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Abstract. Accurate estimation of global winds is crucial for
various scientific and practical applications, such as global
chemical transport modeling and numerical weather predic-
tion. One valuable source of wind measurements is atmo-
spheric motion vectors (AMVs), which play a vital role in
the global observing system and numerical weather predic-
tion models. However, errors in AMV retrievals need to be
addressed before their assimilation into data assimilation sys-
tems, as they can affect the accuracy of outputs.

An assessment of the bias and uncertainty in passive-
sensor AMVs can be done by comparing them with informa-
tion from independent sources such as active-sensor winds.
In this paper, we examine the benefit and performance of a
colocation scheme using independent and sparse lidar wind
observations as a dependent variable in a supervised machine
learning model. We demonstrate the feasibility and perfor-
mance of this approach in an observing system simulation
experiment (OSSE) framework, with reference geophysical
state data obtained from high-resolution Weather Research
and Forecasting (WRF) model simulations of three different
weather events.

Lidar wind data are typically available in only one direc-
tion, and our study demonstrates that this single component
of wind in high-precision active-sensor data can be leveraged
(via a machine learning algorithm to model the conditional
mean) to reduce the bias in the passive-sensor winds. Further,
this active-sensor wind information can be leveraged through
an algorithm that models the conditional quantiles to produce
stable estimates of the prediction intervals, which are helpful

in the design and application of error analysis, such as quality
filters.

1 Introduction

The accurate estimation of global winds is critical for various
scientific and practical applications, including global chem-
ical transport modeling and numerical weather prediction.
One source of wind measurements is atmospheric motion
vectors (AMVs), which are obtained through the tracking
of cloud or water vapor features in satellite imagery. They
play a crucial role in the global observing system, provid-
ing essential data for initializing numerical weather predic-
tion (NWP) models; these AMVs are particularly valuable
for constraining the wind field in remote Southern Hemi-
sphere regions and over the world’s oceans, where other wind
observations are scarce. Obtaining global measurements of
3-dimensional winds was emphasized as an urgent need in
the NASA Weather Research community workshop report
(Zeng et al., 2016) and identified as a priority in the 2007 Na-
tional Academy of Sciences Earth Science and Applications
from Space (ESAS 2007) decadal survey and in ESAS 2017.
Numerous studies have demonstrated the positive impact of
AMVs on the forecast accuracy of global NWP models (Bor-
mann and Thépaut, 2004; Velden and Bedka, 2009; Gelaro
et al., 2010). Further uses include studying global CO2 trans-
port (Kawa et al., 2004), providing inputs for weather and cli-
mate reanalysis studies (Swail and Cox, 2000), and estimat-
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ing present and future wind-power outputs (Staffell and Pfen-
ninger, 2016). Major NWP centers now incorporate AMVs
from various geostationary and polar-orbiting satellites, re-
sulting in nearly global horizontal coverage, though vertical
resolution is generally quite coarse.

Numerical weather prediction integrates atmospheric mo-
tion vectors (AMVs) through a process called data assimila-
tion, which involves combining observations of atmospheric
variables with an a priori estimate of the atmospheric state
(usually generated by a short-term forecast) to derive a poste-
rior estimate of wind fields and other atmospheric state vari-
ables. To achieve accurate results, each input source of in-
formation is weighted using an inverse error covariance ma-
trix meant to represent the accuracy of the data. Nguyen et
al. (2019) analytically proved that inaccurate error charac-
terizations of the inputs (i.e., a priori information) can ad-
versely affect the bias and validity of the outputs; similarly,
it is important to assess and, if possible, correct for biases
in AMV retrievals before their subsequent usage in data as-
similation. Staffell and Pfenninger (2016), for instance, ob-
served that NASA’s MERRA and MERRA-2 wind products
suffer significant spatial bias, overestimating wind output by
50 % in northwest Europe and underestimating it by 30 % in
the Mediterranean, and they noted that such biases can have
an adverse effect on the quality of data assimilation that in-
gests said data. Therefore, it is of paramount importance to
assess and remove the biases inherent in AMV retrievals be-
fore their usage in subsequent analysis.

In practice, correcting the bias of an AMV retrieval re-
quires an independent proxy for the “truth”, and previ-
ous studies assessing AMV uncertainty typically compared
AMVs derived from observing system simulation experi-
ments (OSSEs) with collocated radiosonde AMVs (Cordoba
et al., 2017). Here, we propose the idea of using the inde-
pendent (and sparse) lidar observations of wind as a depen-
dent variable in a supervised machine learning model for bias
correction. Following the OSSE framework of Posselt et al.
(2019), we examine a proof of concept that demonstrates the
feasibility and performance of a bias-correction scheme in an
OSSE framework. We use as our reference (truth or Nature-
Run) datasets output from the Weather Research and Fore-
casting (WRF) model run for three different weather events
(Posselt et al., 2019). The water vapor fields from these WRF
model runs are processed through an optical flow algorithm
(Yanovsky et al., 2024) to provide AMVs, and we similarly
simulate lidar observations from the same WRF model data.
Finally, we assess the ability of a bias-correction algorithm
to model and correct biases (relative to the simulated lidar
winds) that arise from the optical flow AMV retrieval.

Velden and Bedka (2009), along with Salonen et al.
(2015), highlighted the significant impact of height assign-
ment on the uncertainty in AMVs derived from cloud move-
ment and sequences of infrared satellite radiance images.
However, this error source is intertwined with uncertainties
in the water vapor profile itself, and modeling this within the

OSSE framework requires extensive knowledge and param-
eterization of the height-assignment error process, which is
beyond the scope of this paper. As such, in this paper, we
will focus on fixed-height errors in the AMV estimates and
the bias corrections arising therefrom.

One challenge with pairing passive-sensor and active-
sensor winds is that the latter typically observe only in one
direction, along the instrument’s line of sight. Therefore, a
question one might ask is what sort of information a re-
searcher might be able to obtain on the entire wind vector if,
for example, lidar winds are only available at sparse locations
in only the line-of-sight direction. In this paper, we search for
the answer to this question in an OSSE framework, and we
show that a passive sensor can benefit from coincident active
sensor data through algorithms that model the expectation
(bias reduction) or quantiles (uncertainty quantification).

We are not aware of a similar approach in the literature
for leveraging lidar wind retrievals for the improvement of
AMV retrievals, even in an OSSE context. Perhaps the clos-
est would be Teixeira et al. (2021), which combined ran-
dom forest with Gaussian mixture models to form regime-
based estimates of bias and uncertainty. While this approach
in principle can be used to bias-correct observations, it dis-
cretizes the bias error function into a fixed number of clus-
ters. While this discretization is useful for understanding
the geophysical regimes of the underlying atmospheric pro-
cesses, it is not as efficient as a model that is purposely built
for bias minimization.

The intention of this paper is not to propose that the al-
gorithms outlined here should replace error characterization
methods for all AMVs. Instead, our primary objective is to
demonstrate that residual error patterns exist in AMV re-
trieval algorithms regardless of whether they involve tradi-
tional feature tracking or optical flow. Furthermore, through
meticulous variable selection and algorithm refinement, it is
feasible to curtail these biases. We also provide evidence that,
in these selected scenarios, the confidence intervals predicted
using the quantile random forest (Meinshausen and Ridge-
way, 2006) approach exhibit a predominantly positive linear
correspondence with the empirical validation standard error.
This correlation is a notable and valuable characteristic that
carries implications for devising indicators of AMV quality.

For the remainder of this paper, we will discuss the data
sources, study regions, and the optical flow AMV retrieval
algorithm in Sect. 2. In Sect. 3.1, we discuss the process
of variable selection, and we discuss parameter optimization
and bias-reduction performance in Sect. 3.2. We follow this
treatment of bias with a discussion of modeling uncertainty
via prediction intervals in Sect. 3.3. Finally, we end with
some discussion of the merits of our approach and plans for
further studies.
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2 Data sources

The evaluation of the impact of bias correction on optical
flow AMVs will be carried out in the context of an OSSE. All
OSSEs share these key components: (1) a reference dataset,
used as a basis for comparison – in our case, this is a Na-
tureRun (NR), which is a high-fidelity simulation mimick-
ing real-world conditions; (2) simulators generating synthetic
observations as if they were taken from the NR (this includes
radiative transfer models, retrieval system simulations, and
accounting for measurement errors, and spatial and tempo-
ral aspects); and (3) a quantitative methodology to evaluate
information in the candidate measurements (Posselt et al.,
2022). In this section, we shall discuss our choices for these
components, with emphasis on the choice of study regions,
the water vapor retrieval simulations, and the algorithm for
computing the AMV from the water vapor.

2.1 Study regions

For a comprehensive view of the impact of bias correction
across various atmospheric scenarios, we will examine three
different systems which include an extratropical cyclone,
tropical convection, and a hurricane at its early and late de-
velopment stages. The details of these datasets describing the
storm systems are summarized in Table 1. The extratropical
cyclone (ETC) reference scenario is one that developed east
of the United States in the western Atlantic Ocean in late
November 2006. This cyclone showcases a diverse spectrum
of wind speeds, water vapor contents, and gradients, provid-
ing an extensive assessment of the AMV algorithm’s error
traits across a wide array of atmospheric circumstances. This
specific ETC case is selected due to its thorough examina-
tion in numerous previous observational studies (Posselt et
al., 2008; Crespo and Posselt, 2016).

For this case, simulations are carried out using the Ad-
vanced Research Weather Research and Forecasting (WRF)
Model, version 3.8.1 (Skamarock et al., 2008). The model
is configured with three nested domains (d01, d02, and d03)
operating at horizontal resolutions of 20, 4, and 1.33 km, re-
spectively; although, for this paper, we will focus primarily
on the data at 4 km resolution and at pressure levels of 850,
500, and 300 hPa. For our analysis, we focus primarily on
the 12 h span of the storm starting on 22 November 2006
00:02:00 UTC.

For the tropical convection case, we consider a simulated
water vapor dataset over the Maritime Continent from 06:00
to 10:27 UTC on 10 July 2008. Similar to the ETC sce-
nario, we chose pressure levels of 850, 500, and 300 hPa for
analysis. Further details on this simulation can be found in
Yanovsky et al. (2024).

Our third study scenario is a hurricane NatureRun, pro-
duced by initializing the Weather Research and Forecast-
ing (WRF) Model using initial conditions from an ensem-
ble forecast of Hurricane Harvey and described in further

details in Posselt et al. (2022). It consists of a free-running
simulation across four two-way nested domains using ver-
sion 3.9.1 of the WRF model. The initiation of this simula-
tion occurs at 00:00 UTC on 23 August 2017, utilizing the
initial state that generated the third most powerful member
within an ensemble forecast of Hurricane Harvey. The en-
semble’s initial conditions were established through the as-
similation of a conventional set of observations and all-sky
satellite brightness temperatures. The NR simulation spans
5 d, ending at 00:00 UTC on 28 August 2017, while the outer-
most domain’s boundaries are guided by analysis fields from
the fifth-generation European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis (ERA5).

This simulation is notably realistic, capturing both wind
patterns and humidity levels. Posselt et al. (2022) noted
that it exhibits rapid intensification; within a span of 24 h,
from 12:00 UTC on 24 August to 12:00 UTC on 25 August,
the minimum sea level pressure plunges by approximately
40 hPa and the storm’s strength escalates from category 1 to
category 4. To get a view of different stages of Hurricane
Harvey, we focus on two 12 h subsets of the storm: one be-
tween 18:00 UTC on 23 August and 06:00 UTC on 24 Au-
gust (early development stage; Harvey EDS), and one be-
tween 06:00 UTC on 24 August and 18:00 UTC on 24 Au-
gust (late development stage; Harvey LDS). Note that with
the division of Harvey into early and late development stages,
we have a set of four scenarios – ETC, TC, and Harvey EDS
and LDS – on which we shall focus our analysis.

Traditional AMVs from cloud tracking are typically fo-
cused on high-level clouds (at around 200 hPa) and low-level
clouds (at around 850 hPa). Tracking mid-level clouds poses
a challenge because they are often obscured by high-level
clouds. In this OSSE study, we are considering using AMVs
derived from sounder-based water vapor retrievals, which are
most reliable in the middle troposphere. Furthermore, lidar
winds, primarily derived from the UV (Rayleigh scattering)
channel, provide retrievals mainly in the middle to upper tro-
posphere where the scattering signal is adequate for return-
ing Doppler information, and the view is less likely to be
obstructed by clouds. For these reasons, we opted to perform
our OSSE error characterization experiments at the 850, 500,
and 300 hPa pressure levels.

2.2 Optical flow AMVs

Optical flow methods are powerful computational techniques
for analyzing the motion between two consecutive images
across various fields (Horn and Schunck, 1981; Zach et al.,
2007; Wedel et al., 2009). In the context of atmospheric
science, these methodologies offer a sophisticated approach
to extracting detailed atmospheric motion vectors (AMVs)
from sequential satellite imagery, providing critical insight
into wind patterns and dynamics essential for improving
weather prediction models and climate research.
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Table 1. Overview of spatial and temporal parameters for the study scenarios.

Region Spatial resolution Temporal resolution Beginning time Duration

ETC Western Atlantic Ocean 4 km 120 s 22 November 2006 00:02:00 12 h
TC Southeast Asia 3.5 km 72 s 10 July 2008 06:00:00 4.5 h
Harvey EDS Gulf of Mexico 3 km 120 s 23 August 2017 18:00:00 12 h
Harvey LDS Gulf of Mexico 3 km 120 s 24 August 2017 06:00:00 12 h

In Yanovsky et al. (2024), the authors employed a robust
and efficient variational dense optical flow method that uti-
lizes the conservation of pixel brightness across a pair of im-
ages, with a regularization constraint. Given a pair of images
I1(x̂) and I2(x̂), where x̂ represents the pixel coordinates in
the image plane, and if ŵ = (u,v) denotes the velocity vector
field describing the apparent motion between the images, the
functional being minimized with respect to ŵ is conceptually
defined as

F(ŵ)= λ

∫
�

∣∣I2(x̂+ŵ)−I1(x̂)
∣∣dx̂+∫

�

(
|∇u|+|∇v|

)
dx̂ , (1)

where λ is the weighting parameter. The first term in F(ŵ)
corresponds to the data fidelity term as an L1 norm between
the first image and the warped second image, ensuring the
similarity using the estimated motion field, ŵ. The second
term, involving the gradients of the velocity components, u
and v, represents the total variation (TV) regularization term
that encourages smoothness in the estimated motion field.

In order to make the problem solvable, the L1 fidelity term
is linearized, enabling efficient optimization. The TV regu-
larization term is convexified to ensure that the optimization
formulation is well behaved, enabling the use of efficient nu-
merical methods for finding the solution. To address the chal-
lenges posed by large displacements, the method employs
a pyramid scheme, which processes the images at multiple
scales, from coarse to fine, gradually refining the motion es-
timation. This multi-scale approach enhances the method’s
robustness to initial estimates and increases its ability to cap-
ture a wide range of motion magnitudes. The method, re-
ferred to as the TV-L1 optical flow algorithm, effectively
handles discontinuities in the flow field while preserving
edges in the motion, making it particularly suitable for cap-
turing complex motion patterns in atmospheric data or other
dynamic scenes. Hence, the method balances between adher-
ing closely to the data and ensuring a physically plausible
flow field.

In our effort to obtain accurate AMVs, we applied the
TV-L1 dense optical flow algorithm to four distinct simu-
lated NatureRun datasets. These datasets represented ETC,
TC, and both the early and late stages of Hurricane Harvey.
The analysis in Yanovsky et al. (2024) revealed that the opti-
cal flow method had a distinct advantage over the traditional
feature matching technique.

For every pair of images, the optical flow algorithm gen-
erated atmospheric motion vectors for every pixel. On the
other hand, the feature matching algorithm had its limitations
– it was unable to generate AMVs in specific areas, particu-
larly near domain boundaries. Although the optical flow ap-
proach did not perfectly capture the strong winds around the
hurricane with absolute precision, the flow fields it produced
closely resembled the wind fields observed in the natural runs
datasets. A notable metric, the root mean square vector dif-
ference (RMSVD), indicated that the errors associated with
the optical flow algorithm were significantly reduced com-
pared to those obtained with the feature matching algorithm.
This resulted in an average accuracy improvement of about
30 % to 50 % for the four datasets analyzed.

An important quality of the optical flow was its robust-
ness. The results it produced remained relatively consistent,
irrespective of the time interval. This was not the case with
the feature matching method, whose results showed a signif-
icant change based on time intervals (Yanovsky et al., 2024).
Given these advantages, we favor the optical flow as the pre-
ferred algorithm for retrieving AMVs in this OSSE exercise.

In Fig. 1, we display the quiver plots of the wind vec-
tors from optical flow (left column) and NatureRun (middle
column) scenarios. The time stamp is chosen as the middle
of the model run for each study scenario. The differences
between the two wind fields (optical flow and NatureRun)
are displayed in the right column of Fig. 1. We observe that
the wind differences show a consistent pattern influenced by
complex local factors, further complicated by what appears
to be random variability and potential covariates such as
wind rotation or water vapor gradients. Given our objective
to model these error characteristics, we approach the problem
by first considering the space of predictor variables, which is
often referred to as feature selection or variable selection.

3 Modeling approach

3.1 Variable selection

Before assessing the benefits of colocating passive and active
wind data, we need focus on the issue of variable selection,
which involves the identification of important variables or
features for predicting the target quantity. In this context, our
target is the bias between retrieved AMVs and actual wind
values. This selection process holds significance due to its
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Figure 1. Quiver plots of the optical flow wind (left column), NatureRun wind (middle column), and differences (right column). The quivers
are overlaid over a yellow–green heatmap of the water vapor, where yellow corresponds to low water vapor and green corresponds to high
water vapor. The rows correspond to ETC, TC, Harvey EDS, and Harvey LDS. These plots are selected from the middle of each study
scenario, and their UTC time stamps are 22 November 2006 06:12:00 (ETC), 10 July 2008 08:18:00 (TC), 24 August 2017 00:10:00 (Harvey
EDS), and 24 August 2017 12:10:00 (Harvey LDS).
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potential to trim down the input parameter space. This re-
duction not only speeds up the training process but also en-
hances the model’s reliability when dealing with unfamiliar
data. Additionally, it contributes to simplifying the interpre-
tation of model parameters.

Lidar instruments typically observe only one component
of winds. Aeolus, for instance, measures “[the] component
of the wind vector along the instrument’s [horizontal] line of
sight [HLOS]” (Lux et al., 2020). Here, we similarly assume
that the active instrument in our OSSE study also observes
only one component of the wind vector, though we simplify
the geometry by assuming that simulated observable is the
u wind. This assumption is fairly benign since it is simply
a change in basis from the wind vector given by the HLOS
wind and its (unobserved) perpendicular component to the
much simpler (u,v) basis.

Since we wish to model the bias between the optical flow û
and the lidar u, we define the response variable as y = û−u.
As for the predictor variables, Posselt et al. (2019) examined
the relationship between “tracked” and “true” wind using an
OSSE framework for the same ETC region as this study, and
they noted that there is considerable heteroskedasticity (i.e.,
non-constant variance) in the wind speed difference (i.e., the
tracked wind speed minus true wind speed) as a function of
the water vapor, wind speed, water vapor gradient, and an-
gle between wind direction and water vapor gradient (Fig. 6
of Posselt et al., 2019). Therefore, we start our list of poten-
tial variables with these four parameters. Since wind speed
is simply a magnitude of the wind vector, (û, v̂), in polar co-
ordinates, we added the other component – wind angle – as
well.

Further, we take advantage of the smooth output space
of the optical flow algorithm to compute the first deriva-
tives of (û, v̂), giving rise to a 4-dimensional vector,
(dû/dx,dû/dy,dv̂/dx,dv̂/dy). These first derivatives are
computed via a first-order finite differencing method. In the-
ory, we could have also computed the second-order deriva-
tives in this manner, but we opted otherwise due to numer-
ical instabilities that can result from computing high-order
derivatives using finite differencing. From these derivatives,
we added the curl and divergence to the list of potential vari-
ables. There variables are meant to inform the model of the
rotation and flux of the wind field at any particular location.
Further, we also computed the angle of the gradient, which is
defined as the angle made with the x axis by 2-dimensional
vectors, (dû/dx,dû/dy) and (dv̂/dx,dv̂/dy), respectively.

To generate the data for assessing the variable importance,
we start with the arrays of optical flow u and v wind, along
with the water vapor content. We apply the finite differenc-
ing method to water vapor and u and v wind to generate the
first-order derivatives, which then provides all the precursors
necessary to compute the rest of the augmented variables de-
scribed above. At this point, each pixel in the domain can
be represented by a 13-dimensional predictor vector (see Ta-
ble 2 for a detailed description) and a scalar-valued response,

y = û− u. We then converted this into a tabular format by
randomly and uniformly sampling 1 % of the available do-
main for each time step and appended them into a training-
validation dataset. These datasets, which are in tabular for-
mat, then form the basis of the following error characteriza-
tion exercises.

The simulated lidar observations are created using the u-
wind component of the WRF wind data (which serve as the
truth). To simulate lidar measurement errors, we added to
the WRF u-wind data Gaussian zero mean random errors
that have pressure-dependent standard deviations: 2 m s−1

for 850 hPa, 3 m s−1 for 500 hPa, and 5 m s−1 for 300 hPa.
These are rather conservative numbers since, in practice, data
quality filtering on lidar wind data can typically reduce the
magnitudes of the errors below what is assumed here. How-
ever, as a proof of concept, we chose to err on the side of
having lidar measurement errors that are too large rather than
too small.

Having constructed the datasets (i.e., the optical flow
AMVs and the simulated lidar information), we consider the
topic of variable importance. There is a large body of litera-
ture on the topic, particularly for regression-based methods.
Examples include approaches such as genetic algorithms,
jackknifing, and forward selection (Bies et al., 2006; Lee et
al., 2012; Blanchet et al., 2008). Here, due to the complex-
ity of the functional model, we select our variable set using
three different machine learning approaches that have been
shown to be capable of modeling highly multivariate func-
tional relationships: random forest (Breiman, 2001), gradient
boosting regression trees (Friedman, 2001), and multi-layer
perceptron (Gardner and Dorling, 1998). (Further details of
parameter optimizations for these methods are discussed in
Sect. 3.2 and Table 3.)

Random forest and gradient boosting, in this case, employ
decision trees (Kingsford and Salzberg, 2008), which is a
popular and widely used machine learning algorithm that can
be applied to both classification and regression tasks. De-
cision trees make predictions by mapping input features to
output targets based on a series of binary decisions, and they
form the basis of the two techniques considered in this sec-
tion: random forest and gradient boosting trees. (For a more
comprehensive overview of these machine learning methods,
Chase et al., 2022, provides an excellent tutorial geared to-
wards meteorologists.) The metric for variable importance
for these two methods is constructed by keeping track of the
decrease in accuracy or increase in impurity (e.g., Gini impu-
rity for classification and increase in node purity for regres-
sion) caused by a chosen specific feature (Breiman, 2001).
These purity-based variable importance plots, where higher
values indicate greater importance, are shown in the first
and second columns of Fig. 2 for random forest and gradi-
ent boosting trees, respectively. The variables’ names on the
x axis are described in Table 2.

The results from the left and middle columns of Fig. 2 indi-
cate that the top five variables for regression are the retrieved
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Figure 2. Variable importance plots for the 500 hPa pressure level at ETC, MCS, Harvey EDS, and Harvey LDS using three different
approaches: random forest (left column), gradient boosting (middle column), and permutation with a neural network (right column). Higher
values indicate higher importance. Variable names along the x axis are defined in Table 2.
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Table 2. Names of variables used for variable importance analysis and their definitions.

Name Description

uopt u wind from optical flow (û)

vopt v wind from optical flow (v̂)

wind_angle angle of the vector (û, v̂) with respect to latitudinal lines

wind_speed
√(
û2+ v̂2

)
qv_gradient_1 dq/dx
qv_gradient_2 dq/dy

qv_gradient
√(
(dq/dx)2+ (dq/dy)2

)
QVangle angle between wind direction and water vapor gradient
curl curl of (û, v̂)
div divergence of (û, v̂)
u_grad_angle arctan(dû/dx,dû/dy)
v_grad_angle arctan(dv̂/dx,dv̂/dy)
qv water vapor content (q)

Table 3. Python package names (middle column) and the parameter settings for each of the method. Parameters not mentioned on this table
are set as default in the Python methods. Note that the arrays under “Parameter settings” specify the option grid through which GridSearchCV
is searching for the optimal choice.

Package name Parameter settings

Random forest sklearn.ensemble.RandomForestRegressor n_estimators∈ (100,300,500),
criterion∈ (“squared_error”, “friedman_mse”),
min_samples_split ∈ (2, 5, 10),
max_features∈ (“sqrt”, “auto”)

Gradient boosting trees sklearn.ensemble.GradientBoostingRegressor learning_rate∈ (0.01,0.1,1),
n_estimators∈ (100,300,500),
max_depth∈ (2,4,6),
max_features∈ (“sqrt”, “log2”)

Multi-layer perceptron sklearn.neural_network.MLPClassifier hidden_layer_sizes∈ ([30,15], [20,20], [30,20], [20,10]),
activation∈ (“tanh”, “logistic”, “relu”),
learning_rate∈ (“constant”, “invscaling”, “adaptive”),
max_iter∈ (200,500,1000),
learning_rate_init∈ (1× 10−3,1× 10−4,1× 10−5)

Nearest neighbor sklearn.neighbors.NearestNeighbors algorithm= “KDTree”,
n_neighbors∈ (3,5,10),
p ∈ (1,1.5,2)

optical flow winds, (û, v̂); wind speed and angle; and water
vapor (q). We note that wind speed and wind angle are the
polar-coordinate transform of the rectangular coordinates, (û,
v̂), but their inclusion in the model significantly improves the
model, since they provide an informative transformation that
makes it easier for the machine learning model to model the
functional form of interest.

One of the weaknesses of the purity-based variable impor-
tance plot is that high correlation between features can inflate
the importance of numerical features (Gregorutti et al., 2017;
Nicodemus et al., 2010) and that the purity-based variable
importance is based only on training data and can have low
or no correlation with independent validation data. To ad-

dress these shortcomings, we supplement them with another
approach based on permutation, which could be applied to
any fitted estimator in tabular data contexts. The concept be-
hind permutation feature importance involves quantifying the
reduction in a model’s score resulting from the random shuf-
fling of a chosen variable (e.g., wind speed) while keeping
all other variables the same within a fitted model (Breiman,
2001). The key insight is that if a model has significantly
worse performance with a particular variable “shuffled”, then
that variable must be important and the degree of importance
can be assessed by the magnitude of the performance degra-
dation. One advantage of this technique is that it could be
applied to non-linear or opaque estimators, and for this we
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choose to apply it in conjunction with a neural network –
specifically, a multi-layer perceptron regressor.

These permutation-based variable importance values are
plotted in the right column of Fig. 2. The variable impor-
tance that comes out of the permutation method has a dif-
ferent unit and scaling compared to the purity-based variable
importance, but both are consistent in indicating that higher
values signify greater importance. The overall patterns are
the same between different approaches, indicating that for
the most part, the most important variables are (û, v̂), wind
angle, wind speed, and water vapor content (q). Wind speed,
however, is considered one of the most important predictors
of bias according to the permutation method; one additional
feature that is considered somewhat important in this metric
is the curl. Therefore, we consider the set of these six vari-
ables in the following analysis and modeling.

3.2 Algorithm comparisons

Having identified the important predictive variables, we con-
sider the algorithms for fitting the bias functional form. The
features we require of the algorithm are able to handle com-
plex multivariate data patterns, robust against new datasets
and computationally fast. For this reason, we have chosen
four methods that are known to do well for high-dimensional
problems with complex relationships: random forest, gradi-
ent boosting trees, multi-level perceptron, and nearest neigh-
bor. Here, we touch briefly on an overview of the methods
before going into details of optimization and comparison.
For readers who are not familiar with these machine learn-
ing approaches, we recommend the excellent tutorial series
“A Machine Learning Tutorial for Operational Meteorology”
(Chase et al., 2022, 2023).

Random forest is a powerful ensemble learning technique
used for both classification and regression tasks in machine
learning. As the name suggests, it consists of an ensemble
of multiple decision trees, combining these trees to create a
more accurate and robust predictive model (Breiman, 2001).
Random forests are particularly popular due to their ability
to handle complex data, reduce overfitting, and provide valu-
able insights into feature importance. Each tree is constructed
using a random subset of the training data and a random sub-
set of the input features. The predicted value, whether a class
label or a regression value, is computed by passing the pre-
dictors to all the trees fitted within the model and aggregating
the corresponding outcomes.

Gradient boosting trees is another powerful machine learn-
ing technique falling under the ensemble method umbrella.
Like random forests, gradient boosting constructs an en-
semble of decision trees, with each referred to as a “weak
learner” because they are relatively simple and typically un-
derfit on their own. However, the trees are built sequentially,
with each new tree aiming to correct the errors made by the
previous ones. Similar to random forests, gradient boosting
aims to build many trees and is widely used for both regres-

sion and classification tasks because of its capacity to create
accurate predictive models capable of handling complex data
patterns (Friedman, 2001).

The multi-layer perceptron (MLP) is a foundational arti-
ficial neural network architecture that serves as the corner-
stone for deep learning models. It is a versatile and powerful
technique used for a wide range of machine learning tasks,
including classification and regression. An MLP consists of
interconnected layers of artificial neurons or nodes roughly
divided into three types: input layers, which typically repre-
sent the predictors; hidden layers, responsible for processing
information from the previous layer and extracting relevant
features; and the output layer, which produces the final result,
such as a classification label or a regression value. Each neu-
ron processes information and passes its output to the next
layer; the numeric parameters within each node, namely the
weight and bias values, are estimated from the data using
backpropagation and gradient descent (Gardner and Dorling,
1998).

Nearest neighbor methods operate on the principle of iden-
tifying a fixed number of training samples that are the closest
in proximity to the new data point, and then predicting the la-
bel based on these identified neighbors. This number of sam-
ples can either be a user-defined constant, characteristic of k-
nearest neighbor learning, or can adapt based on the density
of nearby points, as seen in radius-based neighbor learning.
The measurement of distance can be achieved through var-
ious metric measures, with the standard Euclidean distance
being the most commonly selected option.

We used implementations of these methods from the
Python scikit-learn package (version 1.2) (Kramer and
Kramer, 2016). All of these methods require tuning of
algorithm parameters, such as tree leaf nodes and depth
for random forest and gradient boosting, hidden layer
sizes, and activation methods for the neural network,
neighbor size, and distance metrics for nearest neighbors,
etc. To optimize these parameters, we employed the grid
search optimization method from the scikit-learn package
(sklearn.model_selection.GridSearchCV). This method iter-
ates through different parameter choices provided in the pa-
rameter grid and identifies the best combination of parame-
ters that minimize the loss function, which in this case is the
root mean square error when fitted against the training data.
The parameter search space for these four methods is detailed
in Table 3.

To evaluate the performance of the four different meth-
ods, we divided the tabular datasets created from the data
arrays into training datasets (used for model building) and
validation datasets (used for performance assessment). We
employed two types of division – spatial and temporal – as
illustrated in Fig. 3. In the temporal division, we reserved
the last 1/4, 1/3, and 1/2 of the data using time stamps, re-
spectively, and utilized these withheld data to evaluate per-
formance in terms of RMSE. For the ETC dataset, spanning
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12 h, this entailed setting aside the last 3, 4, and 6 h of data
for validation.

The results of this temporal validation for the ETC case
are displayed in the right panels of Fig. 4. In all pressure
levels, the machine learning approach consistently exhibits
smaller bias than the uncorrected optical flow data, where
bias is defined as the expected value of the difference be-
tween u wind from optical flow (both corrected and uncor-
rected) and the WRF-simulated truth. Notably, for the 300
and 500 hPa levels, the bias magnitude is significant at 2.5–
3 m s−1, but it is reduced to less than 0.5 m s−1, signifying
a substantial improvement. Similarly, although the reduction
in bias is smaller at 850 hPa due to the optical bias starting at
a lower value, the same trend persists.

It is informative to assess the performance of all four al-
gorithms across the four scenarios and three pressure levels.
Therefore, we selected the case where 1/2 of the data was
withheld (considered the most challenging case) and sum-
marized the validation performance in terms of bias for all
four methods in Table 4. The scenarios at different pressure
levels are listed in the rows. Overall, random forest, gradi-
ent boosting, and MLP tend to exhibit comparable perfor-
mance, with no clear preference among the three. Nearest
neighbor, on the other hand, consistently reduces bias relative
to the uncorrected optical flow but falls short of the perfor-
mance achieved by the other three algorithms. This suggests
that the proximity-based methodology may not be flexible
enough to capture the complex dependence structure of the
AMV biases. We note that there are two instances where the
uncorrected optical flow has the smallest bias (Harvey EDS
300 hPa and Harvey LDS 850), but these cases share a com-
mon feature in which the original optical flow exhibits a very
low bias (< 0.25 m s−1). In such cases, the algorithms may
struggle due to the limited discernable signal for modeling.

Another validation approach is a purely spatial one. In this
approach, we divide the domain of each study region (as seen
in Fig. 1) into equal 3× 3 areas and label each subregion
with an index ranging from 0 to 8. In this labeling scheme,
0 represents the bottom-left cell, 2 the bottom-right cell, 4
the center cell, and 8 the top-right cell. We then withhold one
of these nine regions at a time and train our models (e.g.,
random forest and gradient boosting) on the other eight cells.
Subsequently, we apply our trained model to the withheld
region. A sample of the results from these spatial validation
efforts is shown in the left panels of Fig. 4 for the ETC case,
using the random forest algorithm. In this figure, the indices
on the axes represent the region that was withheld from the
training process. The overall biases, computed in the lower-
right of the panels, are mean absolute biases (MABs), which
are defined as

MAB(m)=
9∑
i=1

|bi(m)|

9
, where bi(m)=

Ni∑
j=1

(
ûmij − uij

)
Ni

.

In this formula, m represents the methodology being eval-
uated (e.g., random forest, gradient boosting, and optical
flow), bi(m) denotes the normal bias when applying method-
ology m to the ith withheld dataset, and Ni stands for the
number of observations within the ith validation dataset. The
reason for calculating the mean absolute biases across these
nine regions is to account for the possibility of biases hav-
ing both positive and negative values. Therefore, we take the
absolute value before averaging to prevent negative biases
from canceling out positive biases and potentially distorting
the resulting metrics.

The results from the ETC case in Fig. 4 indicate that, for
most of the regions, the trained model results in biases that
are smaller in magnitude than those of the original optical
flow u wind. In some cases, the improvement in bias can
be substantial (e.g., region 1). While, in a few instances,
the RF model can result in biases with increased magni-
tude, this adverse effect is generally small compared to the
magnitude of gains observed in other regions. The MABs
are displayed in the lower-right corner of the left panels in
Fig. 4, and they suggest that random forest consistently re-
duces the magnitude of the bias compared to the optical flow
data. Another observation is that the validation spatial bi-
ases in Table 5 tend to be bigger than the validation tem-
poral biases in Table 4 (e.g., the typical MAB in the spatial
case is around 1.5 m s−1, while the typical bias in the tem-
poral validation case is around 0.5 m s−1). In both cases, the
machine-learning-corrected values tend to be improved over
the uncorrected optical flow data, indicating that the algo-
rithm is able to capitalize on information within the training
dataset for both the spatial and temporal case. However, their
difference in performance in Tables 4 and 5 indicates that
functional relationship between the biases and the predictive
variables in Sect. 3.1 may change depending on the spatial
region, which makes sense intuitively since different regions
of a storm system might exhibit different bias characteris-
tics. However, this functional relationship, as demonstrated
by Table 4, tends to be much more stable in terms of tempo-
ral evolution in the timescales that we examined (i.e., 3, 4,
and 6 h in advance), which allows the algorithms considered
to be more accurate in predicting and correcting the biases.

In Table 5, we present the MABs of the four algorithms
(as well as that of the uncorrected optical flow) across the
four scenarios and pressure levels. We observe the same over-
all patterns as in the temporal validation shown in Table 4,
noting that random forest, gradient boosting, and MLP tend
to exhibit the best performance, although their dominance
varies across different scenarios and pressure levels. As be-
fore, nearest neighbor does not produce notably superior re-
sults. In some cases, the uncorrected optical flow algorithm
has the lowest error, but these tend to be cases where the bias
initially starts off at a low level.
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Figure 3. (a) Spatial validation scheme where the domain is divided into a 3× 3 grid and labeled from 0 to 8. (b) Temporal validation scheme
where the training data are set as the first 1/2, 2/3, and 3/4 of the full dataset, respectively.

Table 4. Validation temporal bias (computed from withheld last half of data for each atmospheric regime) for random forest, gradient
boosting, neural network, and nearest neighbor. Units are in m s−1. Cells that are in bold indicate the best performing method, which is
defined as having bias that is closest to zero. The uncorrected bias is defined as the bias of the raw optical flow data relative to the WRF data.

Random forest Gradient boosting Neural network Nearest neighbor Uncorrected bias

ETC – 300 hPa −0.521 −0.565 −0.276 −0.567 −3.062
ETC – 500 hPa −0.091 −0.266 −0.244 −0.176 −2.116
ETC – 850 hPa −0.027 −0.040 −0.210 −0.061 −0.437
TC – 300 hPa −0.318 −0.296 −0.352 −0.340 0.714
TC – 500 hPa 0.067 0.083 0.303 0.125 0.452
TC – 850 hPa −0.088 −0.096 −0.063 −0.079 0.081
Harvey EDS – 300 hPa 0.309 0.375 0.443 0.3988 −0.158
Harvey EDS – 500 hPa −0.064 −0.050 −0.049 −0.063 −0.400
Harvey EDS – 850 hPa 0.105 0.059 0.076 0.092 0.165
Harvey LDS – 300 hPa 0.223 −0.061 −0.062 0.012 −0.777
Harvey LDS – 500 hPa 0.431 0.396 0.209 0.305 0.228
Harvey LDS – 850 hPa −0.234 −0.136 −0.103 −0.169 −0.087

3.3 Uncertainty characterization of AMVs

In data assimilation, thinning high-density AMVs is often
necessary. Typically, this process involves giving preference
to vectors that exhibit higher accuracy. The selection proce-
dure usually takes into consideration various indicators of
error level associated with the vectors, such as the qual-
ity indicator (QI), expected error (EE), recursive filter flag
(RFF), and error flag (ERR) (Le Marshall et al., 2004). All
of these metrics share the common goal of grouping AMVs
with similar errors together, meaning that observations with
good quality indicators should all exhibit low errors relative
to the unobserved truth.

We note that pattern tracking and optical flow do not pro-
vide an intrinsic error estimate, necessitating the addition of
the post hoc error indicators mentioned above. In the existing
remote sensing literature, a variant of random forest called
quantile random forest has been extensively used to model
uncertainty alongside the prediction of interest (e.g., a digi-
tal soil mapping product – Vaysse and Lagacherie, 2017; soil
organic matter – Nikou and Tziachris, 2022; nitrogen use ef-

ficiency – Liu et al., 2023). In this section, we shall employ
quantile forest regression to construct the prediction intervals
for the u wind and compare them with withheld validation u-
wind data.

Quantile random forest, as introduced by Meinshausen
and Ridgeway (2006), is a modification of the random for-
est procedure that enables the estimation of prediction in-
tervals for the intended variables. In contrast to normal ran-
dom forests, which approximate the conditional mean of a re-
sponse variable, quantile random forests (QRFs) provide the
full conditional distribution of the response variable to con-
struct prediction intervals. (For readers who are not familiar
with the random forest algorithm, Chase et al. (2022) pro-
vides an excellent meteorology-geared tutorial.) The key in-
sight that allows for this property is that while random forests
solely retain the mean of observations within each node and
discard any additional information, quantile random forests
preserve the values of all observations within the node (not
just their mean) and use these distributions to make estimates
of the quantiles of interest. In particular, Meinshausen and
Ridgeway (2006) prove that the conditional quantile esti-
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Figure 4. Sample plot of the random forest performance for ETC at three pressure levels for the (a, c, e) spatial case and (b, d, f) temporal
case.

mates are asymptotically consistent under specific assump-
tions:

1. The proportion of values in a leaf, relative to all values,
vanishes as the number of observations, n, approaches
infinity.

2. The minimal number of values in a tree node grows as
n approaches infinity.

3. When looking for features at a split, the probability of a
feature being chosen is uniformly bounded from below.

4. There is a constant, γ , in the range γ ∈ (0,0.5) such that
the number of values in a child node is always at least γ
times the number of values in the parent node.

5. The conditional distribution function is Lipschitz con-
tinuous with positive density.

These are fairly modest assumptions, particularly with re-
spect to the construction of the trees. However, it is worth
noting that the quantiles under these assumptions are only
asymptotic consistent as n approaches infinity. However,
these assumptions provide some theoretical assurance that
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Table 5. Validation spatial bias (averaged over all nine spatial regions) for random forest, gradient boosting, neural network, and nearest
neighbor. Bias is computed as the mean of absolute bias within each of the spatial region. Cells that are bolded indicate the best-performing
method, which is defined as having bias that is closest to zero.

RandomF GradientB NeuralN NearestN Uncorrected bias

ETC – 300 hPa 2.723 2.770 2.874 3.037 3.815
ETC – 500 hPa 1.745 1.761 1.790 2.024 2.595
ETC – 850 hPa 0.675 0.678 0.679 0.668 0.748
TC – 300 hPa 1.261 1.112 1.241 1.287 1.047
TC – 500 hPa 0.587 0.608 0.601 0.581 0.661
TC – 850 hPa 0.496 0.485 0.443 0.470 0.440
Harvey EDS – 300 hPa 0.469 0.371 0.453 0.454 0.432
Harvey EDS – 500 hPa 0.680 0.563 0.846 0.707 0.488
Harvey EDS – 850 hPa 0.444 0.336 0.389 0.509 0.401
Harvey LDS – 300 hPa 0.612 0.640 0.718 0.698 0.869
Harvey LDS – 500 hPa 0.214 0.334 0.343 0.397 0.372
Harvey LDS – 850 hPa 0.506 0.491 0.540 0.576 0.383

Figure 5. Actual coverage percentage of the 95 % prediction inter-
vals when evaluated against withheld validation data. The vertical
red line is the ideal coverage percentage as implied by the 95 %
intervals.

the outputs of quantile random forest should approximate the
true conditional quantiles to some extent.

Here we use the Python implementation of QRF provided
by the Python package quantile-forest. We use quantile ran-
dom forest to build 95 % prediction intervals at the pixel
level. That is, at any pixel, we compute the prediction in-
terval as follows:

I (x)= [Q.025(x),Q.975(x)] ,

where Q.025(·) and Q.975(·) are the 2.5th percentile and
97.5th percentile random forest estimators from quantile-
forest, respectively, and x is the vector of predictors (e.g.,
optical flow winds, wind speed, and angle), as discussed in
Sect. 3.1.

We wish to assess the performance of the intervals, I (x),
given by quantile random forest, and one approach is to

Figure 6. Plots of the estimated prediction error from random forest
versus empirical validation error using quantile random forest for
(a) ETC, (b) TC, (c) Harvey EDS, and (d) Harvey LDS. Red lines
are the identity (y = x) lines.

compute the coverage probability of the confidence intervals
when applied to withheld simulated lidar data. We repeat the
exercises in the previous section, and for each of the four sce-
narios and three pressure levels, we use the first half of the
storm for training and the second half for validation. We then
compute the coverage percentage of the prediction intervals,
which is defined as the probability (expressed as percentage)
that the true u wind actually falls within the interval given
by quantile random forest. That is, the coverage percentage
(CP) for a given scenario and pressure level is given by

CP=
∑N
i=1 (Q.025(xi)≤ ui ∩ ui ≤Q.975(xi)) · 100

N
,
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where ui is the ith WRF wind from the withheld validation
set, (·) is the indicator function, and N is the size of the
validation dataset. A comparison of the coverage probability
for all scenarios and pressure levels is given in Fig. 5. There,
we see that the 95 % prediction intervals from quantile ran-
dom forest consistently underestimate the magnitude of the
error variability, averaging between 85 % and 90 % coverage,
while the ideal number should be 95 %. This implies that the
prediction interval widths given by quantile random forest in
general tend to be a bit smaller than what the validation data
require.

To get a clearer idea of the differences between the es-
timated prediction error and that of the validation data, we
examine their relationship in a scatter plot. To do so, we first
convert the prediction intervals, I (x), to their effective pre-
diction error, σ̂ (x). This conversion relies on the fact that in
a Gaussian distribution, the 95 % confidence interval is given
by a ±2 standard deviation of the mean. Therefore, to com-
pute the effective prediction error from our 95 % confidence
interval, we divide the interval width by 4. That is,

σ̂ (x)=
Q.975(x)−Q.025(x)

4
.

To compare this effective prediction error, σ̂ (x), against the
withheld validation data, we construct the equivalent stan-
dard error using the withheld validation data. We use the bin-
ning approach, where the empirical validation error (EVE)
for a given prediction error value, σ , and a given bin length,
d , is computed by aggregating all observations where the
QRF prediction error is within ±d of σ , and then we com-
pute the RMSE on this subset. In formal terms, the EVE is
given by

EVE(σ,d)=

√√√√√
 ∑
i∈|σ̂ (xi )−σ |<d

(
u∗i − ui

)2
N

 , (2)

where u∗i is the ith RF-corrected u wind in the validation
dataset, ui is the ith true WRF u wind, and N is the size of
the validation dataset.

With the formulas above, we binned the RF prediction er-
rors into eight equally spaced bins and computed the corre-
sponding EVE. The results are shown for all scenarios at the
500 hPa pressure level in Fig. 6. Although the overall pat-
terns are similar at other pressure levels, this figure provides
a more nuanced view, showing that while the RF prediction
errors tend to under estimate the true errors, they exhibit a
statistically significant linearly increasing relationship. This
is a valuable property. It implies that while the errors are
not accurate (i.e., statistically valid), their positive correla-
tion with the true error indicates that we can use the QRF
prediction error as a proxy for quality assessment.

To demonstrate the usefulness of this property, we simu-
late a quality indicator flag by dividing the validation data
into three equal-size categories: low-, mid-, and high-quality.

The three categories are constructed by sorting the QRF pre-
diction errors (or alternatively the prediction interval widths)
from smallest to largest and then classifying the smallest one-
third as high-quality, the middle one-third as mid-quality, and
the largest one-third as low-quality. We then compute the
EVE of the optical flow wind versus the withheld true wind
within each bin, and we display the results in Table 6. In-
tuitive understanding of high-quality observations generally
implies that they are more accurate than low-quality observa-
tions; indeed, here, Table 6 indicates that the EVE values, for
every region and every pressure level, form an increasing pat-
tern with high-quality observations having the smallest error,
mid-quality having medium error, and low-quality having the
largest error.

The differences between the high-quality and low-quality
observations can be fairly small some situations, particularly
for the TC case at all pressure levels. We note that this is
because of the design of the experiment. Recall that we are
using withheld simulated lidar data that have added Gaus-
sian zero mean random errors with pressure-dependent stan-
dard deviations: 2 m s−1 for 850 hPa, 3 m s−1 for 500 hPa,
and 5 m s−1 for 300 hPa. These random measurement errors
are added to all quality categories, which then essentially
dilute the contribution of the variability coming from the
bias signal. This explains why the differences between high-,
medium-, and low-quality bins are larger when the measure-
ment errors are relatively low.

We note that the experiment in Table 6 divided the data
into three bins. In general, the results here should hold for
different numbers of bins although a high single-digit num-
ber might be unstable. A hint of this instability is seen in
Fig. 6, where we observe that for the top-right panel, the
rightmost bin has almost an identical EVE compared to the
bin immediately preceding it. This may be due to the fact that
there are low bin counts at the extreme edge of the domain. In
general, increasing the bin count can reduce the bin counts,
exacerbating these statistical artifacts. However, quality indi-
cators in common usage tend to use a low single-digit num-
ber of bins, which works well here.

4 Conclusions

Accurately estimating global wind patterns is of paramount
importance across scientific and practical domains, includ-
ing applications like global chemical transport modeling and
numerical weather prediction. Atmospheric motion vectors
(AMVs) serve as crucial inputs for these applications. How-
ever, addressing errors in AMV retrievals becomes imper-
ative before their assimilation into data assimilation sys-
tems, as these errors can significantly impact output accu-
racy. One noteworthy error characteristic of AMVs is bias,
which varies considerably by region. These biases can lead to
adverse results if the AMVs are incorporated into data assim-
ilation systems without proper mitigation or bias removal.
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Table 6. SD vs. quality indicators based on RF prediction errors. Baseline SD is defined as the SD of the entire optical flow dataset against
the WRF-simulated truth. (i.e., SD(û− u)).

High quality Mid quality Low quality Baseline SD
(SD) (SD) (SD)

300 hPa 7.161 7.739 9.002 8.039
ETC 500 hPa 4.660 5.282 6.868 5.694

850 hPa 3.002 3.612 5.012 3.978

300 hPa 5.658 5.747 5.995 5.804
TC 500 hPa 3.452 3.629 3.737 3.647

850 hPa 2.502 2.604 2.751 2.623

300 hPa 5.462 5.507 5.740 5.575
Harvey EDS 500 hPa 3.423 3.535 4.043 3.696

850 hPa 2.469 2.554 3.060 2.722

300 hPa 5.788 5.882 6.262 5.972
Harvey LDS 500 hPa 3.502 3.647 4.231 3.833

850 hPa 2.678 2.823 3.476 3.038

In real-world applications, correcting the bias in AMV re-
trievals necessitates an independent benchmark or reference
to establish accuracy. Independent data sources may include
collocated radiosonde data or lidar AMV data, such as those
available from Aeolus. In this paper, we present a proof of
concept that demonstrates the feasibility and performance of
a bias-correction scheme within an observing system sim-
ulation experiment (OSSE) framework. Specifically, we ex-
amined three different storm systems in the Gulf of Mex-
ico, North Atlantic Ocean, and southeast Asia and applied
our bias correction and prediction error interval procedure
to outputs generated by a novel AMV algorithm known as
optical flow. Our results suggest that passive-sensor AMVs,
which typically have high coverage but low precision, can
benefit significantly from coincident high-precision active-
sensor wind data. These benefits can be harnessed through
algorithms that model expectations (bias reduction) or quan-
tiles (uncertainty quantification).

In Sect. 3.2, we demonstrate that conventional machine
learning algorithms such as random forest and gradient
boosting can effectively learn the complex multivariate de-
pendence structure of errors and correct biases in raw opti-
cal flow AMVs. It is worth noting that despite having low
bias in some cases, the standard deviation of the AMV error
can be relatively large (e.g., with a standard deviation of 1–
2 m s−1, while the error may be on the scale of < 0.5 m s−1).
In these scenarios, the error-correction model produces bi-
ases of a similar magnitude (i.e., < 0.5 m s−1). Notably, we
show that in the storm systems we considered, it is possible
to estimate biases with minimal performance degradation up
to 6 h in advance.

One of the most valuable extensions of machine learning
models in this bias-correction exercise is the ability to esti-
mate prediction intervals. In Sect. 3.3, we employ the quan-

tile random forest framework by Meinshausen and Ridge-
way (2006) to generate prediction intervals for withheld val-
idation data. We observe that while the prediction intervals
often tend to be too narrow (underestimating the variability
in the true process), they generally exhibit a monotonically
increasing relationship with the NatureRun wind variability.
In other words, the uncertainty estimates from the quantile
random forest are not statistically valid (i.e., the 95 % confi-
dence intervals may not capture the truth 95 % of the time),
but the algorithm does correctly rank the error magnitudes
when analyzing multiple pixels. Therefore, while the predic-
tion intervals may not be directly usable in data assimilation,
they can serve as valuable components of a quality indicator.
Indeed, in Sect. 3.3, we conduct an experiment where we cat-
egorize the optical flow retrievals into three groups – high-,
mid-, and low-quality. We demonstrate that the standard de-
viation within these categories relative to the validation data
follows an increasing pattern, with high-quality observations
having the lowest error standard deviation, mid-quality ob-
servations falling in the middle range, and low-quality obser-
vations displaying the highest error standard deviation.

These results are highly promising, particularly regarding
the application of quantile random forest in quality indica-
tors. Our future research plans involve extending this study
to other global regions and various convective systems. It
is worth noting that different applications or study regions
may necessitate distinct sets of predictive variables and that
the selection of variables employed in our feature selection
process may not be universally applicable. Nevertheless, the
same variable selection process presented in Sect. 3.1 can be
adapted to determine the most relevant predictive variables.
In this paper, we utilized quantile random forest for pre-
diction interval estimation, but theoretically, other machine
learning algorithms could be employed to generate quantiles
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(e.g., quantile neural networks), although the computational
requirements may vary.
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