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Abstract. We present a deep learning model, CH4Net,
for automated monitoring of methane super-emitters from
Sentinel-2 data. When trained on images of 23 methane
super-emitter locations from 2017–2020 and evaluated on
images from 2021, this model detects 84 % of methane
plumes compared with 24 % of plumes for a state-of-the-art
baseline while maintaining a similar false positive rate. We
present an in-depth analysis of CH4Net over the complete
dataset and at each individual super-emitter site. In addition
to the CH4Net model, we compile and make open source a
hand-annotated training dataset consisting of 925 methane
plume masks as a machine learning baseline to drive further
research in this field.

1 Introduction

As a potent greenhouse gas responsible for approximately
25 % of warming since the industrial revolution (Stocker,
2014; Varon et al., 2021) with rapidly increasing atmospheric
concentrations (Tollefson, 2022), curbing methane emissions
is an important step in combating the climate crisis. Anthro-
pogenic emissions emanate from diverse sources, principally
associated with livestock, agriculture, landfills and the fos-

sil fuel industry (oil and gas extraction and coal mining)
(Saunois et al., 2020; Maasakkers et al., 2022). Of particular
interest for rapid suppression of emissions are super-emitters,
defined to be sources in the top 1 % of global anthropogenic
methane emitters, corresponding to an approximate flow rate
of 25 kg h−1 (Zavala-Araiza et al., 2017). These sources con-
tribute a substantial fraction of all methane emissions in the
oil and gas sector (Alvarez et al., 2018), providing an oppor-
tunity to rapidly limit emissions with mitigation at a reason-
able cost (Lauvaux et al., 2022).

Over the past 5 years, remote sensing instruments have
been extensively utilised for detecting and monitoring super-
emitters (Irakulis-Loitxate et al., 2022; Lauvaux et al., 2022;
Varon et al., 2021; Maasakkers et al., 2022; Irakulis-Loitxate
et al., 2021). To monitor these point sources, it is necessary
to use point source imagers, instruments with a spatial reso-
lution of less than 60 m (Jacob et al., 2022). In addition to
this, the ideal instrument would also have global coverage, a
rapid revisit time, and high spectral resolution in the 1700
and 2300 nm short-wave infrared spectral windows where
methane absorption is the strongest. Unfortunately, no cur-
rently available instrument has all of these desired characte-
ristics.
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Hyperspectral instruments, for example PRISMA and En-
MAP, produce more accurate methane retrievals because they
are more sensitive to small concentrations (Jacob et al., 2022;
Guanter et al., 2021). However, they have limited swaths
(30 km) and image acquisitions need to be tasked – via re-
quest to the ground segment to acquire a particular area of
interest – therefore they have limited data availability.

An alternative approach is to utilise multispectral imagery
such as Sentinel-2 (Drusch et al., 2012) and Landsat 8 and
Landsat 9 (Roy et al., 2014). These instruments have rel-
atively rapid revisit time (approximately 5 d for Sentinel-2
and 16 d for Landsat at the Equator) and high (20–30 m) spa-
tial resolution. They, however, have significantly degraded
spectral resolution compared to hyperspectral instruments,
resulting in a lower sensitivity to methane (Sherwin et al.,
2023). Recent works have demonstrated successful detection
and quantification of large plumes from Sentinel-2 imagery
(Varon et al., 2021; Ehret et al., 2022; Irakulis-Loitxate et al.,
2022). These approaches are based on temporal differences
and ratios between Sentinel-2 bands 11 (1560–1660 nm) and
12 (2090–2290 nm). Band 12 strongly overlaps with the
methane absorption feature, while band 11 provides an es-
timate of the background at a relatively similar wavelength.
Varon et al. (2021) present a series of approaches differenc-
ing between Sentinel-2 bands 11 and 12 to quantify methane
emissions. Their most successful approach quantifies emis-
sions down to a rate of 3 t h−1 (tonnes of CH4 emitted per
hour) by taking the difference between bands 11 and 12 com-
paring two consecutive passes; however, it remains sensitive
to surface artefacts. Ehret et al. (2022) take a similar ap-
proach projecting onto a time series of 30 previous images
with two-stage linear regression and a manual verification
step to identify the presence of false positives caused by sur-
face artefacts. There are two significant limitations with these
methods. The first and most important is that they remain
sensitive to surface artefacts, often requiring manual verifi-
cation. The second is that a time series of images is required.

In this study, we ask the following question: “for a known
set of methane super-emitters, is it possible to accurately
identify plumes in Sentinel-2 imagery to monitor future
emissions?” This has the important application of assessing
whether mitigation work on existing emissions has been suc-
cessful. We train a machine learning model, CH4Net, to seg-
ment methane plumes from a single image. In contrast to pre-
vious methods, CH4Net learns background characteristics of
the sites by processing multiple passes over each location
during training without the need for a time series of previ-
ous images, reference image or manual verification step. Ma-
chine learning has been successfully applied to segmenting
plumes in hyperspectral data (Groshenry et al., 2022; Jon-
garamrungruang et al., 2022; Schuit et al., 2023); however,
this methodology has not yet been applied to Sentinel-2 im-
agery as a sufficiently large dataset of verified plumes has
been unavailable. We first collect and annotate a dataset of
methane plumes from known super-emitters in Turkmenistan

(Irakulis-Loitxate et al., 2022), a semi-arid region with strong
emissions providing the best-case scenario for multispectral
methane imaging. This is used to train a deep learning model
to segment methane plumes from the background. We evalu-
ate this model for a future time period for the training loca-
tions. In addition, we show that the model can successfully
be applied to monitor a super-emitter at a new location in
the same region unseen at the training time. The aims of this
paper are as follows:

1. Collect and label a machine learning dataset of methane
plumes in Sentinel-2 imagery.

2. Develop an automated plume segmentation system. In
contrast to existing works, this is a fully automated sys-
tem that does not require a time series of Sentinel-2 im-
ages or identification of a reference image at the test
time.

3. Apply this system to track emissions from a selection
of known methane super-emitters during a future time
period.

Section 2 presents an overview of the dataset collection,
CH4Net architecture and training procedure. Results are pre-
sented in Sects. 3 and 4, with conclusions and a discussion in
Sect. 5.

2 Methods

2.1 Dataset collection and processing

We first collect and manually annotate a dataset of methane
plumes from Sentinel-2 images from 2017–2021 consist-
ing of 10 046 images of 0.01× 0.01° (200× 200 pixels) re-
solution from Sentinel-2 L1C scenes centred on 23 known
super-emitter locations in Turkmenistan (Irakulis-Loitxate et
al., 2022). Several locations identified are in close proximity
to each other and are combined into a single scene. For a map
and complete list of the included sites, see Fig. 1 and Table 1.
For each site, all available images were downloaded using
the Sentinel Hub API, each image consisting of the 13 scaled
and harmonised Sentinel-2 channels (Sinergise Ltd., 2023).
Images containing clouds are deliberately not discarded to
allow the model to learn a mapping robust to these features
without the need for costly pre-processing steps. We note that
the model output is therefore predicting whether a plume is
visible in the scene or not; it is possible that an emission may
be present but is covered by clouds. Cloudy scenes could
easily be discarded if necessary for a particular application
by applying a cloud detection model (Jeppesen et al., 2019;
López-Puigdollers et al., 2021; Aybar et al., 2022).

We frame methane detection as a binary segmentation
problem, where a pixel is classified as either 0 if not part of a
plume or 1 if part of a plume. To manually label the plumes,
enhanced images were created for each time step using the
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Figure 1. Locations of the 23 super emitters included in the dataset showing the study region shaded in red and precise locations (inset).

multi-band multi-pass (MBMP) method developed by Varon
et al. (2021). A clear-sky reference image was chosen for
each location, with the multi-band multi-pass image given
by

MBMP=
cR12−R11

R11
−

c′R′12−R′11
R′11

,

where R11 and R12 are the raw Sentinel-2 band 11 and 12
observations for the current image, R′11 and R′12 are the raw
Sentinel-2 band 11 and 12 observations for the reference im-
age, and c (c′) is calculated by least-squares regression of
R11 against R12 (R′11 against R′12) for all pixels. These im-
ages were used to manually identify and label the extent of
the methane plumes for each time step. For examples of the
MBMP images and corresponding hand-labelled plumes, see
Fig. 2. It is emphasised that these MBMP images are used
as an auxiliary tool to guide annotation only and are not in-
cluded as input predictors to the final model.

Each data point consists of the 13 Sentinel-2 bands inter-
polated to a common resolution of 10 m together with the
hand-labelled plume mask for a total of 925 scenes contain-
ing a plume and 9121 without. The resolution of 10 m is cho-
sen as adding the highest-resolution RGB channels improves
the model performance, so all data are interpolated to this re-
solution to avoid loss of information. We emphasise that only
a single time step is required at the test time, unlike in pre-
viously proposed methods where multiple time steps are re-
quired. This removes the requirement to identify a clear-sky
reference image or series of images, which typically requires
manual selection, and is simpler to deploy and maintain.

This dataset is split into train, test and validation sets:

– The train set is all images from 2017–2020 excluding
the validation set.

– The validation set is a held-out randomly subsampled
selection of 256 train images stratified by plume pres-
ence.

– The test set is all images from 2021.

The validation split is used for model selection, and we use
the test set to report results. As a baseline, we consider an
MBMP approach based on that outlined by Irakulis-Loitxate
et al. (2022). To calculate the baseline prediction, the multi-
band multi-pass image is constructed for each image. This
is denoised using a Gaussian filter and then thresholded to
identify clusters of pixels with values more than 2 standard
deviations below the mean. Resulting clusters are kept as a
predicted plume if they contain more than 115 pixels.

2.2 Model architecture and training

The detection model uses a simple and flexible UNet archi-
tecture (Ronneberger et al., 2015) consisting of four encoder
blocks (2D convolution layer, batch norm, ReLU activation,
max pool) followed by four decoder blocks (transposed 2D
convolution layer, 2D convolution layer, batch norm, ReLU
activation, 2D convolution layer, batch norm ReLU activa-
tion) with skip connections between blocks of corresponding
scale. Channel output dimensions for each of these blocks are
{128,256,512,512,256,128,64,128,1}with kernel sizes of
3 for all convolution layers and 2 for the max pooling lay-
ers. For a complete schematic of the model, see Fig. 3. This
model takes the Sentinel-2 bands as input and outputs a pixel-
wise prediction of the probability (between 0 and 1) of the
pixel being part of a methane plume.

The UNet is trained on the training dataset described above
with binary cross-entropy loss, Adam optimisation (Kingma
and Ba, 2014) and a learning rate of 1×10−4 for 250 epochs.
As the dataset is unbalanced with significantly more negative
than positive images, at each epoch n negative images are
randomly sampled, where n is the total size of the positive
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Figure 2. Examples of the MBMP images and corresponding hand-annotated masks.

Figure 3. Schematic of the CH4Net model architecture showing the Sentinel-2 bands’ input to the UNet and probabilistic output compared
to the hand-annotated mask.

image set. To prevent over-fitting, augmentation is applied
by cropping a random 100× 100-pixel scene from the larger
image tiles. In order to investigate the optimal predictor set,
the UNet is trained with both bands 11 and 12 only as pre-
dictors (11+ 12) and all bands (ALL).

3 Results: all images

We first evaluate the skill of CH4Net at correctly identifying
whether a given image contains a methane plume. This is re-
ferred to as scene-level prediction, as opposed to pixel-level
prediction. For scene-level prediction, the probabilistic pre-
dictions are transformed into a binary prediction by defining
a methane plume as a contiguous region greater than 115 pix-
els with probability greater than or equal to 0.25. The 115-
pixel threshold is chosen as this is the size of the smallest
plume contained in the training set, while the 0.25 thresh-

old is selected to maximise the balanced accuracy score. A
scene is classified as 1 (containing a plume) if such a feature
is present and 0 otherwise.

The accuracy, balanced accuracy, precision, recall, false
positive rate and false negative rate for both the ALL and the
11+ 12 experiments over the 2021 images are shown in the
upper portion of Table 1. The model with all bands included
as predictors outperforms that with only bands 11 and 12, in-
dicating that other bands add value for methane detection or
for the reduction of false positives. Results over the test set
for the model with all bands included (bands 11+12 only, the
MBMP baseline) are as follows: accuracy 0.80 (0.69, 0.50),
balanced accuracy 0.76 (0.75, 0.71), precision 0.30 (0.24,
0.11), recall 0.84 (0.61, 0.24), false positive rate 0.24 (0.23,
0.23) and false negative rate 0.16 (0.39, 0.76). The model
with all bands included outperforms that with only bands 11
and 12 on all metrics except for the false positive rate, which
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Table 1. Scene- and pixel-level metrics over the test dataset (year
2021) for CH4Net trained with the complete 13-band predictor set
(ALL), the predictor set of bands 11 and 12 only (11+ 12), and
the MBMP baseline. IoU denotes intersection over union. Values in
bold indicate the best-performing model for each experiment.

ALL 11+12 MBMP baseline

Scene-level metrics

Accuracy 0.80 0.69 0.50
Balanced accuracy 0.76 0.75 0.71
False positive rate 0.24 0.23 0.23
False negative rate 0.16 0.39 0.76
Precision 0.30 0.24 0.11
Recall 0.84 0.61 0.24

Pixel-level metrics

Balanced accuracy 0.66 0.66 0.51
IoU 0.57 0.55 0.50

is slightly higher. CH4Net outperforms the baseline substan-
tially on all metrics except for the false positive rate which is
very slightly higher for ALL and the same for 11+ 12. The
new model detects 83 % of all plumes in the validation set
compared to 24 % for the baseline whilst producing a similar
number of false positives, indicating a large improvement in
performance.

A more challenging task is to assess prediction skill at a
pixel level, quantified by balanced accuracy and IoU over all
pixels. Results for these metrics are shown in the lower sec-
tion of Table 1. The model trained with all bands achieves
a balanced accuracy (IoU) of 0.66 (0.57) compared to 0.66
(0.55) for the model with just bands 11 and 12, indicating
that inclusion of other channels also improves performance
at the pixel level. Both CH4Net models outperform the base-
line, which achieves a balanced accuracy of 0.51 and IoU of
0.50.

4 Results by site

For a more nuanced assessment of skill at each individual
location in the training set, we produce predictions for all
available images during the 2021 test period at each of the
23 sites. Results for each site are presented in Table 2. In
all cases, these are generated using the optimal predictor set
with all bands (ALL).

At a scene level, high accuracy is observed for a majority
of sites, with accuracy greater than 75% for 19 out of 23
sites and ranging from 0.57 to 0.71 for the remaining sites.
False positive rates range from 0.01 to 0.4, and false negative
rates range from 0.0 to 0.75, though they are below 0.2 for a
majority of sites.

At a pixel level, balanced accuracy ranges from 0.62 to
1.0, with 17 out of the 23 sites above 0.75. IoU (only defined

for cases where at least one mask is available) ranges from
0.54 to 0.68.

To better understand the successes and limitations of this
approach, we present several case studies, two of locations
with excellent prediction quality (sites T7 and T17) and two
with poor prediction quality (sites T1 and T11).

4.1 Case studies: sites T7 and T17 (high-quality
predictions)

For example, consider site T7 where the prediction system
has a balanced accuracy score of 0.83, with a false positive
rate of 0.20 and false negative rate of 0.12 for a site where
39 % of scenes in the test set contain an emission. Figure 4
compares predictions to the observed values for scene-level
classification. Overall predictions are in good agreement with
observations, correctly identifying two emissions early in
2021 followed by a period of high emission activity which
subsides towards the end of the year.

Predictions at site T17 provide an example of correct pre-
diction of multiple sporadic emission events over the course
of the 2021 year. For this site, the scene-level accuracy is
0.90, false positive rate 0.11 and false negative rate 0.0 and
the pixel-level balanced accuracy and IoU are 0.97 and 0.65,
respectively. A more detailed view of predictions at a pixel
scale is shown in Fig. 5. This shows the observation mask
compared to prediction overlaid on the RGB imagery for ev-
ery available Sentinel-2 image in 2021. Both the occurrence
and the morphology of each plume are largely well captured,
though two false positives are observed.

4.2 Case studies: sites T1 and T11 (low-quality
predictions)

We next examine two cases with comparatively poor predic-
tion quality. Results for site T1 are the worst out of all lo-
cations with at least one emission during 2021, with an ac-
curacy of 0.57, false positive rate of 0.5 and false negative
rate of 0.08. A time series of predictions compared to obser-
vations is shown in the upper panel of Fig. 6. This demon-
strates that the model produces a high number of false posi-
tives, particularly through the second half of the year. Closer
examination of individual predictions images indicates that
there are three primary sources of false positives. Artefacts
in the image (e.g. Fig. 7a) and thin clouds (e.g. Fig. 7b) pro-
duce occasional false positives throughout the time series.
During the second half of 2021, multiple false positives are
produced, coinciding with a bright surface artefact visible in
both the RGB and the MBMP images (e.g. Fig. 7c). It is pos-
sible that this is a methane emission source; however, it is
not labelled as such during the manual labelling as either the
wind speed is too low to produce a clear plume or alterna-
tively the emissions are weak with only the area immediately
at the source detectable with the limited detection capability
of Sentinel-2.
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Table 2. CH4Net performance evaluated on all available images at the 23 super-emitter sites for 2021, showing (L–R) site ID, site longitude,
site latitude, percentage of images containing a plume, scene-level accuracy, scene-level precision, scene-level recall, the false positive rate
(FPR), the false negative rate (FNR), pixel-level balanced accuracy and pixel-level balanced intersection over union (IoU).

Site Longitude Latitude % positive Accuracy Precision Recall FPR FNR Balanced accuracy IoU
(°) (°) (pixel level) (pixel level)

T1 53.6367 39.49687 17.0 % 0.57 0.27 0.92 0.5 0.08 0.85 0.55
T2 53.77274 39.52148 0.0 % 0.94 – – 0.06 – 1.0 –
T3 53.77903 39.52137 0.0 % 0.9 – – 0.1 – 1.0 –
T4 53.74292 39.4739 1.0 % 0.9 0.06 1.0 0.1 0.0 0.93 0.55
T5 53.78836 39.46428 1.0 % 0.75 0.05 1.0 0.26 0.0 0.62 0.51
T6 53.77502 39.4616 38.0 % 0.9 0.8 0.96 0.14 0.04 0.81 0.68
T7 53.77921 39.45965 39.0 % 0.83 0.74 0.88 0.2 0.12 0.75 0.6
T8 53.68117 39.44955 0.0 % 0.93 – – 0.07 – 1.0 –
T9 53.76506 39.36045 23.0 % 0.71 0.4 0.47 0.21 0.53 0.58 0.53
T10 53.83516 39.38584 0.0 % 0.93 – – 0.07 – 1.0 –
T11 53.87509 39.35498 8.0 % 0.84 0.17 0.25 0.11 0.75 0.6 0.55
T12 54.23498 38.85515 15.0 % 0.85 0.5 0.27 0.05 0.73 0.59 0.56
T13 54.20931 38.57959 0.0 % 0.82 – – 0.18 – 0.99 –
T14 54.20049 38.55747 37.0 % 0.75 0.62 0.85 0.3 0.15 0.77 0.63
T15 54.20393 38.51871 0.0 % 0.95 – – 0.05 – 1.0 –
T16 54.19769 38.50798 0.0 % 0.95 – – 0.05 – 1.0 –
T17 54.19764 38.49393 10.0 % 0.9 0.5 1.0 0.11 0.0 0.97 0.65
T18 54.02832 38.33078 16.0 % 0.75 0.39 0.92 0.28 0.08 0.76 0.55
T19 54.03149 38.36017 0.0 % 0.6 – – 0.4 – 0.98 –
T20 53.89857 37.90825 16.0 % 0.77 0.41 0.92 0.26 0.08 0.75 0.59
T21 53.91623 37.9286 1.0 % 0.99 0.5 1.0 0.01 0.0 0.71 0.63
T22 53.92431 37.92913 23.0 % 0.75 0.48 0.71 0.23 0.29 0.63 0.54
T23 53.92702 37.71665 0.0 % 0.6 – – 0.4 – 0.98 –

Figure 4. Time series of predictions for sites T7 (a) and T17 (b) over the test year (2021). Green (red) lines indicate that a plume was (was
not) observed or predicted. Observed ground truth values are shown in the upper time series and CH4Net predictions in the lower time series.
The date format is year-month.

Site T11 is an example of a site with multiple false neg-
atives. For this location, the scene accuracy is 0.84, with a
false positive rate of 0.11; however the false negative rate at
0.75 is the highest for all sites. The prediction time series
for this site is shown in the lower panel of Fig. 6. Here the
false negatives appear to arise in cases with a heterogeneous

background (which also often results in an increase in false
positives). This is consistent with recent work indicating that
the detection capability of Sentinel-2 is significantly lower in
cases with a strongly heterogeneous background (Gorroño et
al., 2023).
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Figure 5. CH4Net pixel-level predictions for every image over site T17 during 2021. For each time step, the observed mask (left) and
probabilistic prediction (right) are shown overlaid on the RGB image. The date format is year-month-day.

5 Conclusions

We have implemented CH4Net, the first fully automated sys-
tem for monitoring known methane super-emitter sites, and
produced the first large-scale dataset of methane plumes in
Sentinel-2 imagery. Model skill was assessed using multiple
scene-level and pixel-level metrics, demonstrating that over-
all predictions are of high quality, though several sources of
false positives and false negatives remain to be addressed.

CH4Net comprehensively outperforms the multi-band multi-
pass baseline on all metrics except the false positive rate,
where both methods perform similarly. These results of-
fer promise for implementing ongoing tracking of known
sources to mitigate emissions and provide early warnings
when an event is observed.

In contrast to existing methods for methane plume detec-
tion in Sentinel-2 images (Varon et al., 2021; Ehret et al.,
2022; Irakulis-Loitxate et al., 2022), this model requires only
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Figure 6. Time series of predictions for sites T1 (a) and T11 (b) over the test year (2021). Green (red) lines indicate that a plume was (was
not) observed or predicted. Observed ground truth values are shown in the upper time series and CH4Net predictions in the lower time series.
The date format is year-month.

Figure 7. Examples of false positives and negatives for sites T1 and T11, showing (a) a false positive at site T1 resulting from an image
artefact, (b) a false positive at site T1 resulting from thin cloud (not easily visible in the RGB window), (c) a false positive at site T1 resulting
from a potential low-intensity methane source and (d) a false negative at site T11 resulting from a strongly heterogeneous background. The
date format is year-month-day.

Atmos. Meas. Tech., 17, 2583–2593, 2024 https://doi.org/10.5194/amt-17-2583-2024
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a single pass to generate predictions at the test time and is
fully automated. This creates a significant advantage in al-
lowing large volumes of data to be processed without requir-
ing costly manual verification. We believe that this is a signif-
icant breakthrough since, as has been shown in other works
(e.g. Irakulis-Loitxate et al., 2022), emissions from a single
site often recur over a long period of time. With this model
we can envision a system that, when a new location is added,
we can label past data, retrain the model and use it to produce
notifications of new plumes on incoming Sentinel-2 acquisi-
tions over that location. This is very useful to verify that leaks
have been permanently fixed and to notify the emitters if this
is not the case.

Further work is required in several areas to extend these
results. One avenue for future work is improving the current
monitoring methodology. For the dataset, the priority for fu-
ture work in this area is to collect further data over new ar-
eas and test whether CH4Net is suitable for application to
other semi-arid locations. Furthermore, the accuracy of each
mask could further be improved by having multiple annota-
tors providing a mask for each image and taking the inter-
section over the proposed masks. A current shortcoming of
this work is that the output of CH4Net provides only a binary
mask as opposed to quantifying the methane concentration at
each pixel. Direct prediction of this quantity would allow for
both emission occurrence and volume to be monitored. There
are also a number of improvements that could be explored to
improve the modelling methodology, including implement-
ing scene-level classification with a classification head and
implementing more sophisticated segmentation models such
as vision transformers (Dosovitskiy et al., 2020). We hope
that providing this dataset and baselines will lead to further
work on machine learning models for this task.

A second avenue for future work is to explore train-
ing a similar model for scanning Sentinel-2 images to dis-
cover new super-emitter sites. This would require collecting
a much larger dataset of heterogeneous images (images from
different locations and biomes) and training a model capable
of limiting false positives in areas with highly heterogeneous
backgrounds.

Code and data availability. Code and hand-annotated masks are
available at https://doi.org/10.57967/hf/2117 (Vaughan, 2024).
Sentinel-2 data are available at https://www.sentinel-hub.com/ from
Sentinel Hub (2024).
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