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Abstract. Current methods for detecting atmospheric plumes
and inferring point-source rates from high-resolution satel-
lite imagery are labor-intensive and not scalable with regard
to the growing satellite dataset available for methane point
sources. Here, we present a two-step algorithm called U-
Plume for automated detection and quantification of point
sources from satellite imagery. The first step delivers plume
detection and delineation (masking) with a U-Net machine
learning architecture for image segmentation. The second
step quantifies the point-source rate from the masked plume
using wind speed information and either a convolutional neu-
ral network (CNN) or a physics-based integrated mass en-
hancement (IME) method. The algorithm can process 62
images (each measuring 128 pixels× 128 pixels) per sec-
ond on a single 2.6 GHz Intel Core i7-9750H CPU. We
train the algorithm using large-eddy simulations of methane
plumes superimposed on noisy and variable methane back-
ground scenes from the GHGSat-C1 satellite instrument. We
introduce the concept of point-source observability, Ops =

Q/(UW1B), as a single dimensionless number to predict
plume detectability and source rate quantification error from
an instrument as a function of source rate Q, wind speed
U , instrument pixel size W , and instrument-dependent back-
ground noise1B. We show thatOps can powerfully diagnose
the ability of an imaging instrument to observe point sources
of a certain magnitude under given conditions. U-Plume suc-
cessfully detects and masks plumes from sources as small
as 100 kgh−1 in GHGSat-C1 images over surfaces with
low background noise and successfully handles larger point
sources over surfaces with substantial background noise. We
find that the IME method for source quantification is un-
biased over the full range of source rates, while the CNN

method is biased towards the mean of its training range. The
total error in source rate quantification is dominated by wind
speed at low wind speeds and by the masking algorithm at
high wind speeds. A wind speed of 2–4 ms−1 is optimal for
detection and quantification of point sources from satellite
data.

1 Introduction

A number of satellite instruments can now detect and im-
age methane column plumes with spatial resolutions finer
than 60 m by observing solar backscatter in the shortwave-
infrared (SWIR) range, enabling quantification of large point
sources from individual facilities (Jacob et al., 2022). As
the satellite observing system expands for both methane and
other gases, there is a growing need for efficient methods
of detecting and quantifying these point sources through
automated processing of vast amounts of data. Here, we
present the U-Plume algorithm, a generalized machine learn-
ing method, to address this need, and we apply it to methane
observations from GHGSat (Jervis et al., 2021).

Several methods have been proposed for inferring point-
source rates from satellite imagery of atmospheric pollution
plumes, including those of methane (Varon et al., 2018), CO2
(Nassar et al., 2017), NO2 (Valin et al., 2013; De Foy et
al., 2015; Beirle et al., 2021), CO (Pommier et al., 2013),
SO2 (Fioletov et al., 2015; McLinden et al., 2016), and NH3
(Clarisse et al., 2019; Dammers et al., 2019; Noppen et al.,
2023). Gaussian plume inversion (Bovensmann et al., 2010;
Krings et al., 2011, 2013) and mass balance methods (Jacob
et al., 2016; Buchwitz et al., 2017) have both shown suc-
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cess in estimating emissions for very large plumes (> 10 km),
but they fail when applied to sub-kilometer plumes due to
stochastic turbulence that leads to non-Gaussian behavior
and dominance of eddy flow (Varon et al., 2018). Temporal
averaging of plumes over multiple satellite passes with wind
rotation has been used extensively for large plumes from
well-identified point sources to decrease noise and enhance
Gaussian behavior (Pommier et al., 2013; Fioletov et al.,
2015; McLinden et al., 2016; Varon et al., 2020; Maasakkers
et al., 2022); however, it is difficult to implement this ap-
proach for methane plumes, which are typically smaller and
intermittent (Frankenberg et al., 2016; Cusworth et al., 2021;
Irakulis-Loitxate et al., 2021; Ehret et al., 2022; Thorpe et
al., 2023).

Two methods that have shown success in estimating emis-
sions from high-resolution instantaneous-plume imagery are
the integrated mass enhancement (IME) and cross-sectional
flux (CSF) methods (Krings et al., 2011, 2013; Frankenberg
et al., 2016; Varon et al., 2018). The IME method relates the
total observed plume mass to a source rate, using informa-
tion from the plume size and the local wind speed. The CSF
method integrates concentrations over plume cross sections
perpendicular to the wind direction and multiplies them by
the local wind speed to infer a source rate. Both methods re-
quire the plume to be identified and masked (i.e., delineated)
within the image.

Detection and masking of plumes in satellite scenes have
generally been performed by human analysts (Guanter et al.,
2021), but this is not practical operationally. Simple statis-
tical thresholding approaches combined with adjacency cri-
teria have been developed to detect methane enhancements
above background for plume masking (Varon et al., 2019;
Duren et al., 2019), but these are vulnerable to retrieval ar-
tifacts, particularly those from surface features mistakenly
identified as methane plumes (Cusworth et al., 2019).

Machine learning presents a promising avenue for au-
tomating plume detection and inferring point-source emis-
sions. Jongaramrungruang et al. (2022) proposed a convo-
lutional neural network (CNN) to estimate source rates di-
rectly from aerial methane imagery obtained from the Air-
borne Visible InfraRed Imaging Spectrometer – Next Gen-
eration (AVIRIS-NG). Their method (called MethaNet) pro-
vides source rate estimates based solely on methane column
retrieval fields, forgoing the use of external information on
wind speed by exploiting wind information contained in the
morphology of the plumes (Jongaramrungruang et al., 2019).
Training and testing of MethaNet have been done on aircraft
imagery with a relatively clean background and high pixel
resolution (3 m), but to our knowledge, it has not been ap-
plied to satellite imagery which is coarser and more vulnera-
ble to surface artifacts. MethaNet does not produce a plume
mask (outline of plume boundaries), but such a mask of-
fers important visual information and can help identify ar-
tifacts. Joyce et al. (2023) used a U-Net architecture to mask
methane plumes in PRecursore IperSpettrale della Missione

Applicativa (PRISMA) satellite imagery directly from radi-
ances, again without incorporating wind speed information.
Separate networks were then used for inferring methane col-
umn concentration and estimating emission rates. In both
MethaNet and the Joyce et al. (2023) approach, there is a bias
towards the training mean in the final source rate estimates,
resulting in an overestimate of low-emitting plumes and an
underestimate of high-emitting plumes. This is a common is-
sue in machine learning applications.

Here, we perform binary segmentation of methane col-
umn imagery from GHGSat using a U-Net neural network
architecture to produce plume masks, and we then use these
masks, together with wind speed information, to infer point-
source rates either with a CNN or with the physics-based
IME method. We use wind speed information because some
is always available – either from local measurements or from
regional/global reanalysis datasets. The U-Net architecture
(Ronneberger et al., 2015) has previously demonstrated its
effectiveness in feature recognition by means of binary im-
age segmentation from satellite imagery (Joyce et al., 2023),
avoiding the false positives present in more traditional meth-
ods reliant on thresholding (Rezvanbehbahani et al., 2020).
Combining the U-Net architecture for detecting plumes in
column enhancement with subsequent steps for inferring
point-source rates forms an end-to-end algorithm that we call
U-Plume.

2 Methods

We present here the U-Plume algorithm for identifying point-
source plumes in satellite imagery of methane concentrations
and inferring point-source rates. The algorithm has two com-
ponents: (1) a U-Net for detecting plumes by means of binary
segmentation of the pixels in the satellite scene (0 denotes
background; 1 denotes plume), producing a plume mask, and
(2) two alternative CNN and IME approaches for inferring
source rates from the plume mask. We demonstrate U-Plume
using the GHGSat-C1 instrument for methane, but the archi-
tecture and training process presented here are potentially ap-
plicable to any satellite point-source imagers for any species.

GHGSat-C1, launched in 2020, is the first operational in-
strument released by GHGSat Inc., since the demonstration
instrument GHGSat-D was launched in 2016 (Jervis et al.,
2021). The instrument is a shortwave-infrared interferometer
with an observation domain of∼ 12×12km2 at a 25×25m2

pixel resolution. Retrieval of the backscattered solar spec-
trum at the 1.65 µm methane absorption band yields an esti-
mated methane column mass enhancement over background
that is reported in terms of molm−2 with 1 %–2 % estimated
precision. The instrument is in a polar sun-synchronous
orbit, with observations conducted at ∼ 09:30 LT. Subse-
quently launched GHGSat-C2-C11 instruments have less
background noise than GHGSat-C1. Our results can be ex-
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tended to GHGSat-C2-C11 and any other instruments using
the background noise metrics presented below.

Our first step is to create a training dataset of plume-
containing satellite images in which synthetic instantaneous
plumes with known source rates are superimposed on actual
plume-free images. Following Varon et al. (2018) and Jon-
garamrungruang et al. (2019), we use the Weather Research
and Forecasting model large-eddy simulations (WRF-LES)
to create a diverse plume dataset of atmospheric methane
concentration enhancements, where the relationship between
source rate and plume concentration is known. Point-source
methane emission and atmospheric transport are simulated
on a 25× 25m2 horizontal and 15 m vertical grid over a
9×9×2.4km3 domain, with the point source emitting at the
surface five-sixths of the way from the downwind edge of
the domain. We conduct four simulations for different mete-
orological conditions, each of which is run for 3 h with the
first hour used as spin-up, resulting in 2 h of usable plume
images per simulation. Time steps for WRF-LES integration
are set at 0.25 s, and instantaneous plumes are sampled ev-
ery 30 s. Mean wind speeds for the simulations are between
3–9 ms−1, with sensible heat fluxes of 100–300 Wm−2 and
mixed-layer depths of 500–2000 m. This is the same ensem-
ble as that used by Varon et al. (2021), where the specific
details of the simulations are provided.

To create an effective neural network, the training imagery
must be as close as possible to the real observations that the
model will be applied to. In previous work by Varon et al.
(2018) in which the WRF-LES was used to simulate syn-
thetic plumes, these plumes were superimposed on a white-
noise background to generate a training dataset; however,
variable surface albedo and terrain can lead to heterogeneous
noise fields with complex structures. To create realistic noise
for our training images, we start with a set of actual GHGSat-
C1 observations of plume-free scenes and add the methane
column enhancements from the WRF-LES. We use the stan-
dard deviation of the pixel enhancements in the plume-free
scene (1B, kgm−2) as a measure of background noise:

1B =

√∑n
i=1(xi − x)

2

n
. (1)

Here, n is the number of pixels in the image, xi is the col-
umn concentration for the individual pixel i, and x is the
mean column concentration in the scene. When discussing
1B, we express it as a percentage of the global mean back-
ground concentrations (taken as xb = 0.011 kgm−2; Jervis et
al., 2021). We use 28 plume-free GHGSat-C1 observations
(each measuring 12 km× 12 km) corresponding to a variety
of surface types. Scenes with1B < 5 % correspond to homo-
geneous bright surfaces, including arid and grassland terrain.
Scenes with 5 %<1B < 10 % correspond to moderately
heterogeneous surfaces. Scenes with 1B > 10 % correspond
to very heterogeneous or dark surfaces, including forests,
wetlands, and urban areas. Values of 1B are instrument-

dependent. The more recent GHGSat-C2 and subsequent in-
struments have 1B < 2 % under most observing conditions
(Ramier, 2023). On the other hand, hyperspectral/multispec-
tral land surface mappers can have background noise exceed-
ing 10 % (Cusworth et al., 2019; Varon et al., 2021).

Figure 1 illustrates the steps for creating the synthetic
plume observations used in training and testing our method.
For each training image, a 128-pixel× 128-pixel scene is
randomly selected from a plume-free GHGSat-C1 observa-
tion. A random plume from the WRF-LES dataset is then
selected, with a random rotation and translation applied to
situate the plume anywhere in the scene but with a safeguard
to ensure that the plume is fully contained in the scene. Since
the methane enhancement in the plume is proportional to the
source rate, we can scale the plume randomly to correspond
to a given source rate. This plume image is then added to the
selected scene to create a training image. A training range of
plumes emitting in the 500–2000 kgh−1 range is chosen to
ensure that the plumes are at least partially visible in most
training images. Though we want the network to be able to
detect smaller source rates, it is important that the structural
features being searched for are visible above the noise within
the training dataset. Because the U-Net recognizes structure
(and not just enhancement), the network trained using the
500–2000 kgh−1 range is still usable outside of this range, as
we will see. Because pixel values for methane enhancement
generally fall into the −0.3 to 0.3 molm−2 range, we found
that it is not necessary to normalize the data for training.

Our set of training and test images is created using 28
plume-free observations. We step the 128-pixel× 128-pixel
scene over each full image in 16-pixel steps to create a set
of scenes. The 1B values of these scenes range from 1 %
to more than 50 %. We only use scenes with 1B < 20 %
to avoid training in scenes with extremely high background
variability, where the detection of any but the largest plumes
would be intractable. This filtering leaves us with a total of
6870 scenes, with a median 1B of 8 % and interquartiles
of 5 % and 12 %. We then apply the random plume place-
ment and source magnitude as described above to create 6870
simulated-plume observations. This is a relatively small set
for training by machine learning standards, but it is suffi-
cient for providing a successful network which could be eas-
ily bolstered by a future collection of additional large-eddy
simulations (LESs) and background images. The true plume
mask is composed of pixels where the enhancement from the
LES is higher than the 1B of the scene, which is the cri-
terion for the pixel contributing more information than the
noise (Varon et al., 2018). Moreover, 90 % of the images are
used for training, and 10 % are set aside for testing. We use
a relatively standard configuration of the U-Net model with
a modest training period and therefore do not have a sepa-
rate validation set for specific learning-rate stopping criteria.
The metric we use to measure masking success is the Jaccard
score, which is derived from the intersection of the predicted
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Figure 1. Sample generation of U-Plume training imagery. The first panel shows a plume-free observation sample of methane column
concentration enhancements observed by GHGSat-C1. The second panel is a 128-pixel× 128-pixel scene randomly selected from the full
observation domain. The third panel shows a WRF-LES instantaneous-plume sample for a source rate of 2000 kgh−1 – we chose a large
plume here for easy visualization. The fourth panel shows the result of adding the second and third panels to form a training image. A total
of 0.1 molm−2 corresponds to a dry column mixing ratio enhancement of 284 ppb.

mask (A) and true mask (B) over the unity of the two:

J (A,B)=
A∩B

A∪B
. (2)

We train the model for 20 epochs with a batch size of 32 im-
ages, minimizing a loss function (L) that combines binary
cross-entropy (BCE; Jadon, 2020) and the Jaccard score.
This loss function is defined as

L=− ln(J (A,B))+BCE. (3)

Figure 2 shows the two-step process used to obtain source
rate estimates from methane enhancement images. First, a
U-Net masking network is used to identify pixels in which
a plume is present. The binary mask created by this network
is then fed along with the original enhancement image and
external wind speed data to estimate the source rate from the
identified plume. The enhancement image with the mask is
preserved for visualization and as a quality control diagnos-
tic. Processing the test dataset of 687 images, preloaded from
their relevant files, in 32 image batches on a single 2.6 GHz
Intel Core i7-9750H CPU takes 11 s, corresponding to 62 im-
ages per second.

The U-Net neural network for plume masking (Ron-
neberger et al., 2015) uses an encoder–decoder framework
to recognize structural features within imagery. The net-
work receives a methane enhancement image, such as that
in Fig. 2, and classifies each pixel with a confidence level
for the presence of a plume. We apply a threshold of 50 %
confidence to produce a binary plume mask. The main ad-
vantage of this method over traditional threshold masking is
that high-enhancement features that do not have plume-like
shape characteristics will not be falsely captured as plumes.

The encoder portion of the network applies a series of con-
volutional filters and pooling layers to identify features of

increasing complexity within the image. By the end of the
encoding process, the image will have been compressed spa-
tially and have many channels corresponding to the various
feature maps created by the convolutional filtering. By com-
pressing the image spatially in this way, the network can rec-
ognize connections between distant features.

The decoder portion of the network serves to interpret
these identified features as criteria for classification. An in-
verse convolutional operator is used to expand the spatially
compressed image back to the original size of the input im-
age while reducing the number of filters applied, which com-
presses the number of channels in the image. The final step of
the network uses the information gathered from the encoder–
decoder process to estimate a confidence level (0–1) for each
pixel that determines whether it is or is not part of a plume.
Output from this model for a single image is a confidence
mask for plume location across the enhancement image, as
shown in Fig. 2. In practice, the confidence mask is gener-
ally either very close to 1 or very close to 0. Intermediate
values fall off very quickly at the edge of the mask. We devi-
ate from the Ronneberger et al. structure only in that we be-
gin with 16 convolutional filters rather than 64 and thus reach
a maximum channel depth of 256 rather than 1024 at the end
of the encoder path. A loss function combining binary cross-
entropy and the Jaccard score is minimized for the training
set. The code used for the model creation and loss function
can be found alongside our dataset in the repository at the end
of this text (https://doi.org/10.7910/DVN/YFRQU4, Bruno,
2023).

Once the U-Net mask has been generated in the first step
of our U-Plume algorithm, we infer the source rate in the sec-
ond step, using either a CNN method or an IME method. The
CNN method utilizes a three-channel input image containing
the original image, the binary mask, and 10 m wind speed.
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Figure 2. U-Plume architecture. Starting from a methane enhancement image (the sample image in Fig. 1), we use the U-Net machine
learning algorithm to produce a plume mask (in red) of pixels containing more information than noise. All masked pixels in a single 128-
pixel× 128-pixel (3.2× 3.2km2) scene are assumed to originate from the same plume. We then use the original enhancement image, the
mask, and local 10 m wind speed to quantify emissions using either a machine learning method or an integrated mass enhancement (IME)
method.

Initial testing indicated that including wind direction did not
improve performance. The wind speed channel is populated
with a uniform (15 min scene) average value from the LES.
The CNN uses a series of convolutional and pooling layers
which connect to a set of fully connected layers, rather than
a decoder, to yield a scalar estimate of emissions. The CNN
structure is identical to that of the U-Net truncated at the end
of the encoder path and is connected to 32-node and then
16-node dense layers with a single-node output layer. All
three of the added layers use a rectified linear unit (ReLU)
activation function, and the model is trained using a mean
squared error loss. We train the model for 10 epochs with a
batch size of 32 images and use U-Net-generated masks for
the mask input channel (limited to successfully masked ex-
amples). Optimization of this structure and training process
could potentially improve the results of the CNN.

The IME method follows Varon et al. (2018), in which the
plume mass enhancement (IME) is combined with a param-
eterized effective wind speed (Ueff) and plume length scale
(L) to infer the source rate (Q, kgh−1), which is defined as

Q= IME
Ueff

L
. (4)

The plume length scale L is defined as the square root of
the plume mask area. The effective wind speed is fitted to
the 15 min averaged wind speed U10 at 10 m altitude using
the training dataset, where the relationship between Q, IME,
and L is known for a given U10. This yields

Ueff = 0.7+ 0.23U10, (5)

with Ueff and U10 given in units of ms−1. The intercept of
0.7 ms−1 arising from the fit can be physically interpreted
as a minimum turbulent diffusion for the plume at low wind
speeds. This calibration is specific to the GHGSat-C1 instru-
ment and should be recalculated when applying U-Plume to
other platforms.

3 Dimensionless point-source-observability number

We introduce the concept of point-source observability (Ops)
as a dimensionless number to determine the ability of a satel-
lite instrument to detect and quantify point sources. Observ-
ability is a function of source rate (Q, kg s−1); wind speed
(U , ms−1); instrument pixel resolution (W , m), which is
25 m in our case; and scene-dependent background noise
(1B, kgm−2 – as defined in Eq. 1).

The idea behind the Ops concept is that the observability
of point sources is determined by the signal-to-noise ratio
in the plume (Varon et al., 2018). The column concentration
enhancement in the plume (kgm−2) scales asQ/UW (Jacob
et al., 2016). The noise for a given scene (kgm−2) is given
by 1B, which is a scene-dependent property of the instru-
ment that can be characterized as a function of the surface
type. 1B can be viewed as the precision of the instrument
accounting for the contribution from surface artifacts. The
dimensionless point-source-observability numberOps is then
given by

Ops =
Q

UW1B
(6)

and is a measure of the signal-to-noise ratio. We will use it
here to interpret our results, but it can be applied more gen-
erally to any remote sensing observation of point sources.

4 Results

4.1 Plume detection and masking

Figure 3 shows the relationship between source rate and U-
Net masking success. In 2 % of cases, no mask is produced
for the image, and in 30 % of cases, there is no overlap be-
tween the true and predicted masks. These failures occur for

https://doi.org/10.5194/amt-17-2625-2024 Atmos. Meas. Tech., 17, 2625–2636, 2024



2630 J. H. Bruno et al.: Automated algorithm for plume detection and source quantification

Figure 3. Ability of the U-Net machine learning algorithm to delin-
eate (mask) plumes emitted from point sources. Masking success is
measured using the Jaccard score (Eq. 2) and is plotted as a function
of background noise 1B (Eq. 1) for a range of point-source rates
from 500 to 2000 kgh−1. Results are for the test set of WRF-LES
plume images superimposed on noisy plume-free observations from
the GHGSat-C1 satellite instrument.

high background noise (1B > 5 %) and lower emission rates.
On the other hand, Jaccard scores generally exceed 0.5 for
low background noise (1B < 5 %).

We examine false positives by applying the network across
the test dataset of backgrounds without plumes added. This
yields masks in 14 % of cases (false-positive detection rate).
The masks produced in these false positives are generally
very small, with a median size of 5 pixels. Applying a mini-
mum mask size of 5 pixels brings the false-positive rate down
to 6 % while losing only 1.6 % of the true-positive detections
in the test dataset and removing 92 % of the zero-overlap
masks. False positives occur most commonly in scenes with
high 1B values and particularly in scenes with complex to-
pography. The mask sizes for these false positives are gener-
ally small, as evidenced by the effectiveness of the mask size
filtering, and their corresponding estimated source rates are
therefore also generally small.

In Eq. (6), point-source observability (Ops) provides a di-
mensionless scaling number to better understand how point-
source detection for a given instrument relates to the com-
bination of source rate, background noise, wind speed, and
pixel size. Here, we use 10 m wind speed (U10) for the cal-
culation of Ops. We create an augmented test dataset with
10 subset images from each of the 28 plume-free observa-
tions (Fig. 1) and 20 emission levels, ranging from 100 to
2000 kgh−1 in 100 kgh−1 increments, for each image. We
bin images in the augmented test dataset based on their Ops,
ranging from 0.005 to 0.5 in 201 log-spaced bins. Addition-
ally, for each bin with a minimum of 50 images, we calculate
the probability of detection as the fraction of plumes in the
bin with J > 0.1. Figure 4 shows the relationship between the
probability of detection P and Ops. The relationship when
Ops> 0.014 can be tightly fit to a sigmoid function of the

Figure 4. Probability of detection (J > 0.1) for point sources in the
GHGSat-C1 augmented test dataset as a function of the dimension-
less point-source-observability number Ops (Eq. 6). Calculation of
Ops uses the WRF-LES 10 m wind speed for U and a GHGSat-C1
pixel size W of 25 m.

following form:

P =
1.03

1+ e−2.9(log(Ops)+3.3) − 0.05 (Ops > 0.014). (7)

Detection probability is 10 % when Ops = 0.02, 50 % when
Ops = 0.04, and 90 % when Ops = 0.08. The transition from
low detectability (< 10 %) to high detectability (> 90 %) is
very sharp in Ops space, demonstrating the power of the
Ops metric in evaluating the ability of plume-imaging instru-
ments to observe point sources. The Ops value of 0.04 at the
50 % detection threshold can be interpreted as a characteristic
column-averaged concentration enhancement, 0.04Q/UW ,
in the plume. The maximum column-averaged concentration
enhancement in the source pixel would be Q/UW (Jacob et
al., 2016).

Figure 5 shows the probability of detection calculated us-
ing Eq. (7) as a function of source rate, 10 m wind speed,
and background noise. For low values of 1B, the probabil-
ity of detection is very sensitive to changes in Q and less
sensitive to changes in U10. When 1B = 1 %, U = 5 ms−1,
and W = 25 m, a 90 % probability of detection is achieved
for Q> 400 kgh−1.

4.2 Source rate estimation

Figure 6 shows the source rate estimates for the complete
U-Plume workflow, starting with the plume imagery and ap-
plying either the CNN or the IME method for source rate
quantification. We restrict our analysis to plumes with a Jac-
card score less than 0.1 to enable generalization for instru-
ments with less background noise than GHGSat-C1 (such as
GHGSat-C2), or we restrict it to the use of improved filtering
methods (such as requiring a minimum number of plume pix-
els). Results are for the augmented dataset covering the 100–
2000 kgh−1 range but trained only over the 500–2000 kgh−1

range. We assume no error in wind speed for now.
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Figure 5. Probability of detection (J > 0.1) for point sources calcu-
lated using Eq. (2) as a function of background noise (Eq. 1): source
rate (a) and 10 m wind speed (b).

Figure 6. Source rate estimates from the alternative CNN and IME
methods (Fig. 2) for point sources emitting in the 100–2000 kgh−1

range (discrete 100 kgh−1 bins) in the augmented test dataset. The
methods were trained with source rates in the 500–2000 kgh−1

range. Only images with Jaccard scores less than 0.1 are processed.
Error bars show 1 standard deviation of the estimates.

The CNN method has a smoothing bias where low source
rates are overestimated and high source rates are underesti-
mated. This smoothing towards the mean is a common issue
in machine learning methods and appears in the work of Jon-
garamrungruang et al. (2022) and Joyce et al. (2023). In ad-
dition, the CNN method is unable to extrapolate outside its

training range. By contrast, the physically based IME method
can successfully fit source rates down to 100 kgh−1 as long
as the plumes are detectable. Discussion from this point for-
ward will focus on the IME method as it performs better than
the CNN method over the full range of source rates. We re-
tain the CNN method as an option in the U-Plume algorithm
because it offers an alternative source rate estimate for ver-
ification purposes and because it could be improved in the
future with a more extensive training dataset. A potential av-
enue for future work would be to test other CNN architec-
tures and expand training data to include the full range of
possible source rates.

4.3 Error analysis

The uncertainty in source rate estimates using U-Plume with
the IME method can be expressed as the relative error stan-
dard deviation (σQ) of the U-Plume estimate versus the true
value. It has two independent components: (1) the error in
the U-Plume algorithm, including the masking process and
the IME parameterization (σQ,M ), and (2) the error in 10 m
wind speed (σQ,U ). Here, we derive expressions for σQ,M
and σQ,U and add them in quadrature to quantify the overall
error and determine the driving factors.

The relative error standard deviation σQ,M from the U-
Plume algorithm can be parameterized using the augmented
test dataset binned according to point-source observability
Ops, following the approach in Sect. 4.2 that only uses bins
with > 50 positive detections (J > 0.1). Figure 7 shows the
relative error standard deviation plotted against Ops.

Fitting the error to log(Ops) yields

σQ,M =max(0.1, (0.018− 0.098log(Ops)))

(0.03<Ops < 0.3). (8)

When Ops< 0.02, the probability of detection is less than
10 % (Sect. 4.1). The relative error standard deviation
reaches a minimum of 10 % for highly observable plumes
(Ops> 0.3), reflecting the irreducible error inherent to the
IME method.

Uncertainty in wind speed adds another source of error.
Let σU (ms−1) denote the error standard deviation in the
10 m wind speed U10. Substituting into Eqs. (4) and (5)
yields a corresponding relative error standard deviation σQ,U
for the inferred IME source rate Q:

σQ,U =
0.23σU

0.7+ 0.23U10
. (9)

Wind speed data may be available locally or from meteo-
rological analysis datasets. A global default option is the
NASA Goddard Earth Observing System Forward Process-
ing (GEOS-FP) data, which is publicly available on a 0.25°×
0.3125° grid with a 1 h temporal resolution. Varon et al.
(2018) estimated an error standard deviation of σU = 2 ms−1

for the GEOS-FP data, independent of wind speed magni-
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Figure 7. Relative error in source rate estimation by the U-Plume
algorithm. The figure shows the relative error standard deviation
σQ,M versus the dimensionless point-source-observability number
Ops (Eq. 6). Errors are calculated for point sources emitting in the
100–2000 kgh−1 range (discrete 100 kgh−1 bins) in the augmented
test dataset, excluding error in wind speed (where the error is cal-
culated separately – see text). Errors from individual images are
binned according to the values of their point-source observability
(Eq. 6) when Ops = 0.005–0.5 into 201 log-spaced intervals. The
orange line represents a reduced-major-axis (RMA) regression fit
(R2
= 0.89) for σQ,M versus Ops (Eq. 8).

tude, through comparison with 5 min observations at US air-
ports. Substituting into Eq. (8) indicates a maximum relative
error standard deviation of 66 % at low wind speed, which
decreases with increasing wind speed. At high wind speeds,
the error becomes small; however, the IME is then small,
meaning that the masking error is large, as indicated by the
inverse dependence of point-source observability on wind
speed (Eq. 6 and Fig. 7).

Adding the error variances from Eqs. (8) and (9) in quadra-
ture gives the total relative error variance σ 2

Q for the esti-
mated sources rates from the U-Plume algorithm (including
the error in wind speed), which is defined as

σ 2
Q =(max(0.1, (0.018− 0.098log(Ops))))

2

+

(
0.23σU

0.7+ 0.23U10

)2

(0.03<Ops < 0.3). (10)

Figure 8 shows the total relative error standard deviation
σQ as a function of background noise 1B, source rate Q,
and 10 m wind speed U10, calculated using Eq. (10) under
common observing conditions. Equation (10) can be used to
calculate the values using any desired combination within
the limits of the composed equations. The total relative er-
ror standard deviation increases linearly with log(1B), de-
creases linearly with log(Q), and reaches a minimum when
U10 = 4 ms−1.

In Fig. 9, the dependence of the total relative error stan-
dard deviation on wind speed is partitioned further into the
contributions from the U-Plume algorithm and wind speed
errors. The error contribution from the U-Plume algorithm
increases with rising wind speed because methane enhance-
ments in the plume become smaller, but this levels off at high
wind speeds as the plumes are increasingly likely to be un-
detected instead. The error contribution from wind speed de-
creases with rising wind speed. The total error is dominated
by wind speed when U10< 4 ms−1 and by the U-Plume al-
gorithm when U10> 4 ms−1. Considering the range of val-
ues of 1B and Q in our dataset, we find that the crossover
between the two regimes occurs at 2–4 ms−1, which can be
regarded as an optimum wind speed range for plume quan-
tification.

5 Conclusions

We developed the U-Plume algorithm for automated de-
tection and quantification of point-source rates from high-
resolution satellite imagery of atmospheric column concen-
trations. Our work was motivated by the need for fast iden-
tification of plumes in the operational processing of the
vast amounts of methane data from the rapidly expanding
GHGSat constellation and other satellite instruments target-
ing methane point sources. With instrument-specific train-
ing, this method can also be applied to any chemically inert
plumes, such as those of CO2, due to the inherent similarity
in the physics governing plume formation and transport.

U-Plume involves two steps. The first step involves a U-
Net machine learning architecture for plume detection and
delineation (masking) in noisy satellite images. The result-
ing plume mask is then used together with wind speed infor-
mation in a second step of source rate quantification using
either a convolutional neural network (CNN) or a physically
based integrated mass enhancement (IME) method. Having
both the plume mask and source rate information available
from the U-Plume output is important for visualization, qual-
ity control, and pinpointing the source location. The end-to-
end algorithm can process 62 images per second on a single
core.

We trained U-Plume using an ensemble of plume-free ob-
servation images from the GHGSat-C1 satellite instrument
covering a range of surfaces from homogeneous to highly
heterogeneous and superimposing instantaneous methane
plumes with known point-source rates from large-eddy
simulations. Evaluation using data unseen by the model
during the training process shows that successful plume
detection and masking are strongly dependent on four state
variables: instrument background noise 1B, source rate Q,
10 m wind speed U10, and pixel resolution W . We combine
these variables into a new dimensionless-number metric,
point-source observability Ops =Q/(WU101B), and show
that this metric can successfully predict the ability of the
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Figure 8. Total relative error standard deviation σQ for point-source rate estimates from the U-Plume algorithm with the IME method (Eq. 9)
shown as a function of three variables: background noise 1B (%), source rate Q (kgh−1), and 10 m wind speed U10 (ms−1). The dashed
orange line represents the probability of point-source detection calculated with Eq. (6).

Figure 9. Dependence of errors in point-source estimates on wind
speed. This figure shows the relative error standard deviation for the
source rate estimates inferred from U-Plume, with the IME method
(Eq. 10) illustrated as a function of 10 m wind speed (U10). The
total relative error standard deviation σQ is shown as the red line
(also shown in as Fig. 8) and is decomposed into the contributions
from errors in the U-Plume algorithm (σQ,M ; Eq. 8) and errors in
wind speed (σU ; Eq. 9).

GHGSat-C1 imager to detect plumes and quantify source
rates under given observing conditions. As it is dependent
on the fundamental state variables of the enhancement
produced by a methane point source, we expect that point-
source observability will be a valuable metric for evaluating
the detectability and quantification accuracy of other point-
source imagers after appropriate tuning. For example, it
can assist in determining when automation is possible for a
given target detection level. For the GHGSat-C2 instruments
with 1B < 1 %, we thus expect that U-Plume will reliably

detect and quantify point sources when Q> 400 kgh−1

and U = 5 ms−1. For reference, GHGSat’s manual plume
detection method has achieved a 50 % probability of de-
tection at 3 ms−1 and 117 kgh−1 in a self-administered
controlled release campaign (https://go.ghgsat.com/
validation-and-metrics-for-emissions-detection-by-satellite,
last access: 29 April 2024) and detected the only emission
less than 200 kgh−1 in a third-party-organized single-blind
campaign (Sherwin, 2023). U-Plume’s value lies in its ability
to process large sets of plume data rather than in its ability
to push the limits of detectability. Human operators with
knowledge of point-source locations would be expected to
have a greater ability to detect small sources (Sherwin et al.,
2023).

We find that the physically based IME method is superior
to the CNN method when it comes to inferring point-source
rates from plume masks. The CNN exhibits high bias for low
source rates and low bias for high source rates, as is typi-
cal of machine learning methods. The superiority of the IME
method would be expected considering that there is a sim-
ple physically based linear relationship between plume mass
and source rate modulated by wind speed. Although a CNN
method may not require information on wind speed, such in-
formation is always available – either from local measure-
ments or from regional/global databases.

We developed an end-to-end error model for the point-
source rates inferred from U-Plume as a function of Ops. We
find that at low wind speeds, the error is dominated by wind
speed, whereas at higher wind speeds, the error is dominated
by the U-Plume algorithm. The U10 value at which this shift
occurs is typically between 2–4 ms−1. This also represents
an optimal wind speed range for plume detection and quan-
tification.

U-Plume thus offers a capable tool for fast automated pro-
cessing of vast amounts of satellite imagery to detect plumes
from point sources and quantify point-source rates. As satel-
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lite observations continue to improve in their ability to de-
crease background noise, the capability of U-Plume in de-
tecting and quantifying points sources will correspondingly
increase.
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