evidently exceeding the scat-
tering signal of the weak and shallow snowfall), over a ra-
diatively cold surface background. Only near the shoreline,
the observed TBs are slightly lower than the clear-sky sim-
ulated TBs (1TBobs−sim < 0) due to the stronger scatter-
ing signal of the deeper snowfall system. In Fig. 16 the re-
sults of the four HANDEL-ATMS modules are reported. It
is worth noting that both detection modules find snowfall in
the central region of Greenland and near the northern coast.
The estimated snowfall intensity for this event is gener-
ally low (SWP< 0.1 kg m−2 and SSR< 0.1 mm h−1), except
over the western coast, where SWP reaches 0.5 kg m−2 and
SSR reaches 1 mm h−1. It is worth noting that HANDEL-
ATMS also detects snowfall where there is an emission sig-
nal (1TBobs−sim > 0) and that discontinuities in snowfall re-
trievals are not observed in correspondence with surface class
changes.

Finally, a comparison between HANDEL-ATMS and
2CSP is reported in Fig. 17. There is a substantial agreement
on the snowfall detection of the two products. HANDEL-
ATMS tends to overestimate very light SWP and SSR in
the presence of the shallow system (2CSP SWP< 0.05 kg
m−2 and SSR< 0. 1 mm h−1, between 68 and 72° N), con-
sistently with what is shown in Fig. 10, while there is a good

agreement between 72 and 76° N, where snowfall intensity
increases.

The analysis of this case study demonstrates that the algo-
rithm can interpret the ambiguity of the emission/scattering
signal often associated with snowfall events at high latitudes
(as described in Sect. 4.1) and efficiently detect (and, to a
lesser extent, quantify) snowfall even in extremely cold and
dry conditions.

4.3 Comparison with SLALOM-CT

Recently, several MW-based snowfall retrieval algorithms
have been developed, but HANDEL-ATMS is the only one
tailored for high-latitude regions. Algorithms developed for
the GMI on board GPM-CO, based on machine learning
techniques and on the use of CPR 2CSP as a reference (e.g.,
Rysman et al., 2018, 2019), do not retrieve snowfall at high
latitudes; therefore, a direct comparison with HANDEL-
ATMS can not be carried out. Other snowfall retrieval al-
gorithms based on ATMS observations (e.g., Kongoli et
al., 2015; Meng et al., 2017) are trained over specific geo-
graphical areas (the continental US region) and are not repre-
sentative of the extreme, high-latitude environmental condi-
tions; therefore, a comparison with HANDEL-ATMS could
be not very significant. In another study by You et al. (2022),
a retrieval algorithm for ATMS, trained using the CPR 2CSP
product and based on logistic regression methods, provides
snowfall retrieval only over specific background surfaces:
ocean, sea ice, and coastal areas. However, it is interesting
to observe a qualitative consistency with HANDEL-ATMS.
The two algorithms show higher statistical scores over open
water (ocean) with respect to sea ice or coast and better de-
tection capabilities in the presence of higher SWP/SSR val-

https://doi.org/10.5194/amt-17-2195-2024 Atmos. Meas. Tech., 17, 2195–2217, 2024



2210 A. Camplani et al.: HANDEL-ATMS

Figure 14. Greenland, 24 April 2016. Synopsis along CloudSat Track. First row: ECMWF TPW and T2 m values along the CloudSat track.
Second row: the 2CSP SWP (left) and SSR (right) and the PESCA classification along the CloudSat track. Third row: CPR reflectivity (values
are reported in the color bar on the right) and supercooled water droplets detected by DARDAR (magenta points), digital elevation model
(brown line) and the ECMWF freezing level (red line) along the CloudSat track. Bottom row: the ATMS TBs of the high-frequency channels
(88, 166, 183+ 3, and 183+ 7 GHz) along the CloudSat track.

ues. A quantitative comparison between SLALOM-CT and
HANDEL-ATMS is presented below, since both algorithms
are based on a machine learning approach and are trained
using a global ATMS-CPR coincidence dataset.

SLALOM-CT was introduced in Sect. 1. It presents some
similarities with HANDEL-ATMS: it is based on an ANN
approach and uses the CPR 2CSP product as a reference.
On the other hand, substantial differences have to be high-
lighted: SLALOM-CT was designed to operate on a global
scale, while HANDEL-ATMS has been developed specifi-
cally for the environmental conditions typical of high lati-
tudes. Moreover, the predictor sets are different: in addition
to TB observations, SLALOM-CT relies on several model-
derived environmental parameters, while HANDEL-ATMS

relies on differences between simulated clear-sky TBs, based
on the dynamic estimation of the background surface emis-
sivity (i.e., at the time of the satellite overpass) and observed
TBs (1TBobs−sim), as described in Sect. 3.

In Table 7 a comparison between the statistical scores
of the detection performances of the two algorithms is re-
ported for different environmental conditions. The compar-
ison has been carried out considering the same elements of
the ATMS-CPR coincidence dataset. It can be observed that
the differences between the two algorithm performances in-
crease as the environmental conditions become more extreme
(i.e., lower T2 m and TPW), with consistently better snowfall
detection capabilities of HANDEL-ATMS than SLALOM-
CT. Considering the working limits of HANDEL-ATMS,
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Figure 15. Greenland, 24 April 2016. TB measured by the 165 GHz channel (TBobs) (a) and the deviation of TBobs from the simulated
clear-sky TBs (1TBobs−sim) (b). The dotted red line (a) and the dotted green line (b) represent the CloudSat track.

POD increases by 2 %, and FAR decreases by 8 %, while for
very cold/dry conditions (T2 m < 250 K, TPW< 5 mm), POD
increases by 7 %, and FAR decreases by 16 %. For extremely
dry/cold conditions (T2 m < 240 K, TPW< 3 mm), typical of
the inner part of Greenland and Antarctica, POD increases
by 18 %, and FAR decreases by 16 %.

5 Conclusions and future perspectives

In this paper, a new snowfall retrieval algorithm, the High
lAtitude sNow Detection and Estimation aLgorithm for
ATMS (HANDEL-ATMS), is described. The algorithm is
based on machine learning techniques trained with the CPR
2CSP snowfall product, and it is designed specifically for
the cold and dry environmental conditions typical of high-
latitude regions. The driving and innovative principle in the
algorithm development is the exploitation of the full range of
ATMS channel frequencies to characterize the background

surface radiative properties at the time of the overpass to be
able to better isolate and interpret the snowfall-related con-
tribution to the measured multichannel upwelling radiation.
A similar approach has been used by Zhao and Weng (2002);
however, their application was limited to non-scattering sur-
faces and was based on empirical relationships. This ap-
proach is proven to be effective for snowfall detection and
quantification at high latitudes, particularly in the presence of
a frozen (snow-covered land or sea ice) background surface,
also compared to other state-of-the-art machine-learning-
based methods.

HANDEL-ATMS can detect snowfall at high latitudes
in good agreement with CPR. The estimation modules
tend to slightly overestimate the intensity of light snowfall
events (SWP< 10−2 kg m−2), with mean relative bias< 5 %
for SSR< 0.1 mm h−1, but they shows good accuracy
for more intense snowfall events (SWP> 10−2 kg m−2,
SWP< 1 kg m−2). It is worth noting, however, that the un-
certainty associated with the surface emissivity estimation in
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Figure 16. Greenland, 24 April 2016. Maps of the HANDEL-ATMS module’s output: the SWP detection mask (a), the estimated SWP
(kg m−2) (b), the SSR detection mask (c), and the estimated SSR (mm h−1) (d). The dotted green lines represent the CloudSat track.
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Figure 17. Greenland, 24 April 2016. Comparison between CPR 2C-SNOW-PROFILE and HANDEL-ATMS SWP and SSR estimates along
the CloudSat track.

Table 7. Comparison between HANDEL-ATMS and SLALOM-CT detection performances for different environmental conditions
(∗ HANDEL-ATMS working limits).

POD FAR

SLALOM-CT HANDEL-ATMS SLALOM-CT HANDEL-ATMS

TPW< 10 mm T2 m< 280 K∗ 0.82 0.84 0.19 0.16
TPW< 5 mm T2 m< 250 K 0.64 0.68 0.28 0.23
TPW< 3 mm T2 m< 240 K 0.45 0.54 0.33 0.28

some conditions affects the capabilities of HANDEL-ATMS
to correctly interpret the snowfall signature. Such uncer-
tainty propagates in the RTM simulation of clear-sky TBs
used as input in the algorithm. Despite these limitations, it
is worth noting that the development of an algorithm ca-
pable of retrieving snowfall at high latitudes with good ac-
curacy is an important development in the climate science
field. The possibility to exploit the high temporal sampling
of the near-polar operational satellites carrying ATMS ra-
diometers allows us to achieve full coverage of the polar re-
gions. Moreover, the future European MetOp Second Gener-
ation (MetOp-SG) mission, with the launch of the Sat-A Mi-
crowave Sounder (MWS), with characteristics very similar
to ATMS, will soon provide additional coverage to improve
global snowfall monitoring. HANDEL-ATMS methodology
will be adapted to be able to exploit MWS measurements in
the future. The capability to estimate snowfall at high tem-
poral resolution is ancillary to the development of a snowfall
monitoring system for the high latitudes and to the analysis
of the snowfall climatology in these areas, with possible ap-
plications in climate change studies in the polar regions.

Future research will address some open issues. The esti-
mation of the surface emissivity and the simulated clear-sky
multichannel TBs needs to be further improved, either by
considering other predictor sets or by using a different tech-
nique for the emissivity spectra definition including a more
advanced RTM. Another important aspect is the quantifica-
tion of the error linked to the background surface emissiv-
ity estimation on the snowfall detection capabilities. This
would also be useful for the development of modules for
mountainous areas, which have not been considered in the
current version of the algorithm. Moreover, the effect on
the algorithm snowfall detection capabilities of the uncer-
tainties linked to the model-derived environmental variables
(e.g., temperature and water vapor profile), which are used
in the clear-sky TB simulations, should be investigated. The
use of the ATMS water vapor (183 GHz band) and temper-
ature (50 GHz band) sounding channels to characterize the
atmospheric conditions at the time of the overpass in order
to complement or avoid the use of model-derived data is
another subject of future research. Moreover, the develop-
ment of a separate supercooled liquid water detection mod-
ule will be also evaluated, similarly to what is done in other
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PMW snowfall detection and estimation algorithms (Rysman
et al., 2018; Sanò et al., 2022). Such information can be ex-
ploited to improve snowfall detection and estimation capa-
bilities, since the emission by the cloud droplets in dry con-
ditions tends to mask the snowfall scattering signal (Pane-
grossi et al., 2017, 2022) and adds larger uncertainties in
the CPR snowfall products used as a reference (Battaglia
and Panegrossi, 2020). Moreover, recent studies have high-
lighted that TBs correlate more strongly with lagged sur-
face precipitation (with a time lag of 30–60 min for snowfall)
than the simultaneous precipitation rate (You et al., 2019).
Therefore, an analysis based on a coincident dataset char-
acterized by different time lags will be conducted. The re-
sults of this analysis will be compared with HANDEL-ATMS
performances in order to identify a way to exploit this in-
formation towards the improvement of SSR detection and
estimation. Finally, since the algorithm has been developed
only for specific environmental conditions typical mostly of
high latitudes, an integration with other approaches, such as
that of the SLALOM-CT, designed for global estimation of
snowfall, could be considered in the future to improve global
snowfall monitoring based on ATMS and on future cross-
track scanning radiometers.

Data availability. ATMS data are provided by the NOAA CLASS
facility, https://www.avl.class.noaa.gov/ (NOAA, 2023); CPR data
are distributed by the CloudSat Data Processing Center, https:
//www.cloudsat.cira.colostate.edu/ (CloudSat DPC, 2023); DAR-
DAR data are available from the ICARE FTP server at ftp://
ftp.icare.univ-lille1.fr (University of Lille, 2023, registration re-
quired); and ECMWF operational forecasts are distributed by
ECMWF through the MARS facility via the ECGATE cluster. Au-
toSnow data are provided at https://satepsanone.nesdis.noaa.gov/
northern_hemisphere_multisensor.html (NOAA Satellite and Infor-
mation Service, 2023).

Author contributions. Conceptualization: AC, PS, and DC.
Methodology: AC, PS, and DC. Software, validation, and formal
analysis: AC. Investigation: AC, PS, DC, and GP. Data curation:
AC and DC. Writing (original draft preparation): AC. Writing
(review and editing): AC, PS, DC, and GP. Visualization: AC.
Supervision, project administration, and funding acquisition: GP.
All authors have read and agreed to the published version of the
paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. The funders had no role in the design of the study; in
the collection, analyses, or interpretation of data; in the writing of
the paper; or in the decision to publish the results.

Publisher’s note: Copernicus Publications remains neutral
with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical represen-
tation in this paper. While Copernicus Publications makes every
effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This work was carried out under the Raincast
study (ESA contract no. 4000125959/18/NL/NA) and by the EU-
METSAT Operational Hydrology and Water Management Satellite
Application Facility (H SAF) third and fourth Continuous Develop-
ment and Operations Phases (CDOP-3 and CDOP-4). Andrea Cam-
plani was supported by the PhD program in Infrastructures, Trans-
port Systems, and Geomatics at the Department of Civil, Construc-
tional, and Environmental Engineering at Sapienza University of
Rome. The authors would like to thank EUMETSAT and the NASA
Precipitation Measurement Mission (PMM) research program for
supporting scientific collaborations between H SAF, GPM, and the
PMM Science Team. The authors wish to express their sincere grat-
itude to Joe Turk (NASA JPL) and Alessandro Battaglia, who are
warmly acknowledged for useful interactions and discussions dur-
ing the algorithm development and validation, and to Mattia Crespi
for the scientific support to Andrea Camplani during the PhD pro-
gram.

Financial support. This work was carried out under the Raincast
study (ESA contract no. 4000125959/18/NL/NA) and by the EU-
METSAT Operational Hydrology and Water Management Satellite
Application Facility (H SAF) third and fourth Continuous Develop-
ment and Operations Phases (CDOP-3 and CDOP-4). Andrea Cam-
plani was supported by the PhD program in Infrastructures, Trans-
port Systems, and Geomatics at the Department of Civil, Construc-
tional, and Environmental Engineering at Sapienza University of
Rome.

Review statement. This paper was edited by S. Joseph Munchak
and reviewed by four anonymous referees.

References

Battaglia, A. and Delanoë, J.: Synergies and complementarities
of CloudSat-CALIPSO snow observations, J. Geophys. Res.-
Atmos., 118, 721–731, https://doi.org/10.1029/2012JD018092,
2013.

Battaglia, A. and Panegrossi, G.: What can we learn from
the CloudSat radiometric mode observations of snowfall over
the ice-free ocean?, Remote Remote Sensing, 12, 3285,
https://doi.org/10.3390/rs12203285, 2020.

Behrangi, A., Christensen, M., Richardson, M., Lebsock, M.,
Stephens, G., Huffman, G. J., Bolvin, D., Adler, R. F.,
Gardner, A., Lambrigtsten, B., and Fetzer, E.: Status of
high-latitude precipitation estimates from observations
and reanalyses, J. Geophys. Res.-Atmos., 121, 4468–4486,
https://doi.org/10.1002/2015JD024546, 2016.

Atmos. Meas. Tech., 17, 2195–2217, 2024 https://doi.org/10.5194/amt-17-2195-2024

https://www.avl.class.noaa.gov/
https://www.cloudsat.cira.colostate.edu/
https://www.cloudsat.cira.colostate.edu/
ftp://ftp.icare.univ-lille1.fr
ftp://ftp.icare.univ-lille1.fr
https://satepsanone.nesdis.noaa.gov/northern_hemisphere_multisensor.html
https://satepsanone.nesdis.noaa.gov/northern_hemisphere_multisensor.html
https://doi.org/10.1029/2012JD018092
https://doi.org/10.3390/rs12203285
https://doi.org/10.1002/2015JD024546


A. Camplani et al.: HANDEL-ATMS 2215

Bintanja, R. and Selten, F.: Future increases in Arctic precipitation
linked to local evaporation and sea-ice retreat, Nature, 509, 479–
482, https://doi.org/10.1038/nature13259, 2014.

Camplani, A., Casella, D., Sanò, P., and Panegrossi, G.: The Pas-
sive microwave Empirical cold Surface Classification Algo-
rithm (PESCA): Application to GMI and ATMS, J. Hydrometeo-
rol., 22, 1727–1744, https://doi.org/10.1175/JHM-D-20-0260.1,
2021.

Casella, D., Panegrossi, G., Sanò, P., Marra, A. C., Diet-
rich, S., Johnson, B. T., and Kulie, M. S.: Evaluation
of the GPM-DPR snowfall detection capability: Com-
parison with CloudSat-CPR, Atmos. Res., 197, 64–75,
https://doi.org/10.1016/j.atmosres.2017.06.018, 2017.

Ceccaldi, M., Delanoë, J., Hogan, R. J., Pounder, N. L., Protat, A.,
and Pelon, J.: From CloudSat-CALIPSO to EarthCare: Evolu-
tion of the DARDAR cloud classification and its comparison to
airborne radar-lidar observations, J. Geophys. Res.-Atmos., 118,
7962–7981, https://doi.org/10.1002/jgrd.50579, 2013.

Clifford, D.: Global estimates of snow water equivalent from
passive microwave instruments: history, challenges and fu-
ture developments, Int. J. Remote Sens., 31, 3707–3726,
https://doi.org/10.1080/01431161.2010.483482, 2010.

CloudSat Data Processing Center (DPC): CPR data, CloudSat DPC,
Colorado State University, https://www.cloudsat.cira.colostate.
edu/ (last access: 4 April 2023.

Comiso, J. C.: Sea ice effective microwave emissivi-
ties from satellite passive microwave and infrared ob-
servations, J. Geophys. Res.-Oceans, 88, 7686–7704,
https://doi.org/10.1029/JC088iC12p07686, 1983.

Cordisco, E., Prigent, C., and Aires, F.: Snow characteri-
zation at a global scale with passive microwave satel-
lite observations, J. Geophys. Res.-Atmos., 111, D19102,
https://doi.org/10.1029/2005JD006773, 2006.

DARDAR: Retrieve cloud properties by combining the Cloud-
Sat radar and the CALIPSO lidar measurements, CNS-CNRS-
Universiteé de Lille, https://www.icare.univ-lille.fr/dardar/, last
access: 4 April 2023.

Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-
MODIS retrievals of the properties of ice clouds, J. Geophys.
Res., 115, D00H29, https://doi.org/10.1029/2009JD012346,
2010.

Edel, L., Rysman, J.-F., Claud, C., Palerme, C., and Genthon, C.:
Potential of Passive Microwave around 183 GHz for Snow-
fall Detection in the Arctic, Remote Sens.-Basel, 11, 2200,
https://doi.org/10.3390/rs11192200, 2019.

Fausett, L. V.: Fundamentals of neural networks: architectures,
algorithms and applications, Pearson Education India, ISBN-
13: 978-0133341867, 1994.

Felde, G. W. and Pickle, J. D.: Retrieval of 91 and 150 GHz
Earth surface emissivities, J. Geophys. Res.-Atmos., 100, 20855–
20866, https://doi.org/10.1029/95JD02221, 1995.

Gareth, J., Daniela, W., Trevor, H., and Robert, T.: An introduc-
tion to statistical learning: with applications in R, Spinger, ISBN-
13:978-1461471370, 2013.

Grody, N. C. and Basist, A. N.: Global identification of snowcover
using SSM/I measurements, IEEE T. Geosci. Remote, 34, 237–
249, https://doi.org/10.1109/36.481908, 1996.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J.
H.: The elements of statistical learning: data mining, infer-

ence, and prediction, Springer, New York, Vol. 2, 1–758,
https://doi.org/10.1007/b94608, 2009.

Hewison, T. J. and English, S. J.: Airborne retrievals of snow and
ice surface emissivity at millimeter wavelengths, IEEE T. Geosci.
Remote, 37, 1871–1879, https://doi.org/10.1109/36.774700,
1999.

Kidd, C. and Huffman, G.: Global precipitation measurement,
Meteorol. Appl., 18, 334–353, https://doi.org/10.1002/met.284,
2011.

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P.,
Skofronick-Jackson, G., and Kirschbaum, D. B.: So, how much
of the Earth’s surface is covered by rain gauges?, B. Am.
Meteorol. Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-14-
00283.1, 2017.

Kim, M. J., Weinman, J. A., Olson, W. S., Chang, D. E., Skofronick-
Jackson, G., and Wang, J. R.: A physical model to estimate snow-
fall over land using AMSU-B observations, J. Geophys. Res.-
Atmos., 113, D09201, https://doi.org/10.1029/2007JD008589,
2008.

Kohonen, T.: Self-organization and associative memory, Springer
Science and Business Media, Vol. 8, https://doi.org/10.1007/978-
3-642-88163-3, 2012.

Kongoli, C., Pellegrino, P., Ferraro, R. R., Grody, N. C.,
and Meng, H.: A new snowfall detection algorithm over
land using measurements from the Advanced Microwave
Sounding Unit (AMSU), Geophys. Res. Lett., 30, 1756,
https://doi.org/10.1029/2003GL017177, 2003.

Kongoli, C., Meng, H., Dong, J., and Ferraro, R.: A
snowfall detection algorithm over land utilizing high-
frequency passive microwave measurements–Application
to ATMS, J. Geophys. Res.-Atmos., 120, 1918–1932,
https://doi.org/10.1002/2014JD022427, 2015.

Kongoli, C., Meng, H., Dong, J., and Ferraro, R.: A hybrid snow-
fall detection method from satellite passive microwave measure-
ments and global forecast weather models, Q. J. Roy. Meteor.
Soc., 144, 120–132, https://doi.org/10.1002/qj.3270, 2018.

Kulie, M. S., Bennartz, R., Greenwald, T. J., Chen, Y., and Weng,
F.: Uncertainties in microwave properties of frozen precipitation:
Implications for remote sensing and data assimilation, J. Atmos.
Sci., 67, 3471–3487, https://doi.org/10.1175/2010JAS3520.1,
2010.

Kulie, M. S., Milani, L., Wood, N. B., Tushaus, S. A., Bennartz,
R., and L’Ecuyer, T. S.: A shallow cumuliform snowfall cen-
sus using spaceborne radar, J. Hydrometeorol., 17, 1261–1279,
https://doi.org/10.1175/JHM-D-15-0123.1, 2016.

Levizzani, V., Laviola, S., and Cattani, E.: Detection and measure-
ment of snowfall from space, Remote Sens.-Basel, 3, 145–166,
https://doi.org/10.3390/rs3010145, 2011.

Liu, G. and Seo, E. K.: Detecting snowfall over land by satellite
high-frequency microwave observations: The lack of scattering
signature and a statistical approach, J. Geophys. Res.-Atmos.,
118, 1376–1387, https://doi.org/10.1002/jgrd.50172, 2013.

Liu, J., Curry, J. A., Wang, H., Song, M., and Horton,
R. M.: Impact of declining Arctic sea ice on win-
ter snowfall, P. Natl. Acad. Sci. USA, 109, 4074–4079,
https://doi.org/10.1073/pnas.1114910109, 2012.

Liu, Y., Key, J. R., Liu, Z., Wang, X., and Vavrus, S. J.: A cloudier
Arctic expected with diminishing sea ice, Geophys. Res. Lett.,
39, L05705, https://doi.org/10.1029/2012GL051251, 2012.

https://doi.org/10.5194/amt-17-2195-2024 Atmos. Meas. Tech., 17, 2195–2217, 2024

https://doi.org/10.1038/nature13259
https://doi.org/10.1175/JHM-D-20-0260.1
https://doi.org/10.1016/j.atmosres.2017.06.018
https://doi.org/10.1002/jgrd.50579
https://doi.org/10.1080/01431161.2010.483482
https://www.cloudsat.cira.colostate.edu/
https://www.cloudsat.cira.colostate.edu/
https://doi.org/10.1029/JC088iC12p07686
https://doi.org/10.1029/2005JD006773
https://www.icare.univ-lille.fr/dardar/
https://doi.org/10.1029/2009JD012346
https://doi.org/10.3390/rs11192200
https://doi.org/10.1029/95JD02221
https://doi.org/10.1109/36.481908
https://doi.org/10.1007/b94608
https://doi.org/10.1109/36.774700
https://doi.org/10.1002/met.284
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1029/2007JD008589
https://doi.org/10.1007/978-3-642-88163-3
https://doi.org/10.1007/978-3-642-88163-3
https://doi.org/10.1029/2003GL017177
https://doi.org/10.1002/2014JD022427
https://doi.org/10.1002/qj.3270
https://doi.org/10.1175/2010JAS3520.1
https://doi.org/10.1175/JHM-D-15-0123.1
https://doi.org/10.3390/rs3010145
https://doi.org/10.1002/jgrd.50172
https://doi.org/10.1073/pnas.1114910109
https://doi.org/10.1029/2012GL051251


2216 A. Camplani et al.: HANDEL-ATMS

Mathew, N., Heygster, G., Melsheimer, C., and Kaleschke,
L.: Surface emissivity of Arctic sea ice at AMSU win-
dow frequencies, IEEE T. Geosci. Remote, 46, 2298–2306,
https://doi.org/10.1109/TGRS.2008.916630, 2008.

Mätzler, C. and Hüppi, R.: Review of signature studies for mi-
crowave remote sensing of snowpacks, Adv. Space Res., 9, 253–
265, https://doi.org/10.1016/0273-1177(89)90493-6, 1989.

Meng, H., Dong, J., Ferraro, R., Yan, B., Zhao, L., Kon-
goli, C., Wang, N., and Zavodsky, B.: A 1DVAR-based
snowfall rate retrieval algorithm for passive microwave
radiometers, J. Geophys. Res.-Atmos., 122, 6520–6540,
https://doi.org/10.1002/2016JD026325, 2017.

Milani, L. and Wood, N. B.: Biases in cloudsat falling snow es-
timates resulting from daylight-only operations, Remote Sens.-
Basel, 13, 2041, https://doi.org/10.3390/rs13112041, 2021.

Milani, L., Kulie, M. S., Casella, D., Dietrich, S., L’Ecuyer,
T. S., Panegrossi, G., Porcù, F., Sanò, P., and Wood, N. B.:
CloudSat snowfall estimates over Antarctica and the Southern
Ocean: An assessment of independent retrieval methodologies
and multi-year snowfall analysis, Atmos. Res., 213, 121–135,
https://doi.org/10.1016/j.atmosres.2018.05.015, 2018.

Mroz, K., Montopoli, M., Battaglia, A., Panegrossi, G., Kirstetter,
P., and Baldini, L.: Cross validation of active and passive mi-
crowave snowfall products over the continental United States, J.
Hydrometeorol., 22, 1297–1315, https://doi.org/10.1175/JHM-
D-20-0222.1, 2021.

Munchak, S. J., Ringerud, S., Brucker, L., You, Y., de Gelis,
I., and Prigent, C.: An active–passive microwave land surface
database from GPM, IEEE T. Geosci. Remote, 58, 6224–6242,
https://doi.org/10.1109/TGRS.2020.2975477, 2020.

NOAA: Comprehensive Large Array-data Stewardship System
(CLASS), https://www.avl.class.noaa.gov/, last access: 4 April
2023.

NOAA Satellite and Information Service: Snow/Ice Maps,
https://satepsanone.nesdis.noaa.gov/northern_hemisphere_
multisensor.html, last access: 4 April 2023.

Noh, Y. J., Liu, G., Jones, A. S., and Vonder Haar, T. H.: To-
ward snowfall retrieval over land by combining satellite and
in situ measurements, J. Geophys. Res.-Atmos., 114, D24205,
https://doi.org/10.1029/2009JD012307, 2009.

Panegrossi, G., Rysman, J. F., Casella, D., Marra, A. C., Sanò,
P., and Kulie, M. S.: CloudSat-based assessment of GPM Mi-
crowave Imager snowfall observation capabilities, Remote Sens.-
Basel, 9, 1263, https://doi.org/10.3390/rs9121263, 2017.

Panegrossi, G., Casella, D., Sanò, P., Camplani, A., and Battaglia,
A.: Recent advances and challenges in satellite-based snow-
fall detection and estimation, Precipitation Science, Chap. 12,
333–376, https://doi.org/10.1016/B978-0-12-822973-6.00015-9,
2022.

Partain, P.: CloudSat ECMWF-AUX Auxiliary Data Product Pro-
cess Description and Interface Control Document, Product Ver-
sion P1_R05, NASA JPL CloudSat project document revision 0,
16 pp., https://www.cloudsat.cira.colostate.edu/cloudsat-static/
info/dl/ecmwf-aux/ECMWF-AUX.PDICD.P1_R05.rev0.pdf
(last access: 4 April 2023), 2022

Prigent, C., Wigneron, J. P., Rossow, W. B., and Pardo-Carrion, J.
R.: Frequency and angular variations of land surface microwave
emissivities: Can we estimate SSM/T and AMSU emissivities

from SSM/I emissivities?, IEEE T. Geosci. Remote, 38, 2373–
2386, https://doi.org/10.1109/36.868893, 2000.

Prigent, C., Aires, F., Rossow, W., and Matthews, E.: Joint
characterization of vegetation by satellite observations
from visible to microwave wavelengths: A sensitivity
analysis, J. Geophys. Res.-Atmos., 106, 20665–20685,
https://doi.org/10.1029/2000JD900801, 2001.

Prigent, C., Jaumouille, E., Chevallier, F., and Aires, F.:
A parameterization of the microwave land surface emis-
sivity between 19 and 100 GHz, anchored to satellite-
derived estimates, IEEE T. Geosci. Remote, 46, 344–352,
https://doi.org/10.1109/TGRS.2007.908881, 2008.

Prigent, C., Aires, F., Wang, D., Fox, S., and Harlow, C.:
Sea-surface emissivity parametrization from microwaves to
millimetre waves, Q. J. Roy. Meteor. Soc., 143, 596–605,
https://doi.org/10.1002/qj.2953, 2017.

Rahimi, R., Ebtehaj, A., Panegrossi, G., Milani, L., Ringerud, S.
E., and Turk, F. J.: Vulnerability of Passive Microwave Snow-
fall Retrievals to Physical Properties of Snowpack: A Perspective
From Dense Media Radiative Transfer Theory, IEEE T. Geosci.
Remote, 60, 1–13, https://doi.org/10.1109/TGRS.2022.3184530,
2017.

Romanov, P.: Global multisensor automated satellite-
based snow and ice mapping system (GMASI) for
cryosphere monitoring, Remote Sens. Environ., 196, 42–55,
https://doi.org/10.1016/j.rse.2017.04.023, 2017.

Rosenkranz, P. W.: Water vapor microwave continuum absorption:
A comparison of measurements and models, Radio Sci., 33, 919–
928, https://doi.org/10.1029/98RS01182, 1998.

Rysman, J. F., Panegrossi, G., Sanò, P., Marra, A. C., Dietrich, S.,
Milani, L., and Kulie, M. S.: SLALOM: An all-surface snow wa-
ter path retrieval algorithm for the GPM Microwave Imager, Re-
mote Sens.-Basel, 10, 1278, https://doi.org/10.3390/rs10081278,
2018.

Rysman, J. F., Panegrossi, G., Sano, P., Marra, A. C., Diet-
rich, S., Milani, L., Kulie, M. S., Casella, D., Camplani,
A., Claud, C., and Edel, L.: Retrieving surface snowfall
with the GPM Microwave Imager: A new module for the
SLALOM algorithm, Geophys. Res. Lett., 46, 13593–13601,
https://doi.org/10.1029/2019GL084576, 2019.

Sanò, P., Panegrossi, G., Casella, D., Di Paola, F., Milani, L.,
Mugnai, A., Petracca, M., and Dietrich, S.: The Passive mi-
crowave Neural network Precipitation Retrieval (PNPR) algo-
rithm for AMSU/MHS observations: description and applica-
tion to European case studies, Atmos. Meas. Tech., 8, 837–857,
https://doi.org/10.5194/amt-8-837-2015, 2015.

Sanò, P., Casella, D., Camplani, A., D’Adderio, L. P., and
Panegrossi, G.: A Machine Learning Snowfall Retrieval
Algorithm for ATMS, Remote Sens.-Basel, 14, 1467,
https://doi.org/10.3390/rs14061467, 2022.

Skofronick-Jackson, G. M., Kim, M. J., Weinman, J. A., and Chang,
D. E.: A physical model to determine snowfall over land by mi-
crowave radiometry, IEEE T. Geosci. Remote, 42, 1047–1058,
https://doi.org/10.1109/TGRS.2004.825585, 2004.

Skofronick-Jackson, G., Hudak, D., Petersen, W., Nesbitt, S. W.,
Chandrasekar, V., Durden, S., Kristin, J. G., Huang, G., Joe,
P., Kollias, P., Reed, K., A., Schwaller, M.,R., Stewart, R.,
Tanelli, S., Tokay, A., Wang, J., R., and Wolde, M.: Global
precipitation measurement cold season precipitation experiment

Atmos. Meas. Tech., 17, 2195–2217, 2024 https://doi.org/10.5194/amt-17-2195-2024

https://doi.org/10.1109/TGRS.2008.916630
https://doi.org/10.1016/0273-1177(89)90493-6
https://doi.org/10.1002/2016JD026325
https://doi.org/10.3390/rs13112041
https://doi.org/10.1016/j.atmosres.2018.05.015
https://doi.org/10.1175/JHM-D-20-0222.1
https://doi.org/10.1175/JHM-D-20-0222.1
https://doi.org/10.1109/TGRS.2020.2975477
https://www.avl.class.noaa.gov/
https://satepsanone.nesdis.noaa.gov/northern_hemisphere_multisensor.html
https://satepsanone.nesdis.noaa.gov/northern_hemisphere_multisensor.html
https://doi.org/10.1029/2009JD012307
https://doi.org/10.3390/rs9121263
https://doi.org/10.1016/B978-0-12-822973-6.00015-9
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/ecmwf-aux/ECMWF-AUX.PDICD.P1_R05.rev0.pdf
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/ecmwf-aux/ECMWF-AUX.PDICD.P1_R05.rev0.pdf
https://doi.org/10.1109/36.868893
https://doi.org/10.1029/2000JD900801
https://doi.org/10.1109/TGRS.2007.908881
https://doi.org/10.1002/qj.2953
https://doi.org/10.1109/TGRS.2022.3184530
https://doi.org/10.1016/j.rse.2017.04.023
https://doi.org/10.1029/98RS01182
https://doi.org/10.3390/rs10081278
https://doi.org/10.1029/2019GL084576
https://doi.org/10.5194/amt-8-837-2015
https://doi.org/10.3390/rs14061467
https://doi.org/10.1109/TGRS.2004.825585


A. Camplani et al.: HANDEL-ATMS 2217

(GCPEX): For measurement’s sake, let it snow, B. Am. Mete-
orol. Soc., 96, 1719–1741, https://doi.org/10.1175/BAMS-D-13-
00262.1, 2015.

Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S.,
Rokey, M., Reinke, D., Partain, P., Mace, G. G., Austin, R.,
L’Ecuyer, T., Haynes, J., Lebsock, M., Suzuki, K, Waliser, D.,
Wu, D., Kay, J., Gettelman, A., Zhien Wang, Z., and Marchand,
R.: CloudSat mission: Performance and early science after the
first year of operation, J. Geophys. Res.-Atmos., 113, D00A18,
https://doi.org/10.1029/2008JD009982, 2008.

Takbiri, Z., Ebtehaj, A., Foufoula-Georgiou, E., Kirstetter, P. E.,
and Turk, F. J.: A prognostic nested k-nearest approach for mi-
crowave precipitation phase detection over snow cover, J. Hy-
drometeorol., 20, 251—274, https://doi.org/10.1175/JHM-D-18-
0021.1, 2019.

Turk, F. J., Ringerud, S. E., Camplani, A., Casella, D., Chase,
R. J., Ebtehaj, A., Gong, J., Kulie, M., Liu, G., Milani, L.,
Panegrossi, G., Padullés, R., Rysman, J. F., Sanò, P., Vahedi-
zade, S., and Wood, N. B.: Applications of a CloudSat-TRMM
and CloudSat-GPM satellite coincidence dataset, Remote Sens.-
Basel, 13, 2264, https://doi.org/10.3390/rs13122264, 2021a.

Turk, F. J., Ringerud, S. E., You, Y., Camplani, A., Casella,
D., Panegrossi, G., Sanò, P., Ebtheaj, A., Guilloteau, C., Ut-
sumi, N., Prigent, C., and Peters-Lidard, C.: Adapting pas-
sive microwave-based precipitation algorithms to variable mi-
crowave land surface emissivity to improve precipitation estima-
tion from the GPM constellation, J. Hydrometeorol., 22, 1755–
1781, https://doi.org/10.1175/JHM-D-20-0296.1, 2021b.

Ulaby, F. and Long, D.: Microwave radar and radiometric remote
sensing, 1st edn., the Univ. of Michigan Press, ISBN: 978-0-472-
11935-6, 2014.

University of Lille: DARDAR data, ICARE FTP server, ftp://ftp.
icare.univ-lille1.fr, last access: 4 April 2023.

Vihma, T., Screen, J., Tjernström, M., Newton, B., Zhang, X.,
Popova, V., Deser, C., Holland, M., and Prowse, T.: The atmo-
spheric role in the Arctic water cycle: A review on processes, past
and future changes, and their impacts, J. Geophys. Res.-Biogeo.,
121, 586–620, https://doi.org/10.1002/2015JG003132, 2016.

Wang, Y., Liu, G., Seo, E. K., and Fu, Y.: Liquid wa-
ter in snowing clouds: Implications for satellite re-
mote sensing of snowfall, Atmos. Res., 131, 60–72,
https://doi.org/10.1016/j.atmosres.2012.06.008, 2013.

Weng, F., Zou, X., Wang, X., Yang, S., and Goldberg, M. D.: Intro-
duction to Suomi national polar-orbiting partnership advanced
technology microwave sounder for numerical weather prediction
and tropical cyclone applications, J. Geophys. Res.-Atmos., 117,
D19112, https://doi.org/10.1029/2012JD018144, 2012.

Wood, N. B. and L’Ecuyer, T. S.: Level 2C Snow Profile Process
Description and Interface Control Document, Product Version
P1 R05, NASA JPL CloudSat project document revision 0,
26 pp., https://www.cloudsat.cira.colostate.edu/cloudsat-static/
info/dl/2c-snow-profile/2C-SNOW-PROFILE_PDICD.P1_R05.
rev0_.pdf (last access: 4 April 2023), 2018.

You, Y., Meng, H., Dong, J., and Rudlosky, S.: Time-
lag correlation between passive microwave measurements
and surface precipitation and its impact on precipitation
retrieval evaluation, Geophys. Res. Lett., 46, 8415–8423,
https://doi.org/10.1029/2019GL083426, 2019.

You, Y., Meng, H., Dong, J., Fan, Y., Ferraro, R. R., Gu, G., and
Wang, L.: A Snowfall Detection Algorithm for ATMS Over
Ocean, Sea Ice, and Coast, IEEE J. Sel. Top. Appl., 15, 1411–
1420, https://doi.org/10.1109/JSTARS.2022.3140768, 2022.

Zhao, L. and Weng, F.: Retrieval of ice cloud parameters
using the Advanced Microwave Sounding Unit, J. Appl.
Meteorol. Clim., 41, 384–395, https://doi.org/10.1175/1520-
0450(2002)041<0384:ROICPU>2.0.CO;2, 2002.

https://doi.org/10.5194/amt-17-2195-2024 Atmos. Meas. Tech., 17, 2195–2217, 2024

https://doi.org/10.1175/BAMS-D-13-00262.1
https://doi.org/10.1175/BAMS-D-13-00262.1
https://doi.org/10.1029/2008JD009982
https://doi.org/10.1175/JHM-D-18-0021.1
https://doi.org/10.1175/JHM-D-18-0021.1
https://doi.org/10.3390/rs13122264
https://doi.org/10.1175/JHM-D-20-0296.1
ftp://ftp.icare.univ-lille1.fr
ftp://ftp.icare.univ-lille1.fr
https://doi.org/10.1002/2015JG003132
https://doi.org/10.1016/j.atmosres.2012.06.008
https://doi.org/10.1029/2012JD018144
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2c-snow-profile/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2c-snow-profile/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2c-snow-profile/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf
https://doi.org/10.1029/2019GL083426
https://doi.org/10.1109/JSTARS.2022.3140768
https://doi.org/10.1175/1520-0450(2002)041<0384:ROICPU>2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041<0384:ROICPU>2.0.CO;2

	Abstract
	Introduction
	Instruments and methods
	Advanced Technology Microwave Sounder (ATMS)
	Cloud Profiling Radar (CPR)
	ATMS-CPR coincidence dataset
	Machine learning approaches
	Artificial neural networks
	Self-organizing maps
	Linear discriminant analysis


	Algorithm description
	Surface classification and emissivity spectra estimation
	PESCA design and performances
	PESCA emissivity spectra estimation

	ANN design for snowfall retrieval

	Results
	HANDEL-ATMS performances
	A case study: Greenland – 24 April 2016
	Comparison with SLALOM-CT

	Conclusions and future perspectives
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

