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Abstract. Hail is a major threat associated with severe thun-
derstorms, and estimating the hail size is important for is-
suing warnings to the public. For the validation of exist-
ing operational, radar-derived hail estimates, ground-based
observations are necessary. Automatic hail sensors, for ex-
ample within the Swiss Hail Network, record the kinetic
energy of hailstones to estimate the hail sizes. Due to the
small size of the observational area of these sensors (0.2 m2),
the full hail size distribution (HSD) cannot be retrieved.
To address this issue, we apply a state-of-the-art custom
trained deep learning object detection model to drone-based
aerial photogrammetric data to identify hailstones and esti-
mate the HSD. Photogrammetric data of hail on the ground
were collected for one supercell thunderstorm crossing cen-
tral Switzerland from southwest to northeast in the afternoon
of 20 June 2021. The hail swath of this intense right-moving
supercell was intercepted a few minutes after the passage at
a soccer field near Entlebuch (canton of Lucerne, Switzer-
land) and aerial images were taken by a commercial DJI
drone, equipped with a 45-megapixel full-frame camera sys-
tem. The resulting images have a ground sampling distance
(GSD) of 1.5 mm per pixel, defined by the focal length of
35 mm of the camera and a flight altitude of 12 m above the
ground. A 2-dimensional orthomosaic model of the survey
area (750.4 m2) is created based on 116 captured images dur-
ing the first drone mapping flight. Hail is then detected us-
ing a region-based convolutional neural network (Mask R-
CNN). We first characterize the hail sizes based on the indi-
vidual hail segmentation masks resulting from the model de-

tections and investigate the performance using manual hail
annotations by experts to generate validation and test data
sets. The final HSD, composed of 18 207 hailstones, is com-
pared with nearby automatic hail sensor observations, the op-
erational weather-radar-based hail product MESHS (Maxi-
mum Expected Severe Hail Size) and crowdsourced hail re-
ports. Based on the retrieved data set, a statistical assess-
ment of sampling errors of hail sensors is carried out. Fur-
thermore, five repetitions of the drone-based photogramme-
try mission within 18.65 min facilitate investigations into the
hail-melting process on the ground.

1 Introduction

Hail is a severe hazard associated with thunderstorms, and
the threat and potential damage increase with increasing hail
size. Therefore, the estimation of the hail size is important
to issue appropriate warnings to the public and to assess
the damage. Between 18 June and 31 July 2021, a period
of intense hailstorms occurred in Switzerland (Kopp et al.,
2022). CHF 340 million storm-related losses are estimated
in the month of June and large hail played a significant
role (la Mobilière, 2021). Algorithms based on operational
weather radar data allow for the computation of the maxi-
mum expected severe hail size (MESHS; Treloar, 1998) and
probability of hail (PoH; Waldvogel et al., 1979) in a thunder-
storm. In Switzerland, those products are derived from five
C-band weather radars operating in the complex terrain of
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the Alps (Germann et al., 2022) and have a spatial resolution
of 1 km2. Ground-based observations are crucial for the veri-
fication and improvements of such radar-based hail products.

Besides traditional hailpads, which are cost effective but
do not provide any temporal information, new automatic hail
sensors (Löffler-Mang et al., 2011) and crowdsourced hail re-
ports (Barras et al., 2019) provide valuable additional hail ob-
servations. Within the framework of the Swiss Hail Network
project (Romppainen-Martius, 2022; Kopp et al., 2022), a
network of 80 automatic hail sensors were installed in three
hail-prone regions in Switzerland (Jura, southern Ticino and
Napf) that are identified as hail hot spots based on climato-
logical studies (Nisi et al., 2018, 2016). These sensors pro-
vide an estimate of the hail size and the exact time of the
impact but no information about the shape. In addition, hail
sensors cannot capture the entire hail size distribution (HSD)
due to their small observational area of 0.2 m2 (Kopp et al.,
2023). Similarly, crowdsourced hail reports use predefined
categories (no hail, < 10, 10, 20, 30, 50 and > 70 mm) for
estimating the hail size, corresponding to an unknown per-
centile of the actual HSD. Besides that, their quality control
is challenging (Barras et al., 2019).

In order to overcome some of the limitations of auto-
matic hail sensors and crowdsourced reports for estimating
the HSD, a new technique, called HailPixel, has been intro-
duced by Soderholm et al. (2020). They propose to use aerial
imagery captured by an unoccupied aerial vehicle (UAV) to
survey hail on the ground over a large area. The resulting im-
age data are analyzed using deep learning techniques com-
bined with computer vision feature extraction to estimate
the HSD. The results from a HailPixel survey in San Rafael
(Argentina) clearly demonstrate the advantage of this tech-
nique, as an UAV can survey an extended area and capture a
large sample of hailstones. They identified 15 983 hailstones,
which allows for the inference of the HSD of the event.

In this study, we use aerial drone images collected on
20 June 2021. That day, the ingredients for long-living and
well-organized severe thunderstorms (humid air, high insta-
bility and strong wind shear) were in place across Switzer-
land. An air mass with steep lapse rates was advected from
the southwest above moist low-level air with mean mix-
ing ratios around 12 gkg−1. Lapse rates above the capping
inversion were close to dry adiabatic. The surface-based
convective available potential energy (SBCAPE) was above
2000 Jkg−1, and high wind shear of about 30 ms−1 in the
0–6 km layer was present at 12:00 UTC (Fig. 1). A supercell
developed over the French Alps in the morning and moved
through Switzerland within 5 h. The track of the supercell
is shown in Fig. 2a and was generated based on the TRT
(Thunderstorm Radar Tracking) algorithm (Feldmann et al.,
2023; Hering et al., 2004). From the hodograph shown in
Fig. 1, a storm motion vector of 234° at 13 ms−1 (accord-
ing to Bunkers et al., 2000) and mean storm relative winds
(0–6 km) of 71° at 9 ms−1 can be derived. This environment

favored the development of classical right-moving supercells
(Houze et al., 1993).

The supercell produced a continuous hail swath from Lake
Geneva to Zurich over a length of about 155 km, and the
maximum hail size is estimated to have been above 60 mm.
Both the maximum hail size and the hail swath are inferred
from the MESHS products based on the Swiss operational
radar network (Germann et al., 2022). Figure 2b illustrates
the radar-derived MESHS signature from the supercell in the
Napf region (central Switzerland), where the aerial images
were collected on a soccer field (white cross) near Entlebuch
(canton of Lucerne). For this location, MESHS indicates a
maximum expected severe hail size of 63 mm, and on-site
observations revealed maximum dimensions between 40 and
50 mm. In addition, data from four automatic hail sensors are
available for the area within 1 km of the survey area. Surpris-
ingly, the closest sensor (HS1; 300 m SSW from the soccer
field) did not record any impact during the entire hail event.
Therefore, we use the HSD data from the remaining three
sensors in this analysis (Fig. 4). HS2 and HS4 are located
NNE of the soccer field at distances of 770 and 1470 m, re-
spectively, while HS3 is located SSW at a distance of 1150 m
(Fig. 3).

Soderholm et al. (2020) provided general recommenda-
tions to optimize the quality and further analysis of aerial
drone images of hail: utilize uniform and contrasting back-
grounds (cut or grazed turf grasses), ensure a high cam-
era resolution for capturing smaller hailstones, minimize the
melting of hailstones, avoid aerial surveys in areas with flow-
ing water, and conduct surveys immediately after hail fall.
Following those suggestions, we achieved a ground sampling
distance (GSD) of 1.5 mm per pixel by flying at an altitude of
12 m with a 45-megapixel full-frame camera system. For the
detailed flight and system characteristics, see also Table 1.
Altogether it permitted us to classify hailstones down to a
minimum size of 3–6 mm, which is a significant improve-
ment compared to the minimum size of 20 mm from Soder-
holm et al. (2020). Here, the survey was performed on a soc-
cer field with a visually homogeneous background and an ex-
cellent drainage of water. A main difference to the approach
of Soderholm et al. (2020) is the technical setup to estimate
the size of the identified hailstones. Instead of using an addi-
tional computer-vision-based method, here we only use the
data from the deep learning algorithm to estimate the hail
sizes and shapes. In addition, we present an approach to ad-
dress the melting of hailstones on the ground; the melting
rate is estimated by capturing the shrinking of the hailstones
from images of successive drone flights. This allows for the
approximation of the expected largest hail sizes at the start
of the hail fall if the exact times of the storm passage and
images are known.

In Sect. 2, the methodology is presented, starting with
the data collection procedure, a description of the equipment
and details about the image data acquisition, followed by the
post-processing, the hail detection with deep learning algo-
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Figure 1. Skew-T plot with hodograph analysis from the atmospheric radio sounding at the Payerne station (ID: 06610; 87 km WSW from
the soccer field) on 20 June 2021 at 12:00 UTC, produced with the MetPy software (May et al., 2023). The temperature and dew point profiles
are drawn in red and green. The shaded areas in red and blue mark the CAPE (convective available potential energy) and CIN (convective
inhibition). The hodograph display shows four layers: 0–1 km (cyan), 1–3 km (light blue), 3–5 km (blue) and 5–10 km (dark blue).

Table 1. Specifications of the drone, camera system and flight char-
acteristics.

Parameter Value

Drone type DJI Matrice 300 RTK
Camera type 45 MP Zenmuse P1
Image resolution 8192 pixels× 5460 pixels
Objective focal length 35 mm
ISO 25 600
Exposure time 1/1000 s
Aperture f/5.6

Flight altitude 12 m
Flight speed 1 ms−1

Path type Lawnmower (boustrophedonic)
Image overlap 70 % (frontal and sideways)
Captures 116
Survey area 750.4 m2

Flight duration 3 min 51 s (full area)
GSD 1.5 mm per pixel
Motion blur 0.67 pixels

rithms and the final retrieval of the hail size distribution. The
resulting hail size distributions, performance of the model
and melting rate estimation are described in Sect. 3. Further
discussions to bring the findings to a broader context are pre-
sented in Sect. 4. Conclusions, ideas and suggestions for fu-
ture analyses are given in Sect. 5.

2 Data and methods

In this study, we use a deep learning method to automati-
cally detect individual hailstones in aerial images of hail.
A subset of the images was annotated by a human expert
and served as a training, validation and test data set. Fur-
thermore, the test data set was annotated by two additional
independent experts to objectively estimate the performance
of the model. The method follows the HailPixel procedure
described in Soderholm et al. (2020) that applies a two-stage
approach, consisting of a machine learning technique to iden-
tify the center pixel of each hailstone in the image and a
computer vision (CV) approach to detect the edges of the
individual hailstones based on pixel lightness values. During
a preliminary test in our study, the two-stage approach was
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Figure 2. Storm track (a) of the 20 June 2021 supercell with colored time information (5 min resolution of the scatter points) and the location
of the atmospheric radio sounding (magenta open circle with black cross inside) shown in Fig. 1. The storm location at the sounding time
(12:00 UTC) is marked with the same edge color (magenta). The black rectangle in panel (a) marks the zoom area for panel (b), where
information about radar-derived MESHS (Maximum Expected Severe Hail Size) and crowdsourced hail size reports (black and different-
sized circles) for six size categories with bin centers at 2.5, 6.5, 23, 32, 43 and 68 mm are given. The location of the soccer field, where the
drone-based hail survey took place, is marked with a white cross. The black rectangle around the white cross in panel (b) marks the zoom
area for the detailed map view in Fig. 3. Map tiles are by Stamen Design (https://stamen.com, last access: 3 March 2024) and Stadia Maps
(https://stadiamaps.com, last access: 3 March 2024), under CC-BY-4.0. Map data from © OpenStreetMap contributors 2024. Distributed
under the Open Data Commons Open Database License (ODbL) v1.0 and available from https://www.openstreetmap.org (last access: 3 March
2024).

Figure 3. The zoom area and detailed view for the black rectangle around the white cross in Fig. 2b. It shows the locations of the soccer field
(roughly centered to the map view; black cross), the four nearest automatic hail sensors (HS1, HS2, HS3 and HS4) and the crowdsourced hail
size data (black and different-sized circles). Map tiles are by Stamen Design (https://stamen.com) and Stadia Maps (https://stadiamaps.com),
under CC-BY-4.0. Map data from © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open Database License
(ODbL) v1.0 and available from https://www.openstreetmap.org.
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Figure 4. Histograms of the recorded hail size distributions from the
automatic hail sensors together with the daily maximum MESHS
value at the sensor locations (see Fig. 3). The recorded hail du-
rations for the sensors are about 3 min (HS2), 16 min (HS3) and
13 min (HS4). The color scheme follows the one from Fig. 3. The
HS1 sensor did not record any hailstones and is thus omitted here.

compared to a one-stage method using solely a deep learn-
ing instance segmentation model based on Mask R-CNN to
detect individual hailstones and estimate their sizes. With the
two-stage approach, the edge detection did not work reliably
for small hailstones in particular because the lightness gradi-
ent between these small hailstones and the background was
insufficient. Here, we therefore focus on the one-stage ap-
proach.

2.1 Data collection and the experience from chasing
hailstorms

A major challenge of drone-based hail photogrammetry is the
collection of data. Hail-producing thunderstorms are highly
localized phenomena, and falling hail melts quickly on the

surface due to high (summer) air and soil temperature and
sometimes strong rainfall following directly after the hail.
Thus, to intercept a thunderstorm, the drone operators need
to be on site before the arrival of the storm. Therefore, the
availability of suitable nowcasting products and experienced
interpretation are highly important. Aside from the meteo-
rological challenges, the practical difficulties are even more
pronounced. To obtain the best possible quality of aerial im-
ages, we focused on places where we were confident we
would encounter freshly cut meadows. Public soccer fields
turned out to be most promising target locations, which
can be easily identified in interactive maps while being on
the road, e.g., using https://map.geo.admin.ch/ (last access:
17 April 2024) (SwissGeoportal, 2023). In addition, major
parts of the hail-prone areas were scouted in advance to de-
termine potential locations to intersect a specific storm cell
and familiarize with the local traffic routes.

During days with conditions favorable for supercells, the
drone operators were already on standby in central Switzer-
land in the morning hours to be ready to head toward poten-
tial regions of thunderstorm occurrence. A valuable sources
to identify such conditions and regions are the forecasts
by ESTOFEX (European Storm Forecast Experiment; https:
//www.estofex.org/, last access: 18 April 2024). Our experi-
ence has shown that at least a level 2 on the ESTOFEX in-
ternal scale needs to be issued to have a realistic chance of
intercepting a hail-producing cell. In general, the forecasts
and evaluation of the synoptic situation across Europe pro-
vided on their website are highly valuable for the preparation
process and determining whether meteorological conditions
will be favorable the following day.

On the day of an event, different nowcasting and observa-
tional products were used. Most importantly, the operational
radar images produced by MeteoSwiss served as a baseline to
identify storms and nowcast the upcoming minutes to hours.
The 3-dimensional reflectivity information is crucial to not
only identifying the cell itself, but also further estimating the
strength and exact location of a potential hail core. Within the
operational radar products, POH and MESHS were used. Our
experience has shown that in order to achieve promising re-
sults, POH needs to be 100 % and MESHS should reach sta-
ble values above 20 mm. Furthermore, satellite images and
lightning information (e.g., lightning jumps; Schultz et al.,
2009; Chronis et al., 2015; Nisi et al., 2020) help to focus
on intensifying regions within the developing storm cells. Fi-
nally, real-time hail reports from the public can give a hint
about the size of the hail that can be expected and to fine-
tune the final decisions for a suitable location.

Following this strategy and using the tools mentioned,
two drone-based hail photogrammetry surveys could be per-
formed during 5 event days in 2021. In this study, we present
an analysis of the data collected on 20 June 2021 to demon-
strate the methodology. The data from the second available
event cannot be taken into account because of low quality
of the data. In particular, both the light conditions and the
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background (longer grass on the soccer field) were not opti-
mal, and thus, the data unfortunately cannot be used for an
in-depth analysis.

2.2 Drone operation and image processing

The aerial hail photogrammetry missions were performed
with a DJI Matrice 300 RTK drone equipped with a Zen-
muse P1 camera system that has a full-frame sensor (45-
megapixel) stabilized by a three-axis gimbal and a focal
length of 35 mm. The synchronization of the camera, the
flight controller and the gimbal is done at a temporal reso-
lution of microseconds and thus ensures a high accuracy of
the image data. The drone was not operated with the RTK
(real-time kinematic) feature enabled. This would require the
installation of an RTK base station module. The advantage
would be an increase in a positional accuracy of the drone
from being on the order of a few decimeters to centime-
ters. Another potential option would be to use the NTRIP
(Networked Transport of RTCM, Radio Technical Commis-
sion for Maritime Services, via Internet Protocol) standard.
This protocol facilitates the transmission of correction data
over the internet. It enables real-time positioning and precise
navigation by delivering accurate correction data to GPS re-
ceivers.

As the first step, the individual images captured by the
drone have to be combined into an orthomosaic. An ortho-
mosaic is defined as a composite of multiple aerial (airborne
or spaceborne) photos that are previously processed to re-
move inherent distortions caused by the geometrical proper-
ties of the lenses (airborne photos) and the curvature of the
Earth (spaceborne satellite images). Thus, the processed in-
dividual pictures and the resulting composed orthomosaic are
distortion-free and exhibit a true scale that allows for the es-
timation of the size of the objects in the photo. To generate
an orthomosaic, an image overlap of between 70 % and 80 %
is required (Guidi et al., 2020; Fawcett et al., 2019). Here,
we use an image overlap of 70 % for both sides (frontal and
sideways).

The flight pattern was programmed using the DJI Pi-
lot 2 application. We defined a lawnmower (boustrophedo-
nic) flight path without a crosshatch, with a flight altitude
of 12 m above the ground (minimal possible altitude) and a
flight speed of 1 m s−1. A low horizontal flight speed is nec-
essary to reduce the motion blur (Bemis et al., 2014; Soder-
holm et al., 2020), which is within 1 image pixel (0.67 pix-
els) in our case and leads, in general, to small overesti-
mations (≈ 1 mm) of the hail dimensions. The orthomosaic
(or orthophoto) is generated using the open-source software
OpenDroneMap (ODM; OpenDroneMap, 2020). This soft-
ware can convert 2-dimensional images into classified point
clouds, 3-dimensional textured models, georeferenced or-
thorectified imagery or georeferenced digital elevation mod-
els. ODM makes use of OpenSfM (mapillary, 2020), which
is a structure-from-motion (SfM) library written in Python

that depends on OpenCV (Bradski, 2000). The library can
be used to reconstruct camera positions and 3-dimensional
scenes based on multiple images (mapillary, 2023). Here, we
make use of the basic modules of SfM: feature detection, fea-
ture matching and minimal solvers.

The orthophoto construction can be divided into the fol-
lowing main steps:

– identification of matching points between the images

– reconstruction of the camera perspective and the po-
sition of each image for the quality check and subse-
quent computation of the 3-dimensional coordinates of
the matching points

– derivation of a DEM (digital elevation model) using a
reduced point cloud in 3-dimensional space

– construction of the orthophoto by applying the DEM to
the spatial projection of each image point.

The first flight started at 14:37:28 UTC, which is about
9.5 min after the start of the hail fall. Within 3 min 51 s, a
total of 116 images were taken. Table 1 summarizes the de-
tailed drone, camera system and flight characteristics of the
hail photogrammetry mission. Although it is critical to get
off the ground as soon as possible after the hail fall, environ-
mental conditions like rain rate, wind and gust speed should
be carefully monitored in order to stay within the permit-
ted operation conditions of the drone model. The utilization
of a relatively high ISO value, as outlined in Table 1, facili-
tates operational use even in challenging lighting conditions,
maintaining low motion blur (0.67 pixels) at a constant flight
speed of the drone. Furthermore, wind and gusts can affect
the drone’s stability, potentially leading to additional image
blurring.

A standard output of the ODM software is a quality report.
The report gives a total of 14 916 215 reconstructed dense
points and a mean GPS error of 0.34 m. The orthophoto cov-
ers an area of 750.4 m2 (see Fig. 5a) that shows an eleva-
tion change of 0.5 m. Multiple reference objects (see Fig. 5b)
placed on the soccer field are used for an independent veri-
fication of the GSD. These reference objects were laminated
printouts of geometric shapes in black and white – i.e., cir-
cles with a diameter of 10 mm and squares with side lengths
of 75 mm. The white circles consist of 6 to 7 pixels within the
orthophoto, which is equivalent to a diameter of 9–10.5 mm.
Due to a slight overexposure in combination with the motion
blur, the black circles on white background appeared approx-
imately 1–2 pixels smaller.

2.3 Object detection and size estimation

Object detection is a computational method of automatically
identifying and locating different objects or semantic classes
(e.g., trees, bicycles and faces) within an image or a video. A
comprehensive overview of the techniques and developments
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Figure 5. In panel (a), the final orthophoto of the 20 June 2021 hail event is shown in the HSL (hue, saturation, lightness) color space. It
is produced from 116 individual aerial drone images with the OpenDroneMap (ODM) software package. The radius of the soccer middle
circle is 9.15 m. In panel (b), an image zoom from the orthophoto with an actual scale of 1 m (width) and 0.9 m (height) illustrates the hail
appearance on the soccer field in conjunction with one of the reference objects (black and white circles of 10 mm diameters; black and white
squares of 75 mm side lengths) to verify the ground sampling distance (GSD). In panel (c), the randomly selected distribution of training
(light gray), validation (green) and test (dark red) image tiles (75 cm edge length) is displayed within the orthophoto. Panel (d) belongs to
Sect. 3.2 and displays the same orthophoto in RGB (red, green and blue) color space overplotted by a 600 m2 area (red rectangle), where
10 000 circles of 0.2 m2 (virtual hail sensors; shaded blue) are randomly placed for statistical assessments.

in object detection over the last 2 decades can be found in
Zou et al. (2019). In recent years, many of the latest avail-
able neural network detection engines (e.g., AlexNet, VGG,
GoogLeNet, ResNets, DenseNets) have been applied to ob-
ject detection. For example, Mask R-CNN (He et al., 2020),
as one of the state-of-the-art models for instance object seg-
mentation, uses a residual neural network (ResNet) detection
engine described in He et al. (2016) and is designed to sim-
plify the training of deep neural networks.

We used the deep learning toolbox Detectron2 from Wu
et al. (2019) as a starting point to train a model for auto-
matic hail recognition. Its flexible design allows for switch-
ing between different tasks such as object detection, instance
segmentation or panoptic segmentation. It provides built-in
support for popular data sets like the MS COCO (Microsoft
Common Objects in Context) described in Lin et al. (2014)

and contains features from Faster/Mask R-CNN: ResNet in
combination with a feature pyramid network (FPN), Convo-
lution 4 (C4), as a single-scale feature map or a dilated con-
volution technique. Furthermore, Detectron2 provides ready-
to-use baselines with pre-trained model weights. Here, we
use one set of those pre-trained model weights to train a
new model for hail detection only. Thus, we only have two
classes – namely hail and the image background. The model
is trained using data from a single event with grass in the
background (soccer field). In order to generalize the model
and apply it to additional data with different backgrounds
(less homogeneous grass field, crop fields and concrete sur-
face), the model should be retrained with additional data.
However, not all backgrounds are suitable; for example, on
a concrete surface (a public parking), the hail would melt
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much faster due to high solar irradiation that is likely prior to
thunderstorms.

2.3.1 Image data preparation

The orthophoto exhibits a resolution of 24 500 pixels by
22 000 pixels, resulting in a total of 5.39× 108 pixels and
disk space used of about 2 GB. The ODM software pro-
vides different output formats for the orthophoto. Here we
use a PNG (Portable Network Graphics) format for the sub-
sequent analysis. As shown in Fig. 5a, the orthophoto does
not cover the entire image size, reducing the total number of
analyzed image pixels to about 5× 108 pixels. Thus, given
the GSD of 1.5 mm per pixel, the entire image covers an area
of 750.4 m2.

The original orthophoto is divided into smaller image tiles
to save computational resources during the training of the
model. A reasonable compromise is a size of 500× 500 pix-
els for each tile. We use a randomly selected 10 % of the tiles
as reference data (216 tiles). These reference data are further
divided into 70 % for training (150 tiles) and 15 % for the
validation (33 tiles) and test data (33 tiles). These data sets
are visually analyzed by expert A, and all hailstones are an-
notated using the Computer Vision Annotation Tool (CVAT;
Sekachev et al., 2020). The resulting annotation files are
based on JSON (JavaScript Object Notation) and store infor-
mation about each image tile. This includes the path, width,
height, annotation identifiers of the hailstones and the poly-
gon coordinates defining their instance segmentation masks.
Overall, the training data set contains 937, the validation data
set 249 and the test data set 215 hailstone annotations. To ac-
count for differences in the visually determined annotations,
two more human experts (B and C) annotated the test data set
independently. Thus, the test data set annotated by experts B
and C is used as an independent data source to assess the
model prediction performance.

2.3.2 Hail detection and size estimation – training,
validation and testing

The main concept behind deep learning models is to split the
reference data set into a training, a validation and a test data
set. The training data set is used to estimate the model pa-
rameters. Within the training procedure, a validation data set
is used to prevent overfitting and to assess the evolution of
performance indicators during the entire training run in steps
of 100 iterations. Furthermore, an independent test data set is
necessary that serves as a truth against which the model re-
sults (applied to data not contained in the reference data set)
and thus the model performance can be assessed. As men-
tioned before, we use independent test data sets where hail is
visually detected by three experts (see Fig. 9).

An NVIDIA GeForce RTX 3060 Ti was used to efficiently
train the Mask R-CNN model on the training data set. This
GPU model has 4864 Compute Unified Device Architecture

Table 2. Range tested for the three hyper-parameters: learning rate
(LR), γ value (γ ) and batch size (BS) per image. The hyper-
parameter combination of the model with the lowest validation loss
after 3000 iterations is highlighted in bold.

LR 0.0001 0.00025 0.0005 0.001
γ 0.1 0.5
BS 128 256

(CUDA) cores and a total of 8 GB GDDR6 RAM available.
A default configuration of Detectron2 is used to estimate a
first set for the hyper-parameter tuning. We started with a
base model that was pre-trained using the MS COCO data
set based on ResNet and FPN. The MS COCO data set con-
sists of about 2× 105 annotated images with a total of 80
different object classes, and it is thus an ideal starting point
for training deep learning models to recognize, label and de-
scribe objects.

To assess various hyper-parameter combinations (see Ta-
ble 2), 16 different training runs (run 0 to run 15) were per-
formed. Here, we only vary the three hyper-parameter learn-
ing rate, the gamma value and the batch size to show a proof
of concept for automatic hail detection. For detailed infor-
mation about the concept and additional available parame-
ters, we refer to Schmidhuber (2015) and Wu et al. (2023).
These training runs were performed for each of the 150 im-
age tiles in the training data set. Using two images per batch
with 1 GPU, a total of 75 batches are needed, and this repre-
sents one epoch time (i.e., one iteration through all available
image tiles). We then performed 40 epoch times, resulting in
a total of 3000 iterations.

During an individual training run, the validation is done
every 100 iterations. Thus, for one training run with a total of
3000 iterations, we obtain a temporal evolution of the scores
along 30 points. Figure 6 shows the progress of the total loss
and the validation loss for all 16 training runs performed. The
bold lines depict the run exhibiting the lowest validation loss
after 40 epoch times. To chose the best model, we performed
a more detailed evaluation of the model runs by means of
commonly used metrics in object detection.

To assess the performance of a model, diverse metrics are
available. A single score (i.e., performance metric) provides
the model performance from a certain perspective and thus
different scores should be taken into account. A score com-
pares the predicted result with the truth based on a confusion
matrix (Wilks, 2011). In image classification, the predicted
results of an individual feature (i.e., hailstone in our case)
usually do not exactly match the truth (the same hailstone in
the test data set), but the area of overlap can vary. We there-
fore use the ratio of the intersection over union (IoU). The
IoU ratio is defined as the ratio between the overlap and the
union of the bounding box around the features of the pre-
dicted result and the truth. In our case, we use the instance
segmentation mask (i.e., the one segmentation mask for each
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Figure 6. Line plots of the evolution of validation loss and total loss
along the training iteration steps for the 16 deep learning model runs
with different combinations of hyper-parameters shown in Table 2.
The thick lines depict the training run 3, used for prediction of hail
pixels.

individual feature) instead of the bounding box to compute
the IoU ratio. The IoU ranges from 0 to 1, and a ratio of 0.5
is used to define a correct prediction and thus interpreted as
a true positive (TP) result. A predicted result with an IoU
lower than 0.5 is thus a false positive (FP), and if no results
are predicted for an existing feature in the truth, it is depicted
as a false negative (FN). Following the standard COCO eval-
uation procedure, the set of IoU ratios for a TP ranges from
0.5 to 0.95 in increments of 0.05.

In machine learning, precision and recall (Eqs. 1 and 2) are
commonly used (Powers, 2020). Precision depicts the num-
ber of true positive results divided by the total number of
positive results. Recall refers to all true positive results di-
vided by the number of all samples that should have been
classified (i.e., as visually identified by the experts in the test
data set in our case). Precision and recall can be combined
in the F1 score in Eq. (3) (Van Rijsbergen, 1979; Goutte and
Gaussier, 2005). The F1 score results in values from 0 to 1,
where 0 indicates extremely poor performance and 1 refers
to a perfect performance of the model.

precision=
TP

TP+FP
(1)

recall=
TP

TP+FN
(2)

F1= 2 ·
precision · recall

precision+ recall
(3)

Here, we prioritize the precision and aim at a large portion
of correct detection (TP) of hailstones and low false positive
results (i.e., hail detected by the model but not present in the
test data set). Thus, as a trade-off, some hailstones are missed
(FN), and the selected threshold does not exactly correspond
to the optimal F1 score. A reasonable compromise between
precision and recall is found at a hail confidence threshold
of 0.9 for run 3 (see Fig. 7), where F1 is close to 0.8 (0.85),

when evaluating against the test (validation) data set. The ap-
pearance of four groups in the two plots of Fig. 7 is due to
the four different learning rate values tested (Table 2).

Of the 16 different training runs, run 3 was chosen as the
model to apply to the orthophoto for automatic hail detection.
Thus, run 3 was applied to all available image tiles (2156),
and the instance segmentation masks of each detected hail
object were saved in separate Python structures linked to the
individual images. In total, 18 209 objects were classified as
hail, but two of them were discarded as they were in the very
small bin size (between 1 and 2 mm). A visual evaluation of
the largest objects revealed some leaves that were incorrectly
classified as hail and therefore manually removed to guaran-
tee a correct representation of the largest hail size bins in the
distribution.

In the validation data set with 249 annotated hailstones,
237 are TP and 12 are FN, resulting in a false negative
rate, FNR= FN/(FN+TP), of 4.8 %. For the test data set
with 215 hailstones, 198 are TP and 17 FN, which yields an
FNR of 7.9 %. An additional performance metric used to de-
scribe the accuracy of a model is the mean average precision
(mAP). In short, mAP depicts the average relationship be-
tween precision and recall across all IoU classes (from 0.5
to 0.95). The mAP for the validation (test) data set results in
0.53 (0.50) for the 90 % hail confidence threshold. In addi-
tion, Fig. 8 shows the number distribution of the IoU for all
true positive matches (hail confidence level Ci ≥ 0.9) within
the validation (blue bars) and the test (green bars) data set.
The majority of the IoUs lie above 0.7, indicating a good
match between the predicted hailstones and the truth. For
the test data set, a bi-modal distribution is found, with peaks
around 0.76 and 0.86.

As mentioned in the beginning, the test data set is visually
classified by three independent human experts. This allows
for the assessment of the uncertainty in the test data set re-
sulting from the visual detection of the hailstones. The hail
size (in terms of major-axis length) is derived from the an-
notated polygons in the test data set and the model output.
The resulting HSDs with a bin size of 3 mm are presented in
Fig. 9. It shows that expert B and expert C have a peak num-
ber of hailstones within the 6–9 mm major-axis hail size bins.
The median value of these experts’ assessments is 10.5 mm.
In comparison, the highest number of hailstones and the me-
dian value of expert A are found in the next higher bin class.
Overall, the discrepancies are largest for the smallest size bin
(3–6 mm). This indicates that the orthophoto resolution is a
limiting factor for the reliable identification of such small
hailstones by visual classification, as this size class suffers
due to low brightness and a translucent background (see also
Sects. 3 and 4).
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Figure 7. Spaghetti plots of precision (blue), recall (red) and F1 scores (black) against the hail confidence level for all 16 deep learning
model runs applied to the validation data (a) and the test data (b). The thick lines depict training run 3, used for the prediction of hail pixels.
The vertical green line marks the 90 % hail confidence value that has been chosen as the lower limit for the object classification.

Figure 8. Histograms of IoU (intersection over union) ratios be-
tween the prediction masks of model run 3 (hail confidence Ci ≥
0.9) and the validation data set (blue) and the test data set (green).
The histogram area of the overlap between green and blue bars is
shown in dark green. Only true positive (TP) matches, defined as
IoU> 0.5, are shown. In the validation (test) data set, 237 (198)
hailstones are classified as TP.

3 Results

In this section, we first present the resulting hail size distri-
bution from the first flight performed on 20 June 2021. We
compare the HSD retrieved from the photogrammetric ap-
proach presented above to the HSD retrieved by four nearby
hail sensors (Sect. 3.1). Subsequently, we assess the sampling
error of hail sensors covering an observational area of 0.2 m2

with a sub-sample of data retrieved from the drone observa-
tion of an area of 600 m2 (Sect. 3.2). In Sect. 3.3, we estimate

Figure 9. Comparison of four hail size distributions from the test
data set derived from manual annotations by three experts (A: blue;
B: red; C: yellow) and the prediction of the Mask R-CNN model
(black). The total numbers of identified hailstones by the experts
are 215 (A), 263 (B) and 269 (C). The CNN (convolutional neural
network) predicted 275 hail segmentation masks.

the melting rates of hail on the ground based on the evolution
of the HSD from all five successive flights.

3.1 Estimation of the hail size distribution

The HSD estimated from the aerial photogrammetric data is
shown in Fig. 10. The distribution contains a total of 18 207
hailstones, and the size refers to the major axis, determined
by the machine learning algorithm. Of those, 45 hailstones
are larger than 30 mm, with the largest being 39 mm. The
mode of the distribution lies in the 6–9 mm bin. Only a few
hailstones are larger than 21 mm. The closest automatic hail
sensor (HS2) recorded nine impacts within 3 min and a max-
imum hail dimension of 14 mm (Fig. 4). The duration of the
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event at the location of the drone survey was∼ 9.5 min. Esti-
mated duration based on the neighboring hail sensors ranges
from 3 min for HS2 to 13 min for HS4 and 16 min for HS3.
The upscaled density of hailstones detected by the HS2 sen-
sor is 45 hailstones per m2, compared to 24 hailstones per m2

on average as retrieved from the drone data. This might be re-
lated to the inherent spatial and temporal variability in hail,
as the automatic hail sensor is located at a distance of about
770 m downstream of the area observed by the drone. In ad-
dition, the sensor detects the hail during the event, whereas
the drone data are collected after the hail stops to avoid the
drone being damaged. Therefore, the drone data are affected
by melting processes and thus tend to underestimate the hail
size and the number of small hailstones in particular. Fur-
thermore, small hailstones might not be detected within the
drone data as they might partially be obscured by the grass
and by low differences in the lightness values compared to
the background. Lightness values come from the HSL (hue,
saturation and lightness) color space and range from 0 to
255. Mean lightness values (orange line in Fig. 10) of the
3–6 mm hailstones drop below 180, which is similar to the
background. Size estimation based on edge detection meth-
ods that use lightness values alone, such as that proposed in
Soderholm et al. (2020), therefore cannot be applied.

The same drone-based HSD as in Fig. 10 is shown again
as a function of the probability density in Fig. 11a. A gamma
probability distribution function (PDF) is used to approxi-
mate the empirical HSD. The gamma PDF is most suitable
for characterizing the distribution of the hailstone major axis,
as shown by Ziegler et al. (1983) or Fraile et al. (1992). Over-
all, the gamma PDF closely follows the empirical distribu-
tion retrieved from the drone data, with a median of 9 mm
and a slight underestimation of the peak (see Fig. 11a). The
projected hail aspect ratios indicate that the majority of hail-
stones are rather spherical, with axis ratios greater than 0.9
(Fig. 11b). Furthermore, 75 % of the hailstones have pro-
jected aspect ratios higher than 0.75.

3.2 Sampling error within automatic hail sensor data
with respect to drone-based data

In this section, we estimate the probability that a randomly
placed hail sensor is hit by a hailstone of a certain size. A
total of 10 000 virtual hail sensors with a size of 0.2 m2 were
distributed across an area of 600 m2 within the orthophoto
(blue circles in Fig. 5d). For each virtual sensor, the HSD was
derived, and the individual kernel density estimates (KDEs;
gray lines) are shown in Fig. 12a. The KDE was obtained
from 7817 virtual sensor areas. The remaining 2183 sensors
did not have enough virtual impact to estimate the kernel den-
sity. The distribution from the entire 600 m2 area is shown
in black, and the respective quantiles (Q25, Q50 and Q75)
from all the virtual sensors are shown in blue, red and green.

Of all virtual hail sensors, only 45 hailstones with a size
larger than 30 mm are observed, and thus only 0.3 % (34 out

of 10 000) of the virtual sensors exhibit an impact of such
large hail. Furthermore, 9.9 % (988) of the virtual sensors
observe impacts from hail with a size larger than 20 mm and
65.8 % (6576) from hail with a size larger than 10 mm. More-
over, the probability that a sensor records no impact at all is
4.7 %. Figure 12b shows the distribution of the largest hail-
stones, as observed by each virtual sensor. The median value
reaches 12 mm, and the 95th percentile (Q95) corresponds to
24 mm. Figure 12c shows the distribution of the number of
hailstones observed by all virtual hail sensors and compares
it with the number of observed hailstones by the four physi-
cal hail sensors. The locations of those sensors are shown in
the map in Fig. 3. All physical hail sensors were within the
hail path (100 % POH region at a 1× 1 km resolution).

The highest probability (22 %; see the peak of the his-
togram in Fig. 12c) is given by three impacts on a virtual
sensor. The probability of 0 impacts (e.g., HS1; cyan line) is
4.7 %, and the probability of 9 or 10 impacts (HS2 and HS4;
blue and red lines, respectively) is lower than 2 %. The third
sensor (HS3) recorded 32 impacts, which is higher than the
maximum number of impacts (12) recorded by all individ-
ual virtual sensors. This indicates that the spatial variability
might play an important role and/or that the limitation of the
drone data regarding the melting process prior to the flight
might affect the estimation.

3.3 Melting on the ground and implications for hail
size distribution estimations

A major limitation of drone aerial photogrammetry is its tim-
ing with respect to impact. Hail from the beginning of the
event is thus already affected by melting and decreases in size
until the drone observation can take place. In this section, we
quantify the impact of melting by comparing the data from
five successive drone flights. This allows for the estimation
of the temporal evolution of the HSD. Figure 13 illustrates
the shape evolution of two prominent hailstones during the
melting process. Due to slight deviations in the derived or-
thophotos from varying GPS errors (0.21 to 0.5 m) and the
melting process itself, the location of the center hail pixel
changes and leads to misalignments for an individual hail-
stone across the successive flights. Therefore, we only use a
subset of the orthophotos and select the area within the soc-
cer middle circle, which can be unambiguously identified.
The GSD between the flights stays constant at 1.5 mm per
pixel, as confirmed by the reference objects.

The area of the soccer middle circle (263 m2) is well de-
fined, with a radius of 9.15 m. Within 18.65 min, the time
between the first and the last drone flight, the number of hail-
stones decreased by 64 % (see Table 3). The evolution of the
KDE retrieved from all individual drone flights is shown in
Fig. 14. A clear shift in the peak and the upper tail toward
smaller major-axis lengths can be observed. The shift in the
plateaus on the upper tail indicates melting rates on the order
of 0.5 mmmin−1.
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Figure 10. Logarithmic view of the time-integrated hail size distribution of the 20 June 2021 event captured by the drone between 14:37:28
and 14:41:19 UTC. The total number of detected hailstones per each bin is shown by the number above each bar. Altogether, 18 207 hailstones
were identified. The orange line represents the mean lightness value as digital number (DN) of all derived center hail pixels in the HSL (hue,
saturation and lightness) color space for each hail size bin.

Figure 11. Probability density distributions of the hail major axis (a) and the projected aspect ratio (b) between minor- and major-axis
lengths in the image plane. The vertical dashed blue lines indicate the position of the particular quantiles with respect to the major axis (Q5,
Q25,Q50,Q75 andQ95) and projected aspect ratio (Q5,Q25,Q50 andQ60). The HSD in panel (a) is additionally fitted against a gamma
distribution (dotted black line).

Using this melting rate estimate together with the time dif-
ference between the start of the hailstorm and the first drone
flight, we infer that the initial size of the largest captured
hailstone (39 mm) was 44 mm. Most crowdsourced reports
in the vicinity of the soccer field indicated sizes from 30 to
50 mm, and the MESHS estimate was 63 mm (see Fig. 2b).
On-site measurements by storm chasers during the hail event
revealed maximum hail dimensions between 40 and 50 mm
as well.

4 Discussion

A major challenge for drone-based photogrammetry of hail
is related to the appearance of the hail within an orthophoto.
The hailstones need to show distinct differences from the
background. This is not always the case as hail is formed
by a combination of dry and wet growth processes, which
can lead to varying densities and appearances of the ice. Dry
growth produces high densities of microscopic air bubbles
that scatter light, while wet growth causes liquid to soak into
gaps and accretes on top of existing outer ice to form clearer
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Figure 12. Kernel density estimation (KDE) of HSDs (hail size distributions) from simulated hail sensors at random locations (a) on an area
of 600 m2 (red rectangle in Fig. 5d). From the 10 000 virtual HSDs, 7817 can be represented by a KDE (gray curves), whereas the others
do not have enough impacts. The quantiles of the sorted HSDs are shown as dashed blue (Q25), dashed green (Q75) and solid red (Q50)
curves. For comparison, the KDE as derived from the whole 600 m2 area is overplotted in black. In the center (b), the KDE distribution for
the aggregation of the largest hailstone impact on each virtual sensor is shown. Quantile markers (Q5, Q25, Q50, Q75 and Q95) are drawn
on top of panel (b) in vertical dashed red lines. On the right side (c), the probability density for the total impacts on each virtual sensor is
shown as a gray histogram, together with the registered number of impacts of the four closest automatic hail sensors HS1 (cyan line), HS2
(blue line), HS3 (green line) and HS4 (red line).

Figure 13. Two examples of hailstone size and mask shape development during the captured melting process on the ground. From left to
right, the sequential lightness images of two hailstones (row 1 and 2) extracted from the five orthophotos (soccer middle circle) are shown. In
the images the Mask R-CNN segmentation masks are emphasized together with the major- and minor-axis lengths indicated by the minimal
bounding boxes. The actual sizes (width and height) are given in the titles as well as the time tc since first capture. During the 1119 s these
hailstones shrink about 12 mm (upper row) and 7.5 mm (lower row) in their major-axis length.

ice. Hailstones can grow in both regimes, leading to alternat-
ing layers of cloudy and clear ice (Allen et al., 2020; Kumjian
and Lombardo, 2020; Brook et al., 2021). The effectiveness
of various methods used to detect hailstones is influenced, in
part, by the transparency of the ice.

First, a simple computer vision approach (without neural
networks) was tested to extract the segmentation hail masks.
The approach was based on lightness thresholds, morpholog-
ical transformations and watershed algorithms (Najman and
Schmitt, 1994) for image segmentation with OpenCV (Brad-

ski, 2000). The success and reliability of this approach highly
depended on the visual appearance of the hailstones. For
larger hail exhibiting distinct lightness difference compared
to the background, this approach was promising. But for
small hailstones exhibiting lower lightness values (Fig. 10),
the CV-based edge detection (see Sects. 1 and 5) failed. For
hail events with different characteristics (e.g., with a high
number of small hailstones that aggregate in clusters on the
ground), watershed algorithms could retrieve more reliable
information.
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Table 3. Time slots, in UTC, when the aerial pictures of the soccer
middle circle (263 m2) were captured for the five drone mapping
flights. From the first to the last orthophoto, 1119 s (18 min, 39 s)
elapsed.

Capture Start Stop Capture Number of
series (UTC) (UTC) interval hailstones

(s)

1 14:37:59 14:41:19 200 3925
2 14:43:06 14:46:25 199 3077
3 14:47:39 14:50:59 200 2511
4 14:52:07 14:55:27 200 1962
5 14:56:38 14:59:56 198 1411

Figure 14. Kernel density estimation (KDE) of the degrading hail
size distributions due to melting processes on the ground. The ini-
tial hail sample size is 3925. The orthophoto area for the melting
analysis is restricted to the soccer middle circle to ensure a correct
comparison between the different generated orthophotos (Flight 1–
5). In total, five drone-based hail photogrammetry surveys were car-
ried out to capture the temporal data analysis. All the relevant time
frames are listed in Table 3.

Second, a deep learning model (Mask R-CNN) was tested.
We used one single hail class to train the model. Addi-
tional hail size classes might improve the hail predictions and
mask shapes. In particular, a distinction between damaging
and non-damaging hail with a threshold of 20 mm could be
worth testing. Furthermore, additional testing of the hyper-
parameters might increase the performance, but this was out-
side the scope of this study.

Another technical challenge arises from splitting the or-
thophoto into smaller image tiles, which can result in trun-
cated hailstones. This can be overcome by producing tiles
which overlap by the maximum length of the largest ob-
served hailstone, as implemented by Soderholm et al. (2020).
However, in our case, large hail was sparse, and, as the image
tiles cover large areas (500×500 pixels), it is safe to assume

that the number of truncated hailstones is very low. Other
sources of errors such as false positive detections or missed
hailstones likely play a more important role.

Hailstones usually have an oblate spheroid shape, with
mean axis ratios close to 0.8, though they can sometimes
have large protuberances (Knight, 1986), and the probabil-
ity for nonspherical shapes rises with increasing maximum
dimension (Shedd et al., 2021). As a consequence, the hail
aspect ratio decreases for larger sizes, as shown in the vari-
ous studied data sets (Knight, 1986; Soderholm et al., 2020;
Shedd et al., 2021). Figure 6 in Shedd et al. (2021) shows the
comparison of their recent results regarding the evolution of
aspect ratios with maximum hail sizes from manually mea-
sured hailstones to the results of Knight (1986). The slopes
of the decreasing aspect ratios are comparable, but the ab-
solute values tend to be lower in the hail data set of Shedd
et al. (2021), reflecting possible effects of melting before
the measurements were taken. Likewise, with hailpads, the
shape factor in the image plane can be determined with the
aerial drone-based hail photogrammetry, but the estimated
aspect ratios (Fig. 11b) may differ from in situ measurements
as published in Knight (1986) and Shedd et al. (2021). The
hail images show only the projected maximum and minimum
axes, which may differ from the ratios of true stone axis.

Another limitation of drone-based photogrammetry is that
melting already affects the hail before the data can be col-
lected. The effect of melting hail in the air was studied
by Kumjian and Ryzhkov (2008) using polarimetric radar
measurements, and numerical model investigations were
performed by Fraile et al. (2003). Other studies by Ras-
mussen and Pruppacher (1982) and Rasmussen and Heyms-
field (1987) have explored the melting of spherical ice parti-
cles falling at terminal velocity. They found that the melting
rate depends on the initial size of the spheres and the sur-
roundings, including temperature, humidity, turbulence and
how meltwater is shed. The hailstones in our case are al-
ready on the ground, so they experience different environ-
mental conditions compared to when they are falling through
the atmosphere. We have not measured these specific condi-
tions for each hailstone, so we cannot make any conclusions
about how the melting rate relates to their initial size.

To our knowledge, there are no studies that analyze the
melting of a large sample size of hail on the ground. Here,
we provide a first estimate of the melting process of hail on
the ground. More in-depth investigations would be needed to
retrieve more accurate results – maybe also in relation to ini-
tial hail sizes and environmental conditions like the ground
temperature and occurrence of rain before, during and after
the hail event.

In the time series plot of Fig. 15, the evolution of tem-
perature and relative humidity for two SwissMetNet (SMN)
weather stations (Schüpfheim and Langnau i.E.) is shown
between 14:00 and 15:30 UTC alongside the time informa-
tion about the drone flights and the beginning of hail fall at
the soccer field in Entlebuch. The stations are located at a
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Figure 15. Measurement time series of temperature (red lines) at 2 m (T2 m), 5 cm (T5 cm) and ground level (T0 cm) and relative humidity
(blue lines) at 2 m (RH2 m) from the SwissMetNet (SMN) weather station in Langnau i.E. (744 ma.s.l.) and measurement time series of T2 m
and RH2 m from the SMN weather station in Schüpfheim (744 ma.s.l.) on 20 June 2021 between 14:00 and 15:30 UTC. The beginning of the
hail fall in Entlebuch is marked as a vertical black line, and the durations of the drone flights to capture the soccer middle circle are marked
as gray-shaded bars.

distance of 5.7 km (Schüpfheim) and 20 km (Langnau i.E.)
from the soccer field. Unfortunately, no in situ measurements
are available for this event. The closest precipitation mea-
surements from an automatic rain gauge (Entlebuch station)
are available at a distance of 670 m to the east. Between
14:30 and 14:40 UTC, 9.1 mm was recorded, and 0.2 mm
was recorded in the subsequent 10 min. Thus, the hail on
the ground was exposed to strong rain, which might have af-
fected the melting rate. At the same time, temperatures close
to the ground decreased by about 4.5 °C between 14:00 and
14:30 UTC, after the supercell passed the SMN station Lang-
nau i.E.. The temperature drop at the soccer field is assumed
to be of a similar magnitude. To better assess the melting pro-
cess, future drone-based hail surveys should include a mobile
weather station or some ground temperature sensors at the
observation site.

5 Conclusions and outlook

Reliable ground truth data from hail observations are rare
and of high value to the hail research community. This pa-
per assesses an application of aerial drone-based photogram-
metry combined with a state-of-the-art deep learning object
detection model to retrieve the hail size distribution over a
large area. The HSD retrieved from a large survey area al-
lows for the capturing of a representative distribution and can
thus serve as a complementary source to existing ground-
based observation networks such as automatic hail sensors
and crowdsourced reports.

During a period in June 2021, exceptionally strong con-
vective storms occurred in Switzerland. On 20 June 2021
drone-based photogrammetric data of a hail event related to a

right-moving supercell were collected near Entlebuch (can-
ton of Lucerne, Switzerland). Five successive drone-based
photogrammetry flights were performed above a soccer field
between 14:38 and 15:00 UTC. A deep learning instance
segmentation model (Mask R-CNN) under the Detectron2
framework was trained to automatically retrieve the hail size
distribution.

The key results and conclusions are listed below:

– A robust retrieval of an HSD based on 18 207 hailstones
on an area of 750.4 m2 from a single hail event with
a duration of about 9.5 min is presented. The median
hailstone size was 9 mm, and the majority of hailstones
were rather spherical, with axis ratios greater than 0.9.

– The largest hailstone was 39 mm and is substantially
larger than estimates retrieved from nearby automatic
hail sensors.

– A combination of hail data from different sources
(drone, automatic hail sensors and crowdsourced re-
ports) used to observe hail on the ground improves the
reconstruction of the complete HSD and allows for the
assessment of the limitations of each method. Further-
more, such ground truth data can help to verify and fur-
ther develop radar-based hail estimations.

– The analysis of virtual hail sensors placed in the pho-
togrammetric data highlights the challenge of observing
a representative sample of the HSD using a device with
an area (0.2 m2) much smaller than a typical hail swath.

– The evolution of the HSD caused by melting could be
monitored during a period of 18.65 min by analyzing
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Table 4. Advantages (bold) and disadvantages (normal font) of the two hail observation methods: drone-based photogrammetry and automatic
hail sensor.

Drone-based Automatic hail
photogrammetry sensor

Sampling error low high
Melting problems yes no
Exact time information no yes
Probability of capturing largest hailstones high low
Daylight dependence yes no
Operational application challenging reasonable
Clustering problems high existing but low
Size estimation direct indirect

data from multiple drone flights. A melting rate on the
order of 0.5 mmmin−1 could be estimated.

Radar-based hail algorithms estimating the size of hail,
such as MESHS, need ground-based measurements for ver-
ification and potential improvements. Drone-based pho-
togrammetry can cover areas closer to the radar spatial res-
olution, which makes this approach particularly valuable for
the verification of radar products.

The comparison of drone-based photogrammetry with au-
tomatic hail sensors allowed for the highlighting of the ad-
vantages and limitations of both approaches in measuring
hail (see Table 4 for a summary). Here, we want to highlight
that the clustering problem refers to many hailstones that ag-
gregate on the ground next to each other. This predominantly
occurs during hail events with dominating small hail and in-
tense precipitation. The resulting hail clusters pose a problem
for the algorithm regarding differentiating between individ-
ual hailstones. An equivalent problem within the automatic
hail sensor data is related to the dead time after each hail im-
pact. The dead time is necessary to avoid any interference
with subsequent impacts and to perform the retrieval of the
data (Kopp et al., 2023). Furthermore, combining data from
both approaches strongly improves the reconstruction of the
complete HSD and could further extend our understanding
of hailstorms.

Future drone-based photogrammetry of hail could be im-
proved by having an artificial light source. Poor light con-
ditions are the main challenge caused by the thunderstorm
itself or if the hail occurs during twilight or at night. The
light conditions determine the exposure time which limits
the maximum flight velocity to keep the motion blur at the
same level. A flash or an additional light source allows for in-
creased flight velocity, and thus a larger area can be covered.
In addition, the image quality can be improved by reducing
the sensor gain (ISO) and the aperture size. Other ideas to
test and potentially improve the techniques in the future are

– the integration of thermal imagery to help exclude or
include potential hailstones alongside the RGB image
processing,

– the usage of SfM (structure-from-motion) results and
application of Mask R-CNN directly to mesh or point
clouds instead to the RGB orthophotos,

– the fine-tuning of hardware settings and flight character-
istics for optimal image quality in conjunction with an
acceptable motion blur.

To further assess the hail size distribution of different
storms, more observational data are crucial. However, the
collection of drone-based aerial photography of hail is a
time-consuming and challenging task. Therefore, it could be
beneficial to set up a public database of performed drone-
based hail surveys to enhance collaborations between differ-
ent research groups on the adaptation and testing of exist-
ing algorithms for various hail events. Moreover, with the
increasing use of personal drones equipped with cameras,
there could be a public community that brings the basic re-
quirements for such observations. It might thus be useful to
provide the information about how to collect adequate image
data and collect such data using a crowdsourced approach
similar to the existing crowdsourced reporting systems at
weather services (e.g., Federal Office for Meteorology and
Climatology, MeteoSwiss, or the German Weather Service,
DWD). Another point to address is tests with artificial hail
objects of defined size classes with different backgrounds.
In this way, several setups could be trained, tested and opti-
mized: safe drone operation in various conditions, flight mis-
sions and camera settings and precise comparison of the re-
trieved HSD to the known ground truth.

Data availability. The data collections from the hail event on
20 June 2021 analyzed in this work are publicly available at
https://doi.org/10.5281/zenodo.10609730 (Lainer, 2024).

Author contributions. ML performed the following roles: concep-
tualization, methodology, software, validation, hail annotation, for-
mal analysis, visualization and writing the original draft. KPB per-
formed the following roles: conceptualization, methodology, storm
chasing, drone operations, review and editing. AH performed the

Atmos. Meas. Tech., 17, 2539–2557, 2024 https://doi.org/10.5194/amt-17-2539-2024

https://doi.org/10.5281/zenodo.10609730


M. Lainer et al.: Drone-based photogrammetry to estimate the evolution of hail size distributions 2555

following roles: PI hail sensors, review and editing. JK performed
the following roles: automatic hail sensor data preparation, review
and editing. SM performed the following roles: conceptualization,
methodology, storm chasing, hail annotation, review and editing,
and project administration. DW performed the following roles:
conceptualization, methodology, hail annotation, review and edit-
ing. UG performed the following roles: initiation of hail research
projects, acquisition of funding, procurement of equipment, review
and editing.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Hail is a severe threat to the society, and on-
going research is important to be able to establish risk mitigation
measures. In this context, we thank the Swiss insurance company
La Mobilière for funding the installation and operation of the au-
tomatic hail sensor network and for making the hail sensor data
available for research investigations. We want to acknowledge the
fruitful scientific exchange with Joshua Soderholm (Australian Bu-
reau of Meteorology) about drone-based hail photogrammetry.

Review statement. This paper was edited by Pavlos Kollias and re-
viewed by Andrew McMahon and three anonymous referees.

References

Allen, J. T., Giammanco, I. M., Kumjian, M. R., Jurgen Punge,
H., Zhang, Q., Groenemeijer, P., Kunz, M., and Ortega,
K.: Understanding Hail in the Earth System, Rev. Geophys.,
58, e2019RG000665, https://doi.org/10.1029/2019RG000665,
2020.

Barras, H., Hering, A., Martynov, A., Noti, P.-A., Germann, U., and
Martius, O.: Experiences with > 50,000 Crowdsourced Hail Re-
ports in Switzerland, B. Am. Meteorol. Soc., 100, 1429–1440,
https://doi.org/10.1175/BAMS-D-18-0090.1, 2019.

Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz,
S., Thiele, S. T., and Bangash, H. A.: Ground-based and UAV-
Based photogrammetry: A multi-scale, high-resolution mapping
tool for structural geology and paleoseismology, J. Struct. Geol.,
69, 163–178, https://doi.org/10.1016/j.jsg.2014.10.007, 2014.

Bradski, G.: The OpenCV Library, Dr. Dobb’s Journal of Soft-
ware Tools, 2236121, https://www.drdobbs.com/open-source/
the-opencv-library/184404319 (last access: 26 April 2024),
2000.

Brook, J. P., Protat, A., Soderholm, J., Carlin, J. T., McGowan, H.,
and Warren, R. A.: HailTrack – Improving Radar-Based Hail-
fall Estimates by Modeling Hail Trajectories, J. Appl. Mete-
orol. Clim., 60, 237–254, https://doi.org/10.1175/JAMC-D-20-
0087.1, 2021.

Bunkers, M. J., Klimowski, B. A., Zeitler, J. W., Thomp-
son, R. L., and Weisman, M. L.: Predicting Supercell
Motion Using a New Hodograph Technique, Weather
Forecast., 15, 61–79, https://doi.org/10.1175/1520-
0434(2000)015<0061:PSMUAN>2.0.CO;2, 2000.

Chronis, T., Carey, L. D., Schultz, C. J., Schultz, E. V.,
Calhoun, K. M., and Goodman, S. J.: Exploring Light-
ning Jump Characteristics, Weather Forecast., 30, 23–37,
https://doi.org/10.1175/WAF-D-14-00064.1, 2015.

Fawcett, D., Azlan, B., Hill, T. C., Kho, L. K., Ben-
nie, J., and Anderson, K.: Unmanned aerial vehicle (UAV)
derived structure-from-motion photogrammetry point clouds
for oil palm (Elaeis guineensis) canopy segmentation and
height estimation, Int. J. Remote Sens., 40, 7538–7560,
https://doi.org/10.1080/01431161.2019.1591651, 2019.

Feldmann, M., Hering, A., Gabella, M., and Berne, A.: Hailstorms
and rainstorms versus supercells – a regional analysis of convec-
tive storm types in the Alpine region, npj Clim. Atmos. Sci., 6,
19, https://doi.org/10.1038/s41612-023-00352-z, 2023.

Fraile, R., Castro, A., and Sánchez, J.: Analysis of hailstone size
distributions from a hailpad network, Atmos. Res., 28, 311–326,
https://doi.org/10.1016/0169-8095(92)90015-3, 1992.

Fraile, R., Castro, A., López, L., Sánchez, J. L., and Palencia,
C.: The influence of melting on hailstone size distribution,
Atmos. Res., 67–68, 203–213, https://doi.org/10.1016/S0169-
8095(03)00052-8, 2003.

Germann, U., Boscacci, M., Clementi, L., Gabella, M., Her-
ing, A., Sartori, M., Sideris, I. V., and Calpini, B.: Weather
Radar in Complex Orography, Remote Sens., 14, 503,
https://doi.org/10.3390/rs14030503, 2022.

Goutte, C. and Gaussier, E.: A Probabilistic Interpretation of Pre-
cision, Recall and F-Score, with Implication for Evaluation, in:
Advances in Information Retrieval, edited by: Losada, D. E.
and Fernández-Luna, J. M., Springer Berlin Heidelberg, Berlin,
Heidelberg, 345–359, https://doi.org/10.1007/978-3-540-31865-
1_25, 2005.

Guidi, G., Shafqat Malik, U., and Micoli, L. L.: Optimal Lateral
Displacement in Automatic Close-Range Photogrammetry, Sen-
sors, 20, 6280, https://doi.org/10.3390/s20216280, 2020.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual
Learning for Image Recognition, in: 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016, IEEE, 770–778,
https://doi.org/10.1109/CVPR.2016.90, 2016.

He, K., Gkioxari, G., Dollár, P., and Girshick, R.:
Mask R-CNN, IEEE T. Pattern Anal., 42, 386–397,
https://doi.org/10.1109/TPAMI.2018.2844175, 2020.

Hering, A., Morel, C., Galli, G., Sénési, S., Ambrosetti, P., and
Boscacci, M.: Nowcasting thunderstorms in the Alpine region
using a radar based adaptive thresholding scheme, in: Pro-
ceedings of the 3rd European Conference on Radar in Me-
teorology and Hydrology, Visby, Island of Gotland, Sweden,
6–10 September 2004, Copernicus GmbH, ISBN 3936586292,
ISBN 9783936586299, 2004.

https://doi.org/10.5194/amt-17-2539-2024 Atmos. Meas. Tech., 17, 2539–2557, 2024

https://doi.org/10.1029/2019RG000665
https://doi.org/10.1175/BAMS-D-18-0090.1
https://doi.org/10.1016/j.jsg.2014.10.007
https://www.drdobbs.com/open-source/the-opencv-library/184404319
https://www.drdobbs.com/open-source/the-opencv-library/184404319
https://doi.org/10.1175/JAMC-D-20-0087.1
https://doi.org/10.1175/JAMC-D-20-0087.1
https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2
https://doi.org/10.1175/WAF-D-14-00064.1
https://doi.org/10.1080/01431161.2019.1591651
https://doi.org/10.1038/s41612-023-00352-z
https://doi.org/10.1016/0169-8095(92)90015-3
https://doi.org/10.1016/S0169-8095(03)00052-8
https://doi.org/10.1016/S0169-8095(03)00052-8
https://doi.org/10.3390/rs14030503
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.3390/s20216280
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TPAMI.2018.2844175


2556 M. Lainer et al.: Drone-based photogrammetry to estimate the evolution of hail size distributions

Houze, R. A., Schmid, W., Fovell, R. G., and Schiesser,
H.-H.: Hailstorms in Switzerland: Left Movers,
Right Movers, and False Hooks, Mon. Weather
Rev., 121, 3345–3370, https://doi.org/10.1175/1520-
0493(1993)121<3345:HISLMR>2.0.CO;2, 1993.

Knight, N. C.: Hailstone Shape Factor and Its Relation to Radar
Interpretation of Hail, J. Clim. Appl. Meteorol., 25, 1956–1958,
http://www.jstor.org/stable/26183454 (last access: 12 December
2023), 1986.

Kopp, J., Schröer, K., Schwierz, C., Hering, A., Germann, U., and
Martius, O.: The summer 2021 Switzerland hailstorms: weather
situation, major impacts and unique observational data, Weather,
78, 184–191, https://doi.org/10.1002/wea.4306, 2022.

Kopp, J., Manzato, A., Hering, A., Germann, U., and Martius,
O.: How observations from automatic hail sensors in Switzer-
land shed light on local hailfall duration and compare with
hailpad measurements, Atmos. Meas. Tech., 16, 3487–3503,
https://doi.org/10.5194/amt-16-3487-2023, 2023.

Kumjian, M. R. and Lombardo, K.: A Hail Growth Trajectory
Model for Exploring the Environmental Controls on Hail Size:
Model Physics and Idealized Tests, J. Atmos. Sci., 77, 2765–
2791, https://doi.org/10.1175/JAS-D-20-0016.1, 2020.

Kumjian, M. R. and Ryzhkov, A. V.: Polarimetric Signatures in Su-
percell Thunderstorms, J. Appl. Meteorol. Clim., 47, 1940–1961,
https://doi.org/10.1175/2007JAMC1874.1, 2008.

Lainer, M.: Hail Event on 2021-06-20 in Entlebuch (LU), Switzer-
land: Drone Photogrammetry Imagery, Hail Sensor Recordings,
Mask R-CNN Model and Analysis Data of Hailstones, Zenodo
[data set], https://doi.org/10.5281/zenodo.10609730, 2024.

la Mobilière: 2021 Annual Report in brief, Tech. rep., Mo-
bilière Holding Ltd., Berne, https://report.mobiliar.ch/2021/
app/uploads/2022/03/mobiliar_ar21_in-brief.pdf (last access:
26 April 2024), 2021.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays,
J., Perona, P., Ramanan, D., Zitnick, C. L., and Dollár, P.: Mi-
crosoft COCO: Common Objects in Context, arXiv [preprint],
https://doi.org/10.48550/arxiv.1405.0312, 1 May 2014.

Löffler-Mang, M., Schön, D., and Landry, M.: Characteristics of
a new automatic hail recorder, Atmos. Res., 100, 439–446,
https://doi.org/10.1016/j.atmosres.2010.10.026, 2011.

mapillary: OpenSfM, GitHub [code], https://github.com/mapillary/
OpenSfM (last access: 15 April 2024), 2020.

mapillary: OpenSFM, GitHub [code], https://github.com/mapillary/
OpenSfM/blob/main/README.md (last access: 15 April 2024),
2023.

May, R. M., Arms, S. C., Marsh, P., Bruning, E., Leeman, J. R.,
Goebbert, K., Thielen, J. E., Bruick, Z. S., and Camron, M. D.:
MetPy: A Python Package for Meteorological Data, Unidata
[data set], https://doi.org/10.5065/D6WW7G29, 2023.

Najman, L. and Schmitt, M.: Watershed of a continuous func-
tion, Signal Process., 38, 99–112, https://doi.org/10.1016/0165-
1684(94)90059-0, 1994.

Nisi, L., Martius, O., Hering, A., Kunz, M., and Germann, U.: Spa-
tial and temporal distribution of hailstorms in the Alpine region:
a long-term, high resolution, radar-based analysis, Q. J. Roy.
Meteor. Soc., 142, 1590–1604, https://doi.org/10.1002/qj.2771,
2016.

Nisi, L., Hering, A., Germann, U., and Martius, O.: A 15-year hail
streak climatology for the Alpine region, Q. J. Roy. Meteor. Soc.,
144, 1429–1449, https://doi.org/10.1002/qj.3286, 2018.

Nisi, L., Hering, A., Germann, U., Schroeer, K., Barras, H., Kunz,
M., and Martius, O.: Hailstorms in the Alpine region: Diur-
nal cycle, 4D-characteristics, and the nowcasting potential of
lightning properties, Q. J. Roy. Meteor. Soc., 146, 4170–4194,
https://doi.org/10.1002/qj.3897, 2020.

OpenDroneMap: ODM – A command line toolkit to generate maps,
point clouds, 3D models and DEMs from drone, balloon or
kite images, GitHub [code], https://github.com/OpenDroneMap/
ODM (last access: 1 April 2024), 2020.

Powers, D. M. W.: Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation, CoRR, arXiv
[preprint], https://doi.org/10.48550/arXiv.2010.16061, 11 Octo-
ber 2020.

Rasmussen, R. and Pruppacher, H. R.: A Wind Tunnel and Theoret-
ical Study of the Melting Behavior of Atmospheric Ice Particles.
I: A Wind Tunnel Study of Frozen Drops of Radius < 500 µm,
J. Atmos. Sci., 39, 152–158, https://doi.org/10.1175/1520-
0469(1982)039<0152:AWTATS>2.0.CO;2, 1982.

Rasmussen, R. M. and Heymsfield, A. J.: Melting and Shed-
ding of Graupel and Hail. Part I: Model Physics, J.
Atmos. Sci., 44, 2754–2763, https://doi.org/10.1175/1520-
0469(1987)044<2754:MASOGA>2.0.CO;2, 1987.

Romppainen-Martius, O.: The Swiss Hail Network, Mobil-
iar Lab for Natural Risks, University of Bern, https:
//www.mobiliarlab.unibe.ch/research/applied_research_on_
hail_and_wind_gusts/the_swiss_hail_network/index_eng.html
(last access: 26 February 2024), 2022.

Schmidhuber, J.: Deep learning in neural networks:
An overview, Neural Networks, 61, 85–117,
https://doi.org/10.1016/j.neunet.2014.09.003, 2015.

Schultz, C. J., Petersen, W. A., and Carey, L. D.: Pre-
liminary Development and Evaluation of Lightning
Jump Algorithms for the Real-Time Detection of Se-
vere Weather, J. Appl. Meteorol. Clim., 48, 2543–2563,
https://doi.org/10.1175/2009JAMC2237.1, 2009.

Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov, A.,
Kalinin, D., Hoff, B., TOsmanov, Kruchinin, D., Zankevich, A.,
DmitriySidnev, Markelov, M., Johannes222, Chenuet, M., a an-
dre, telenachos, Melnikov, A., Kim, J., Ilouz, L., Glazov, N.,
Priya4607, Tehrani, R., Jeong, S., Skubriev, V., Yonekura, S.,
vugia truong, zliang7, lizhming, and Truong, T.: opencv/cvat:
v1.1.0, Zenodo [code], https://doi.org/10.5281/zenodo.4009388,
2020.

Shedd, L., Kumjian, M. R., Giammanco, I., Brown-Giammanco, T.,
and Maiden, B. R.: Hailstone Shapes, J. Atmos. Sci., 78, 639–
652, https://doi.org/10.1175/JAS-D-20-0250.1, 2021.

Soderholm, J. S., Kumjian, M. R., McCarthy, N., Maldonado, P.,
and Wang, M.: Quantifying hail size distributions from the sky –
application of drone aerial photogrammetry, Atmos. Meas. Tech.,
13, 747–754, https://doi.org/10.5194/amt-13-747-2020, 2020.

SwissGeoportal: https://map.geo.admin.ch/ (last access: 15 April
2024), 2023.

Treloar, A.: Vertically integrated radar reflectivity as an indicator of
hail size in the greater Sydney region of Australia, in: Preprints,
19th Conf. on Severe Local Storms, Minneapolis, MN, USA, 14–
18 September 1998, Amer. Meteor. Soc, 48–51, 1998.

Atmos. Meas. Tech., 17, 2539–2557, 2024 https://doi.org/10.5194/amt-17-2539-2024

https://doi.org/10.1175/1520-0493(1993)121<3345:HISLMR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<3345:HISLMR>2.0.CO;2
http://www.jstor.org/stable/26183454
https://doi.org/10.1002/wea.4306
https://doi.org/10.5194/amt-16-3487-2023
https://doi.org/10.1175/JAS-D-20-0016.1
https://doi.org/10.1175/2007JAMC1874.1
https://doi.org/10.5281/zenodo.10609730
https://report.mobiliar.ch/2021/app/uploads/2022/03/mobiliar_ar21_in-brief.pdf
https://report.mobiliar.ch/2021/app/uploads/2022/03/mobiliar_ar21_in-brief.pdf
https://doi.org/10.48550/arxiv.1405.0312
https://doi.org/10.1016/j.atmosres.2010.10.026
https://github.com/mapillary/OpenSfM
https://github.com/mapillary/OpenSfM
https://github.com/mapillary/OpenSfM/blob/main/README.md
https://github.com/mapillary/OpenSfM/blob/main/README.md
https://doi.org/10.5065/D6WW7G29
https://doi.org/10.1016/0165-1684(94)90059-0
https://doi.org/10.1016/0165-1684(94)90059-0
https://doi.org/10.1002/qj.2771
https://doi.org/10.1002/qj.3286
https://doi.org/10.1002/qj.3897
https://github.com/OpenDroneMap/ODM
https://github.com/OpenDroneMap/ODM
https://doi.org/10.48550/arXiv.2010.16061
https://doi.org/10.1175/1520-0469(1982)039<0152:AWTATS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039<0152:AWTATS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2
https://www.mobiliarlab.unibe.ch/research/applied_research_on_hail_and_wind_gusts/the_swiss_hail_network/index_eng.html
https://www.mobiliarlab.unibe.ch/research/applied_research_on_hail_and_wind_gusts/the_swiss_hail_network/index_eng.html
https://www.mobiliarlab.unibe.ch/research/applied_research_on_hail_and_wind_gusts/the_swiss_hail_network/index_eng.html
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1175/2009JAMC2237.1
https://doi.org/10.5281/zenodo.4009388
https://doi.org/10.1175/JAS-D-20-0250.1
https://doi.org/10.5194/amt-13-747-2020
https://map.geo.admin.ch/


M. Lainer et al.: Drone-based photogrammetry to estimate the evolution of hail size distributions 2557

Van Rijsbergen, C. J.: Information retrieval, 2nd edn., Butterworths,
Newton, Ma, ISBN 9780408709293, 1979.

Waldvogel, A., Federer, B., and Grimm, P.: Criteria
for the Detection of Hail Cells, J. Appl. Meteorol.
Clim., 18, 1521–1525, https://doi.org/10.1175/1520-
0450(1979)018<1521:CFTDOH>2.0.CO;2, 1979.

Wilks, D. S.: Statistical methods in the atmospheric sciences,
vol. 100, Academic press, ISBN 9780123850225, 2011.

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R.: De-
tectron2, GitHub [code], https://github.com/facebookresearch/
detectron2 (last access: 20 March 2024), 2019.

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R.: De-
tectron2, GitHub [code], https://github.com/facebookresearch/
detectron2/blob/main/detectron2/config/defaults.py (last access:
20 March 2024), 2023.

Ziegler, C. L., Ray, P. S., and Knight, N. C.: Hail
Growth in an Oklahoma Multicell Storm, J. Atmos.
Sci., 40, 1768–1791, https://doi.org/10.1175/1520-
0469(1983)040<1768:HGIAOM>2.0.CO;2, 1983.

Zou, Z., Shi, Z., Guo, Y., and Ye, J.: Object De-
tection in 20 Years: A Survey, arXiv [preprint],
https://doi.org/10.48550/arxiv.1905.05055, 13 May 2019.

https://doi.org/10.5194/amt-17-2539-2024 Atmos. Meas. Tech., 17, 2539–2557, 2024

https://doi.org/10.1175/1520-0450(1979)018<1521:CFTDOH>2.0.CO;2
https://doi.org/10.1175/1520-0450(1979)018<1521:CFTDOH>2.0.CO;2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py
https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py
https://doi.org/10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2
https://doi.org/10.48550/arxiv.1905.05055

	Abstract
	Introduction
	Data and methods
	Data collection and the experience from chasing hailstorms
	Drone operation and image processing
	Object detection and size estimation
	Image data preparation
	Hail detection and size estimation – training, validation and testing


	Results
	Estimation of the hail size distribution
	Sampling error within automatic hail sensor data with respect to drone-based data
	Melting on the ground and implications for hail size distribution estimations

	Discussion
	Conclusions and outlook
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

