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Abstract. A novel atmospheric layer detection approach has
been developed based on deep learning techniques for image
segmentation. Our proof of concept estimated the layering in
the atmosphere, distinguishing between pollution-rich layers
closer to the surface and cleaner layers aloft. Knowledge of
the spatio-temporal development of atmospheric layers, such
as the mixing boundary layer height (MBLH), is important
for the dispersion of air pollutants and greenhouse gases, as
well as for assessing the performance of numerical weather
prediction systems. Existing lidar-based layer detection al-
gorithms typically do not use the full resolution of the avail-
able data, require manual feature engineering, often do not
enforce temporal consistency of the layers, and lack the abil-
ity to be applied in near-real time. To address these limita-
tions, our Deep-Pathfinder algorithm represents the MBLH
profile as a mask and directly predicts it from an image with
backscatter lidar observations. Deep-Pathfinder was applied
to range-corrected signal data from Lufft CHM15k ceilome-
ters at five locations of the operational ceilometer network
in the Netherlands. Input samples of 224× 224 px were ex-
tracted, each covering a 45 min observation period. A cus-
tomised U-Net architecture was developed with a nighttime
indicator and MobileNetV2 encoder for fast inference times.
The model was pre-trained on 19.4× 106 samples of unla-
belled data and fine-tuned using 50 d of high-resolution an-
notations. Qualitative and quantitative results showed com-
petitive performance compared to two reference methods:
the Lufft and STRATfinder algorithms, applied to the same
dataset. Deep-Pathfinder enhances temporal consistency and
provides near-real-time estimates at full spatial and tempo-
ral resolution. These properties make our approach valuable
for application in operational networks, as near-real-time and
high-resolution MBLH detection better meets the require-

ments of users, such as in aviation, weather forecasting, and
air quality monitoring.

1 Introduction

The atmospheric boundary layer (ABL) is the lowest part
of the troposphere which is influenced directly by meteoro-
logical mechanisms near the surface, including heat trans-
fer, evaporation, transpiration, and terrain-induced flow mod-
ification (Stull, 1988). Various sub-layers can be identified
within the ABL, each with different properties. For exam-
ple, one of the processes observed in the ABL is the vertical
mixing of air. In our study, the same definition to charac-
terise layers is used as described in Kotthaus et al. (2023).
The term mixing boundary layer (MBL) is used to refer to
the ABL sub-layer closest to the ground. Its height (mix-
ing boundary layer height, MBLH) may indicate either the
convective boundary layer (CBL) height or stable bound-
ary layer (SBL) height, whichever is present at the given
moment. The MBLH terminology is applied when no in-
formation on atmospheric stability is available to differen-
tiate between SBL and CBL (Kotthaus et al., 2023, p. 435).
MBLH is not constant but varies throughout the day and can
range from less than 100 m to a few kilometres, depending
on the surface sensible heat flux, temperature difference over
the inversion layer at the top, temperature gradient of the
atmosphere above the mixing layer, and subsidence (Ouw-
ersloot and Vilà-Guerau de Arellano, 2013). Accurate esti-
mates of the MBLH are important for several applications
and purposes. For example, a shallow mixing layer results
in a larger concentration of air pollutants near the surface,
affecting population health through increased risk of respira-
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tory diseases. Similarly, MBLH also affects the dispersion of
greenhouse gases throughout the low atmosphere, for which
accurate estimates are needed. Further, research on the pa-
rameterisation of the atmospheric boundary layer remains es-
sential to the improvement of numerical weather prediction
(NWP) systems (Edwards et al., 2020). Therefore, the avail-
ability of reliable MBLH estimates would be useful to test
and improve NWP accuracy.

The MBLH is not easily and accurately identified in real
time. Existing methods for MBLH detection are commonly
based on (i) thermodynamic, (ii) wind and turbulence, or
(iii) aerosol characteristics (Kotthaus et al., 2023). These
methods are complementary, as each approach has different
advantages and limitations for capturing certain features of
the MBLH (Collaud Coen et al., 2014). Further, Milroy et al.
(2012) showed the inherent link between thermodynamic and
aerosol backscatter profiles based on a comparison of remote
and in situ data. Thermodynamic methods, such as the parcel
method (Holzworth, 1964) and the bulk Richardson method
(Vogelezang and Holtslag, 1996), use temperature and hu-
midity profiles. These methods provide good baseline perfor-
mance and are frequently used as a reference for the develop-
ment of new methods. Methods based on wind or turbulence
attempt to measure the height of the layer where buoyancy-
driven or shear-driven turbulence takes place. The measure-
ment of wind and turbulence can be performed using vari-
ous instruments, including sodars, radar wind profilers, and
Doppler lidars. Finally, aerosol-based MBLH methods at-
tempt to observe the result of the mixing process via a proxy,
as aerosol properties of different atmospheric layers can vary
due to recent mixing processes. Hence, the boundaries of at-
mospheric layers can be approximated by detecting changes
in aerosol properties. Generally, a rapid drop in aerosol con-
tent occurs beyond the top of the mixing layer. This phe-
nomenon can be observed using ceilometers that employ the
lidar measurement principle, emitting short laser pulses and
measuring the backscattering by aerosols to eventually sup-
port estimating particle concentrations at different altitudes.
The laser beam and field of view of the receiver telescope
often have a no-overlap area, resulting in a blind zone at low
altitudes. Further, many lidar systems have an incomplete-
overlap region, which can in principle be corrected (Hervo et
al., 2016). Possibilities and limitations depend mainly on the
instrument optical design, but estimating the height of shal-
low mixing layers can be challenging. Aerosol-based detec-
tion is also difficult when no or limited differences in aerosol
content exist between the mixing layer and the layer directly
above. Finally, with high relative humidity aerosol particles
grow in size, leading to increased backscatter which may re-
sult in a layer detection where no layer is (i.e. faulty layer
attribution). The high-humidity layer also does not neces-
sarily coincide with the stable nighttime surface inversion,
meaning MBLH retrieval during night by use of ceilometer
backscatter data can be strongly biased. Further investiga-
tion of these mechanisms is beyond the scope of this paper.

For further reading, refer to Kotthaus et al. (2023, Sect. 3.3.2
and references therein) and Collaud Coen et al. (2014). A
variety of methods has been developed that derive MBLH
from backscatter profiles. For example, regions showing sub-
stantial change in the attenuated backscatter have been de-
tected based on negative vertical gradients and inflection
points (e.g. Sicard et al., 2006), wavelet covariance trans-
form (e.g. Cohn and Angevine, 2000), and spatio-temporal
variance (e.g. Menut et al., 1999).

Not all methods for MBLH detection take the tempo-
ral progression of the MBLH into account. Point-based de-
tection models (i.e. at a specific time) have the advantage
that more labelled data are available for model fitting. How-
ever, these methods occasionally experience sudden jumps
in the MBLH profile from one layer to another. This un-
desirable behaviour could be reduced by setting limits for
the maximum altitude difference between successive MBLH
estimates (Martucci et al., 2010). Several other methods
addressed this issue by reinforcing temporal consistency
through path optimisation mechanisms from graph theory,
initially developed in Pathfinder (de Bruine et al., 2017) and
subsequently further enhanced, such as in PathfinderTURB
(Poltera et al., 2017), CABAM (Kotthaus and Grimmond,
2018), and STRATfinder (Kotthaus et al., 2020). For these
type of approaches, it is common to reduce the temporal res-
olution of the input data to 1 or 2 min segments. This reduces
noise in the data, which is important for these gradient-based
methods.

Some studies have developed approaches based on ma-
chine learning to further improve detection accuracy. For ex-
ample, unsupervised methods such as cluster analysis have
been used to detect the boundary layer based on backscat-
ter data (Toledo et al., 2014). Further, Rieutord et al. (2021)
compared the use of k-means clustering and AdaBoost (adap-
tive boosting). The accuracy of these two approaches varied
substantially across measurement sites. However, the (initial)
application of the machine learning methods showed poten-
tial, and various suggestions for future research were made to
further improve performance. Min et al. (2020) applied clus-
tering algorithms for post-processing the results of several
existing MBLH detection algorithms. Further, Allabakash et
al. (2017) used fuzzy logic to combine the range-corrected
signal-to-noise ratio, the vertical velocity, and the Doppler
spectral width of the vertical velocity to identify MBLH from
a radar wind profiler. Bonin et al. (2018) also applied fuzzy
logic to combine data from different scanning strategies of a
Doppler lidar, determining where turbulent mixing is present.
Several studies also used techniques from computer vision,
such as edge detection, to identify layer boundaries (e.g. Ha-
effelin et al., 2012; Patel et al., 2021; Vivone et al., 2021).

Various studies have combined remote sensing informa-
tion with other atmospheric variables. For example, gradient-
boosted regression trees were used by de Arruda Moreira et
al. (2022) to predict the MBLH estimated with microwave
radiometer data based on the MBLH estimated with ceilome-
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ter data and several atmospheric variables. Krishnamurthy
et al. (2021) used the random forest algorithm to combine
Doppler wind lidar MBLH estimates using the method by
Tucker et al. (2009) with various meteorological measure-
ments such as surface relative humidity, air temperature, soil
moisture, and turbulence kinetic energy. These approaches
have been shown to generally improve prediction accuracy,
although the use of multiple data sources may complicate
the large-scale implementation in existing real-time detection
networks, such as E-Profile (Haefele et al., 2016).

In summary, several methodological challenges still re-
main. Few methods incorporate temporal information to
avoid jumps between layers. This is an issue for some of
the machine learning methods described above. In contrast,
many methods that are not based on machine learning re-
quire expert knowledge to manually set modelling thresholds
(e.g. for nighttime detection, instrument- and site-specific
tuning). This also extends to the manual specification of
guiding restrictions for layer selection. An open research
question for MBLH detection is how to combine the advan-
tages of different methods in a single approach. In particular,
it would be beneficial to (i) promote temporal consistency of
the MBLH profile; (ii) use the full resolution of the ceilome-
ter; and (iii) limit manual feature engineering, specification
of rules for layer selection, and site-specific tuning parame-
ters. Further, not all existing methods can be used for real-
time detection, which is an important quality for operational
use. These challenges form the basis for the Deep-Pathfinder
MBLH detection algorithm described in this paper.

2 Materials and methods

Deep-Pathfinder has a similar goal to other algorithms that
attempt to find the path the MBLH follows based on ceilome-
ter observations (e.g. Pathfinder, PathfinderTURB), although
using a completely different approach based on deep learn-
ing. Our study proposes to process lidar data from ceilome-
ters using computer vision techniques for image segmenta-
tion. Image segmentation has been used in many domains, in-
cluding scene understanding for autonomous vehicles (Guo
et al., 2021) and medical image analysis to detect various
types of cancer (e.g. Dong et al., 2017). The concept of
the new Deep-Pathfinder algorithm is to represent the 24 h
MBLH profile as a mask (i.e. black indicating the MBL,
white indicating the residual layer or free troposphere) and
directly predict the mask from an image with range-corrected
ceilometer observations (see Fig. 1). This promotes temporal
consistency of MBLH estimates while using the maximum
resolution of the ceilometer. It also limits manual feature
engineering, meaning there is no need to explicitly define
the important characteristics that will be used to create the
MBLH profile (e.g. which values represent a cloud).

Machine learning can estimate the link function between
input and output images from historical data. Given the large-

scale availability of ceilometer data and the high temporal
and spatial resolution at which they are recorded, this domain
is very suitable for machine learning approaches such as deep
learning. However, the main challenge for a deep learning ap-
proach is the limited availability of annotated data. In partic-
ular, annotated data are generally not available for extended
consecutive time periods, except for MBLH estimates gen-
erated by other methods (e.g. ECMWF reanalysis). Further,
annotated data are laborious to obtain, especially at high tem-
poral resolution. Therefore, our research aimed to extract
domain knowledge from unlabelled data, reducing require-
ments for the amount of annotated data.

2.1 Data

A large dataset with unlabelled ceilometer data in NetCDF
format (∼ 125 GB) was downloaded from the Royal Nether-
lands Meteorological Institute (KNMI) Data Platform (https:
//dataplatform.knmi.nl/, last access: 25 February 2022). This
dataset contained backscatter profiles from ceilometers in the
KNMI observation network, and the full dataset available at
the time of this research was obtained, containing measure-
ments from June 2020 to February 2022. Data were avail-
able at five locations in the Netherlands: Cabauw, De Kooy,
Groningen Airport Eelde, Maastricht Aachen Airport, and
Vlissingen. Throughout the observation period, each location
operated a CHM15k ceilometer from manufacturer Lufft,
which is a one-wavelength backscatter lidar at 1064 nm.
The ceilometers recorded data continuously at 12 s tempo-
ral and 10 m vertical resolutions. For the vertical profile the
“beta_raw” variable was used (firmware v1.010 and v1.040)
as it readily provided a normalised range-corrected signal
(RCS), with instrument-specific overlap correction (usable
above 80–100 m altitude) and harmonisation between differ-
ent CHM15k systems. Note that prior research has indicated
that the built-in overlap correction of the CHM15k is not per-
fect (Hervo et al., 2016). The region of incomplete overlap
is generally an issue to be considered in lidar applications,
in particular when the lidar data are used to derive or esti-
mate physical quantities that rely on the optical parameters
included in the lidar data, such as optical extinction. How-
ever, the Deep-Pathfinder approach does not rely on optical
information, as is explained in the following sections. Due
to the training process, Deep-Pathfinder implicitly takes the
incomplete overlap into account and does not require an ad-
ditional overlap correction to be applied before analysis (see
Hervo et al., 2016).

Model pre-training (see Sect. 2.4) used all ceilometer data
from Cabauw, De Kooy, Groningen Airport Eelde, Maas-
tricht Aachen Airport, and Vlissingen. Model fine-tuning
used a subset of data from Cabauw, De Kooy, and De Bilt
and some days outside the June 2020 to February 2022 pe-
riod (e.g. for validation), which were manually annotated.
The majority of annotated data was from Cabauw, located
in the western part of the Netherlands (51.971° N, 4.927° E)
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Figure 1. Concept of the Deep-Pathfinder model, showing an input image of the range-corrected lidar signal (a) and a corresponding mixing
layer mask (b). The plot axes and colour scale are not supplied to the model and have therefore been omitted.

at 0.7 m below mean sea level. At this site a large set of
instruments is operated to study the atmosphere and its in-
teraction with the land surface (see Fig. 2). Here, KNMI
and partners have been carrying out a continuous measure-
ment programme for atmospheric research since 1972 (see
https://cabauw.knmi.nl, last access: 20 January 2024). The
measurement programme has evolved with increasingly ad-
vanced measurement techniques and instruments, often in
collaboration with other institutes and universities. For this
study, the CHM15k ceilometer was used together with an-
cillary data such as relative humidity (RH) information that
was collected at the 10, 20, 40, 80, 140, and 200 m levels of
the 213 m high meteorological tower (Bosveld, 2020). Other
data sources for annotation included MBLH information
from ECMWF, based on bulk Richardson number (ECMWF,
2017), which was obtained via the Cloudnet model output for
Cabauw (CLU, 2022) and indicated the general atmospheric
conditions. Further, MBLH estimates from the manufac-
turer’s layer detection algorithm were included for reference
purposes. This proprietary algorithm, based on wavelet co-
variance transform, identified multiple candidate layers from
the RCS data, where the lowest identified layer can typically
be interpreted as the MBLH. Model evaluation used MBLH
estimates from two reference methods: (i) Lufft’s wavelet co-
variance transform algorithm and (ii) a state-of-the-art detec-
tion algorithm, STRATfinder (Kotthaus et al., 2020). At the
time of publication, STRATfinder was still in active develop-
ment, and the STRATfinder data for this study were received
from the Institute Pierre Simon Laplace (IPSL) on 6 May
2022.

2.2 Pre-processing and annotation

Various pre-processing steps were performed on the ceilome-
ter data, using Python and OpenCV (Bradski, 2000). First,
the RCS was capped to [0,1× 106

]m2 counts s−1 and
rescaled to [0,1]. This corresponds to an attenuated backscat-
ter interval of about [0, 2.4–3.4]Mm−1 sr−1, depending on
the specific ceilometer used and its respective calibration
constant provided by E-Profile (Wiegner and Geiß, 2012;
Haefele et al., 2016). The spatial range was cropped to a
maximum altitude of 2240 m while retaining the 10 m spatial
resolution. A total of 7200 time steps were selected using the
original temporal resolution of 12 s, capturing a 24 h period
of data. The resulting data were stored as a 16-bit greyscale
image with 224× 7200 px.

The software package “labelme” (Wada, 2022) was used
for manually annotating a small part of the data (i.e. layer at-
tribution). This tool enabled the creation of custom masks
for image segmentation, including the export of selected
points to JSON format. Specifically, for a single day of
data, many consecutive points were selected to follow small-
scale changes such as convective plumes, intrusions, and ex-
trusions visible in the RCS data. The resulting JSON data
were converted to a black and white mask at the same
224× 7200 px resolution as the input image. High-resolution
annotations were created for 50 d in 2019, 2020, and 2021.
Representative cases under a variety of atmospheric condi-
tions were selected for annotation to cover a broad range of
boundary layer dynamics. The captured atmospheric condi-
tions included clear days with a distinct CBL, cold days with
a shallow boundary layer, days with cloud cover, days with
multiple cloud layers, and precipitation events.
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Figure 2. The ceilometer (in front) and 213 m mast (background) at the same location at Cabauw support high-quality annotations. This
site also includes a scanning microwave radiometer (left); a scanning cloud radar, a micro rain radar, and a second microwave radiometer
(centre); and a scanning Doppler wind lidar and two distrometers (right).

The annotation process started with a visual inspection of
the RCS data and corresponding gradient fields (see Fig. 3).
Gradient estimation identified the location of layer bound-
aries in a consistent manner, leading to several candidate
layers at some time steps. This information on potential
layer boundaries was combined with thermodynamic infor-
mation and manufacturer MBLH estimates to enhance the
layer selection process. Note that the attenuated backscatter
retrievals during nighttime are not equivalent to the SBL or
nocturnal boundary layer (NBL) defined by thermodynam-
ics. Our MBLH definition (see Sect. 1) has been adopted for
consistency with existing methods for MBLH detection and
for comparison of results with these reference methods.

The layer attribution started with the identification of the
nocturnal layer structure before sunrise by tracking back-
wards in time from the high-confidence MBLH identified
after sunrise. At this point, the RH profile confirmed when
the unstable boundary layer rose above 200 m (which gen-
erally coincided with the convective ejection patterns in the
RCS). During nighttime, the pollution-rich layers may drop
to very low altitudes into the incomplete-overlap region of
the CHM15k ceilometer, and vertical mixing in fact predom-
inantly ceases to exist. However, the concentration levels of
pollutants remain layered, and, therefore, Cabauw mast mea-
surements were used to aid in the identification of the pres-
ence and height of nocturnal layers. When RH values at var-
ious heights were similar, we considered this to be a more or
less homogeneous nocturnal layer, and the layer height was
approximated as the altitude where the RH values of higher
layers with respect to the lower layers started to diverge. For
example, Fig. 3 indicates an MBLH between 40 and 140 m

at around 04:00 UTC on 8 June, which slowly rose to 200 m
at around 07:00 UTC. Note that for annotated layer heights
below 100 m it would be more difficult for the detection al-
gorithm to recover the exact layer height because of the no-
overlap region of the ceilometer. If the MBLH of the fol-
lowing day was clearly visible in RCS data, it was followed
backward in time to identify its formation after sunset.

Under less-complex atmospheric conditions, the CBL
plumes can often be identified in great detail from sharp
layer edges. To take advantage of the high temporal and spa-
tial resolution of the RCS, the MBLH under such conditions
was annotated following the ejection patterns inside the en-
trainment zone (EZ). Hence, the average MBLH was located
somewhere inside the EZ, while the amplitude between the
local minimum and maximum MBLH provided an indication
of its thickness. The CBL was usually confidently annotated
as the MBLH until late afternoon or early evening when the
boundary layer was fully developed. For cases with convec-
tive clouds forming on the top of the boundary layer or low
stratiform clouds with no clear aerosol layer underneath, the
apparent cloud top height was annotated as the MBLH. Peri-
ods with rain were annotated with a value of 0, as the MBLH
is undefined during precipitation.

The transition region from the daytime convective (mixed)
boundary layer to a neutrally stratified residual layer (RL)
with a stable NBL below may not be clear from aerosol data
(Schween et al., 2014). To complete the annotations in this
region, the thermodynamic data informed the gradual decline
towards the nighttime MBLH. The annotators looked for a
path (layer edge), albeit with low gradient, that could con-
nect the closest previously annotated neutrally stratified RL
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Figure 3. Combining data sources for 8 June 2021 (left part of the plot) and the first half of 9 June 2021 to annotate the MBLH on 8 June.
Panel (a) shows the RCS data with layers detected by the ceilometer (black lines), the thermodynamic MBLH from ECMWF (blue line), and
the annotated MBLH (red line). Panel (b) shows the negative (magenta) and positive (green) gradients of the RCS data, with layers detected
by the ceilometer (black lines) and the annotated MBLH (red line). Panel (c) contains the measured relative humidity by the Cabauw mast at
different altitudes (various colours). Sunrise was at 03:21 UTC and sunset at 19:55 UTC.

to the daytime CBL. An example of this process can be seen
in Fig. 3 between 16:00 and 20:00 UTC. If the aerosol profile
was too smooth, a sudden jump to the nighttime MBLH was
annotated.

Due to the physical processes leading to vertical mixing,
the RCS profile shows distinct differences during the day and
at night. To differentiate between the SBL and CBL, a night-
time variable was included. Specifically, sunrise and sunset
times in UTC were computed for the corresponding date and
stored with the images using a nighttime variable. This as-
sists the model in distinguishing whether an estimate of the
SBL or CBL is expected. In summary, one labelled sample
consisted of a 24 h pre-processed RCS image, a nighttime
variable, and a corresponding annotated mask. All samples
were converted to TensorFlow’s TFRecord format for mod-
elling purposes (Abadi et al., 2015).

2.3 Model architecture

The Deep-Pathfinder algorithm is based on the U-Net archi-
tecture (Ronneberger et al., 2015), which is a frequently used
model for image segmentation tasks. U-Net extracts features
from an input image using consecutive convolutional layers
(i.e. the encoder). From the latent space representation (i.e. a
representation of compressed data), the dimensions are in-
creased again to obtain an output mask (i.e. the decoder).
Skip connections connect corresponding layers in the en-

coder and decoder to increase details in the generated mask.
This generic U-Net architecture was adapted to the task of
MBLH detection. The encoder was based on MobileNetV2
(Sandler et al., 2018), which was originally developed for
constrained compute environments such as mobile and em-
bedded devices. This was chosen to ensure fast inference
times for potential operationalisation, as MobileNetV2 was
developed specifically for low-latency inference. The input
dimensions of the RCS image were 224× 224 px, represent-
ing a time period of 44 min and 48 s and a fixed altitude
range of 0 to 2240 m, preserving the temporal and spatial
resolution of the ceilometer data. Using a sequence of Mo-
bileNetV2 layers, a 7× 7 block with 320 features was ex-
tracted from the input image. Further, the U-Net architecture
was adapted to incorporate different boundary layer dynam-
ics before and after sunset. Specifically, a nighttime indicator
was added to the extracted features as an additional channel,
indicating whether the sample mainly occurred inside or out-
side the sunrise to sunset window for the date and time of the
sample. This resulted in a latent space with dimensions of
7× 7× 321. The architecture used several transposed con-
volutional layers to decode the latent space and obtain a
224× 224 px output image. Layer depths (i.e. the number of
features per layer) were obtained through experimentation.
For each pixel a single output value was produced, repre-
senting (i) the RCS value during pre-training or (ii) an MBL
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Figure 4. Deep-Pathfinder neural network architecture with in-
put (green), output (blue), skip connections (horizontal arrows),
encoder (downward arrows), and decoder (upward arrows from
7× 7× 321). In each box, the first two numbers indicate the spatial
dimensions and the third indicates the number of channels, deter-
mining the capacity of the neural network layer.

indicator during transfer learning. A graphical representation
of the neural network architecture is presented in Fig. 4.

2.4 Model calibration

The model calibration process consisted of two steps: (i) pre-
training and (ii) fine-tuning. While annotated data are labo-
rious to obtain, unlabelled data contain readily available and
valuable information on the typical patterns observed in lidar
signals. Therefore, part of the network was pre-trained using
all data to aid the calibration on limited annotated samples
afterwards. The unsupervised pre-training task was to recon-
struct the ceilometer data, meaning the input RCS image was
also used as the target image. This was implemented by re-
moving the skip connections and nighttime indicator from
the neural network architecture to create an autoencoder with
an equivalent structure. Removing the skip connections was
necessary as information would otherwise flow directly from
input to output without passing through the encoder/decoder
structure, which is undesirable behaviour for the pre-training
task. Unlabelled ceilometer data (see Sect. 2.1) were used
to train this autoencoder. In total, 19.4× 106 different sam-
ples of 224× 224 px were extracted from the unlabelled data
through cropping. Given the temporal resolution of 12 s, a
total of 6976 different images can be extracted from a full
day of data. Model calibration was performed with Tensor-
Flow r2.6 using NVIDIA A100 GPUs of the Dutch National
Supercomputer Snellius. The binary cross-entropy loss func-
tion was used for model calibration in combination with the
Adam optimiser (Kingma and Ba, 2014) with a learning rate

of 1× 10−3. After approximately 11× 106 iterations (about
5 d), the model reached convergence with a loss close to
0 for the image reconstruction task (see Fig. 5). The pre-
training task resulted in a calibrated encoder and decoder
network. Only the encoder weights were retained to initialise
the Deep-Pathfinder architecture with skip connections, ex-
tracting valuable features from RCS images without the use
of annotated data.

Subsequently, transfer learning was used to fine-tune the
pre-trained model for the task of mask prediction. Transfer
learning is a learning paradigm for adapting a model to per-
form a similar task, exploiting the knowledge captured dur-
ing the previous task. For the mask prediction task, the neu-
ral network model now had to predict an annotated mask of
224× 224 px. The model was provided with both the RCS
image and the nighttime indicator as inputs, while the corre-
sponding annotated mask was used as the target image. For
illustration purposes, Fig. 6 shows three sample training im-
age pairs. Samples were grouped in batches for computation
purposes. These batches were constructed by randomly se-
lecting a day from the training data and subsequently extract-
ing a random batch of 16 image pairs of 224× 224 px from
the full 24 h RCS image and corresponding annotated mask.
Although optimal randomisation would be obtained if one
batch contained samples from various days, this implemen-
tation choice resulted in limited pre-processing overhead and
full GPU utilisation while still iterating through the full set
of annotated images. As 50 d of ceilometer data were anno-
tated, the training set contained approximately 350 000 sam-
ples to fine-tune the deep learning model. Typically, an ex-
periment required less than 50 epochs of training on labelled
data for transfer learning. A small validation dataset for one
additional annotated day (n= 1396 samples, including 765
daytime and 631 nighttime images) was used to tune model
hyperparameters, such as the learning rate, batch size, and
layer depth multiplier. The validation set did not contain data
from any of the days present in the training set. The main
selection criterion for model evaluation was the mean accu-
racy of the generated masks in the validation set, providing a
quantitative scoring mechanism for different experiments. In
addition, predictions for a full validation day were visualised
by creating a 24 h prediction mask (see Sect. 2.5) to get ad-
ditional insights into model behaviour. For example, models
with comparable validation accuracy could show differences
in smoothness of the decline in MBLH estimates after sunset.
This qualitative information provided secondary input in the
model selection process after candidate models were selected
based on high validation accuracy. Finally, a test set was con-
structed with ceilometer data not used for mask prediction,
spanning the second half of 2020 at Cabauw, to obtain the
unbiased performance of the final tuned model.
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Figure 5. Visualisation of the completed pre-training process, showing in each column a greyscale input image (a, b, c) and the image
reconstructed by the autoencoder (d, e, f).

Figure 6. Three samples of image pairs for model fine-tuning, consisting of a greyscale input image (a, b, c), a nighttime indicator (not
shown), and a manually annotated output mask (d, e, f). The presented samples are from Cabauw on (a) 15 September 2019 at 08:49–
09:34 UTC, (b) 3 September 2021 at 09:33–10:18 UTC, and (c) 14 June 2021 at 21:46–22:31 UTC.

2.5 Model inference and post-processing

Model inference using the calibrated model resulted in a gen-
erated mask with for each pixel a prediction of (near) white
or black or a grey tone in the case of uncertainty. The gen-
erated masks correspond to a 45 min period rather than pro-
viding a 24 h sequence of MBLH values. Therefore, several

post-processing steps were required. First, multiple output
masks were generated via model inference. Specifically, the
input image was repeatedly shifted by 5 px (i.e. 1 min) and
processed by the model until the entire day was processed.
This led to overlapping predictions for each time step. Mul-
tiple predictions at each unique time and altitude combina-
tion were arithmetically averaged to obtain a full 24 h mask.
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Subsequently, an MBLH profile was extracted from the 24 h
mask using the following method. Each predicted mask was
processed column-wise, identifying the MBLH at time step
t independent of other time steps. A loss function was for-
mulated to evaluate the plausibility of every possible pixel
p ∈ {1,2, . . .,224} to represent the MBLH for a fixed time t .
Note that model predictions display varying degrees of un-
certainty, with pixel predictions being either black, white, or
any grey tone in between (i.e. the result of the pixel-wise
sigmoid function at the end of the neural network). The loss
function took into account model uncertainty by proportion-
ally penalising the number of pixels below p that were pre-
dicted as non-black, plus the pixels above p that were pre-
dicted as non-white. MBLH at time t was estimated as the
value p̂ that minimised this loss multiplied by the spatial res-
olution of 10 m.

3 Results

3.1 Qualitative assessment

Deep-Pathfinder performance was compared to MBLH es-
timates from STRATfinder and manufacturer Lufft for all
days in the test set, showing the out-of-sample performance
on new data not used for model calibration. The selected
days in Fig. 7 contain varying conditions, including the typ-
ical growth of the CBL during the day, periods of precipi-
tation, low clouds, hardly visible decay after sunset, multi-
ple cloud layers, and a day without strong convection. The
CBL was typically captured well by all three methods, with
minimal differences in MBLH between them. In Fig. 7a
and b, before sunrise, the Lufft algorithm jumped between
several aerosol layers which developed inside the residual
of the mixing layer of the day before. Deep-Pathfinder and
STRATfinder identified the nighttime MBLH at around 100–
200 m altitude, although STRATfinder estimates were at a
constant level slightly above the actual MBLH due to guid-
ing restrictions in the algorithm. Instead, Deep-Pathfinder
was still able to process the noisy signal in the incomplete-
overlap region. Another difference between Deep-Pathfinder
and STRATfinder was that Deep-Pathfinder followed short-
term fluctuations in MBLH more closely than STRATfinder
due to the use of high-resolution input data. All algorithms
had difficulties capturing the decline in MBLH around sun-
set, which is a typical limitation for MBLH detection based
on aerosol observations (see Wang et al., 2012; Schween et
al., 2014). For example, a sudden jump in MBLH is visible in
Fig. 7b for both Deep-Pathfinder and STRATfinder, although
at a different time.

For complex atmospheric conditions, a considerable num-
ber of MBLH estimates of the Lufft algorithm were miss-
ing due to quality control flags. An example is provided
in Fig. 7c, where Lufft estimates were only available after
20:00 UTC and not during low-cloud conditions. In most

Table 1. Pearson correlation between the time series of Deep-
Pathfinder, STRATfinder, and Lufft in the July to December 2020
test set.

Deep-Pathfinder STRATfinder Lufft

Deep-Pathfinder 1
STRATfinder 0.706 1
Lufft 0.425 0.325 1

cases, Deep-Pathfinder and STRATfinder were still able
to provide appropriate MBLH estimates. In a few cases,
STRATfinder predictions were missing due to quality con-
trol flags (e.g. Fig. 7d). During the precipitation event in
Fig. 7a at around 19:00 to 21:00 UTC, Deep-Pathfinder has
been trained to predict 0 (i.e. not applicable), while Lufft pre-
dictions jumped to about 2500 m altitude. The example of
Fig. 7e shows that for multiple cloud layers Deep-Pathfinder
and STRATfinder typically followed a different layer. Hence,
in the case of multiple cloud layers, users should be aware
that the methods may produce different MBLH estimates.
When a clear CBL was not apparent (e.g. Fig. 7f), Deep-
Pathfinder and STRATfinder obtained similar estimates, al-
though in Fig. 7f both were far above the stable nighttime
surface inversion.

3.2 Correlation analysis

A statistical assessment of overall agreement between the al-
gorithms was performed through a correlation analysis. For
the July to December 2020 test period, the Pearson correla-
tion was computed between the time series of each pair of
algorithms. Deep-Pathfinder and STRATfinder scored an av-
erage correlation of 0.706, based on 250 000 corresponding
records of data (see Table 1). In contrast, the Lufft algorithm
obtained a substantially lower correlation with either method.
Alignment of the algorithms was also not constant through-
out the test period. Table 2 shows the distribution of the num-
ber of days the correlation was in a pre-defined range, indi-
cating that on the majority of days the correlation between
Deep-Pathfinder and STRATfinder was within [0.6,0.8) or
[0.8,1]. These daily fluctuations can be partly explained by
the amount of cloud cover. To illustrate this point, the daily
cloud overcast fractions were computed for all dates in the
test set, looking only for clouds below 2245 m (i.e. the verti-
cal range captured by our model). Table 3 shows that on days
with no or few clouds the Deep-Pathfinder and STRATfinder
algorithms were more closely aligned, based on Pearson cor-
relation and mean absolute difference statistics. Note that
achieving the highest possible correlation was not the goal
of our study, as otherwise STRATfinder annotations could
have been used for model training. This would have led to
better alignment between the methods, although without the
capability to create high-resolution predictions.
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Figure 7. Performance comparison of Deep-Pathfinder (black), STRATfinder (orange), and Lufft (purple) on selected days at Cabauw.

Table 2. For each pair of algorithms, this table lists the total number of days that the Pearson correlation was within the specified ranges.

Correlation Deep-Pathfinder vs. STRATfinder Deep-Pathfinder vs. Lufft STRATfinder vs. Lufft

[−1.0,−0.8) 0 0 0
[−0.8,−0.6) 0 4 5
[−0.6,−0.4) 0 2 7
[−0.4,−0.2) 1 10 19
[−0.2,0.0) 5 20 27
[0.0,0.2) 13 27 19
[0.2,0.4) 20 22 20
[0.4,0.6) 27 40 29
[0.6,0.8) 48 25 16
[0.8,1.0] 47 7 11

3.3 Diurnal MBLH patterns

The performance of the MBLH detection methods across
different seasons can provide insights related to model ro-
bustness in terms of showing expected behaviours. Figure 8
shows the mean MBLH estimates throughout the day for the
different algorithms for each month in the test set. The in-
terquartile range (i.e. 25th to 75th percentile) of the MBLH
estimates is also included in this figure. For consistency, the
temporal resolution for this analysis was reduced to 1 min

for all methods. A gradual decline in peak MBLH can be ob-
served from July and August towards December. On some
days, STRATfinder reached higher peak values than Deep-
Pathfinder. In the case of multiple cloud layers, our annota-
tions typically followed the lower layer, while STRATfinder
followed the higher layer. For example, this behaviour can
be observed in Fig. 7e. Further, Deep-Pathfinder was able
to capture low layers at night better than STRATfinder, al-
though it was also limited by the no-overlap region of the
ceilometer.
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Table 3. Comparison of Deep-Pathfinder and STRATfinder estimates for different ranges of cloud cover in the test set.

Overall Cloud overcast range

0 %–10 % 10 %–30 % 30 %–100 %

Number of days 161 27 24 110
Pearson correlation 0.706 0.811 0.819 0.632
Mean absolute difference (m) 189.0 141.6 176.7 205.3

Figure 8. Mean diurnal MBLH patterns per month at Cabauw for Deep-Pathfinder (black), STRATfinder (orange), and Lufft (purple),
including interquartile ranges.

Importantly, performance varied for the different phases
of the diurnal development of the ABL. In the early morn-
ing, the MBL grows into a stably stratified, unmixed NBL
at the surface (i.e. roughly 04:00–08:00 UTC). This is typ-
ically followed by fast growth into the more or less neu-
trally stratified RL (08:00–12:00 UTC). In the early after-
noon, the fully developed CBL grows slowly into the free
troposphere (12:00–16:00 UTC). During the late afternoon a
more or less sudden breakdown of convective turbulence –
and thus breakdown of mixing – occurs (16:00–19:00 UTC).
Finally, in the evening and night a new NBL and RL develop
(19:00–04:00 UTC). Table 4 shows that the mean absolute
difference between Deep-Pathfinder and STRATfinder was
lowest during the evening, night, and early morning growth
phases. In contrast, the early and late afternoon is where they
were least similar (see explanation above). The Lufft algo-
rithm obtained higher estimates than both other algorithms
during the evening, night, and early morning growth phases,
as it had a tendency to follow aerosol or moist layers in
the residual layer (see Sect. 3.1). However, Lufft and Deep-
Pathfinder estimates were substantially more similar in the
early afternoon. During this period, the manufacturer algo-
rithm can be used more confidently.

3.4 Using alternative neural network architectures

The choice of neural network architecture is an important
modelling choice in deep learning research. For example,
various alternative neural network architectures have been
developed based on U-Net. The latest architectures typically
obtain higher performance on benchmark datasets than the
standard U-Net implementation. Therefore, the performance

of some of these new architectures has been investigated,
quantifying the impact of the architectural choices on model
performance and providing insights related to promising di-
rections for future research. Specifically, the performance of
Swin-Unet (Cao et al., 2021), UNet 3+ (Huang et al., 2020),
Attention U-Net (Oktay et al., 2018), TransUNet (Chen et al.,
2021), U2-Net (Qin et al., 2020), and ResUNet-a (Diakogian-
nis et al., 2020) was investigated. These models have substan-
tial architectural differences. For example, TransUNet was
based on vision transformers; U2-Net used a nested U struc-
ture; and ResUNet-a used residual connections, atrous con-
volutions, and pyramid scene parsing pooling. Model im-
plementations were obtained from the Keras-unet-collection
(Sha, 2021). After model training, masks were predicted for
all samples in the validation set and the MBLH was extracted
(see Sect. 2.5). Statistics were computed with respect to the
annotations for the validation set, which followed the same
annotation process as described in Sect. 2.2. A full evaluation
on 6 months of test data was not performed. However, the re-
sults are indicative of the performance of different model ar-
chitectures. Note that these experiments did not use any form
of unsupervised pre-training. Therefore, the Deep-Pathfinder
architecture without pre-training on unlabelled lidar data (re-
ferred to as U-Net nighttime indicator) was also included for
comparison purposes. Further, a simpler architecture without
nighttime indicator and no pre-training (U-Net base) was in-
cluded, as this indicator was also not implemented for the al-
ternative architectures. Hence, results of the alternative archi-
tectures can be directly compared to the U-Net base model.

Tables 5 and 6 provide the mean absolute error (MAE)
and Pearson correlation that were obtained, showing a large
variation between different neural network architectures. The
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Table 4. Method intercomparison showing the mean absolute difference (metres) for the various phases of development of the ABL, obtained
using the test set. Time of day is stated in UTC; note that the local standard time at Cabauw is UTC+1 or UTC+2 (daylight saving time).

Method Overall Time of day (UTC)

04:00–08:00 08:00–12:00 12:00–16:00 16:00–19:00 19:00–04:00

Deep-Pathfinder vs. STRATfinder 189.0 127.6 178.1 251.5 316.5 156.7
Deep-Pathfinder vs. Lufft 323.5 392.9 219.9 117.7 293.3 396.5
STRATfinder vs. Lufft 369.8 437.2 285.4 220.9 306.4 435.2

best performance was obtained by ResUNet-a and Deep-
Pathfinder, followed by U2-Net and TransUNet. Notably, the
ResUNet-a architecture obtained better results on the valida-
tion set than Deep-Pathfinder. The growth of the MBL in the
early and late morning and the fully developed CBL in the
early afternoon were captured best. Correlation was highest
during the late morning, when the high-temporal-resolution
forecasts accurately followed the annotated CBL in the val-
idation set. The breakdown of convective turbulence in the
late afternoon (i.e. 16:00–19:00 UTC) was the main difficulty
the models faced. The correlation analysis also showed that
tracking MBLH was more difficult at night, when ceilometer-
based detection has its limitations (e.g. see Sect. 2.2).

The U-Net base architecture performed worse than most
of the newer architectures, which was expected due to ar-
chitectural improvements. Further, both the U-Net nighttime
indicator and Deep-Pathfinder architectures performed sub-
stantially better than the U-Net base architecture. This shows
the benefits of (i) incorporating sunrise and sunset informa-
tion explicitly in the model and (ii) unsupervised pre-training
on large-scale lidar data to improve feature extraction. For
example, overall MAE decreased from 104.5 m for the U-
Net base model to 74.5 and 64.2 m for the U-Net nighttime
indicator and Deep-Pathfinder architectures, respectively.

4 Discussion

4.1 Annotations and model robustness

Labelling MBLH is a complex and time-consuming task.
Further, deep learning methods typically require a very
large number of labelled samples. This combination of fac-
tors complicates the development of machine learning ap-
proaches for MBLH detection. The issue of obtaining suf-
ficient training samples was addressed in our study by un-
supervised pre-training of a foundation model and extract-
ing many 45 min samples from a 24 h mask through random
cropping. Further, image segmentation architectures can be
trained using relatively few annotated samples (Ronneberger
et al., 2015), making it a suitable approach for this particular
application.

Annotating MBLH with high temporal resolution has sev-
eral advantages. For example, the model will become more
responsive to observed changes in MBLH. Further, short-

term fluctuations in MBLH could be used to provide an es-
timate of the thickness of the entrainment zone (Cohn and
Angevine, 2000), which cannot be provided by many al-
gorithms. Combining measurements from different sensors,
such as Doppler wind lidars, ceilometers, and microwave
radiometers, could further improve the accuracy of annota-
tions. For example, measurements of specific humidity and
virtual potential temperature are useful indicators with re-
spect to the height of the mixing layer. Note that using only
ceilometer data as model input allows for integration of the
algorithm in existing automatic lidar and ceilometer net-
works (e.g. E-Profile; see Haefele et al., 2016). However, in-
cluding these additional sensor data sources as model input
could also further increase the accuracy of MBLH detection
models (e.g. Kotthaus et al., 2023).

To explore model robustness, we have investigated train-
ing the model on other data sources than the manually an-
notated MBLHs. Specifically, annotations for Payerne were
obtained from MeteoSwiss (Poltera et al., 2017) to train
the deep learning architecture (results not presented here).
Our annotations followed small-scale fluctuations in the RCS
data closely, while the externally sourced annotations were
made once per minute and could be characterised as more
stable over time. The settings for the temporal and spatial res-
olutions of the ceilometer were also different. Hence, for this
experiment 1 px represented a duration of 30 s and 15 m of
altitude. The results of this experiment indicated it was pos-
sible to capture the important characteristics from alternative
annotated datasets. The Deep-Pathfinder methodology was
robust against differences in annotation methods, leading to
different results but functioning appropriately regardless of
the chosen dataset. Hence, the annotations and resolution of
the input data mainly determine the quality of the final pre-
dictions.

Deep-Pathfinder is not aware of the optical properties in
the lidar data or of the physical units because it does not re-
quire this information. In that sense, the algorithm can be
trained on background-, range-, and laser-power-corrected
backscatter lidar data from other lidars or ceilometers. For
different types of ceilometers (e.g. Vaisala CL31), it is rec-
ommended to repeat the unsupervised pre-training using un-
labelled data of the corresponding instrument. This should
not be necessary when using Deep-Pathfinder at other lo-
cations with the same instrument type. Several experiments
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Table 5. MAE for the MBLH in metres, obtained using the validation set. Neural network architectures have been sorted based on overall
score.

Architecture Overall Time of day (UTC)

04:00–08:00 08:00–12:00 12:00–16:00 16:00–19:00 19:00–04:00

ResUNet-a 41.3 10.2 21.6 25.1 108.8 48.5
Deep-Pathfinder 64.2 14.8 22.3 24.2 114.0 106.0
U-Net nighttime indicator 74.5 16.1 32.1 23.7 162.1 112.7
TransUNet 82.6 16.8 114.8 36.1 227.3 69.9
U2-Net 84.8 10.2 23.8 22.5 112.9 163.3
U-Net base 104.5 12.8 41.9 77.1 371.9 96.2
Attention U-Net 113.7 33.1 28.8 261.0 311.0 56.1
UNet 3+ 125.1 27.6 40.2 291.9 321.9 66.4
Swin-Unet 242.7 26.5 222.8 580.4 338.1 165.7

Table 6. Like Table 5, but for Pearson correlation.

Architecture Overall Time of day (UTC)

04:00–08:00 08:00–12:00 12:00–16:00 16:00–19:00 19:00–04:00

ResUNet-a 0.96 0.97 0.99 0.90 0.85 0.28
Deep-Pathfinder 0.91 0.95 0.99 0.86 0.85 0.24
U2-Net 0.90 0.96 0.99 0.89 0.71 0.28
U-Net nighttime indicator 0.90 0.95 0.98 0.93 0.82 0.29
TransUNet 0.89 0.91 0.81 0.69 0.71 0.00
Attention U-Net 0.82 0.51 0.98 0.45 0.54 0.11
UNet 3+ 0.79 0.65 0.95 0.44 0.59 0.15
U-Net base 0.78 0.94 0.95 0.65 0.42 0.19
Swin-Unet 0.32 0.94 0.83 0.35 0.75 0.22

also indicated that unsupervised pre-training of encoder
weights outperformed randomly initialising weights or load-
ing ImageNet weights (Deng et al., 2009). This was assessed
using the validation set, based on the binary cross-entropy
loss and the accuracy of the generated masks (results not
presented). Instead of unsupervised pre-training, the model
could also be pre-trained using MBLH predictions of (i) an
existing MBLH algorithm, (ii) a numerical weather predic-
tion system, or (iii) synthetic data. This initial step would
directly result in a base deep learning model for the task of
mask prediction, which can be fine-tuned using limited high-
quality labelled data. Fine-tuning can be an iterative process,
where the current shortcomings of the model are used to
slightly improve specific annotations in the training data. The
model can then be retrained using the updated annotations to
enhance performance.

4.2 Model extensions and future research

We have identified various model extensions that could be in-
vestigated in future research. For example, model inference
and post-processing leads to a greyscale output mask (see
Fig. 9). Grey or blurry areas in these output masks indicate
model uncertainty and can be used to develop quality control
flags for operational use. Specifically, the value of the loss

function during MBLH extraction (see Sect. 2.5) could be
considered an indicator of model confidence. Further, quality
control flags could be set for specific atmospheric conditions,
for example, so end users can exclude circumstances without
vertical mixing. Other examples of useful flags are the occur-
rence of clouds (e.g. a binary indicator based on any detected
cloud base height) and rain, since MBLH is not clearly de-
fined during periods of precipitation.

Instead of using only two output classes (i.e. mixing layer
or not), image segmentation methods are suitable for the de-
tection of multiple classes. Extending the Deep-Pathfinder
algorithm to multi-class prediction would also be a valu-
able future research direction. For example, Manninen et al.
(2018) developed a method to obtain multiple classes from
Doppler wind lidar information, such as convective mixing;
non-turbulent, in-cloud mixing; and wind shear (see Fig. 10).
Obtaining such a set of annotated samples forms the main
challenge for implementing this new functionality. In ad-
dition, ceilometer measurements can be accompanied with
other data, such as profiles of horizontal and vertical wind
speed from a Doppler wind lidar. We envision the input im-
age to have an extra channel to capture both the ceilometer
and wind lidar data. Hence, no major changes to the neu-
ral network architecture would be required, besides minor
changes to the input and final layer.

https://doi.org/10.5194/amt-17-3029-2024 Atmos. Meas. Tech., 17, 3029–3045, 2024



3042 J. S. Wijnands et al.: Deep-Pathfinder

Figure 9. Model extensions: deriving quality control flags from unsharp regions in predicted masks. The green box provides an example of
high model confidence, while the red box shows an example of lower model confidence.

Figure 10. Model extensions: multi-class prediction (image from Manninen et al., 2018).

The analyses with alternative neural network architectures
indicate that there is potential to further improve model
accuracy, especially since these models were not imple-
mented with unsupervised pre-training or additional vari-
ables (i.e. nighttime indicator). As U2-Net uses a nested
U structure, it has so many skip connections that it would not
be as suitable for the pre-training approach used in our study.
In contrast, ResUNet-a performed well on the MBLH detec-
tion task and only has a limited number of skip connections.
A custom implementation of ResUNet-a with temporary re-
moval of the six skip connections would allow for unsuper-
vised pre-training. Hence, the ResUNet-a architecture is a
promising candidate to further improve model accuracy in
future research. Note that accuracy was not the only consider-
ation for choosing the deep learning architecture. ResUNet-a
was 8.5 times slower to calibrate than Deep-Pathfinder be-
cause of the higher complexity. Computational efficiency is
an important consideration for operational use.

5 Conclusions

Our study shows that computer vision methods for image
segmentation can be adapted to successfully track layers in
data recorded by ceilometers. Through the use of unsuper-
vised pre-training on large-scale unlabelled lidar data, ap-
propriate results for MBLH estimation were obtained with
only 50 d of annotations. Further, Deep-Pathfinder takes
advantage of the full spatial and temporal resolution of
the ceilometer, leading to high-resolution MBLH estimates.
One challenge for model development is that no ground
truth MBLH data are available, although the quality of
the labels can be assessed based on different physical pa-
rameters (e.g. radiosonde-based temperature profiles, radar-
wind-profiler-based turbulence profiles, Doppler-lidar-based
wind profiles). This complicates method intercomparison.
In comparison with existing MBLH approaches (e.g. rule-
based layer selection algorithms), the number of assumptions
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required for MBLH detection was reduced. The initial struc-
tured annotation process (see Sect. 2.2) involves assumptions
to determine the exact location of the MBLH. However, in
the modelling phase manual feature engineering is avoided,
as the mapping between input and label is learned directly
from large-scale data.

As shown in previous studies, layer attribution can be
improved by taking into account temporal consistency. Al-
though existing path optimisation algorithms have greatly
improved the temporal consistency of MBLH estimates, they
can only be evaluated after a full day of ceilometer data
has been recorded. Deep-Pathfinder retains the advantages
of temporal consistency by assessing MBLH evolution in
45 min samples. However, our algorithm can also produce
real-time estimates by using the most recent 45 min of data
and extracting the current MBLH from the right-hand side
of the output mask. The availability of real-time MBLH es-
timates from a large-scale ceilometer network could be used
for the advancement of NWP models. Finally, it makes a deep
learning approach as presented here valuable for operational-
isation, as near-real-time MBLH detection better meets the
requirements of operational users in aviation, weather fore-
casting, and air quality monitoring.

Code availability. Python code for the near-real-time application
of the trained Deep-Pathfinder algorithm on CHM15k ceilome-
ter data has been made available on GitHub and Zenodo
(https://doi.org/10.5281/zenodo.11098744, Wijnands et al., 2024).
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through the KNMI Data Platform at https://dataplatform.knmi.nl/
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the time of this study, the dataset was updated on a daily basis.
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