(a) CO₂ processing

1. Start conditions
 1a. Vehicle distance: Enough distance to previous vehicle?
 1b. CO₂ emission valid?
 1c. Search for emission gradient (peak) → Peak found?
 1d. Separability: Peak separable from previous vehicle?

2. BG determination
 Interference from previous vehicle?
 - Min(movavg(conc before peak))
 - Mean(min before peak, general BG)

3. Emission integration
 Peak integration
 - Stop 1: Maximum allowed event duration reached
 - Stop 2: Conc below BG
 - Stop 3: Next vehicle passed & conc gradient rising
 - Stop 4: tstop pollutant - tstop CO₂ > Δtstop max
 - Stop 5: Integration interval pollutant + Δt > Integration interval CO₂

4. CO₂ emission valid

(b) Pollutant processing

1. Start conditions
 1e. Pollutant vs CO₂: tstart pollutant - tstart CO₂ > Δtstart max?

2. BG determination
 Interference from previous vehicle?
 - Min(movavg(conc before peak))
 - Mean(min before peak, general BG)

3. Emission integration
 Pollutant vs CO₂
 - Duration CO₂: Integration interval > min duration?
 - Duration pollutant: Integration interval pollutant > min duration pollutant?
 - Plume strength: Integrated CO₂ area > min plume strength?

4. Low emitter processing
 - BG determination
 - Integration over the same time period as for CO₂

Finish