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Abstract. We present the first results of a ground-based
imaging experiment using a shortwave infrared spectral cam-
era to quantify carbon dioxide (CO2) emissions from a coal-
fired power plant in Mannheim, Germany. The power plant
emits more than 4.9 Mt CO2 yr−1 and is a validation oppor-
tunity for the emission estimation technique. The camera is
a hyperspectral imaging spectrometer that covers the spec-
tral range from 900 to 2500 nm with a spectral resolution
of 7 nm. We identify CO2 enhancements from hourly aver-
aged images using an iterative matched filter retrieval us-
ing the 2000 nm absorption band of CO2. We present 11
plume images from 5 d in 2021 and 2022 covering a vari-
ety of ambient conditions. We design a forward model based
on a three-dimensional, bent-over Gaussian plume rise sim-
ulation and compare our observed emission plumes with the
forward model. The model depends on the parameters am-
bient wind velocity, wind direction, plume dispersion, and
emission rate. We retrieve the emission rate by minimizing
the least-squares difference between the measured and the
simulated images. We find an overall reasonable agreement
between the retrieved and expected emissions for power plant
emission rates between 223 and 587 t CO2 h−1. The retrieved
emissions average 84 % of the expected emissions and have
a mean relative uncertainty of 24 %. The technique works at
wind speeds down to 1.4 m s−1 and can follow diurnal emis-
sion dynamics. We also include observations with unfavor-
able ambient conditions, such as background heterogeneity
and acute observation angles. These conditions are shown to
produce considerable biases in the retrieved emission rates,

yet they can be filtered out reliably in most cases. Thus, this
emission estimation technique is a promising tool for in-
dependently verifying reported emissions from large point
sources and provides complementary information to existing
monitoring techniques.

1 Introduction

Carbon dioxide (CO2) is the most important anthropogenic
greenhouse gas driving climate change (Masson-Delmotte
et al., 2021). The signatory countries of the Paris Agreement
set ambitious goals for CO2 emissions reductions, and they
agreed on implementing a stock taking mechanism to super-
vise mitigation progress. In consequence, the international
science community has elaborated a plan to build a moni-
toring and verification support (MVS) capacity for anthro-
pogenic CO2 emissions (Janssens-Maenhout et al., 2020).
Besides refining inventory-making and atmospheric model-
ing, the plan includes further developing and implementing
atmospheric measurement techniques that can help quantify
anthropogenic emissions from global to local scales using in
situ and remote sensing observations with the goal to inde-
pendently verify reported emissions and to monitor the ef-
fectiveness of reduction measures.

The local scales have received particular attention recently
since spectroscopic imaging techniques are emerging that
enable quantification of localized anthropogenic emission
sources. Pioneering space missions such as the Greenhouse
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Gases Observing Satellite (GOSAT) and the Orbiting Car-
bon Observatory (OCO-2/-3) were able to quantify the urban
CO2 domes of megacities such as Los Angeles (Kort et al.,
2012; Schwandner et al., 2017; Kiel et al., 2021). OCO-2
was the first satellite to deliver images of CO2 plumes from
individual coal-fired power plants (Nassar et al., 2017), and
since then, manifold activities have demonstrated that spec-
troscopic imaging with fine spatial resolution from satellites
and aircraft can deliver facility-scale emission estimates for
CO2 (Thorpe et al., 2017; Cusworth et al., 2021a; Fujinawa
et al., 2021) and methane (CH4) (Frankenberg et al., 2016;
Duren et al., 2019; Guanter et al., 2021). Emission estimation
methods either use a mass-balance approach (Liu et al., 2021;
Varon et al., 2018, 2020), Gaussian plume models (Nassar
et al., 2017; Schwandner et al., 2017; Varon et al., 2018), or
machine learning (Jongaramrungruang et al., 2022). Many
activities aim at designing next-generation satellite missions
with ground resolution on the order of a few tens of meters
and enhanced quantification capabilities for CO2 and CH4
(Strandgren et al., 2020; Jacob et al., 2022). On the ground,
pilot studies and field campaigns were able to constrain city-
scale and localized emissions sources using various tech-
niques (Christen, 2014) ranging from eddy-covariance meth-
ods (Crawford and Christen, 2015; Christen et al., 2011) to
local in situ and remote sensing concentration measurements
deployed on mobile platforms and in small ad hoc networks
(Hase et al., 2015; Luther et al., 2022). Gålfalk et al. (2016)
report on the development of a CH4 camera that operates in
the thermal infrared, enabling imaging of CH4 released from
localized sources. Our precursor study (Knapp et al., 2023)
demonstrates the methane imaging capabilities of a station-
ary spectral camera in the shortwave infrared (SWIR) and
derives sub-hourly emission estimates for coal mine ventila-
tion shafts.

Here, we present the first results from our ground-based
SWIR camera (HySpex SWIR-384) on imaging of CO2
plumes from strong point sources. The camera collects sun-
light scattered in the sky, and the retrieval exploits the CO2
absorption structures around 2000 nm wavelength, which is
analog to previously reported aircraft and satellite techniques
that work on reflected sunlight (Thorpe et al., 2017). Thus,
the measurements only work in daytime and require fair
weather conditions. Observing skylight in the SWIR further
comes with the disadvantage that the sky, while being spec-
trally smooth, is dark, and thus, our technique currently re-
quires co-adding on hourly timescales. This, however, might
be improved by future developments in sensor technology.
We develop an emission estimation technique based on bent-
over Gaussian plume modeling and use the well-known emis-
sions of a hard-coal power plant to validate our results. Such
ground-based CO2 cameras could be particularly useful to
monitor emissions of point-like sources such as coal-fired
power plants, cement factories, industrial facilities, or natu-
ral sources such as volcanoes. These observations would be a
valuable addition to our MVS capacities per se and could be

used together with network techniques to disentangle con-
tributions from various sources in complex emission land-
scapes. We also suggest that imaging CO2 plumes might be
a tool to raise public awareness on the scale of local green-
house gas pollution and the urgency to implement emission
reductions (Jungmann et al., 2022).

For demonstration purposes, we deploy the HySpex hyper-
spectral camera together with a portable wind lidar at a few
kilometers’ distance from a medium-sized hard-coal power
plant (> 4.9 Mt CO2 yr−1) located in Mannheim, Germany
(Sect. 2 for measurement setup). Repeatedly scanning the
sky above the power plant, we retrieve CO2 column enhance-
ments in the power plant plume using a matched filter algo-
rithm similar to previous satellite (Guanter et al., 2021) and
airborne studies (Foote et al., 2020, 2021) (Sect. 3.2 for data
analysis). Based on the plume enhancements, we estimate the
emissions of the power plant from the observed plumes. To
this end, we design a forward model to match our observa-
tions based on the plume rise model IBJpluris (Janicke and
Janicke, 2001). The best match between the measured and
simulated observations feeds our emission estimate (Sect. 4
for the emission estimation method). In total, we collect 11
plumes over 5 d, for which we compare our emission esti-
mates to the emissions of the power plant calculated from
the instantaneous power production. Finally, we discuss the
capabilities and limitations of the technique (Sect. 5 for the
results).

2 Instrumentation and field deployment

2.1 HySpex SWIR-384 camera

The HySpex SWIR-384 camera is a commercially available
hyperspectral camera by Norsk Elektro Optikk® (NEO). The
camera optics focuses the incoming light onto a slit, which
passes light from a horizontal opening angle of 7.3 mrad
width. After collimation, a grating disperses the incoming
light, and a mirror focuses the spectrum on a 2D detector
array. The detector array samples the vertical dimension of
the scene with 384 pixels (384 “lines”) and the spectral di-
mension with 288 pixels (“288 channels”). The lines of the
detector cover a vertical field of view of 16°, and each pixel
covers a solid angle of approximately 7.3 mrad× 7.3 mrad.
The channels record the spectrum between 950 and 2500 nm
with a sampling of 5.45 nm. Each read-out of the 2D detector
is called a frame. The camera is mounted on a rotation stage,
which turns it in a horizontal (azimuth) direction, thus scan-
ning over the target scene by collecting a sequence of frames.
The rotation pattern is clockwise in steps that correspond to
the acceptance angle of a single pixel. A shutter closes the
camera aperture prior to and after each scene scan in order to
take 200 dark spectra. The detector is cooled to 147 K during
operation to reduce dark current. We refer to taking a hyper-
spectral image as a scan. The raw output is in analog–digital
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Figure 1. Photograph of the HySpex SWIR-384 camera deployed in
the vicinity of the hard-coal power plant Grosskraftwerk Mannheim
on 6 September 2021. In this particular case, the field of view (red
frame) covers the sky above two stacks of the power plant. The
instrument scans the scene from left to right. The observed chim-
neys are 200 m (left) and 180 m (right) high and are approximately
3.2 km away from the camera. The inset panel shows a typical sky
spectrum in the entire accepted spectral range from roughly 900 to
2500 nm. Notice the absorption features of carbon dioxide at around
2000 nm.

converter units with a 16-bit resolution, representing radi-
ances between 1 and 216

−1, and the datacube has dimensions
of number of frames× number of lines× number of chan-
nels. A tripod carries the rotation stage with the camera dur-
ing field deployment. A rugged, field-deployable GETAC®

laptop controls the camera and the rotation stage. The cam-
era and the laptop each run on their own battery packs, which
provide enough power for more than 6 h of consecutive mea-
surements. Figure 1 shows the camera deployed in the field
on 6 September 2021 observing the sky above the power
plant in Mannheim.

The HySpex camera comes with a radiometric and spectral
calibration by the manufacturer. For calibrating the instru-
ment spectral response function (ISRF), we used a tunable
diode laser operating around 1600 nm in our lab, similar to
the setup of Lenhard et al. (2015). The ISRF has a Gaussian-
like profile with a full width at half maximum (FWHM) of
6.7–7 nm; see Fig. 2. This is in agreement with the man-
ufacturer calibration results of approximately 7 nm for the
1694 nm Argon emission line. We use a radiative transfer
model similar to Guanter et al. (2021) for the spectral cali-
bration of our fit interval and correct an offset of +2.25 nm
to the manufacturer’s calibration. Figure 1 shows a typical
clear-sky spectrum with the entire recorded spectral range.

2.2 Attitude and heading reference system

We constrain the observation geometry during measurements
with an attitude and heading reference system (AHRS). An
MTi-7 miniature GNSS/INS module from XSENS® was
mounted on the HySpex camera such that it rotates with the

Figure 2. The instrument spectral response function of channel 119
at selected lines across the detector. Panel (a) shows the measured
radiance and a fitted Gaussian. Each data point represents a mean
and standard deviation of 286 frames. Panel (b) shows the residuum
of the data points to the Gaussian fit.

camera during observation. The device performed well in
previous campaigns in shipborne applications (Dörner et al.,
2018). We conducted performance tests on its inertial naviga-
tion system (INS) and found its 10 min precision well below
0.05° for the instrument pitch and roll angle. All data transfer
in real time to the GETAC® laptop controlling the HySpex
camera. The sensor does not provide reliable data on the in-
strument viewing azimuth angle (VAA) in stationary opera-
tion. We find the VAA of each image frame by identification
of a distinct landmark within the image, e.g., a chimney, and
assigning the forward azimuth angle from the camera loca-
tion to the landmark. The VAA of all other frames in the im-
age follows from the horizontal opening angle of the camera.
For typical distances between the camera and the landmark,
the uncertainty of the VAA is below 1°. Additionally, the sen-
sor provides us with GPS/GNSS-based geolocation data. We
use the software of Holmgren et al. (2018) to calculate the so-
lar zenith angle (SZA) and solar azimuth angle (SAA) from
the geolocation and time of the observation.

2.3 Windranger 200 lidar

The Windranger 200 is a compact and lightweight wind
lidar produced by METEK®. Adler et al. (2021) used it
to successfully study boundary layer turbulence. The in-
strument weighs approximately 50 kg and has dimensions
of 840 mm× 540 mm× 580 mm. For absolute reference of
wind direction, the lidar needs to point to the north or an-
other known azimuth reference point. The lidar works with
frequency-modulated continuous-wave (FMCW) technology
(Peters, 2018). It uses the Doppler-shifted back-reflection of
a 1545 nm laser for the measurements. The laser beam rotates
by 360° once per second, producing a data point of wind ve-
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locity and direction at one height layer. It measures at six
height levels up to 200 m. In our setting, the layers are at 10,
20, 50, 100, 150, and 200 m. The method is sensitive to tur-
bulent wind fluctuations within one rotation, but it provides
a complete profile approximately every 10 s, such that statis-
tical fluctuations can be reduced by averaging over several
rotations.

2.4 Field measurements

The HySpex operates in a 3 to 4 km distance from the tar-
get; thus an image has a spatial resolution of approximately
2 to 3 m. This provides us with a plume image that is spa-
tially well resolved, while we measure enough background-
sky pixels for the retrieval of enhancements (Sect. 3.2). We
level the camera based on the INS real-time data prior to each
observation by collecting 10 min means of the INS pitch and
roll and adjusting the camera’s alignment for potential off-
sets (Sect. 2.2). This ensures a roll angle of 0.0±0.1°. Sub-
sequently, the Viewing Elevation Angle (VEA) is adjusted
by tilting the camera such that the lower edge of the image
contains the upper part of the CO2 source, e.g., the chimney
tip, and the upper part of the image shows the sky (Fig. 1).
Typical single exposures of the detector range between 8 and
20 ms. Each frame adds 5–10 of these exposures before the
camera rotates a step in the azimuth direction. Scans that
cover azimuth angles of 10 to 15° have typical scan times
of 90 s. We record consecutive scans as long as atmospheric
conditions like cloud cover and solar illumination are favor-
able, i.e., a bright and clear sky. To achieve a sufficient signal-
to-noise ratio, the hyperspectral datacubes submitted to the
retrieval are co-additions of scans of at least 55 min.

The lidar is positioned next to the camera. Its power sup-
ply is a Jackery® Explorer 500 battery with a Jackery® So-
larSaga 100W solar panel. During field observations, we
monitor the wind data quality and re-calibrate the lidar height
levels if data quality decreases. We measure wind velocities
and directions in six levels from 10 to 200 m height.

Here, we present observations taken on 5 d in 2021 and
2022. We headed to the field when weather forecasts pre-
dicted clear skies and targeted the largest section of the power
plant, unit 9, preferentially. Table 1 lists the observation pe-
riods alongside a short description of atmospheric conditions
and the instrumental setup. Atmospheric conditions varied
over the day and between days concerning cloud cover, wind
conditions, and aerosol load. For more detailed information
on the atmospheric conditions, see Sect. 4.3 and Table S2 in
the Supplement. We process scans that pass a visual qual-
ity filter for heavy clouds or sporadic obstruction by pedes-
trians or cars. Time intervals with favorable conditions vary
between 100 and 258 min d−1, and we retrieve plume images
for averaged images of approximately 1 h, as described in
Sect. 3.1.

We observed unit 9 on all days except 13 May 2022, on
which unit 9 malfunctioned, and we observed unit 6 instead.

3 Carbon dioxide retrieval

3.1 Preprocessing the images

For each scan, we term the raw detector output of the camera
DNijk , where i labels the channel, j the line, and k the frame.
We take 200 background frames prior to and after each scan.
Background frames are taken with a closed shutter in front
of the detector. We calculate a mean detector background
BGij before and after the scan as the average of the back-
ground frames. The backgrounds are linearly interpolated to
the frames k during observation for each detector element
and subtracted from each frame. The background-corrected
image Lijk is therefore given by

Lijk = DNijk −BGbefore
ij −

BGafter
ij −BGbefore

ij

number of frames
· k. (1)

For later convenience, we chain the spectral dimension i
into a vector Ljk = [L1jk,L2jk· · ·L288jk].

Malfunctioning detector elements (pixels on the detec-
tor) are identified in laboratory measurements using halogen
lamps fed into an integrating sphere (40 cm diameter). Ele-
ments are removed from further processing if they exhibit an
exceptionally high, low, or variable response to the broad-
band illumination. The missing values are interpolated in the
spatial (line) direction. Field deployment of the HySpex cam-
era typically produces several hundred single scans. Each
scan is corrected according to Eq. (1) and visually inspected
for quality control. We remove images that are corrupted
by obstacles obscuring the field of view in single frames
or by significant changes in the overall atmospheric condi-
tions, e.g., cloud formation. The scans remaining after qual-
ity control are averaged. Some observed emission plumes
show condensation from the water vapor co-emitted with the
CO2. The light paths of photons under clear sky are sub-
stantially different from those under condensate conditions.
To avoid intermingling light path differences with concentra-
tion differences, we identify and exclude pixels with conden-
sate from the averaged image. The saturation of each pixel
in a scan is defined as the maximum of the spectrum in the
pixel Sjk =max

i
(Lijk). We calculate the background satura-

tion BSjk of the sky for each scan by

BSjk =med
j
(Sjk) ·


med
k
(Sjk)〈

med
k
(Sjk)

〉
j


T

, (2)

where med is the median operator. Equation (2) calculates
the clear-sky saturation for each pixel in a scan from the scan
itself, assuming that the plume condensate covers a small part
of the sky. We subtract BSjk from the scan saturation, such
that the residual image scatters around zero where a clear sky
was observed. The use of the median assures that the high re-
flectivity of the condensed water does not affect BSjk . Pixels
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Table 1. The first four columns list the date, the time interval of the observations, the unit number of the power plant that was observed, and
if the Windranger 200 lidar was available. Columns 5 and 6 list the mean viewing azimuth angle (VAA) of the camera and the distance d to
the observed unit. Columns 7 and 8 list the AERONET aerosol optical thickness (AOT) at 2000 nm and the asymmetry parameter (g) of the
scattering phase function; see Sect. 3.3. Column 9 lists if condensation was observed in the plume. For more detailed atmospheric conditions,
see Table S2.

Date Time (UTC) Unit Lidar VAA (°) d (m) AOT g Condensation

8 September 2021 12:13–16:36 9 no 347 (north) 3183 0.012 0.82 no
23 March 2022 14:51–17:36 9 yes 94 (east) 3760 0.022 0.78 yes
26 March 2022 13:31–17:36 9 yes 347 (north) 3179 0.035 0.77 yes
28 March 2022 15:35–16:28 9 yes 91 (east) 3760 0.063 0.76 yes
13 May 2022 12:21–15:39 6 yes 333 (north) 4098 0.065 0.76 no

Figure 3. (a) Saturation of a single scan focused on the part of the
image with a condensate plume. The image was taken on 23 March
2022 in Mannheim. The red border surrounds all pixels that are ex-
cluded from averaging. (b) Average image with colored lines mark-
ing the areas in which a certain fraction of scans contributed to the
spectra in the pixels. The black line marks a mask (generated by
eye), which excludes the chimney from further processing. Note
that the image dimensions are VAA and VEA.

are masked in scans if their saturation deviates more than
+3σ from the residual distribution since this shows an ex-
ceptionally high reflectivity caused by plume condensation
or clouds. We build the averaged image from the spectra
of the single scans, which were not removed by the satura-
tion mask. Therefore, the averaged image contains pixels to
which not all scans have contributed. We exclude pixels from
the retrieval of the averaged image if less than 90 % of the
scans contribute to the average image. Figure 3 shows how
the mask based on Eq. (2) identifies over-saturated pixels in
single scans and how the averaged image is constructed from
there.

We use the geolocation data of the camera and the target to
calculate distance d and the viewing azimuth angle of the in-
strument based on the WGS84 reference system (Slater and
Malys, 1998). The observed chimney also provides us with a
line of known height h in the image; thus the viewing eleva-

tion angle is found by

VEA= arctan
(
h

d

)
. (3)

The geometric area of each image pixel Aj at the distance
d to the target source is

Aj =
(
d · tan

(
1VEAj

))
· (d · tan(1VAA)) , (4)

where1VAA= 0.73 mrad is the horizontal opening angle of
the camera, and 1VEAj ≈ 0.73 mrad is the vertical opening
angle of each line.

Inhomogeneities in detector response or the optical setup
cause striping patterns in imaging spectrometer data (Bors-
dorff et al., 2019). We compensate for this by dividing the
spectral vectors Ljk element-wise by a reference spectrum
L̂j from the same line. Thus, our normalized spectral vec-
tors ljk are given by

ljk =
Ljk

L̂j
, (5)

and scatter around unity if the scene was homogeneous. The
reference spectrum is taken from each scan itself as the mean
of 20 frames upwind of the source.

3.2 Matched filter retrieval

The matched filter is a data-driven statistical approach for
signal identification and quantification in noisy data, e.g., hy-
perspectral images (Dennison et al., 2013; Manolakis et al.,
2014; Zhang et al., 2020; Cusworth et al., 2021b; Guanter
et al., 2021). It estimates a spectral background variabil-
ity from two-dimensional spatial tiles of absorption spectra
and identifies a pre-defined spectral signature exceeding this
variability, i.e., in our case, the spectral absorption signa-
ture of CO2 around 2000 nm wavelength. Foote et al. (2020)
improve on the classical matched filter by introducing an
albedo correction and a sparsity constraint on the enhance-
ments, which we also used in our precursor study for CH4
(Knapp et al., 2023). The sparsity constraint sets enhance-
ments below the detection limit to zero, which enables the
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matched filter to iteratively remove the target signal from the
background clutter estimation. This is particularly important
for the detection of weak signals in the presence of strong
background signals (Foote et al., 2020; Schaum, 2021; Pei
et al., 2023). Heterogeneities in the observed scene are par-
ticularly challenging for statistical retrievals (Ayasse et al.,
2018). Thus, the homogeneous reflectivity of the clear sky is
an advantage for the matched filter, although the sky is rather
dark in the shortwave infrared spectral range.

The classic matched filter (CMF) calculates the enhance-
ment α in each pixel as

αjk =

(
ljk −µ

)TC−1t

tTC−1t
, (6)

where ljk is the normalized spectral vectors defined in
Eq. (5), µ= 〈l〉jk is the mean normalized spectral vector
across the image, and C= cov(ljk) is the covariance matrix
of all the normalized spectral vectors across the image. The
target signature t contains the spectral feature the matched
filter retrieval is sensitive to. In our case, it follows from the
absorption cross-section of CO2. The target signature is com-
monly derived from the assumption that an enhancement α
in a pixel acts on a spectrum L according to Beer–Lambert’s
law:

L= L0 · exp(−α · s) , (7)

where s is the unit absorption spectrum of the gas (Sect. 3.3).
We rearrange Eq. (7) for referenced spectra and linearize
the exponential function via Taylor expansion to first order,
which yields

L

L0
≈ 1−α · s. (8)

The target signature t of the matched filter is given by the
derivative of Eq. (8) with respect to α, which is the unit ab-
sorption spectrum s.

We adapt our retrieval from the MAG1C (Matched filter
with Albedo correction and reweiGhted L1 sparsity Code)
algorithm of Foote et al. (2020), which decreases enhance-
ment uncertainty and background noise. The albedo correc-
tion reduces the effect of background heterogeneity, which
accounts for the gradient in the brightness of the clear sky in
our case. We calculate a scalar factor

rjk =
LTjkL̂j

L̂j
T L̂j

(9)

for each pixel, which gives its brightness relative to the line
reference spectrum. The sparsity prior adds an L0 regulariza-
tion to the cost function of the retrieval to minimize the num-
ber of detected enhancements since we expect enhancements
in less than 1 ‰ of the pixels. Foote et al. (2020) further in-
troduce a positivity constraint on α since gas enhancements

in the atmosphere are non-negative. Thus, Eq. (6) transforms
to an iterative retrieval given by

αjkn =max

((
ljk −µn

)TC−1
n sj −wn

rjks
T
j C−1

n sj
,0

)
,

wn =
1

αn−1+ κ
, (10)

where wn is the pixel’s regularization weight of the sparsity
prior, n the iteration step, and κ a small number for numerical
robustness. The target signature is given by the unit absorp-
tion spectrum sj of the gas, which depends on the image line
j (Sect. 3.3). The iteration is necessary due to the sparsity
constraint (Candès et al., 2008). It allows for iteratively im-
proving on the estimate of the background mean and covari-
ance, µ and C. We perform 30 iteration steps for each scene
to get an accurate estimate of the background distribution.
Pixels with low abundances are artificially forced to zero in
the MAG1C algorithm by Foote et al. (2020). To avoid a
systematic bias from these pixels in the emission inversion
(Sect. 4.4), we perform the final iterative retrieval step with-
out the positivity and sparsity constraint from Eq. (10). This
ensures that the background estimation (µ,C) benefits from
the iterative retrieval, while the retrieved enhancements are
non-zero in the background pixels of the image. Thus, we
obtain a final estimate of the enhancement αjk in every pixel.
The uncertainty of the matched filter retrieval is given by the
retrieval error covariance matrix (Köhler et al., 2015) and de-
pends on s and C. It can be calculated by

σ 2
j =

1
sTj C−1sj

, (11)

which gives an enhancement variance σ 2
j for each line of the

image.

3.3 Unit absorption spectrum

In our units, the unit absorption spectrum s defined in Eq. (8)
is the relative change of observed radiance due to a 1 ppm
increase in the atmospheric mixing ratio of CO2 over a path
length of 1 m. The target spectrum can be calculated from
the absorbing molecules’ absorption cross-section by radia-
tive transfer calculations and convolution with the instrument
function (Thorpe et al., 2013; Thompson et al., 2015). Foote
et al. (2021) show that a scene-specific spectral signature
greatly improves the quality of the retrieved data. Thus, we
choose to simulate the change of radiance with the atmo-
spheric enhancement of CO2 for a ground-based observer.
An enhancement α of the atmospheric column of an absorber
increases the optical thickness such that the at sensor radi-
ance (ASR), I changes according to Beer’s law:

I (λ;α)= I0(λ)e
−τ(α), (12)
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where τ is the optical thickness due to α and I0 the observed
radiance of an atmosphere without an enhancement. This as-
sumes that there is no change in the photon light path in-
duced by the absorber or a co-emitted substance like water
vapor. To simulate the effect of an additional column of car-
bon dioxide on the spectrum, we calculate the optical thick-
ness τ as

τ = nCO2 · σCO2 ·1z (13)

= nair · σCO2 ·α · 10−4, (14)

where nCO2 and nair are the number densities of carbon
dioxide and ambient air (in molec. cm−3), respectively;
σCO2 is the absorption cross-section of carbon dioxide (in
cm2 molec.−1); 1z is the path length (in cm); α is the en-
hancement (in ppm m); and 10−4 is a unit conversion factor
(from cm2 to m2). Both I0(λ) and I (λ;α), assume infinite
spectral resolution of the instrument i.e., they are line-by-line
quantities. Thus, we need to convolve the ASR with the ISRF
of the instrument to get simulated measurements F(λ;α),

F(λ;α)=

∫
I (λ′;α) ·N (λ− λ′;FWHM)dλ′, (15)

where N is the Gaussian kernel with an FWHM of 7 nm.
From Eq. (7), it follows that

s(λ)=−
∂

∂α
ln
(
F(λ;α)

F0(λ)

)
, (16)

where s is the unit absorption spectrum in units of
(ppm m)−1. It is binned to each channel i according to the
spectral calibration of the instrument.

We calculate the ASR using the single scattering approx-
imation of the radiative transfer equation (RTE) for an up-
ward looking observer. Since we are only interested in a rel-
ative change of radiance, we simplify the RTE by neglecting
thermal emission and multiple scattering. We consider scat-
tering on molecules using Rayleigh theory and scattering on
aerosols via a Henyey–Greenstein phase function (Henyey
and Greenstein, 1941). These assumptions lead to an analyt-
ically solvable RTE of the form

I (λ)=S0(λ) ·
γ0

4π(|γ | − |γ0|)

·

layer∑
k

ω̃k(λ)pk(λ;�,�0)e
−

τk (λ)

|γ0|−|γ |(
1− e

−1τk

(
1
|γ0|
−

1
|γ |

))
, (17)

where S0 is the top of the atmosphere (TOA) radiance, γ0 =
1

cos(SZA) , γ =
1

cos(VZA) , ω̃ is the single scattering albedo, and
p is the scattering phase function for the beam direction be-
fore (�0) and after (�) the single scattering. Equation (17)
holds for an atmosphere consisting of plane-parallel, hori-
zontally homogeneous layers with an optical thickness 1τk

per layer k and a total atmospheric optical thickness down to
a layer k of τk .

We solve Eq. (17) between 1900 and 2300 nm at a res-
olution of 0.001 nm to calculate I0(λ). The model uses ab-
sorption cross-sections of CO2, CH4, and water vapor from
the HITRAN2016 database (Gordon et al., 2017) and the US
standard atmosphere from Anderson et al. (1986), in which
the mean background concentrations of CO2 and CH4 are
scaled to 420 and 1.81 ppm, respectively. The simulation of
the radiance vector builds on 100 layers of 400 m thickness.
Since we observe sky-scattered sunlight in shallow viewing
elevation angles, we use an empirical adjustment by Kasten
and Young (1989) for SZAs above 70° and VEAs below 20°
to correct for the sphericity of the atmosphere.

Foote et al. (2021) show the importance of scene-specific
unit enhancement spectra in a matched filter retrieval for sig-
nificant parameters of airborne instruments, i.e., the atmo-
spheric water column, surface elevation, solar zenith angle,
and sensor altitude. We adapt their technique and compute
the unit absorption spectra specifically for each observation
period. Specific quantities are the mean SAA and VAA dur-
ing observation as well as the aerosol optical thickness and
scattering phase function. We assign an SZA and SAA to
each observation from astronomical calculations based on
the observation location and time and VEA and VAA based
on geometrical calculations (Sect. 3.1). Aerosol information
is taken from the closest AERONET station in Karlsruhe,
Germany. We use the daily mean of the aerosol optical thick-
ness (AOT) at 870 nm and the Ångström exponent (AE) to
calculate the AOT at 2000 nm. Aerosol concentrations are
assumed to be horizontally homogeneous and vertically de-
creasing exponentially with the atmospheric scale height.
We use the asymmetry parameter of AERONET at 1020 nm,
which is the largest wavelength available, to compute the
Henyey–Greenstein phase function. Furthermore, we com-
pute a look-up table of unit absorption spectra for a set of
viewing geometries, using a specific unit absorption spec-
trum for each line in an image since the VEA covers a 16°
range. Thus, our unit absorption spectrum is specific to the
changing geometry within a single observation. The look-up
table contains unit absorption spectra for five SZAs (10, 30,
50, 70°) and seven VEAs (2, 5, 8, 11, 14, 17, 20°). We inter-
polate a specific unit absorption spectrum for each line from
the look-up table with the image mean SZA and the lines’
VEA. Figure 4 shows CO2 unit enhancement spectra at an
SZA of 50° (right panel) at an VEA of 8°. Both plots show
the same expected behavior from the observation geometry.
The longer the light path in the atmosphere, the more light is
absorbed by background CO2. Thus, an additional enhance-
ment has a smaller effect on the ASR, and the absolute values
of the unit absorption spectrum decrease.

https://doi.org/10.5194/amt-17-2257-2024 Atmos. Meas. Tech., 17, 2257–2275, 2024



2264 M. Knapp et al.: Ground-based CO2 imaging

Figure 4. CO2 unit absorption spectra for the HySpex SWIR-384
camera. Panel (a) shows the dependency on the solar zenith angle
(SZA) and panel (b) the dependency on the viewing elevation angle
(VEA).

4 Estimating emission rates

Various methods have been developed to estimate emission
rates from images of CO2 and CH4 enhancement plumes
of localized sources. CH4 has received more attention re-
cently, but the methods work mostly analogously for both
gases. Gaussian plume models (GPMs) are widely used to es-
timate emission rates by fitting the model to snapshot obser-
vations of top-down observed plume images (Bovensmann
et al., 2010; Krings et al., 2011; Rayner et al., 2014; Math-
eou and Bowman, 2016; Nassar et al., 2017; Schwandner
et al., 2017). GPMs simulate the plume spread from point
sources along a horizontal propagation direction. Typically,
these models utilize stability classes to parameterize the tur-
bulent dispersion properties. Fitting a model to the image
can theoretically account for plume mass below the detec-
tion limit, which is an advantage over mass-balance meth-
ods. The GPM is only valid for an ensemble of plumes due
to the stochastic nature of turbulence (Varon et al., 2018;
Jongaramrungruang et al., 2019). Since we use temporal av-
erages of plume measurements, we average over short-term
turbulent structures and therefore meet the requirements for
applying the GPM (Fig. 9). As we also observe the vertical
plume rise with our observations, we use the bent-over Gaus-
sian plume model by Janicke and Janicke (2001), which also
accounts for the plume rise driven by buoyancy and initial
vertical velocity after the release (Fig. 5). This allows us to
simulate an hourly averaged observation of our camera from
a set of parameters. The model input contains ambient condi-
tions and source parameters, including the emission rate. We
use the model to simulate an ensemble of observations and
fit the simulation to the observations to estimate the emission
rate. Section 4.1 describes the model for three-dimensional,
bent-over Gaussian plume shapes, and Sect. 4.2 explains how
we simulate an observation from the model. Section 4.3 de-
scribes the a priori data used for the emission estimation and

Figure 5. Example for the output of the Gaussian plume model IB-
Jpluris with a chimney of 180 m height. The example input parame-
ters are the ambient wind velocity (7.0 m s−1), ambient temperature
(27 °C), and relative humidity (40 %) at 200 m height. Furthermore,
the initial velocity (13.4 m s−1), temperature (63.0 °C), and initial
concentration (189 g m−3) of the exhaust gas are given. IBJpluris
calculates the central plume axis (blue) and the plume boundaries
(orange). Output parameters like the concentration of carbon diox-
ide are provided along the central plume axis.

Sect. 4.4 how we find emission estimates and uncertainties
from the inversion.

4.1 Gaussian plume model

Since we observe the plumes in a horizontal viewing geome-
try, the model needs to account for the bent-over plume shape
(Fig. 5). We use the plume rise model of Janicke and Jan-
icke (2001) to calculate the plume properties along the cen-
tral plume travel axis. Figure 5 shows the simulated plume
shape for an ensemble of initial conditions. The properties
are given as a set of discrete points P , which contain the
spatial coordinates x,y,z; the plume radius R; the distance
along the plume axis s; and the mass concentration c of a
carried quantity, e.g., CO2. The model requires ambient wind
velocity ua, temperature Ta, pressure pa, and relative humid-
ity RHa as well as exhaust gas initial velocity ue, temperature
Te, and concentration c0 as input parameters (see Sect. 4.3).
The total gas enhancement in the plume depends linearly on
the emission rate Q. The concentration c0 in the plume right
above the chimney follows from

c0 =
Q

V̇
, (18)

where V̇ is the air volume flux from the chimney. The con-
centration c0 holds for a homogeneous plume segment of
cylindrical form and radius R. We transfer each plume seg-
ment from a cylindrical concentration profile to the Gaussian
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profile,

c(r)= c∗ exp
(
−
r2

b2

)
, (19)

where c∗ is the core concentration, r the distance to the cen-
tral axis, and b the plume width. For each segment of the
plume, c∗ follows from the conservation of mass compared
to a cylindrical plume segment with concentration c from

c ·πR21s =

s1∫
s0

ds

2π∫
0

dφ

∞∫
0

rdr c(r) (20)

=1s · 2π ·
c∗b2

2
(21)

⇒ c∗ = c ·
R2

b2 , (22)

where s is the distance along the plume axis, i.e., 1s the
plume cross-section segment thickness.

We create a three-dimensional domain around the central
plume axis as our model domain, which covers at least a 4b
radius around each point on the plume axis. The spatial reso-
lution of the domain cells is a third of the HySpex pixel width
(approximately 1 m). For each domain grid cell in the vicinity
of the central axis, we find its distance r to the plume axis and
the mass concentration c(r) at this distance from Eq. (19).
We introduce two more parameters to Eq. (19), which are
later used as fitting parameters for the inversion (Sect. 4.4).
The parameters are a scaling factor kc of the concentration
c∗ and a scaling factor kb of the plume width b. We intro-
duce them in a way that the total mass of the plume depends
linearly on kc and is independent of kb. Thus, the concentra-
tion scaling represents the source strength, while the width
scaling accounts for the turbulent diffusion during the time
of observation and needs to be fitted (Carhart and Policastro,
1991). The total mass Ms in each slice of the plume is given
by

Ms =

s1∫
s0

ds

2π∫
0

dφ

∞∫
0

rdr
kc

(kb)2
c∗s exp

(
−

r2

(kbbs)2

)
(23)

= π ·1s · b2
s · kcc

∗
s , (24)

where bs and c∗s are the radial width and core concentration
of the segment from s0 to s1, respectively. Thus, the param-
eter kb scales the plume width without changing its mass,
while kc scales the mass and in the plume, which is linearly
related to the source emission rate Q.

4.2 Observation forward model

We simulate a plume observation from the three-dimensional
Gaussian model output by projecting the plume on our plane
of observation and aggregating the mass according to the

image pixels. A plume cell at (x,y,z) is projected on the
observation plane that is perpendicular to the viewing di-
rection. Figure 6 shows a sketch which explains the projec-
tion. The observation angle φ is the angle between the plume
travel direction and the viewing direction, the plume cell an-
gle θ = arctan(x/y) is the angle between the location of a
plume parcel location and the travel direction, and the pro-
jection angle β is the angle between the plume parcel and the
observation plane. These three angles add up to 90°. Thus,
given the cell location (x,y,z) and the observation angle φ,
the projection angle β is given by β = 90°−φ− θ . The ob-
servation angle is defined between−180 and+180°, where a
negative angle denotes a plume moving to the left, a positive
angle a plume moving to the right, and a zero angle a plume
moving straight away from camera. The projection of the cell
location (x,y,z) to the observation plane (x′,z′) is given by

x′ =

√
x2+ y2 · sin(φ+ arctan(x/y)),

z′ = z, (25)

where φ is known from the measurement geometry and the
ambient wind direction, while (x,y,z) denotes the plume
grid cells. We calculate a CO2 mass distribution m(x′,z′) in
the observation plane by multiplying each concentration by
the cell volume and projecting it according to Eq. (25). The
simulated image is then given by aggregating the mass points
mjk in the pixels of the observation and converting them to a
column enhancement α̃jk using

α̃jk =mjk ·
νCO2

Ajk
, (26)

where νCO2 ≈ 0.546 m3 kg−1 is the specific volume of CO2
at normal conditions, and Ajk is the pixel area.

We choose all input parameters of the model to be con-
stant for an observation except for the ambient wind speed
(Sect. 4.3). Thus, a simulated observation has a total of four
independent parameters, which are ambient wind speed ua,
observation angle φ, emission scaling kc, and the plume
width scaling kb.

4.3 A priori data

Plume formation in the atmosphere depends on ambient me-
teorological conditions like temperature, pressure, humidity,
and wind velocity. The exhaust gas temperature, initial veloc-
ity, and source shape and diameter also affect the plume for-
mation. The operator of Grosskraftwerk Mannheim (GKM)
provided us with their operational data for all days on which
we have been observing the GKM exhaust plume. The power
plant operates four different sections, namely units 6, 7, 8,
and 9. The stack height of the power plant is 180 m for unit
9 and 200 m for units 6 to 8. Their data contain, for each
unit, the coal consumption, the exhaust volume flow rate
at the chimney top, the chimney tip diameter, and the ex-
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Figure 6. Sketch of the projection of a plume cell at (x,y,z) to
the observation plane (x′,z′). The gray shading shows a conceptual
top-down view on a horizontal plume cross-section – the triangu-
lar shape is chosen for simplicity and does not represent the actual
plume shape. The camera viewing direction is marked by the green
line, such that the angle φ is the angle between the viewing direction
and the y axis. The orange line points to an arbitrary plume cell at
(x,y,z), with a plume cell angle of θ = arctan(x/y). The blue line
marks the projection plane which is perpendicular to the viewing
direction. Thus, the projection angle β is given by β = 90°−φ−θ .
Using the distance

√
x2+ y2 of the plume cell to the origin, the

projected length coordinate follows from elementary geometry to
x′ =

√
x2+ y2 · sin(φ+ arctan(x/y)).

haust gas temperature. Unit 9 is the youngest facility, hav-
ing been in operation since 2015. It contributes a maximum
gross power production of 911 MW to the power plant total
of 2146 MW. GKM also provided us with the instantaneous
gross power production of unit 9. Furthermore, the GKM
dataset includes 10 m meteorological data at the power plant
location. These data consist of wind velocity and direction,
temperature, pressure, and relative humidity. Both the meteo-
rological and operational datasets have a resolution of 1 min.

We calculate the expected emission rate of CO2 from
power production using the official German emission
factor for hard coal of 93.1 t CO2 TJ−1 (Sandau et al.,
2021). Unit 9 is a modern unit with an efficiency of
46.4 % (Grosskraftwerk, 2015), giving an emission factor
of 722 g CO2 kWh−1. We calculate the power plant’s mean
emission factor from its annual reported power produc-
tion and the CO2 emissions reported to the European Pol-
lutant Release and Transfer Register (E-PRTR; Table S1).
The total power plant has an average emission factor of
955 g CO2 kWh−1, leading to an estimated average emis-
sion factor of 1127 g CO2 kWh−1 for the older units 6, 7,
and 8, for which efficiencies are unavailable. These factors
allow for estimating emission rates from the instantaneous

power production. Thus, the GKM operator provided us with
all the necessary source input parameters for the Gaussian
plume model. On 13 May 2022, unit 9 of GKM was mal-
functioning, and the power production was shifted to unit 6.
The Fraunhofer-Institut für Solare Energiesysteme (ISE) al-
locates the power production of German power plants with
15 min resolution. We use their data to estimate the power
production of unit 6 on this day. The ambient input pa-
rameters were partly provided by the meteorological data
(pa,Ta,RHa) of GKM and partly by our wind lidar (ua,φ).
We measure wind speed and direction in six height levels,
the two uppermost being 150 and 200 m above ground level,
from which we derive the a priori wind data at plume height.
A 20 min running mean removes high-frequency fluctuations
from the lidar data due to turbulence within a laser rotation.
We average all input parameters over the same period used
for the HySpex measurements, i.e., approximately 1 h. Typi-
cal wind speeds during observation are 5 m s−1, for which we
find hourly standard deviations of 0.9 m s−1. Depending on
meteorological stability during observation, the uncertainty
of the wind direction varies between 18 and 44°. One excep-
tion to the a priori wind data is the observation on 8 Septem-
ber 2021. Since we do not have lidar data for this day, we
scaled the 10 m winds of the GKM data to shaft height using
data from the Copernicus Atmospheric Monitoring Service
(CAMS) reanalysis (Inness et al., 2019). Figure S1 shows
both the scaled wind speed and typical lidar observations.
All input parameters for the Gaussian plume model are listed
in Table S2.

4.4 Inverse estimate

As described in Sect. 4.2, there are four parameters that we
can vary to fit the simulated image to the observed one.
These are the plume width scaling kb, the emission scaling
kc, the plume velocity ua, and the observation angle φ. De-
spite wind lidar measurements being available, we use ua and
φ as free parameters since the wind lidar measurements are
performed at kilometer distance from the source, and typical
plume heights are above the lidar top height of 200 m.

We use a brute force method to scan over a space of pa-
rameter sets and compare the simulated observation with the
observation. The plume mask is defined as the largest con-
tinuous patch of enhancements above twice the noise level
σj given in Eq. (11). Figure 7a shows an example of an ob-
served plume from GKM. Measurements in the same frames
as the chimney are excluded since the comparatively high
brightness of the chimney affects the other spectra in the
frame. Figure 7b shows an example of a simulated plume.
The translucent area is below the 2σj noise level, while the
colored area is above 2σj . Enhancements above 2σj noise
level are well above the detection limit; thus, the matched
filter retrieval should detect them. We use the union of the
plume mask and all pixels with an enhancement above 2σj of
the noise level as our fit mask. Including background pixels
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Figure 7. Observed (a) and simulated (b) CO2 plume from GKM
Mannheim. The simulations correspond to the optimal parameter
set. Residuals are shown in panel (c). The black contour in each
panel marks the fitmask, which is the union of the plumemask from
panel (a) and all pixels with a simulated enhancement larger than
2 ·σj (bright colors in panel (b)). The part above the chimney is ex-
cluded since the chimney is so bright that it affects the retrievals for
the respective entire frames. The example is the observation from
26 March 2022, 15:56–17:36 UTC.

in the fit mask keeps the fit close to the observation even out-
side the observed plume mask. While computationally costly,
the brute force method provides further insights into the pa-
rameter space. For each parameter set, we calculate the re-
duced chi-square χ2

r by

χ2
r =

1
N − 4

fitmask∑
jk

(
α̃jk(kb,kc,ua,φ)−αjk

σj

)2

, (27)

where N is the number of pixels in the fit mask,
α̃jk(kb,kc,ua,φ) is the simulated column enhancement in
pixel jk for the parameter set (kb,kc,ua,φ), αjk is the ob-
served column enhancement in pixel jk, and σj is the uncer-
tainty of the observed column enhancement for the pixels in
line j . Figure 7c shows the residual of the observation and
the best fit simulation.

Since we scan the parameter space in a brute force man-
ner, we calculate the reduced χ2

r for each parameter set

in a wide parameter range. We use the optimal parameter
set (k̂b, k̂c, ûa, φ̂) with the lowest χ2

r for our emission esti-
mate. Figure 8 shows an illustrative χ2

r hypersurface of the
four-dimensional parameter space along the cross-sections
through the optimal parameter set for the plume on 26 March
2022, retrieved from the averaging period between 15:56–
17:36 UTC. The χ2

r surfaces are smooth, which indicates that
χ2

r is a continuous function of the parameters. There is a
unique minimum on each hypersurface, marked by a blue
dot, around which the χ2

r increases monotonically. For purely
statistical errors, an increase of 1 in χ2

r corresponds to a mean
deviation of 1 standard deviation (1σ ) between the simulated
and observed image due to parameter changes (Bevington
et al., 1993). Thus, we consider all parameter sets with

χ2
r <min

(
χ2

r

)
+ 1 (28)

for the uncertainty of the emission estimate. Fixing
(k̂b, ûa, φ̂) to the optimal parameter set, we can estimate the
uncertainty of the emission estimate by varying kc within the
range of Eq. (28). The minimum and maximum emission es-
timates are used as uncertainty ranges. This estimate neglects
systematic errors between observation and simulation, which
are challenging to account for. Therefore, we use the criterion
as our best approximation of the uncertainty range.

The shape of the well in the χ2
r hypersurface reveals corre-

lations between the parameters. A circular well indicates that
the parameters are uncorrelated, such as for the well spanned
by the wind speed parameter ua and the plume width param-
eter kb. Flat wells suggest that the observations do not con-
strain the parameter strongly since the χ2

r does not change
much with the parameter. Figure 8 shows that the observa-
tion angle is the least constrained parameter and that there
is a correlation between the plume width parameter kb and
emission scaling factor kc. This correlation is expected since
the plume width scaling distributes the total mass over a
larger area, while the emission scaling can increase the over-
all mass to match the observation again. Observations under
favorable conditions constrain the ambiguity well since they
provide enough information on plume width. If the observa-
tion is made under challenging conditions, such as clouds or
low emission rates, the plume width is not well constrained,
which leads to a flat slant well in the plume width–emission
scaling (kb–kc) plane. Some observations show a correlation
between wind speed and wind direction (e.g., Fig. S5), which
is explained by an ambiguity in the observed plume shape
for horizontally viewing observers. A plume traveling per-
pendicular to the viewing angle at a slow wind speed will
look the same as a plume traveling at a higher wind speed
in an acute observation angle. In theory, the emission scal-
ing is unaffected by this ambiguity. This becomes clear us-
ing a simple mass-balance argument. The observation gives
the plume mass, while the travel time of the plume is ap-
proximately given by plume length divided by wind speed.
A geometric observation factor will act on both speed and
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Figure 8. Cross-sections through the χ2
r hypersurface (color coded) for the four-dimensional parameter space: emission scaling factor kc,

plume width factor kb, wind speed ua, and observation angle φ. The contour lines mark where the χ2
r increases by 1, 2, and 3. The blue dot

marks the minimal χ2
r . Note that all cross-sections involving the observation angle are symmetric around −90°, since a plume moving away

from or toward us looks identical. The example is the observation from 26 March 2022, 15:56–17:36 UTC.

direction similarly, thus canceling out in the travel time and
emission estimate.

The χ2
r surfaces alongside a plot of the best fit for each ob-

servation are given in the Supplement. We sample the χ2
r sur-

faces with step sizes of 0.2–0.3 m s−1 for the ambient wind
speed, 5° for the wind direction, 0.1 for kc and 0.1–0.4 for kb.
We sample the kc dimension a final time with 0.01 step size
at the optimal parameters (k̂b, ûa, φ̂) to improve the emission
estimate given the other three parameters.

5 Results

We present CO2 plume images from GKM for 5 d in 2021
and 2022. On each day, we measured hyperspectral images
for several hours, as listed in Table 1. Figure 9 shows the to-
tal of 11 retrieved plumes identified by the iterative matched
filter algorithm described in Sect. 3.2. In every observation,
the plume is clearly visible and can be attributed to a power
plant chimney. For each of the plume images, we estimate
the emission rates according to Sect. 4.4.

The observations on 8 September 2021 were made under
favorable conditions with clear skies and a priori observation
angles of−53±13°. The sky, though, became more heteroge-
neous in the afternoon, causing the retrieval noise to increase
(Fig. S3). On 23 March 2022, there was significant condensa-
tion in the early stages of the plume, and an acute observation
angle 33± 28° poses further challenges for the retrieval of
the plume images collected on that day. On 26 March 2022,
we again had favorable conditions allowing for measuring
two plume images. The power plant ramped up its power pro-

duction during our observation period, so we can compare
estimates over a range from 223 to 455 t h−1. A Sahara dust
event increased the aerosol load on 28 March 2022, which
caused the sky to be hazy and bright in the shortwave in-
frared. On 13 May 2022, we observed power plant unit 6
instead of unit 9.

The plume images collected under unfavorable conditions
on 23 March and 13 May 2022 are particularly well-suited to
illustrate the limitations of the method. The acute observation
angles on 23 March 2022 reduce the apparent plume size due
to the unfavorable projection. Furthermore, condensation in
the early stages of the plume removes a considerable part of
the plume. Thus, we consider these observations challeng-
ing for the retrieval. The plume images on 13 May 2022 are
taken under comparably high aerosol load, with AOT in the
range of 0.065 (at 2000 nm) and favorable wind conditions
of approximately 5.5 m s−1 at a 62° observation angle. Yet,
the plume images show unexpected shapes that are not repro-
ducible by the Gaussian plume model (Fig. S2). We observe
two enhancement patches, one above and below the expected
plume shape. One stripe-like patch is around 290 m height,
while another patch is below the chimney. A possible rea-
son for these patterns is spectral artifacts due to background
heterogeneity, e.g., thin clouds. Irrespective of the origin of
these artifacts, the Gaussian model is not capable of repre-
senting these patterns, and thus, our approach is ill-suited for
emissions estimates from these images.

For each of the observations, we calculate the CO2 emis-
sion rates as described in Sect. 4. Since we have precise
knowledge of the power plant’s power production from the

Atmos. Meas. Tech., 17, 2257–2275, 2024 https://doi.org/10.5194/amt-17-2257-2024



M. Knapp et al.: Ground-based CO2 imaging 2269

Figure 9. Plume images for the periods listed in Table 2. The yellow to red color bar is shared over all plumes and shows the atmospheric CO2
enhancement (in ppm m). The blue (dark) to white (bright) color in the background shows the spectrum saturation. The bright rectangular
shapes in the lower part of the images are the power plant chimneys.

company itself, we can compare our retrieved emissions
to the correlative bottom-up calculations. These expected
emissions are considered errorless in comparison. Figure 10
shows how our retrieved emissions compare to the expected
ones calculated as described in Sect. 4.3. Table 2 lists the re-
trieved emissions with the optimal parameter sets for each
observation.

We consider 7 out of the 11 plume images to be
taken under favorable conditions. For these observations on
8 September 2021, 26 March 2022, and 28 March 2022, we
find an overall reasonable agreement between retrieved and
expected emissions. The retrieved emissions average 84 %
of the expected emissions and have a mean relative uncer-
tainty of 24 %. Five of the seven observations agree with
the expected emissions within their uncertainties. Notably,
the retrieved emissions agree well with the variability of

the expected emissions from 223 to 455 t h−1 on 26 March
2022, indicating that the method can observe diurnal changes
in emission rates. The plume on 28 March 2022 was ob-
served during a high aerosol load and small wind speeds
(ûa = 1.4 m s−1), which gives a preliminary lower limit for
the wind speed necessary for the method to work. Observa-
tions on 8 September 2021 between 14:24 and 16:35 UTC
agree with the expected emissions within the uncertainty
range, while observations between 12:13 and 14:23 UTC un-
derestimate the expected emissions. The estimated observa-
tion angle φ̂ is between −35 and −30° for these observa-
tions. This is significantly steeper than the a priori observa-
tion angle of−53± 13°, which was derived from ERA5 data
(Sect. 4.3) since there are no wind lidar data on 8 September
2021. Observations on 23 March 2022 indicate that acute ob-
servation angles may cause emission underestimation, which
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Figure 10. Correlation of retrieved emissions and expected emissions. Every color represents a different observation day, while each symbol
represents a different time interval. Filled symbols mark observations under favorable conditions, while open symbols mark observations
under unfavorable conditions. The dashed black line marks the 1 : 1 line.

Table 2. Column one lists the observation time period and column two the expected emissions Eexp (Sect. 4.3). The retrieved emissions Eret
(Sect. 4.4) are listed in column three, with the uncertainty range in parentheses. Columns four to seven give the optimal inversion parameters
k̂c, k̂b, φ̂, and ûa. Note that k̂c is the relative scaling between retrieved and expected emissions; i.e., it represents the relative deviation. The
last column shows the minimum χ2

r for each observation.

Date and time Eexp Eret k̂c k̂b φ̂ ûa Minimum
(UTC) (t h−1) (t h−1) (°) (m s−1) χ2

r

8 September 2021: 12:13–13:15 576 386 (300–490) 0.67 (0.52–0.85) 1.60 −34 8.30 1.85
8 September 2021: 13:17–14:23 576 467 (363–565) 0.81 (0.63–0.98) 1.80 −30 10.10 3.25
8 September 2021: 14:24–15:26 576 594 (444–813) 1.03 (0.77–1.41) 1.80 −35 7.60 0.66
8 September 2021: 15:27–16:35 587 481 (352–645) 0.82 (0.60–1.10) 1.75 −25 9.20 0.65
26 March 2022: 14:44–15:55 223 223 (160–303) 1.00 (0.72–1.36) 2.00 −141 3.60 0.29
26 March 2022: 15:56–17:36 455 455 (337–583) 1.00 (0.74–1.28) 1.40 −111 3.80 0.63
28 March 2022: 15:35–16:28 479 441 (321–575) 0.92 (0.67–1.20) 2.00 −65 1.40 0.85
23 March 2022: 14:51–16:13 576 173 (173–231) 0.30 (0.30–0.40) 1.20 15 5.70 1.43
23 March 2022: 16:14–17:36 579 521 (405–695) 0.90 (0.70–1.20) 1.80 65 3.90 1.24
13 May 2022: 12:21–14:01 364 546 (364–765) 1.50 (1.00–2.10) 7.00 40 6.20 1.77
13 May 2022: 14:02–15:39 235 400 (259–588) 1.70 (1.10–2.50) 7.00 80 6.60 3.00

might also apply to the observations on 8 September 2021.
Potential sources of systematic errors in the retrievals are
background heterogeneity of the scene, CO2 features in the
image region of the reference spectrum, or assumptions in the
unit absorption spectrum calculations like aerosol content.

Observations on 23 March 2022 have been made under
challenging conditions, as described above. The measure-
ment between 14:51 and 16:13 UTC underestimates the ex-
pected emissions significantly by 61 % to 77 %. We find a
retrieved observation angle φ̂ of 15° for this period, which
agrees reasonably well with the a priori observation angle
of 33± 30°. The measurement from 15:35 to 17:36 UTC
agrees with the expected emissions within the uncertainty,
but its observation angle φ̂ is 65° is inconsistent with the li-

dar observation of 33± 25°. Thus, acute observation angles
and plume condensation are considered factors that limit the
method’s applicability and may be used as filter criteria. The
observations on 13 May 2022 overestimate the power plant
emissions. The enhancements outside the expected plume
cause an increase in the width scaling factor in the GPM
inversion since the simulated enhancements need to spread
out (Fig. S22). While the width scaling factors range typi-
cally between 1.2 and 2.0, we find width scaling factors of
7.0 for these observations. The additional mass is attributed
to the power plant emissions, leading to overestimation of
the emission scaling factor. For the observation on 13 May
2022, such biased observations can be identified by non-
compliance with a Gaussian plume shape and excluded from
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the emission estimate. However, in other cases, the effect
might be too small to be identified visually but still large
enough to propagate in the emission estimate.

6 Conclusions

We report on a proof of concept for estimating CO2 emission
rates for a coal-fired power plant using a ground-based hy-
perspectral camera. The power plant is located in Mannheim,
Germany, and has yearly CO2 emissions of more than
4.9 Mt CO2 yr−1. We demonstrate our capability to reliably
image CO2 plumes from individual chimneys with 11 obser-
vations over 5 d in 2021 and 2022. The camera observes sky-
scattered sunlight in the shortwave infrared spectral range
above the chimneys of the power plant. We use an itera-
tive matched filter algorithm to retrieve the CO2 enhance-
ments from the observed spectra. Scattering on molecules
and aerosols is inefficient in the infrared spectral range. Thus,
the observed signal is small, and we need to average over
more than 50 min to reach a sufficient signal-to-noise ratio in
typical cases. Averaging over such a period typically causes
the observed plume to be of Gaussian shape in good approx-
imation. Therefore, we estimate emissions by fitting a Gaus-
sian plume model to the observed plume. The forward model
is based on the plume rise model by Janicke and Janicke
(2001). We estimate the ambient wind velocity and direction,
the plume width, and the source emissions by minimizing the
χ2

r between the observed and simulated plume. Therefore,
we sample the χ2

r space using a brute force approach, which,
for all cases, reveals an unambiguous minimum in χ2

r . For
validation, we calculate the expected emissions based on the
power plant’s power production during the observation.

Favorable observation conditions are homogeneous skies,
stable wind speeds, and a wind direction perpendicular to the
viewing direction. We present seven observations taken on
3 d with ambient conditions matching such favorable condi-
tions. For these seven observations, the estimated emission
rates average 84 % of the expected emissions with a mean
relative uncertainty of 24 %; thus, they agree reasonably well
with the expected emissions. Observations indicate that we
can follow the diurnal trend of the power plant emissions un-
der such conditions and that our technique works in wind
speeds down to ∼ 1.4 m s−1.

We also present plumes that show enhancement artifacts,
plume condensation, and unfavorable wind conditions to
demonstrate the limitations of the technique. Obvious non-
compliance with the Gaussian plume shape causes inaccu-
rate emission estimates, but these cases are easily identified
in the image and neglected for further analysis. Furthermore,
we find that plume condensation and steep observation an-
gles pose challenges for the technique. More observations are
needed to quantify the impact of these effects on the emission
estimates and to develop quantitative and suitable filter crite-
ria when measuring under non-favorable conditions.

Our spectral imaging technique adds to the pool of tools
to verify CO2 emission rates of localized sources. In that
context, our ground-based setup allows for monitoring indi-
vidual sources over prolonged periods, which, for example,
is complementary to the snapshot images provided by satel-
lites. We envision that further development of our technique
can provide independent data for emission inventories and
can be used to verify bottom-up emission estimates. Our in-
struments fit in a car, and the ground-based observation ge-
ometry enables us to choose the targets flexibly. Potential fu-
ture targets are less well-known anthropogenic sources such
as facilities in the chemical, metallurgy, or cement industry
and natural CO2 sources like volcanoes.
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