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Abstract. Air pollution monitoring using mobile ground-
based measurement platforms can provide high-quality spa-
tiotemporal air pollution information. As mobile air qual-
ity monitoring campaigns extend to entire fleets of vehicles
and integrate smaller-scale air quality sensors, it is impor-
tant to address the need to assess these measurements in a
scalable manner. We explore the collocation-based evalua-
tion of air quality measurements in a mobile platform us-
ing fixed regulatory sites as a reference. We compare two
approaches: a standard collocation assessment technique, in
which the mobile platform is parked near the fixed regula-
tory site for a period of time, and an expanded approach,
which uses measurements while the mobile platform is in
motion in the general vicinity of the fixed regulatory site.
Based on the availability of fixed-reference-site data, we fo-
cus on three pollutants (ozone, nitrogen dioxide, and nitric
oxide) with distinct atmospheric lifetimes and behaviors. We
compare measurements from a mobile laboratory with regu-
latory site measurements in Denver, CO, USA, and in the San
Francisco Bay Area, CA, USA. Our 1-month Denver dataset
includes both parked collocation periods near the fixed reg-
ulatory sites and general driving patterns around the sites,
allowing a direct comparison of the parked and mobile col-
location techniques on the same dataset. We show that the
mobile collocation approach produces similar performance
statistics, including coefficients of determination and mean
bias errors, to the standard parked collocation technique. This
is particularly true when the comparisons are restricted to
specific road types, with residential streets showing the clos-

est agreement and highways showing the largest differences.
We extend our analysis to a larger (yearlong) dataset in Cal-
ifornia, where we explore the relationships between the mo-
bile measurements and the fixed reference sites on a larger
scale. We show that using a 40 h running median converges
to within ±4 ppbv of the fixed reference site for nitrogen
dioxide and ozone and up to about 8 ppbv for nitric oxide.
We propose that this agreement can be leveraged to assess
instrument performance over time during large-scale mobile
monitoring campaigns. We demonstrate an example of how
such relationships can be employed during large-scale mon-
itoring campaigns using small sensors to identify potential
measurement biases.

1 Introduction

Mobile air pollution monitoring can resolve fine-scale spatial
variability in air pollutant concentrations, allowing commu-
nities to map air quality down to the scale of tens of meters in
a reproducible manner (Apte et al., 2017; Van Poppel et al.,
2013). Expanding fleet-based mobile monitoring will allow
the mapping of much larger spatial regions over longer peri-
ods and with more repetition. This will improve the accuracy
of land use regression models (Messier et al., 2018; Weissert
et al., 2020) and supplement our understanding of air qual-
ity issues in environmental justice regions (Chambliss et al.,
2021).
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One concern with fleet-based mobile monitoring, espe-
cially as it expands to lower-cost and lower-powered in-
strumentation, is maintaining instrument performance (ac-
curacy, precision, and bias) over time in a mobile environ-
ment. While the use of fleets facilitates the scaling of mobile
monitoring to large geographic scales, such as multiple coun-
ties in an urban area or multiple cities across a large state,
coordinating vehicles and drivers across these geographies
makes laboratory-based calibrations costly, time-consuming,
and impractical. Moreover, instrumentation can behave dif-
ferently in a field environment compared with during labo-
ratory testing and calibration (Collier-Oxandale et al., 2020),
making field calibrations or collocations essential for quanti-
tative measurement applications. Field validation usually in-
volves the collocation of one or more test instruments with
reference-grade instruments at a fixed monitoring site, such
as a regulatory site (Li et al., 2022). Frequent collocations
with fixed reference sites have been identified as an impor-
tant component of quality assurance for mobile monitoring
campaigns (Alas et al., 2019; Solomon et al., 2020). Collo-
cated measurements within ongoing campaigns can also be
used to identify potential measurement issues. For example,
Alas et al. (2019) provide an example of how the colloca-
tion of two AE51 black carbon monitors was used to iden-
tify and correct unit-to-unit discrepancies during an ongoing
mobile monitoring campaign. Collocated measurements are
also important for the validation of other emerging measure-
ment technologies, such as lower-cost sensors (Bauerová et
al., 2020; Castell et al., 2017; Masey et al., 2018).

For mobile monitoring applications, parking a mobile plat-
form next to a fixed reference site approximates the colloca-
tion technique for assessing instrument performance. Collo-
cated parking can be incorporated into driving patterns for
large-scale mobile monitoring campaigns. However, park-
ing near a fixed reference site ensures comparability only
at that specific location and only under the specific atmo-
spheric conditions over which the collocation occurred. As
a result, many repeat collocations must be performed, lead-
ing to inefficiencies in data collection and an approach that
is not easily scalable to larger mobile monitoring campaigns.
In addition, natural spatial variability in pollutant concentra-
tions makes the selection of collocation site important (Alas
et al., 2019; Solomon et al., 2020), which can often prove
restrictive for extended monitoring campaigns. In addition,
strong agreement between measurements when collocated at
a fixed reference site may not translate directly into accuracy
and precision in other environments (e.g., Castell et al., 2017;
Clements et al., 2017).

Ongoing mobile (“in motion”) comparisons with fixed ref-
erence sites are more scalable than frequent side-by-side
parked collocations and could provide an important tool
for ongoing instrument performance assessments during ex-
tended mobile monitoring campaigns. If collocation compar-
isons can be extended out to kilometer scales and spread
across multiple fixed reference sites over the course of a sin-

gle campaign, the number of data used to evaluate the mo-
bile measurements will be increased, the dynamic range of
the pollutant concentrations being measured will be larger,
and more time can be dedicated to meeting the mobile mon-
itoring data objectives. In this study, we compare mobile
air pollution measurements to fixed-reference-site measure-
ments from both parked and mobile collocations during the
same campaign. The objective is to determine if changes in
instrument performance, such as bias, can be identified in
mobile collocations to a similar degree to those from sta-
tionary collocations. We will look at using mobile–fixed site
comparisons as a function of road type and distance between
the vehicle and the fixed reference site and compare them to
the parked comparisons.

If mobile collocation is able to quantitatively assess bias
in mobile instrumentation, it would allow easier detection
of instrumental drift over time or sudden changes in instru-
ment performance that could indicate a malfunction. This
methodology will not serve as a calibration of the mobile
platform or replace traditional calibration and quality assur-
ance techniques; rather, it is meant to supplement traditional
techniques to allow earlier identification of measurement is-
sues during ongoing mobile monitoring campaigns. We ex-
plore the concept of mobile collocations using fast-response
(1 or 0.5 Hz), laboratory-grade air pollution monitoring in-
strumentation which is independently calibrated and subject
to strict quality assurance. This allows us to explore the im-
pact of spatial variability in pollutant concentrations and op-
erational differences in the mobile–fixed site comparisons
without being limited by instrument accuracy or precision
concerns. This will help us to understand the strengths and
limitations of these methods and to quantify the magnitude of
biases that could be detected using these methods. This work
could be expanded in the future to midrange instrumentation
and smaller-scale sensors of various pollutants and further
developed into a scalable approach for ongoing instrument
performance assessment during fleet-based mobile monitor-
ing campaigns where frequent in situ calibrations of sensors
using traditional methods is not feasible.

For this study, we focus on the pollutants ozone (O3), ni-
trogen dioxide (NO2), and nitric oxide (NO). This decision
is largely based on the availability of both mobile and fixed-
reference-site data for the two studies that we analyze. O3
and NO2 are “criteria” pollutants with adverse health effects
that are measured and regulated by the United States Envi-
ronmental Protection Agency (US EPA), and all three species
are commonly measured at air quality monitoring sites in the
USA and other countries. The data collected in this study
come from two mobile monitoring deployments: one in Den-
ver, CO, USA, in 2014 and one in the San Francisco Bay
Area, CA, USA, in 2019–2020. The first study included both
parked and mobile collocations and allows a direct compari-
son of the two techniques, whereas the second study contains
a larger dataset that permits a deeper exploration of the rela-
tionship between distance and temporal aggregation scales
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for optimizing the comparisons. We also demonstrate a real-
world application of the method to detect drift in an NO2 sen-
sor deployed as part of Aclima’s collection fleet. Finally, we
discuss the results within the context of the spatial hetero-
geneity of the observed pollutants and the implications for
extending the approach to additional pollutants not included
in this study.

2 Instrumentation used in this study

We analyze measurements from several different vehicles
equipped with an Aclima mobile laboratory measurement
and acquisition platform (Aclima Inc., San Francisco, CA,
USA). These measurements come from two separate deploy-
ments at different locations and during different time pe-
riods. For the first deployment, three Google Street View
(gasoline-powered Subaru Impreza) cars were outfitted with
the Aclima platform in Denver, CO, USA, during the summer
of 2014 (Whitehill et al., 2020). The second set of data comes
from Aclima’s Mobile Calibration Laboratory (AMCL), a
gasoline-powered Ford Transit van that we deployed in the
San Francisco Bay Area of California in 2019–2020. Aclima
designed the AMCL to support the field calibration of their
sensor-based Mobile Node (AMN) devices for deployment
in the Aclima mobile monitoring fleet. In both studies, the
mobile platforms were equipped with high-resolution (0.5 or
1 Hz data reporting rate), reference-grade air pollution instru-
mentation to measure O3, NO2, and NO. Additional mea-
surements, including black carbon (BC), size-fractionated
particle number (PN) counts, and other species were also
measured during these campaigns but are not discussed in
this publication. For this paper, we focus on measurements
that had equivalent mobile and fixed-reference-site measure-
ments for both studies. A critical part of this work is our com-
parison of parked and mobile collocations during the 2014
Denver study, for which we had 1 min averaged reference
site data for O3, NO2, and NO but not the other measured
species.

O3 was measured using ultraviolet (UV) absorption with a
gas-phase (nitric oxide) O3 scrubber for the ozone-free chan-
nel (Model 211, 2B Technologies). This technology reduces
some of the volatile organic compound (VOC) interferences
observed in other UV photometric ozone monitors (Long et
al., 2021) and has been designated as a federal equivalent
method (FEM) by US EPA (2014). The 2B Model 211 only
reports ozone at 2 s intervals, so ozone was measured and
reported as 2 s averages for the Denver study. For the Cali-
fornia study, all ozone data were averaged up to 10 s aver-
ages during initial data collection, so 10 s averaged data are
used for the analysis. NO2 was measured using cavity atten-
uated phase shift (Model T500U, Teledyne API) and repre-
sents a “true NO2” measurement (Kebabian et al., 2005). The
Teledyne API Model T500U has been designated as an FEM
by US EPA (2014). NO was measured using O3 chemilu-

minescence (CLD 64, Eco Physics), which is a recognized
international standard reference method for measuring NO
(e.g., EN 14211:2012). NO and NO2 are both measured as
1 s averages in both studies. These instruments have all been
evaluated by strict test criteria and are recognized as refer-
ence methods by various regulatory agencies; however, the
reference method designations do not apply to the applica-
tions (mobile monitoring) and timescales (1 s to 1 h) assessed
here. These instruments were chosen for their demonstrated
excellent data quality and performance to serve as a mobile
reference for calibration purposes. It is important that we as-
sess these methods using reference-grade equipment so we
can focus on variability due to spatial heterogeneity instead
of instrument issues. If the methods that we develop here are
successful with reference-grade equipment, they can be used
to evaluate the performance of low-cost sensors, which might
not meet the same strict regulatory standards at present but
can still provide valuable data in smaller, lower-power, and
lower-cost form factors (Castell et al., 2017; Clements et al.,
2017; Wang et al., 2021).

3 Mobile platforms parked at fixed reference sites in
Denver (2014)

3.1 Methods

We begin the analysis with the comparison of measurements
from a parked mobile platform to those at a nearby fixed
reference site. For this analysis, we use data from a mobile
measurement campaign that occurred in Denver, CO, USA,
during the summer of 2014. Professional drivers drove three
identical mobile air pollution monitoring platforms, consist-
ing of specially equipped Google Street View cars, through
the Denver, CO, greater metropolitan region between 25 July
2014 and 14 August 2014. The project goals were to eval-
uate the performance of the mobile monitoring platforms
and to develop methods for assessing data quality and plat-
form comparability. The three cars drove coordinated routes
in a 5 km area around several regulatory monitoring sites
in the Denver, CO, area as well as driving around larger
(10 km) areas to understand the variability in air pollutants
at different spatial scales. At several planned periods dur-
ing the study, the drivers were instructed to park one or
more of the cars near one of the fixed regulatory monitor-
ing sites in the region. These parked collocations were in-
tegrated into the experimental plan to facilitate the assess-
ment of the data quality of the mobile platform by compari-
son to fixed-reference-site measurements. The parked collo-
cations lasted about 20 min each and included comparisons at
the Colorado Department of Public Health and Environment
(CDPHE) CAMP (39.751184° N, 104.987625° W) and La
Casa (39.779460° N, 105.005124° W) sites. The drivers were
instructed to park as close as possible to the site but were re-
quired to park in an available public parking space on a pub-
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lic street. These restrictions limited how close each car could
get to the reference site for each collocation and resulted in
individual parked collocation locations ranging in distance
from the regulatory stations, as shown in Fig. 1. In addition,
the drivers were instructed to park facing into the wind when
possible to minimize the influence of self-sampling, which
posed additional restrictions. A visual screening did not re-
veal any suspected self-sampling periods, so no additional
attempts were made to identify or remove such periods. Ad-
ditional details about the monitoring campaign can be found
in the Supplement and in Whitehill et al. (2020). The CD-
PHE reported hourly federal reference method (FRM) and
FEM measurements of O3, NO2, and NO, and also reported
1 min time resolution data for our study period as part of the
2014 DISCOVER-AQ field campaign (https://www-air.larc.
nasa.gov/missions/discover-aq/discover-aq.html, last access:
9 May 2024).

Aclima staff performed quality assurance evaluations on
the instruments daily in the field and after the study in the
Aclima laboratory. Flow rates remained within instrument
specifications throughout the study. We used instrument re-
sponses to zero air (from a zero-air cylinder) to apply a study-
wide zero offset for each instrument on each car. Results
from daily span checks for NO (360 ppbv) and O3 (80 ppbv)
did not drift beyond the instruments’ specifications during
the study, so no adjustments were made to instrument span
values during the study. All calibrations were performed
“through the probe” by connecting a dilution gas calibrator
to the sample inlet in a vented tee configuration. A certified
NO gas cylinder was diluted by zero air to provide a 360 ppbv
NO span gas for the NO instrument, and a certified O3 gener-
ator was used to produce 80 ppbv O3 for the O3 span checks.
We calibrated the NO2 instrument before and after the study
in a laboratory but only performed zero checks on the NO2
instruments in the field.

The bias of the O3 instruments varied between 3 % and
6 % with a standard deviation of 5 %. The bias of the NO
instruments varied between 3 % and 8 % with a standard
deviation of 6 %. Field bias measurements are based on
span checks assuming the linearity of the instrumentation re-
sponse across the measurement range, which was confirmed
in laboratory multipoint calibrations. At the mean observed
concentrations during the study (33 ppbv O3 and 53 ppbv
NO), the error in span measurements translates to an average
bias and precision of 2 ppbv for O3 and an average bias and
precision of less than 4 ppbv for NO. The NO standard gas
had a concentration uncertainty of ±2 % (EPA protocol gas
grade). Mass flow controllers in the dilution calibrator were
within their certification period and had a specified accuracy
of ±3.6 % at the conditions used to generate the span gases.
The accuracy of the O3 generator was±1 % and was certified
less than 3 months before the study. We attempted to perform
gas-phase titration to produce NO2 span gases in the field,
but technical issues prevented us from performing accurate
daily span checks on NO2. We did not observe any drift in

the NO2 instruments between the pre-campaign calibration
and the post-campaign calibration of the NO2 instruments,
so we assumed the calibration of the NO2 instrumentation
was constant throughout the campaign period.

At least one of the cars was parked at the CAMP site
(within 85 m) for 15 time periods during the study (Table S1
in the Supplement) and at the La Casa site (within 150 m)
for 16 time periods (Table S2 in the Supplement). We previ-
ously compared measurements among the three equivalently
equipped cars (Whitehill et al., 2020) and determined that
1 s NO2 and O3 measurements agreed to within 20 % dur-
ing a day of collocated driving. NO measurements showed
higher variability, likely reflecting hyperlocal differences in
NO concentrations from exhaust plumes, but were still within
20 % about one-third of the time. A similar comparison of
two Aclima-equipped Google Street View cars in San Fran-
cisco and Los Angeles also showed excellent car-versus-car
comparability (Solomon et al., 2020). For the purposes of the
present analysis, we assume that the data from the three cars
are equivalent and interchangeable.

We aggregated all the data up to 1 min averages (using a
mean aggregating function) to put the car measurements on
the same timescale as the 1 min DISCOVER-AQ measure-
ments reported by CDPHE for the CAMP and La Casa sites.

3.2 Results and discussion

Figure 2 shows scatterplots comparing 1 min O3, NO2, NO,
and OX (O3+NO2) for the parked cars versus the fixed refer-
ence sites (black circles); it also displays the period-specific
mean data (yellow circles) and the one-to-one (1 : 1) line
(dashed line). OX was included in the analysis because it is
more likely to be conserved in fresh NOX emission plumes
(assuming most of the NOX is emitted as NO) than O3 or
NO2 separately. We calculated the period-specific means by
averaging the discrete 1 min measurements over the con-
tinuous measurement periods that the cars were parked at
the fixed reference site (Tables S1, S2). We also calculated
period-specific medians in a similar way and computed or-
dinary least-squares (OLS) regression statistics for the 1 min
data, the period-specific means, and the period-specific me-
dians (Table S3 in the Supplement).

Figure 2 shows relatively good agreement in the 1 min ob-
servations between parked mobile and stationary reference
measurements of O3 and NO2 (and OX), despite some scat-
ter in the relationship. The agreement for NO is poor rel-
ative to that for the other pollutants. The coefficient of de-
termination (r2) values are highest (in descending order) for
O3, NO2, and NO (see Table S3). With the exception of O3,
the linear regression statistics, such as slope and intercept,
did not provide an accurate assessment of bias due to the
influence of outlier points on the OLS regression statistics,
as evidenced by the relatively low r2 (for NO2 and NO in
particular). This relationship is consistent with the expected
trends in spatial heterogeneity between the three pollutants
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Figure 1. Satellite view of the area in the immediate vicinity of the La Casa (left) and CAMP (right) regulatory sites. The blue markers denote
the regulatory sites and the red shaded areas indicate the range of areas where the vehicles parked during most of the parked collocation
periods. Car-to-site distances varied from 80 to 145 m for the La Casa site and from 10 to 85 m for the CAMP site. (Not shown are two
periods during which the cars parked at the CAMP site just north of the map due to a lack of street parking closer to the site).

Figure 2. Scatterplots of 1 min (black dots) and period mean (yellow dots) car measurements (O3, NO2, NO, and OX) versus fixed-reference-
site (La Casa or CAMP) measurements during the stationary collocation periods. A black dashed 1 : 1 line is provided for reference.

(Sect. 7) and illustrates how there can be significant vari-
ability in the 1 min differences between parked mobile and
stationary measurements. The r2 does improve somewhat
when using the period-specific aggregates (mean and me-
dian; Table S3), suggesting that temporal aggregation can re-
duce some of the variability in the difference and improve the
comparisons.

In order to minimize the impact of scatter in the mea-
surements further, we also looked at the statistics of
1 min mobile–fixed-site differences, here denoted as 1X =

Xmobile platform−Xreference site. We looked at the mean (i.e.,

mean bias error), median, standard deviation, and 25th and
75th percentiles of the 1X distributions (Table 1). The mean
and median of the 1X values effectively aggregate the ob-
servations across all of the parked collocation periods and
are a more direct assessment of systematic offset bias than
the slope and intercept of the OLS regressions (especially for
NO2 and NO). This is due to the high sensitivity of the OLS
regression statistics to outlier points. Given that the measure-
ments are made under nonideal conditions, such as the on-
the-road, parked (nearby but not spatially coincident) collo-
cations where spatial variability in pollutant concentrations

https://doi.org/10.5194/amt-17-2991-2024 Atmos. Meas. Tech., 17, 2991–3009, 2024



2996 A. R. Whitehill et al.: Instrument performance assessment using mobile and stationary monitoring data

at fine spatial scales appears to be significant, a few extreme
outlier points might occur that will skew the OLS statistics
but will have less influence on the 1X statistics. For the ease
of discussion, in this and subsequent sections, we refer to
these 1X values generally as “bias”, which includes both
spatial and measurement bias.

From Table 1, NO2 shows excellent agreement between
the mobile platforms and the fixed reference sites. Mean and
median bias values for NO2 were within 1.0 ppbv of 0 for
both the CAMP and La Casa sites. O3 shows a minor (but
persistent) offset of around 3 ppbv for both sites, which is
also apparent from the scatterplots (Fig. 2). Both the 25th
and 75th percentiles for 1O3 were negative as well, suggest-
ing a real differences in the ozone measurements between
the mobile platform and the fixed reference site. The OX bi-
ases were similar to the sum of those for O3 and NO2, as
anticipated from our definition of OX. Although the median
NO bias for the La Casa site was small (1.9 ppbv), the mean
bias for the La Casa site and the mean and median biases
from the CAMP site were significantly larger, with values
between 5.1 ppbv (for the La Casa mean) and 14.2 ppbv (for
the CAMP mean).

The La Casa site is located over 80 m from the nearest
street in a predominantly residential neighborhood (Fig. 1).
The CAMP site, in contrast, is located within meters of the
intersection of two major roads (Broadway and Champa St.)
and is surrounded by commercial properties. The influence
of concentrated direct emission plumes at the mobile plat-
form are a primary source of discrepancies between the mo-
bile platform and the fixed reference site. The relative biases
in instrument calibration and differences in concentrations
due to the relative proximity of the two instruments to pass-
ing emission plumes may also contribute to the discrepancy.
From the combined time series of all collocations (Figs. S4
and S5 in the Supplement), short-term peaks in NO and NO2
are present in the mobile-platform measurements but not in
the fixed-reference-site measurements. This reflects the im-
pact of emission plumes from local traffic. The traffic in-
fluences are particularly noticeable at the CAMP site, re-
flecting its location at a major intersection. While we can-
not rule out self-sampling of exhaust from the mobile plat-
form, the higher frequency of plume events at the CAMP
site compared with the La Casa site suggests that local traffic
emissions are the primary source of the observed pollution
plumes.

The parked collocation results support the assessment of
instrument bias; however, the influence of local traffic emis-
sions on the collocation does result in nonoptimal conditions.
Temporal aggregation can smooth some of the outlier points
and make the results more reflective of real measurement dif-
ferences; nevertheless, parametric regression statistics will
still be biased by the influence of outlier points. Although
it is possible to impose strict collocation criteria for parked
collocations that would limit the influence of local emissions,
the operational constraints during large-scale mobile moni-

toring campaigns often necessitate the use of publicly acces-
sible sites for frequent collocations. As most scalable parked
collocation solutions are likely to be affected by traffic emis-
sions, expanding to allow the use of additional data while
driving in the vicinity of the fixed reference station should be
explored as a viable alternative. Mobile collocations have the
added advantages that spatial biases are averaged out by the
motion of the mobile platform through space, effectively al-
lowing each mobile data point to sample a larger (and, by
extension, more representative) amount of air in the same
sampling duration (e.g., Whitehill et al., 2020). For exam-
ple, a car traveling 25 ms−1 will “sweep” an additional area
of 1500 linear meters in 1 min compared with the station-
ary sampling. Thus, regardless of the wind speed, a mov-
ing platform will integrate each measurement over a larger
area than a stationary platform, making each emission point
source have less direct influence on the entire integrated mea-
surement.

4 Mobile platforms driving around a fixed reference
site in Denver (2014)

4.1 Methods

To assess the performance of a mobile collocation approach,
we used all the measurements (stationary and moving) col-
lected during the 2014 Denver study, employing the parked
collocation results as a point of reference. We associated
the raw 1 Hz car data with the nearest road using a modi-
fied “snapping” procedure (Apte et al., 2017); utilizing the
aforementioned procedure, we associated each mobile data
point with the nearest road segment whose direction was
within 45° of the car’s heading. We assigned each 1 Hz data
point to one of four different road types (“Residential”, “Ma-
jor”, “Highway”, or “Other”) based on the OpenStreetMap
(OSM) road classifications of the nearest road segment iden-
tified during the snapping procedure (Table S4 in the Supple-
ment). We also created an aggregate “Non-Highway” road
class, which consisted of roads in the Residential, Major,
and Other road classes (i.e., everything not classified as a
Highway). Based on our results from Sect. 3, we believe
that the measurements made on Residential roads will gen-
erally have lower traffic, and thus stronger agreement with
measurements at most fixed reference sites. While traveling
on high-traffic roads (such as highways), the cars are more
likely to be impacted by direct emission plumes. In effect,
we are assuming that the OSM road classifications is a gen-
eral proxy for the on-road traffic volume. In addition to road
type, we anticipate that the distance between the fixed refer-
ence site and the mobile platform will affect the comparisons,
with the closest agreement when the distances are small. Al-
though more sophisticated methods are possible to identify
and remove high-traffic roads, OSM road classifications are
a general proxy that can be applied algorithmically over a
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Table 1. Statistics of 1 min 1X comparisons for the stationary collocated periods. Units are parts per billion by volume (ppbv). SD is standard
deviation, P25 is the 25th percentile, and P75 is the 75th percentile.

La Casa CAMP

Mean Median SD P25 P75 Mean Median SD P25 P75

1O3 −3.6 −2.8 3.3 −5.3 −1.2 −4.3 −3.4 6.9 −6.5 −0.5
1NO2 0.0 −0.9 5.5 −3.0 2.6 1.0 0.5 7.6 −2.8 3.8
1NO 5.1 1.9 8.8 0.9 5.9 14.2 6.8 22.0 1.6 19.7
1OX −3.6 −3.8 5.6 −6.8 −1.1 −3.2 −2.7 8.2 −6.7 1.4

large portion of the Earth. In contrast, local traffic count data
are more sporadic and not always available or easily accessi-
ble for the region of interest.

We looked at the mean and median biases and coefficients
of determination for measurements made by the cars versus
those at the La Casa site. We broke down the analysis by
road class and distance buffer, starting at a distance buffer of
500 m and expanding out in 250 m increments. Our goal was
to explore how the central tendency of the bias distribution
was affected by the cars’ distance from the La Casa site as
well as by the impact of different road types. We also present
(in the Supplement) scatterplots and linear regression statis-
tics for five discrete buffer distances (100, 300, 1000, 3000,
and 10 000 m) and the five different road classes.

4.2 Results and discussion

There are fundamental differences between the in-motion
collocations discussed in this section and the parked collo-
cations discussed in Sect. 3. These differences have impli-
cations for the interpretations of central tendency (mean or
median) bias values and r2 values. In general, the mean and
median bias values from both stationary and in-motion collo-
cations can reflect both measurement bias as well as persis-
tent spatial differences, especially when the instrument inlets
are not located at the exact same location. The r2 values gen-
erally reflect the variability between the mobile and station-
ary measurements that results from a combination of mea-
surement precision as well as true spatiotemporal variability.
Spatiotemporal variability, in this context, refers to differ-
ences in space at the same instant in time, rather than spa-
tial differences that persist over time and are apparent with
aggregation over time, which we refer to as systematic spa-
tial bias. At any given instant, the differences between mobile
and stationary measurements of different air parcels in differ-
ent locations are effectively random due to variability in wind
direction, wind speed, atmospheric turbulence, and emission
rates, among other factors. These factors influence the col-
lection of comparison data points for use in the estimate of
r2. For the in-motion observations, both the bias values and
the r2 values reflect additional sources of spatial variability
that need to be considered compared with the parked colloca-
tions. This is due to the wider range of distances (up to 5 km),

varying road types and associated traffic patterns, and poten-
tially different spatial distributions of nonmobile sources in
the wider areas covered. As discussed in Sect. 3, r2 values
vary depending on the pollutant measured and can be quite
low, even for parked collocations. As a result, we conclude
that r2 would not be a good indicator of instrument perfor-
mance (i.e., precision error) and that using a parametric lin-
ear model to attribute gain and offset instrument biases sep-
arately is not possible, particularly for NO and NO2. There-
fore, the inclusion of r2 in this section is primarily as context
for understanding random spatiotemporal variability (as de-
scribed above) in the comparisons. The focus of this section
is to characterize the dimensions over which these spatiotem-
poral differences, both random and systematic, manifest in
the data. By doing so, we hypothesize that we will be able
to isolate the conditions under which the variability in bias
values can be expected to reflect variability in measurement
bias between the mobile and stationary monitors. In partic-
ular, we are looking for an optimal operational method for
mobile collocation that provides comparable results to that
determined from the parked collocations.

The mean and median bias values and r2 values for the
car–La Casa comparisons are shown as a function of buffer
distance and road type in Fig. 3. Note here that, for each
distance D, we include all data points within a distance of
D from the stationary site, so we are not explicitly showing
how bias varies with distance from the stationary monitors.
We also display the results from the stationary collocation
analysis (Sect. 3) to demonstrate the similarity between the
mean and median biases and r2 values from the stationary
collocations alongside those from our expanded analysis in
this section. Because measurement bias is not expected to
correlate with the spatial dimensions featured in these anal-
yses, the difference between road types and with varying
distances from the site can be interpreted purely as persis-
tent spatial differences. As shown in Fig. 3, measurements
from the Highway road class resulted in a significantly higher
magnitude of bias compared with other road types, indicating
a larger influence of direct emission plumes increasing the
variability in concentrations measured on Highways (with
respect to the stationary-site measurements) than for other
road types. The r2 values on Highways are generally lower
than on other road types, indicating that there is higher ran-
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dom variability on Highways compared with the stationary-
site measurements. Differences in bias and r2 between Ma-
jor and Residential road types are significant in some cases
and less so in others, depending upon the pollutant and the
distance. However, even in cases where the differences are
significant (e.g., NO2 at distances greater than 1000 m), the
magnitude of the bias for Major roads is only a fraction of
that from Highways. As discussed above, the degree of bias
and random spatial variability between the mobile measure-
ments and the fixed reference sites are primarily impacted
by the direct emission plumes on the roadway. We antici-
pate that Highways have higher traffic and a higher fraction
of more heavily polluting vehicles (e.g., heavy-duty trucks),
which explains the larger magnitude of bias and lower r2

values. Roads with lower expected traffic volumes and less
heavy-duty vehicles, such as Residential roads, have a lower
magnitude of bias.

For all road types, the bias between the mobile measure-
ments and the reference site is lowest (and r2 is highest) for
distance buffers closest to the site. For the Residential road
class, the bias between mobile collocation and parked col-
location changes very little as the distance buffer increases
for all species. The bias for observations collected on Ma-
jor and Highway road types generally increases as additional
samples are included at greater distances from the site.

When considering the results of bias by road type and dis-
tance class, it is important to note that the distribution of
road type varies by distance. This is indicated by the num-
ber of data points (N ) by road type as a function of distance
in Fig. 3. The La Casa site is in a residential area, so most of
the roads within 500 m of the site are Residential. The desig-
nated drive patterns near the La Casa site resulted in most of
the mapped roads within 2 km of the site being a combination
of Residential and Major road types. Further away from the
La Casa site, the roads consisted of a larger fraction of Major
roads and Highways that were used to commute between the
different areas where the denser mapping occurred.

For both Major and Residential road types, the bias and
r2 values tend towards the values from the parked colloca-
tions as the buffer distance decreases in most cases. Note
that most of the mobile-to-stationary data within 1 km of the
La Casa site were measured on the same days and generally
within a 2 h window of the stationary collocation data. For
NO and NO2, there are some slight differences between the
parked collocation results and the 500 m buffer distance, with
slightly higher bias on Major roads compared with the parked
collocations. For NO and NO2, this indicates an increase
in the systematic spatial bias when in motion on nearby
Major roads compared with when parked as well as mini-
mal differences in random variability. These results highlight
the potential of in-motion mobile collocation compared with
parked collocations in reducing the random variability, espe-
cially on Residential roads in the immediate vicinity of the
stationary site. In general, however, there is remarkable con-
sistency between the in-motion and parked collocation re-

sults for all pollutants when Highways are removed from the
dataset. Depending upon the target quality assurance guide-
lines of the study, there might be significant advantages to
using in-motion mobile collocations instead of parked col-
locations to determine changes in mobile versus stationary
measurement biases.

Scatterplots of the 1 min mobile-platform measurements
versus the 1 min La Casa measurements are shown in the
Supplement for O3 (Fig. S6), NO2 (Fig. S7), NO (Fig. S8),
and OX (Fig. S9). These are shown, along with OLS linear re-
gression statistics, for each individual road class and for dis-
tance buffers of 100, 300, 1000, 3000, and 10 000 m. As with
the stationary collocation scatterplots (Fig. 2), these show the
best agreement (i.e., closest to the 1 : 1 line) for O3 and OX,
with moderate agreement for NO2 and the worst agreement
for NO. As suggested above, the regression statistics (slope
and intercept) appear to be a poor indicator of agreement, es-
pecially for directly emitted species like NO (and, to a lesser
degree, NO2). Therefore, we focus our analysis on the cen-
tral tendency metrics of the bias and the r2 values, as shown
in Fig. 3.

One final consideration for interpreting the impact of spa-
tial variability in the Denver dataset is the impact of temporal
aggregation. The availability of data from a fixed reference
site at 1 min time resolution was unique to the experimen-
tal study in Denver, with additional instrumentation added to
support the research objectives of the 2014 DISCOVER-AQ
experiment. Data from regulatory monitoring stations in the
USA are typically only available at 1 h time resolutions, and
these are the data that we had available for the California
dataset in Sect. 5. For mobile collocations to be broadly ap-
plicable to large-scale mobile monitoring applications, it is
important to assess how the results change when the mobile
data are compared with 1 h stationary data. We averaged the
mobile data by taking the mean of 1 s measurements within
each hour-long period that fit the appropriate road type and
buffer distance criteria. Figure 4 compares the results of the
1 h aggregated comparisons to the 1 min comparisons as a
function of buffer distance for the Non-Highway road class.
Generally, the results for the 1 min and 1 h aggregation are
similar in terms of both bias and r2. For O3 and OX, the dif-
ferences are minor. For NO2 and NO there is a slight increase
in the median bias as well as an increase in r2 for the 1 h com-
parisons versus the 1 min comparisons. The r2 at 1 h for NO2
and NO is variable as a function of the distance buffer, likely
due to the limited size of the dataset and the variable distribu-
tion of road type with distance, so this may not be an accurate
assessment. The increases in r2 for NO2 and NO suggest that
there is a modest reduction in the impact of random spatial
variability at hourly aggregations; however, the increase in
bias suggests that there is additional apparent bias as a re-
sult of the aggregation. This could be due to the incomplete
hourly aggregates from the mobile platform being compared
to the full hourly observations from the stationary site. How-
ever, the Denver dataset is too limited to explore this hypoth-
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Figure 3. Mean and median 1X, coefficient of determination (r2), and number of data points (N ) for 1 min car–La Casa comparisons as a
function of the maximum distance between the car and the La Casa site. Results from stationary collocations (Sect. 3) are shown as black
dots, whereas different road classes are shown using different colors.

esis adequately. The number of data points per hourly mobile
collocation will be explored more thoroughly in Sect. 6.

5 Mobile platforms driving around fixed reference sites
in California (2019–2020)

5.1 Methods

Aclima-operated fleet vehicles are equipped with a mo-
bile sensing device, the Aclima Mobile Node (AMN),
which measures carbon monoxide, carbon dioxide, O3, NO,
NO2, PM2.5, and total VOCs. The AMN devices are cal-
ibrated using the Aclima Mobile Calibration Laboratory

(AMCL), a gasoline-powered Ford Transit van equipped
with laboratory-grade air pollution measurement instrumen-
tation. The AMCL was driven around the San Francisco Bay
Area of California to calibrate the sensors within the AMN
devices through comparison of the AMN sensor response
with the laboratory-grade equipment collocated in the same
van. The laboratory-grade instrumentation in the AMCL is
calibrated regularly using reference gases to maintain bias
and precision objectives. The calibration procedures have
been described in Solomon et al. (2020). Bias and precision
results across approximately 25 zero and span checks are
shown in Table 2. At the average concentrations observed
during the study (11.9 ppbv for NO2, 31.1 ppbv for O3, and
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Figure 4. Mean and median 1X and coefficient of determination (r2) for 1 min and 1 h car–La Casa comparisons as a function of the
maximum distance between the car and the La Casa site. Results from stationary collocations (Sect. 3) are shown as black dots. All Non-
Highway roads are included in this analysis.

Table 2. Precision and bias of measurements in the AMCL from ap-
proximately 25 quality assurance (QA) checks during the San Fran-
cisco Bay Area study period. Each QA check consisted of a zero
and span point for each pollutant.

Pollutant Bias Precision

Zero Span Zero Span

NO2 (ppbv) 0.3 5.6 % 0.2 4.3 %
NO (ppbv) 0.7 4.4 % 0.3 4.4 %
O3 (ppbv) 0.5 2.5 % 0.4 2.0 %

11.9 ppbv for NO), the bias and precision in the span trans-
lates to less than 1 ppbv for all three pollutants.

As part of the validation process, the AMCL regularly
drives around several Bay Area Air Quality Management
District (BAAQMD) regulatory monitoring sites (Fig. 5).
These BAAQMD sites are equipped with EPA-approved
FRM and FRM measurements of NO, NO2, and O3 (or a
subset of these species), in addition to other pollutants. We
present an analysis comparing the AMCL reference mea-

surements with BAAQMD reference measurements between
November 2019 and October 2020. All measurements within
10 km of the regulatory sites were included in the dataset
used for analysis, as displayed in Fig. 5.

The dataset included comparisons to 19 different
BAAQMD sites that represent several spatial representative-
ness scales (40 CFR 58 Appendix D; Ambient Air Quality
Surveillance, 2024). Most of the data were collected near the
Livermore, San Francisco, and West Oakland sites. These
three regulatory stations are specifically labeled in Fig. 5,
and details of the road locations and road types mapped
around each site are shown in Fig. 6. Aclima selected these
three stations to represent different climatological and land
use regimes in the San Francisco Bay Area. The San Fran-
cisco station is in a warm-summer Mediterranean climate
with marine influence, cool winds, and fog in summer; little
overall seasonal temperature variation; and mixed-residential
with light industrial land use. The Oakland station has a
warm-summer Mediterranean climate with marine influence,
overnight fog in the summer, and mixed industrial and res-
idential land use. The Livermore station has a hot-summer

Atmos. Meas. Tech., 17, 2991–3009, 2024 https://doi.org/10.5194/amt-17-2991-2024



A. R. Whitehill et al.: Instrument performance assessment using mobile and stationary monitoring data 3001

Figure 5. Driving patterns around regulatory sites (red stars) in the San Francisco Bay Area. The circles delineate a 10 km radius around
each regulatory station. The roads within each circle shown in blue are roads with measurements used in the analysis.

Mediterranean climate, inland with some marine influence,
and predominantly residential land use; it is also upwind of a
large fraction of the urban Bay Area emissions. In contrast to
the mapping performed in Denver, measurements near these
three monitoring sites generally involved mapping a signifi-
cant fraction of the roads near the site (Fig. 6). Measurements
near other regulatory sites are also included and were gener-
ally chance encounters due to the AMCL driving past these
sites on its way to its daily mapping assignments, as illus-
trated in Fig. 5. As a result, these data tend to be from High-
ways or Major roads and are not mapped as comprehensively
on a street-by-street basis.

Based on results from the 2014 Denver dataset (Sect. 4),
we focused our analysis on two road-type scenarios –
Residential roads and Non-Highway roads. Because the
BAAQMD measurements, like most regulatory gas-phase
measurements in the USA are reported at a 1 h time reso-
lution, we aggregated each subset of AMCL measurements
up to 1 h using the median as an aggregating function. We
chose to use the median (versus the mean) to minimize the
influence of outliers caused by local traffic emissions. This
is in contrast to Sects. 3 and 4, in which the mean was used
to aggregate the 1 s data up to 1 min or 1 h. In general, us-
ing the median versus the mean produces similar results for
O3, NO2, and OX; however, using the hourly medians ver-
sus means significantly reduces the impact of high-NO out-
liers (peaks) on the NO aggregation. The fraction of each 1 h

collocation period that included measurements fitting the de-
fined criteria varied depending upon the buffer distance and
road-type subset (Figs. S10 and S11 in the Supplement). For
smaller distance buffers (e.g., 100 or 300 m) or more restric-
tive road subsets (e.g., the Residential subset), the distribu-
tion was skewed towards a smaller fraction of measurements
within each hour fitting the criteria for the comparison. For
distance buffers of 1 km or higher on Non-Highway roads,
the distribution was approximately uniformly distributed in
the 0 %–100 % range. No minimum number of data points
was required in each hourly average, such that any individ-
ual hourly aggregate may include anywhere between a few
seconds and a full hour of 1 Hz mobile-platform data.

5.2 Results and discussion

Using the approach described in Sect. 4.2, both the mean and
median bias values and r2 values are shown as a function of
road type and distance buffer from the fixed regulatory sites
in Fig. 7. Similar to Sect. 4.2, we associated the central ten-
dency of the bias to reflect both instrument biases as well as
persistent spatial biases and the r2 values to reflect random
spatiotemporal variability. The California study is bolstered
by a much larger dataset (note that N in Fig. 7 represents
the number of hourly aggregates, whereas the N in Fig. 3
represents the number of 1 min aggregates). This dataset was
also collected over a full year and includes comparisons with
multiple stationary sites. Despite the different geographic lo-
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Figure 6. Detail of the road locations and road types mapped by
the Aclima Mobile Calibration Laboratory around the San Fran-
cisco (top), West Oakland (middle), and Livermore (bottom) reg-
ulatory sites (indicated by red stars) in the San Francisco Bay Area.
Residential roads are shown in purple, Major roads are yellow, and
Highway roads are blue.

cations and scale of data collection between the California
and Denver studies, the general patterns observed in Fig. 7
are highly consistent with the patterns observed in Fig. 3:
for example, the higher magnitude of biases and lower r2

at larger buffer distances and significantly worse agreement
for Highways than other road classes. The California results
do show somewhat higher r2 and a smaller magnitude of bi-
ases in general compared with the equivalent hourly aver-
aged results for the Denver study (i.e., the hourly traces in
Fig. 4). The higher r2, in particular for NO2, could be due
to the larger dataset used, collected over a full year of atmo-
spheric and climatological conditions at multiple sites. This
led to both a more representative dataset and a wider range of
sampled concentrations than the 1-month, single-site Denver
analysis done in Sect. 4. The smaller bias, for O3 and OX,
could be due to better inter-lab comparability in the Califor-
nia dataset, but aggregating data across multiple sites may
also explain a reduction in the systematic bias. For exam-
ple, if one site has a slightly positive bias and another site
has a slightly negative bias (due to monitor siting or site-to-
site calibration variability), those biases will partially cancel
each other out. Variances in traffic patterns, road-type dis-
tributions, and other factors could also influence differences
in biases in different geographic regions or using different
driving patterns, so the range of biases must be measured for
each individual study region and study design.

Figure 7 also shows close agreement between the results
for the Major roads and the Non-Highway roads, reflecting
the large number of Major roads (versus Residential roads)
included in this study compared with Denver. It is interesting
to note that the number of data points (N ) is almost iden-
tical for the Major and Non-Highway road classes. This is
because most hour-long periods that included driving on Res-
idential roads also included driving on Major roads, so those
hour-long periods were counted separately for the separate
Residential and Major road classes but only once for the
Non-Highway road classes. Unlike the Denver dataset, this
dataset shows remarkable consistency in the r2 values be-
tween the Residential, Non-Highway, and Major road clas-
sification subsets, suggesting that large-scale application of
these comparisons provides similar random spatial biases (r2

values) for Residential and Non-Highway roads. As with the
Denver results, there is also minimal variability in these met-
rics with increasing distance buffers up through 3000 m (and
higher).

6 Operationalization of mobile–fixed site comparisons
for ongoing instrument assessment

These results in both Denver and California provide a
blueprint for how operational decisions can be made to effi-
ciently collect collocation data to determine systematic mea-
surement bias while accounting for the trade-offs between
the rate of data collection and uncertainty tolerance to at-
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Figure 7. Mean and median 1X, coefficient of determination (r2), and number of data points (N ) for 1 h AMCL–regulatory site comparisons
as a function of the maximum distance between the AMCL and the regulatory site. Depending upon the buffer distance, the comparisons can
include data for up to 19 BAAQMD regulatory sites. Different road classes are shown using different colors.

tribute changes in 1X to measurement bias. The optimal ap-
proach will balance these trade-offs in a way that maximizes
N , maximizes r2 (i.e., minimizing random spatial variabil-
ity), and minimizes the spatial bias component of 1X. Based
on our results in both Denver and California, it is advanta-
geous to remove Highway road segments from the dataset,
resulting in a decrease in both the random and the persis-
tent spatiotemporal variability with minimal cost regarding
the number of data points collected. Although more com-
plex peak-removal algorithms can achieve similar goals, they
add complexity without necessarily improving the compar-
ison and may add additional arbitrary bias (e.g., “cherry-
picking”) to the resulting comparisons. A major driving fac-
tor for the optimization of the buffer distance and which
Non-Highway road types to include is likely to be the rate
with which a sufficient number of collocation data points can
be collected. For example, consider two end points for this

problem: (1) only Residential roads with a buffer distance
of 500 m and (2) all Non-Highway roads with a buffer dis-
tance of 3000 m. While the Non-Highway roads and large
buffer distance would result in a slightly increased bias and
random variability over the Residential-road-only and small-
buffer-distance scenario, it also is a larger dataset (by a factor
of 2–3) and would allow for the simultaneous mapping of a
larger area to meet the monitoring objectives more efficiently.
Therefore, understanding the impact of the size of the dataset
is a critical first step in understanding how to design an op-
erational strategy to use collocations to assess measurement
bias.

Quantifying the impact of the size of the dataset requires
an analysis along an additional dimension that has not yet
been considered: the uncertainty with which 1X can be de-
termined. While there is likely a close relationship between
the magnitude and the uncertainty of 1X, the uncertainty in
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1X is more important than the absolute value of 1X in the
context of using mobile–stationary comparisons to attribute
changes in measurement bias over time. Assuming that ran-
dom spatial variability is the primary source of error in de-
termining the true systematic spatial bias, the rate at which
collocation data can be collected becomes a factor that may
need to be weighted more heavily than the absolute magni-
tude of the spatial bias. This will be especially true for cases
where r2 is expected to be low (i.e., for NO2 or NO), which
indicates a higher degree of random spatial variability and,
therefore, requires additional data collection to achieve an
equivalent uncertainty reduction in 1X. In the following sec-
tion, we quantify the uncertainty in 1X as a function of the
number of data collected and aggregated.

6.1 Using running median bias values to identify
instrument issues

Here, we explore how the number of data aggregated over
a specified collection time impacts the instrument bias cal-
culated for the instruments that we know have a stable cali-
bration over time. Our objective is to find the minimum tem-
poral window required to determine reasonable uncertainty
bounds for the determination of measurement bias. For the
analysis, we use the California dataset of hourly 1X values
and calculate a running median of hourly median 1X as a
function of the number of hours of data in the running aver-
age, N . We use median 1X, as the results are less affected
by outliers resulting from local emission plumes and, thus,
produce estimates of the bias with smaller magnitude. For
this analysis, we focus on a buffer distance of 3000 m and
all Non-Highway roads, which results in a sufficiently large
dataset to perform this analysis. This scenario is more likely
to be encountered in complex urban environments with var-
ied emission sources than a scenario with a narrower buffer
distance and solely Residential road types. Figure 8 shows
the minimum and maximum bounds for observations of the
running median 1X for the entire dataset as a function of
window size N . Note that each individual 1 h 1X is the me-
dian of 1 s differences during that 1 h time window. There-
fore, we are taking a running median (over individual hours)
of hourly median 1X values. The range between the upper
and lower traces in Fig. 8 provides an estimate of the un-
certainty in median 1X due to random spatial variability,
and thus a measure of the magnitude of change in systematic
measurement bias that we can expect to be observable by this
approach. For each running median window size N , the up-
per and lower traces reflect the respective maximum and min-
imum of the set of running N h medians from this dataset.
As expected, the range of values decreases with increasing
window size, as the influence of random spatial and tempo-
ral variability on the calculated bias is reduced. At around a
30–40 h window size, the range between the minimum and
maximum stabilizes and does not reduce appreciably with
further aggregation.

The number of 1 s data points contributing to each 1 h 1X

value in this analysis is highly variable (Figs. S10, S11). For
data within a 3 km buffer distance, the number of 1 s data
points in each hour aggregate ranges from just a few sec-
onds to a full hour and is fairly evenly distributed. The time-
resolved data from mobile mapping, by nature, can have sig-
nificant temporal and spatial variability, and using only a few
seconds of data to compare to regulatory data with an hourly
time resolution may result in additional noise and perhaps
invalid assessments of instrument bias in the analysis. To ex-
plore the degree to which including hourly aggregates with
only a few seconds of data impact the resulting analysis, we
repeated the calculation with a restriction on the number of
mobile data necessary during each hour-long period for in-
clusion in the analysis. We used completeness criteria of 5
and 10 min, which would require at least 5 min (or 10 min)
of valid data during each hour-long period for that period
to be included in the sample dataset for analysis. Note that
the 5 or 10 min does not need to have been consecutive. Re-
sults are shown alongside the base case (no time-base re-
striction) in Fig. 8. While there are only subtle differences
in the results between the three completeness criteria, the use
of a 5 or 10 min minimum cutoff for each hourly aggrega-
tion does result in the convergence of median 1X values at
somewhat smaller window sizes, particularly for O3. How-
ever, at a rolling window size of around N = 40 h or higher,
the improvement is marginal (e.g., less than a fraction of a
part per billion by volume) in most cases. This analysis has
an important implication for the design of a mobile data col-
lection plan that incorporates monitoring in the vicinity of
stationary monitors for quality assurance purposes while si-
multaneously meeting mobile monitoring objectives. The re-
sults in Fig. 8 imply that spending only 5–10 min, or even
less, within 3 km of a monitoring site can be an effective
collocation data point, and the more critical parameter is the
number of distinct hourly comparisons. This minimizes the
effort needed to collect 40 distinct hours near the monitor-
ing site and, thus, the impact on mobile data collection effi-
ciency in areas of interest farther away from stationary mon-
itors. For the California data used in this analysis, the range
of 1X values of around ± 4 ppbv for O3, NO2, and OX and
± 8 ppbv for NO represent the minimum instrumental drift
that we can expect to detect using this method. This is de-
termined as the range between the upper and lower traces in
Fig. 8 for each pollutant. We find that it is possible to de-
tect this magnitude of instrumental drift over the time that it
takes to collect approximately 40 distinct hourly collocation
data points. The time it takes in practices to acquire a 40 h
median 1X depends heavily on the specific data collection
plan. For our dataset, we have∼ 1600 (for O3) to∼ 1900 (for
NO2) hourly data points in our 3 km Non-Highway dataset
from 1 year of driving in California. For a rolling window
size of 40, this gives an “effective response time” on the or-
der of 1 week (7–9 d), where the response time is the study
period (365 d) divided by the number of discrete hour-long
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Figure 8. Influence of window size on the range (maximum and minimum) of running median 1O3, 1NO2, 1NO, and 1OX values for all
Non-Highway roads within 3 km of a fixed reference site. We show the relationship for three “minimum data” cutoff values – 1 s, 5 min, and
10 min – which define the minimum length of valid data necessary during the hour-long averaging period required to include that hour in the
sample dataset.

periods (1600–1900) multiplied by the rolling window size
(40). This response time is likely atypical, as the objective of
this monitoring plan was specifically to collect data in close
proximity to a predetermined set of stationary monitors. On
the other hand, most typical mobile monitoring deployments
would aim to collect over a much broader area, and there
would be much higher value in collecting in areas farther re-
moved from where stationary monitors exist. Nevertheless,
it does provide a framework for planning purposes. For ex-
ample, if it is desirable to detect instrumental drift over a
quarterly time period, the mobile collection plan would need
to incorporate about three separate visits per week to Non-
Highway roads within a 3 km radius of a stationary moni-
tor. Importantly, these visits do not need to be exclusively 1 h
long visits, and visits of only 5–10 min or even a few seconds
can be viable. While imposing a minimum data completeness
criteria might improve the range of running median 1X val-
ues at lower N values, it comes at the cost of a reduction
in the number of data and, thus, an increase in the effective
response time (for similar values of N ).

Using a running 40 h time window, we show a time series
of hourly median 1O3, 1NO2, 1NO, and 1OX in Fig. 9.
Both the raw 1 h data (red points) and the 40 h running me-

dian (black line) are included. While there is a large degree
of variability for any individual 1X value, the running me-
dian reduces that random variability and provides an estimate
with quantified uncertainty bounds that can be used to iden-
tify drift. For long-term driving campaigns that frequently
pass near stationary monitoring sites, this method appears to
be a practical way to monitor systematic bias in mobile mea-
surements in an ongoing basis. In Sect. 6.2, we apply this
method to an example of two NO2 sensors in Aclima’s mo-
bile fleet to show how this method could identify real drift in
lower-cost sensors.

6.2 Case study: NO2 sensors in Aclima’s mobile fleet

To illustrate how the running median method can be used
to identify drift in sensors deployed for mobile monitoring,
we show an example using NO2 sensors deployed as part
of Aclima’s mobile collection fleet. We analyzed mobile–
stationary differences for two NO2 sensors deployed in two
different vehicles across a multi-month deployment in Cal-
ifornia. In contrast to the AMCL results shown in Sects. 5
and 6.1, these sensors are not regularly calibrated during
their mobile deployments. Instead, they are calibrated ini-
tially via collocation with the reference instruments in the
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Figure 9. Time series of 3 km 1O3, 1NO2, 1NO, and 1OX , showing individual 1 h measurements (red points) and 40 h running medians
(solid line). The right column truncates many of the 1 h measurements and scales the y axis to highlight the range of the running median
values.

AMCL (prior to deployment) and calibrated a second time in
the AMCL at the end of their deployment period. For Sen-
sor A, the original calibration was found to have held well
during the post-deployment calibration check, with a mean
bias of +2.2 ppbv. This was well within our ± 6 ppbv accep-
tance criteria for the NO2 sensor. Sensor B, in contrast, was
found to have a mean bias of −15.5 ppbv during its post-
deployment calibration check, indicating significant drift be-
yond what we consider acceptable performance.

While the sensors are deployed, the only possible in situ
evaluation of the calibration of these sensors was using
mobile–stationary comparisons with fixed reference sites.
Over the course of the deployment for both vehicles, they
made frequent passes within 3000 m of various regulatory
sites. These sites were not specifically targeted; rather, these
encounters occurred over the course of typical data collection
for hyperlocal air pollution mapping. The hour-averaged re-
sults for each of these sensors are shown in Fig. 10 along
with the 40 h running median. The in situ running me-
dian biases compared to the regulatory sites are consistent
with the post-deployment bias determinations, indicating that
mobile–stationary comparisons could be used to detect drift
in mobile NO2 sensors during deployment. In addition, it is
apparent in Fig. 10 that Sensor B had significant discrepan-
cies compared with the fixed reference sites that were out-
side of the expected ± 6 ppbv uncertainties. Therefore, this
method could have been used to identify potential issues
with Sensor B during deployment without waiting until a
post-deployment calibration. While a more detailed analysis

across multiple devices and deployments would be required
to establish this approach as an accepted method, this case
study demonstrates how such an approach might be feasible.

7 Spatial heterogeneity and implications for
applicability to additional pollutants

In this paper, we focus on three major pollutants (O3, NO2,
and NO) with very different behaviors in the atmosphere. O3
is predominantly a regionally distributed secondary pollutant
with high background concentrations and negative deviations
in direct emission plumes, especially those containing NO
(which rapidly titrates O3). NO2 is both a primary and sec-
ondary pollutant that has moderate regional background con-
centrations and falls into the category of a co-emitted pollu-
tant with high regional background (Brantley et al., 2014),
along with species like fine particulate matter (PM2.5) and
coarse particulate matter (PM10). NO is a primary pollutant
with a short lifetime, especially in the presence of O3, and
has high peak concentrations and low background concen-
trations. NO falls into the category of a co-emitted pollutant
with a low regional background (Brantley et al., 2014), which
also includes pollutants such as carbon monoxide, black car-
bon, and ultrafine particles.

In addition to providing valuable insights into deployed
sensor data quality, our analysis also provides information
about the spatial heterogeneity of these atmospheric pollu-
tants and the spatial representativeness of measurements at
stationary sites. If we consider the coefficient of determina-
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Figure 10. Time series of 1 h 1NO2 and 40 h running medians for two sensors (Sensor A and Sensor B) deployed as part of Aclima NO2
sensor deployment. Uncertainty threshold (± 6 ppbv) and post-campaign sensor biases are also shown.

tion (r2) of the mobile–stationary regressions to be a simple
proxy for spatial homogeneity (setting aside the important
temporal component to this variability for now), with higher
r2 indicating a more spatially homogeneous pollutant, then
we conclude that O3 is more spatially homogeneous, NO is
more heterogeneous, and NO2 is between the two. This is
consistent with our understanding of emission sources and
atmospheric lifetimes of these different species under typi-
cal urban conditions. The temporal component of this spa-
tial variability is, of course, a key consideration and, as such,
the linear regressions described by the r2 values (and shown
in Fig. S12 in the Supplement) are sensitive to the spatial
variability within an hourly snapshot, while the relationships
shown in Fig. 8 describe the spatial variability over different
temporal aggregations (i.e., the median window size). The
field of hyperlocal air quality monitoring is predicated on the
fundamental principle that aggregating many samples over
time is required to reduce the impact of temporal variabil-
ity to observe persistent spatial trends in concentration (Apte
et al., 2017; Messier et al., 2018; Van Poppel et al., 2013).
While the hourly variability between mobile and stationary
measurements may be a reasonable proxy for spatial hetero-
geneity, aggregations over longer durations provide a more
accurate measure.

The high degree of correlation between hourly mobile and
stationary measurements might suggest that O3 has minimal
spatial variability. However, our analysis shows that there are
measurable spatial gradients in O3. This is particularly true
for Highways and, to a lesser degree, Major roads, compared
with Residential roads and stationary sites. Figure 3, for ex-
ample, clearly shows observable differences in the mobile
measurements in Denver compared with the stationary mea-
surements, both as a function of distance from the site and as
a function of road type. For this reason, our analysis inten-
tionally removes highways specifically to reduce the influ-
ence of local emission plumes in the dataset so that the mo-

bile to stationary comparison can be more readily indicative
of measurement bias. However, the full dataset could offer a
means to more closely investigate the interplay between the
hyperlocal spatial patterns of these three closely related pol-
lutants (O3, NO2, and NO) and the implications for effective
emissions controls at hyperlocal scales.

This relationship between spatial heterogeneity, mobile–
stationary correlation coefficients, and the practicality of
using mobile–stationary comparisons as a quality control
method suggests that it is possible to make some educated
assumptions about how other pollutants would behave. For
example, PM2.5 has both primary and secondary sources and
would likely show mobile to stationary correlations similar to
NO2, or possibly O3 in some areas. Conversely, black carbon,
carbon monoxide, or ultrafine particles would likely behave
more similarly to NO, given their variability in near-source-
area results primarily from direct emissions. While we expect
significant differences in correlation with stationary sites for
different pollutants across the spectrum of spatial variability,
the results in Fig. 8 for NO, NO2, and O3 suggest that all
pollutants would likely follow a similar pattern of decreas-
ing range of 1X with increasing median window size. The
key differences that would be expected for different pollu-
tants would be the optimal median window size (although the
optimal median window size is similar for all three measured
pollutants in this study) and the width of the confidence inter-
vals around the central tendency of the differences between
mobile and stationary measurements and, thus, the magni-
tude of systematic measurement bias that could be detected.

8 Conclusions

In this paper, we address the issue of ongoing quality as-
surance during a large-scale mobile monitoring campaign,
with a focus on discerning changes in instrument perfor-
mance over time during mobile-platform deployment. To as-
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sess instrumental drift over time using any sort of colloca-
tion or sensor–reference comparison, it is first necessary to
constrain the uncertainty inherent in the collocation or com-
parison process. We used a set of parked and moving mo-
bile monitoring data from a 1-month study in Denver, CO,
in 2014 and compared reference-grade NO, NO2, and O3
measurements from a mobile platform to fixed-reference-site
measurements both when the mobile platform was parked
side-by-side with the reference site and when driving at dis-
tances out to several kilometers from the reference site. Us-
ing data from a more extensive, 1-year study in Califor-
nia (starting November 2019), we show large-scale compar-
isons of hourly mean mobile measurements to hourly fixed-
reference-site measurements. We highlight the importance of
grouping data based on street type to reduce the influence of
emission plumes, which are most abundant on highways. We
demonstrate a possible data aggregation technique for large-
scale, long-term comparisons. Hourly averaged regulatory
site data are reported by most state and local air quality mon-
itoring agencies in the USA and many other countries. These
hourly aggregated mobile-platform measurements show ex-
cellent agreement with hourly averaged fixed-site measure-
ments using running medians of moving mobile–fixed-site
differences. The work presented here will be extended in the
future to examine how these methodologies can be used to
assess the ongoing performance of low-cost sensor nodes in
mobile monitoring platforms.

Data availability. The data used in this paper are proprietary and
are owned by Aclima, Inc. Interested researchers are encouraged to
contact Aclima, Inc. for data availability and collaboration opportu-
nities. Additional questions about analysis techniques or code can
be directed to the corresponding author of this paper.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-17-2991-2024-supplement.

Author contributions. ML, SK, and PS: conceptualization; ML and
BL: data curation; AW, ML, and BL: formal analysis; ML, BL, and
PS: funding acquisition; AW, ML, and BL: investigation; AW, ML,
BL, and PS: methodology; ML, SK, and PS: project administration;
ML, BL, and PS: resources; AW, ML, and BL: software; ML, SK,
and PS: supervision; ML, BL, and PS: validation; AW and ML:
visualization; AW, ML, and BL: writing – original draft; AW, ML,
BL, and PS: writing – review and editing.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. This paper was subjected to internal review at the
United States Environmental Protection Agency (US EPA) and has

been cleared for publication. Mention of trade names or commercial
products does not constitute endorsement or recommendation for
use. The views expressed in this article are those of the author(s)
and do not necessarily represent the views or policies of the US
EPA.

Publisher’s note: Copernicus Publications remains neutral
with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical represen-
tation in this paper. While Copernicus Publications makes every
effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The project was conducted in part under a co-
operative research and development agreement between the US
EPA and Aclima, Inc. (EPA CRADA no. 734-13, 13 April 2013, and
Amendment 734-A14, to 13 April 2023). The authors would like to
thank the internal technical and management reviewers from the US
EPA, including Shaibal Mukerjee, Robert Vanderpool, Libby Ness-
ley, Michael Hays, and Lara Phelps, for their excellent suggestions
regarding modifications and improvements to the draft manuscript.
The authors would like to thank US EPA Region 8 for support
of the project in Denver and the data sharing cooperation from
DISCOVER-AQ and the Colorado Department of Public Health and
Environment. We gratefully acknowledge Davida Herzl and Karin
Tuxen-Bettman, for their vision and support, and Christian Kremer,
Matthew Chow, Cassie Trickett, Marek Kwasnica, and the Aclima
Technical Operations Team, for the dedicated support of Aclima’s
data quality operations.

Review statement. This paper was edited by Albert Presto and re-
viewed by three anonymous referees.

References

Alas, H. D. C., Weinhold, K., Costabile, F., Di Ianni, A., Müller,
T., Pfeifer, S., Di Liberto, L., Turner, J. R., and Wiedensohler,
A.: Methodology for high-quality mobile measurement with
focus on black carbon and particle mass concentrations, At-
mos. Meas. Tech., 12, 4697–4712, https://doi.org/10.5194/amt-
12-4697-2019, 2019.

Ambient Air Quality Surveillance, 40 C.F.R. pt. 58, https://www.
ecfr.gov/current/title-40/chapter-I/subchapter-C/part-58 (last ac-
cess: 9 May 2024), 2024.

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstet-
ter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J.,
Vermeulen, R. C. H., and Hamburg, S. P.: High-Resolution
Air Pollution Mapping with Google Street View Cars: Ex-
ploiting Big Data, Environ. Sci. Technol., 51, 6999–7008,
https://doi.org/10.1021/acs.est.7b00891, 2017.
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