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Tables.  110 

Table S1. The details of instrument setting experiments. 111 

Varying 

setting 

Vocus front 

(volt) 

Vocus 

back (volt) 
pressure (mbar) E/N (Td) BSQ (volt) RF (volt) 

E 300 to 700 34 2 48 to 142 260 500 

N 500 34 1.5 to 3.5 57 to 133 260 500 

RF 700 34 2 171 260 500 to 13 

BSQ 700 34 2 171 300 to 50 500 

RF 700 34 3.5 98 260 500 to 13 

BSQ 700 34 3.5 98 300 to 50 500 

  112 
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Table S2. Details of the tested volatile organic compounds (VOCs). Also shown are their 113 

proton affinity (PA) values. 114 

Groupa Name CAS# 
m/Q (Th)b PA 

Exact Measured (kJ mol-1)c 

A1 

Benzene 71-43-2 79.0542 79.0548 750.4 

Toluene 108-88-3 93.0699 93.0699 784 

m-Xylene 108-38-3 107.0855 107.0859 812.1 

1,2,4-Trimethylbenzene 95-63-6 121.1012 121.1007 798.3 

A2 

Isoprene 78-79-5 69.0699 69.0709 826.4 

α-Pinene 80-56-8 137.1325 137.1321 878.6d 

β-Caryophyllene 87-44-5 205.1951 205.198 859.2e 

B1 
Formaldehyde 50-00-0 31.0178 31.0171 712.5 

Acetaldehyde 75-07-0 45.0335 45.0329 768.5 

B2 

n-Butanal 123-72-8 73.0648 73.0656 792.7 

Pentanal 110-62-3 87.0804 87.0802 796.6 

Hexaldehyde 66-25-1 101.0961 101.0957 794.4~797f 

B3 
Acetone 67-64-1 59.0491 59.0491 812 

Methyl ethyl Ketone 78-93-3 73.0648 73.0656 827.3 

B4 
Acrolein 107-02-8 57.0335 57.0332 797 

Methacrolein 78-85-3 71.0491 71.0495 808.7 

B5 
Benzaldehyde 100-52-1 107.0491 107.0504 834 

m-Tolualdehyde 620-23-5 121.0648 121.0651 840 

C1 
Acetonitrile 75-05-8 42.0338 42.0329 779.2 

Acrylonitrile 107-13-1 54.0338 54.0334 784.7 

C2 Methanol 67-56-1 33.0335 33.0323 754.3 

Notes:  115 
a, A1: aromatic hydrocarbons, A2: terpenoids, B1: small aldehydes; B2: long-chain aldehydes, B3: ketones, B4: 116 
unsaturated aldehydes, B5: aromatic aldehydes, C1: nitriles, C2: methanol;  117 
b, mass-to-charge ratio of protonated ion MH +; 118 
c, taken from NIST Chemistry WebBook William E. Acree and Chickos (2023), unless stated otherwise;  119 
d, from Solouki and Szulejko (2007); e, from Jenkin et al. (2012); f, from Blake et al. (2008). 120 

121 
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Table S3. Proton-transfer reaction rate constants (kptr, × 10-9 cm3 molec-1 s-1) from literature. 122 

Group Name kmodel
a kexperiment

b Nc kavg
d kstd

e 

A1 

Benzene 1.97 1.8 1.9 2.1 1.85 — 5 1.92 0.13 

Toluene 2.12 2.05 1.9 2.2 2.3 — 5 2.11 0.14 

m-Xylene 2.26 2.3 — — — — 2 2.28 0.24 

1,2,4-Trimethylbenzene 2.4 2.4 — — — — 2 2.4 0.25 

A2 

Isoprene 1.94 1.3 2 2 1.7 2.1 6 1.84 0.12 

α-Pinene 2.44 2.2 2.6 — — — 3 2.41 0.22 

β-Caryophyllene 3.1 — — — — — 1 3.1 0.47 

B1 
Formaldehyde 3 3.4 — — — — 2 3.2 0.35 

Acetaldehyde 3.36 3.5 3.6 3.7 — — 4 3.54 0.27 

B2 

n-Butanal 3.49 3.8 — — — — 2 3.65 0.39 

Pentanal 3.34 3.6 — — — — 2 3.47 0.37 

Hexaldehyde 3.74 3.7 — — — — 2 3.72 0.39 

B3 
Acetone 3 2.4 3.59 3.9 4.1 — 5 3.4 0.26 

Methyl ethyl Ketone 3.83 3.03 3.9 — — — 3 3.59 0.34 

B4 
Acrolein 3.35 4.2 — — — — 2 3.78 0.45 

Methacrolein 3.55 — — — — — 1 3.55 0.53 

B5 
Benzaldehyde 4.12 3.7 — — — — 2 3.91 0.43 

m-Tolualdehyde 4.9 4.1 — — — — 2 4.5 0.52 

C1 
Acetonitrile 4.74 2.7 4.7 5.1 3.92 — 5 4.23 0.33 

Acrylonitrile 5.1 — — — — — 1 5.1 0.77 

C2 Methanol 2.33 2.1 2.2 2.7 — — 4 2.33 0.18 

Notes: 123 
a, From Zhao and Zhang (2004); 124 
b, From Pagonis et al. (2019) and reference therein, as well as Zhao and Zhang (2004), , Michel et al. (2005), 125 
Milligan et al. (2002), Lindinger et al. (1998), Cappellin et al. (2012), Sekimoto et al. (2017);  126 
c, number of values for averaging;  127 
d, averaged kproton-transfer;  128 
e, the uncertainty of kproton-transfer by assuming 15% uncertainty for modeled values Zhao and Zhang (2004) as well 129 
as experiment values, weighted by the number of values. 130 
 131 
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Table S4. The RH dependence, sensitivity, intercept of protonated adducts, and fragmented ions. 132 

Group Name 

[MH+H2O]+ [MH-H2O]+ [MH-CxHy]+ 
Signal percentage (%)b 

Sensitivity 

(cps/ppbv) 

Intercept 

(cps) 

RH-

dependence 

(%) 

Sensitivity 

(cps/ppbv) 

Intercept 

(cps) 

RH-

dependence 

(%) 

Sensitivity 

(cps/ppbv) 

Intercept 

(cps) 

RH-

dependence 

(%) 
MH+ [MH+H2O]+ [MH-H2O]+ [MH-CxHy]+ 

A1 

Benzene —a — — — — — — — — 100 — — — 

Toluene — — — — — — 153.7 52.7 -1.5 98 — — 2 

m-Xylene — — — — — — 2903.7 -168.1 -0.8 76 — — 24 

1,2,4-

Trimethylbenzene 
— — — — — — 1219.8 -185.5 -0.4 88 — — 12 

A2 

Isoprene — — — — — — 154.4 211.9 -1.1 93 — — 7 

α-Pinene — — — — — — 4171.2 1437.7 0.2 46 — — 54 

β-Caryophyllene 1.4 1.7 3.5 — — — — — — 100 — — <<1d 

B1 

Formaldehyde — — — — — — — — — 100 — — — 

Acetaldehyde Ic — — — 0.1 0.6 -0.79 — — — 100 — <<1d — 

Acetaldehyde IIc — — — 0.2 0.6 0.67 — — — 100 — <<1d — 

B2 

n-Butanal 201.4 327.5 5.1 5589.1 13531 0.02 — — — 23 3 75 ?e 

Pentanal 1300.1 1617.1 1.4 4116.6 816.3 0.29 — — — 24 7 69 ? 

Hexaldehyde 367 399.3 8.2 367 399.3 0.30 84 1203.6 0.6 20 6 72 2 

B3 

Acetone Ic 58 433 5.4 288.1 635 0.37 131 5939.7 -3.0 91 1 3 5 

Acetone IIc 64.5 444.3 5.3 603.5 556.6 0.38 170.9 5674.8 -2.1 91 1 3 5 

Methyl ethyl Ketone 273.4 178.3 2.8 1084.3 13728.2 -0.92 208.2 2614.9 0.2 77 2 17 2 

B4 
Acrolein 49.7 4057 2.3 268.7 339.2 0.47 — — — 91 5 4 — 

Methacrolein 385.5 746.5 2.3 217.5 176.6 -0.19 — — — 90 7 3 — 

B5 
Benzaldehyde 774.9 -457.7 2.7 — — — — — — 95 5 — — 

m-Tolualdehyde 985 -956.1 2.4 — — — 1261 742.5 -2.4 87 8 — 6 

C1 
Acetonitrile 46.2 1199.8 8.5 — — — — — — 93 7 — — 

Acrylonitrile 118.2 111 5.2 — — — — — — 99 1 — — 

C2 Methanol 40.7 0.69 1.9 — — — — — — 3 97 — — 

Notes:  133 
a, not available; 134 
b, the specific percentage of fragment or adducted ion signals on all ion signals; 135 
c, from gas standard cylinders I and II. 136 
d, far less than 1 and closer to zero; 137 
e, not determined due to overlapping signals.  138 
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Figures. 139 

 140 

Figure S1. The diagram of the RH experimental setup. MFC: mass flow controller. 141 
 142 
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 143 

Figure S2. The mass spectra of aromatic hydrocarbons (benzene, toluene, m-xylene, 144 

and 1,2,4-trimethylbenene), and terpenoids (isoprene, α-pinene, and β-caryophyllene) 145 

in Vocus at a mixing ratio of ~ 12 ppbv (β-caryophyllene 1.2 ppbv). 146 

 147 
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 148 

Figure S3. The mass spectra of small aldehydes (formaldehyde and acetaldehyde), 149 

long-chain aldehydes (n-butanal, pentanal, and hexaldehyde), and ketones (acetone, 150 

and methyl ethyl ketone) in Vocus at a mixing ratio of ~ 12 ppbv. 151 

 152 
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 153 

Figure S4. The mass spectra of unsaturated aldehydes (acrolein and methacrolein), 154 

aromatic aldehydes (benzaldehyde and m-tolualdehyde), nitriles (acetonitrile and 155 

acrylonitrile), and methanol in Vocus at a mixing ratio of ~ 12 ppbv. 156 

 157 



12 

 

 158 
Figure S5. Time series of the protonated ion (MH+) signals for selected (A) VOCs and 159 

(B) OVOCs as concentration varied from 0 to ~22 ppbv (~2 ppbv for β caryophyllene) 160 

under dry (MH ~5%) conditions. Note the signals were magnified by 10 times for β-161 

caryophyllene and 3 times for n-butanal, pentanal, and hexaldehyde. 162 

 163 
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 164 
Figure S6. Time series of the protonated ion (MH+), adduct ions ([MH + H2O]+), and 165 

fragmented ions ([MH – H2O]+) and/or ([MH – CxHy]
+) signals for n-butanal, pentanal, 166 

and hexaldehyde. Note that the time in x axis is not continuous, with some periods with 167 

noisy signals cut off. 168 

 169 
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 170 
Figure S7. The signal intensities (panels a, b, and c, and panels g, h, and i) and fractions 171 

(panels d, e, and f, and panels j, k, and l) of protonated ion (MH+), adduct ions ([MH + 172 

H2O]+), and fragmented ions ([MH – H2O]+ and [MH – CxHy]
+) for α-pinene as 173 

functions of E/N ratio (a, d, g, and j), RF amplitude (b, e, h, and k), and BSQ amplitude 174 

(c, f, i, and l). The difference between a/d and g/j is that the former fixed N (p = 2.0 175 

mbar) and varied axial voltage (V) to change E/N ratio, while the latter fixed V (= 466 176 

volts) and varied p (i.e., N) to change E/N ratio. The difference between b/e and h/k and 177 

between c/f and i/l is that the former was at p = 2.0 mbar while the latter p = 3.5 mbar. 178 

If not varied, RF amplitude was set at 500 volts and BSQ amplitude at 300 volts. 179 

 180 
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 181 
Figure S8. The signal intensities (panels a, b, and c, and panels g, h, and i) and fractions 182 

(panels d, e, and f, and panels j, k, and l) of protonated ion (MH+), adduct ions ([MH + 183 

H2O]+), and fragmented ions ([MH – H2O]+ and [MH – CxHy]
+) for 1,2,4-184 

trimethylbenzene as functions of E/N ratio (a, d, g, and j), RF amplitude (b, e, h, and k), 185 

and BSQ amplitude (c, f, i, and l). The difference between a/d and g/j is that the former 186 

fixed N (p = 2.0 mbar) and varied axial voltage (V) to change E/N ratio, while the latter 187 

fixed V (= 466 volts) and varied p (i.e., N) to change E/N ratio. The difference between 188 

b/e and h/k and between c/f and i/l is that the former was at p = 2.0 mbar while the latter 189 

p = 3.5 mbar. If not varied, RF amplitude was set at 500 volts and BSQ amplitude at 190 

300 volts. 191 

  192 



16 

 

 193 
Figure S9. The signal intensities (panels a, b, and c, and panels g, h, and i) and fractions 194 

(panels d, e, and f, and panels j, k, and l) of protonated ion (MH+), adduct ions ([MH + 195 

H2O]+), and fragmented ions ([MH – H2O]+ and [MH – CxHy]
+) for acetone as functions 196 

of E/N ratio (a, d, g, and j), RF amplitude (b, e, h, and k), and BSQ amplitude (c, f, i, 197 

and l). The difference between a/d and g/j is that the former fixed N (p = 2.0 mbar) and 198 

varied axial voltage (V) to change E/N ratio, while the latter fixed V (= 466 volts) and 199 

varied p (i.e., N) to change E/N ratio. The difference between b/e and h/k and between 200 

c/f and i/l is that the former was at p = 2.0 mbar while the latter p = 3.5 mbar. If not 201 

varied, RF amplitude was set at 500 volts and BSQ amplitude at 300 volts. 202 

 203 
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 204 
Figure S10. The signal intensities (panels a, b, and c, and panels g, h, and i) and 205 

fractions (panels d, e, and f, and panels j, k, and l) of protonated ion (MH+), adduct ions 206 

([MH + H2O]+), and fragmented ions ([MH – H2O]+ and [MH – CxHy]
+) for 207 

hexaldehyde as functions of E/N ratio (a, d, g, and j), RF amplitude (b, e, h, and k), and 208 

BSQ amplitude (c, f, i, and l). The difference between a/d and g/j is that the former 209 

fixed N (p = 2.0 mbar) and varied axial voltage (V) to change E/N ratio, while the latter 210 

fixed V (= 466 volts) and varied p (i.e., N) to change E/N ratio. The difference between 211 

b/e and h/k and between c/f and i/l is that the former was at p = 2.0 mbar while the latter 212 

p = 3.5 mbar. If not varied, RF amplitude was set at 500 volts and BSQ amplitude at 213 

300 volts. 214 

 215 
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 216 
Figure S11. The ratio of α-pinene signals (MH+: 137 Th; [MH – CxHy]

+: 81 Th) to all 217 

ion signals. This was used to estimate the E/N ratio. 218 

 219 
Figure S12. The sensitivity of acetone. An intercept above zero indicates a high 220 

background value. 221 
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 222 
Figure S13. The signal intensities of H3O

+, H3OH2O
+, and H3O(H2O)2

+ as conditions 223 

varied as in Figures 3 in the main text and S14 below.  224 

225 
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 226 
Figure S14. The ratio of the logarithm of intensity (panels a, b, and c) and the difference 227 

of fractional signal of the protonated ion (MH+) among all ions (panels d, e, and f), 228 

when changing axial voltage (V) or FIMR pressure (p) (panels a and d), RF amplitude 229 

(panels b and e), and BSQ amplitude (panels c and f). The ratios were taken after taking 230 

the logarithm of the signal intensities of MH+ at the right-hand side of the instrument 231 

setting (after the arrow) to that at the left-hand side of the instrument setting stated in 232 

the panel label; likewise, the fractional differences are the fractions of the MH+ signal 233 

among the protonated, fragmented, and adduct signals under these two instrumental 234 

settings.  235 

 236 

 237 
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 238 
Figure S15. The dependence of the [MH+H2O]+ signals on RH for the VOCs studied. 239 

Panels a-f: the relative sensitivity was calculated as the slope (sensitivity) under high-240 

RH conditions to that at the dry (RH<5%) condition. Panel g: the percent change of 241 

relative sensitivity per 10% RH increase. 242 

 243 

 244 
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 245 
Figure S16. The dependence of the [MH-H2O]+ signals on RH for the VOCs and 246 

OVOCs. Panels a-d: the relative sensitivity was calculated as the slope (sensitivity) 247 

under high-RH conditions to that at the dry (RH<5%) condition. Panel e: the percent 248 

change of relative sensitivity per 10% RH increase.  249 
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 250 
Figure S17. The dependence of the [MH-CxHy]

+ signals on RH for the VOCs and 251 

OVOCs tested at a concentration of ~12 ppbv. Panels a-e: the relative sensitivity was 252 

calculated as the slope (sensitivity) under high-RH conditions to that at the dry (RH<5%) 253 

condition. Panel f: the percent change of relative sensitivity per 10% RH increase.  254 
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