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Abstract. Doppler lidar (DL) applications with a focus on
turbulence measurements sometimes require measurement
settings with a relatively small number of accumulated pulses
per ray in order to achieve high sampling rates. Low pulse
accumulation comes at the cost of the quality of DL radial
velocity estimates and increases the probability of outliers,
also referred to as “bad” estimates or noise. Careful filter-
ing is therefore the first important step in a data processing
chain that begins with radial velocity measurements as DL
output variables and ends with turbulence variables as the
target variable after applying an appropriate retrieval method.
It is shown that commonly applied filtering techniques have
weaknesses in distinguishing between “good” and “bad” es-
timates with the sensitivity needed for a turbulence retrieval.
For that reason, new ways of noise filtering have been ex-
plored, taking into account that the DL background noise
can differ from generally assumed white noise. It is shown
that the introduction of a new coordinate frame for a graphi-
cal representation of DL radial velocities from conical scans
offers a different perspective on the data when compared to
the well-known velocity—azimuth display (VAD) and thus
opens up new possibilities for data analysis and filtering.
This new way of displaying DL radial velocities builds on
the use of a phase-space perspective. Following the mathe-
matical formalism used to explain a harmonic oscillator, the
VAD’s sinusoidal representation of the DL radial velocities
is transformed into a circular arrangement. Using this kind
of representation of DL measurements, bad estimates can
be identified in two different ways: either in a direct way
by singular point detection in subsets of radial velocity data
grouped in circular rings or indirectly by localizing circular
rings with mostly good radial velocity estimates by means
of the autocorrelation function. The improved performance

of the new filter techniques compared to conventional ap-
proaches is demonstrated through both a direct comparison
of unfiltered with filtered datasets and a comparison of re-
trieved turbulence variables with independent measurements.

1 Introduction

Doppler lidars (DLs) are widely used for measurements of
atmospheric wind and turbulence variables in different ap-
plication areas, such as wind energy, aviation, and meteo-
rological research (Liu et al., 2019; Sathe and Mann, 2013;
Thobois et al., 2019; Krishnamurthy et al., 2013; Filioglou
et al., 2022; Drew et al., 2013; O’Connor et al., 2010; Sathe
and Mann, 2013; Bodini et al., 2018; Sanchez Gomez et al.,
2021; Beu and Landulfo, 2022). The wide application range
became possible due to the flexible configuration options of
several modern systems benefitting from the all-sky-scanner
technique. This technical flexibility allows for the employ-
ment of user-defined scan patterns with respect to azimuth
and elevation as well as the choice of specific sampling fre-
quencies in order to meet the data requirements for certain
application-oriented retrieval processes.

At the Meteorological Observatory Lindenberg — Richard
AfBmann Observatory (MOL-RAO) the interest in long-term
operational DL profile observations for both wind and tur-
bulence variables is motivated by different application as-
pects. The data can be helpful in analyzing and interpreting
the kinematic properties of the vertical structure of the at-
mospheric wind and turbulence under different weather con-
ditions and states of the ABL during the course of the day
(e.g., stable ABL, convective mixed ABL, transitions be-
tween different ABL states). In addition, the profile infor-
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mation can be useful for regular validation purposes of at-
mospheric numerical models. This includes not only mod-
eled wind profiles but also the performance of turbulence pa-
rameterizations (e.g., TKE closure) used to describe subgrid-
scale processes. Due to increasingly higher model resolu-
tions and the associated changes in the applicability and rela-
tive importance of parameterization schemes, long-term DL-
based turbulence measurements are also interesting when it
comes to developing appropriately adapted parameterization
approaches that meet these new requirements.

A variety of scanning techniques and retrieval methods
for vertical profiles of wind and turbulence variables based
on DL measurements have been developed (Smalikho, 2003;
Pischke et al., 2015; Sathe et al., 2015; Newsom et al.,
2017; Bonin et al., 2017; Steinheuer et al., 2022). Sev-
eral of these methods rely on specific scanning configura-
tions and are tailored towards a specific data product. For
the derivation of different data products this implies either
the use of more than one DL system or cyclic configura-
tion changes in a single DL. With respect to this limita-
tion, the relatively new scanning and retrieval method intro-
duced by Smalikho and Banakh (2017) stands out from other
methods. Their approach is based on a carefully derived set
of model equations, describing functional relationships be-
tween radial velocity observations measured along a conical
scan with high azimuthal and temporal resolution (A6 ~ 1°,
At ~0.25s) and a set of meaningful wind turbulence vari-
ables such as turbulence kinetic energy (TKE), eddy dissi-
pation rate (EDR), momentum fluxes, and the integral scale
of turbulence. Hence, the essential benefit of this approach
relies on the deployment of an internally consistent set of si-
multaneous wind and turbulence profile observations based
on just one scan strategy. As a further outstanding feature the
method provides correction terms to account for the typical
underestimation of the TKE due to the averaging over the
pulse volume of the DL. This issue has frequently been men-
tioned as the most challenging task in turbulence measure-
ments using DL (Sathe and Mann, 2013; Liu et al., 2019).

Because of the strength of the Smalikho and Banakh
(2017) approach, the method has been implemented and
tested for routine application at MOL-RAO. From the first
quasi-routine test measurements with a StreamLine DL from
the manufacturer HALO Photonics (now HALO Photonics
by Lumibird) three things became apparent: (1) the mea-
surements of radial velocity show an increased level of noise
which is noticeable through an increased number of outliers
(“bad” estimates) even at rather low height levels in the ABL,;
(2) the reliability of both retrieved wind and above all turbu-
lence variables strongly depends on the degree of noise con-
tamination, i.e., the number and distribution of bad radial ve-
locity estimates, in the input data; and (3) if just the signal-to-
noise ratio (SNR) thresholding technique is used to remove
noise from the data, the final turbulence product availability
is relatively low. The first finding can be attributed to short
accumulation times, which is an inevitable consequence of
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the technical realization of the scanning strategy with high
spatiotemporal resolution. The length of the accumulation
time determines how many available spectra of backscattered
light can be used to estimate the frequency shift fy4 (Doppler
frequency) and therewith the radial velocity defined through
Vi = —A fa/2. The longer a signal is sampled, the more ac-
curate this estimation will be. For that reason it is a common
approach to accumulate the spectra of backscattered light
from multiple pulses N, (Frehlich, 1995; Rye and Hardesty,
1993; Banakh and Werner, 2005; Li et al., 2012). For the re-
trieval of wind profiles as proposed in Paschke et al. (2015),
for instance, DL measurements have been performed using
a comparably high number of N, =75000 pulses. At this
point the method of Smalikho and Banakh (2017) requires
a sensible compromise. Using a StreamLine DL, for techni-
cal reasons a conical scan with the required high azimuthal
and temporal resolution can only be achieved with a rather
low number of accumulated pulses per measurement ray, i.e.,
N, ~ 2000. This in turn has the consequence that the occur-
rence of bad estimates in the measurements becomes more
likely (Frehlich, 1995). Such outliers contain no wind infor-
mation (Stephan et al., 2018), and, if not excluded from the
measured dataset, they may contribute to large errors in the
retrieved meteorological variables (Dabas, 1999). The latter
explains the aforementioned second finding and indirectly
confirms the recommendations given in Banakh et al. (2021)
that the method for determining wind turbulence parameters
presented in Smalikho and Banakh (2017) is only applicable
if the probability P, of bad estimates of the radial velocity
is close to zero. A closer examination of the third finding
mentioned above revealed that with the proper choice of the
threshold value the SNR thresholding technique is indeed
very effective in removing noisy data, but it also bears the
risk of discarding a lot of reliable measurements. This in turn
proves to be ineffective for the overall product availability
and would not justify a routine application of the retrieval
method.

To overcome the issues described above, new filter meth-
ods were developed in the course of implementing the re-
trieval method by Smalikho and Banakh (2017) for rou-
tine applications at MOL-RAO. In particular, a filter method
was sought which allows for a reliable removal of all noise
contributions and circumvents an unnecessary refusal of re-
liable data at the same time. A detailed presentation of
these methods is the main objective of this work. In addi-
tion, their advantages over commonly used filtering tech-
niques for turbulence-measurement-oriented routine applica-
tions are presented. The article is organized as follows: in
Sect. 2 technical information on the measuring system used,
its configuration, and typical characteristics in measured data
due to short accumulation times is given. To motivate the
need for new ideas of improved filtering techniques, pros and
cons of common filter methods to detect bad estimates are
discussed in Sect. 3. In Sect. 4 a new type of visualization
for analyzing DL measurements from conical scans is pre-
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sented. Building on this, ideas for two new filter approaches
are developed and discussed. An overview of how the new
filter methods affect the quality of retrieved turbulence vari-
ables using the method by Smalikho and Banakh (2017) is
provided in Sect. 5.

2 Doppler lidar measurements

The DL measurements serving as the basis for this work were
taken at the boundary-layer field site Falkenberg (in Ger-
man: Grenzschichtmessfeld, GM, Falkenberg), which is an
open field embedded in a flat landscape, with main wind di-
rections from WSW, located about 5km to the south of the
MOL-RAO observatory site. The flat terrain characteristics
meet the requirements for the application of the turbulence
measurement approach by Smalikho and Banakh (2017) in
non-complex terrain.

2.1 Technical system specifications and configuration

At GM Falkenberg a StreamLine DL from the manufacturer
HALO Photonics with the specifications given in Table 1 was
used and operated using a conical-scan-mode configuration
to apply the turbulence retrieval approach by Smalikho and
Banakh (2017). This configuration is defined by three key
parameters, namely the elevation angle (¢ = 35.3°), the az-
imuthal resolution (A6 ~ 1°), and the time duration for one
single scan (Tscan = 725). In order to realize this scanning
strategy the DL was configured to be in continuous scan mo-
tion (CSM) while sampling data. A custom scan file (see Ap-
pendix A) has been defined for the scanner configuration in-
cluding information about the angular rotation rate wg, the
start and end positions of the scanner, and the elevation an-
gle ¢. In analogy to the work of Smalikho and Banakh (2017)
we set ws = 5°s~! to nearly satisfy A6 ~ 1°. Note that the
latter implies measurements on an irregular grid which for
analysis purposes later on requires the transfer of the data
to an equidistant grid with A@ = 1°. The specific value for ¢
goes back to an earlier theoretical work of Kropfli (1986) and
Eberhard et al. (1989), who focused on Doppler-radar-based
turbulence measurements. In addition, Teschke and Lehmann
(2017) have shown that using DL this value is also an opti-
mum beam elevation angle for a mean wind retrieval with a
minimum in the retrieval error. With the specifications for A9
and w; and due to the pulse repetition frequency f, = 10kHz
(see Table 1) we had to adjust the configuration setting for
the number of pulses per ray to N, = 2000 using the relation
N, = A0 f,/ws (Banakh and Smalikho, 2013). This is a mi-
nor difference compared to the value suggested in Smalikho
and Banakh (2017), i.e., N3 = 3000, which is due to a higher
pulse repetition frequency, i.e., f, = 15kHz, characterizing
their DL system. Note that for StreamLine DL systems the
system-specific parameter f,, cannot be changed by the user.
The low value for N, is non-favorable if a high measurement
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Table 1. Instrument specifications of the HALO Photonics Stream-
Line DL operated at MOL-RAO.

Instrument specifications

Serial number 0414-78
Wavelength 1.5um
Pulse length 180 ns

Pulse repetition frequency  10kHz
Sampling frequency 50 MHz
Maximum range 7.5km
Bandwidth +19.4ms~!

quality is needed. For best possible measurement quality in
the lower ABL it is therefore important to use the focus set-
ting option to improve the signal intensities within a selected
height range. For the DL used in our studies (DL78 here-
after) the focus was set to 500 m. Working with StreamLine
DL systems, the range resolution AR along the line of sight
(LOS) can also be adjusted. For reasons of compatibility with
the pulse length of 7, = 180 ns the range resolution was set
to AR = c1,/2 ~ 30m, where ¢ denotes the speed of light.
Note that with StreamLine XR DL systems HALO Pho-
tonics by Lumibird offers a further development of the
StreamLine series. XR systems operate with larger pulse
length in order to increase the range, depending on the pres-
ence of scattering particles in the atmosphere. The larger
pulse length, however, reduces the spatial resolution of the
measurements along the line of sight (LOS), which is not an
option for measurements in the ABL if the focus is on the
detection and investigation of small-scale structures.

2.2 Typical measurement examples and their noise
characteristics

For the measurements carried out in this work the relevant
DL output variables are the radial velocity estimates V; along
each single LOS of the conical scan and the associated SNR
values. The estimation of V; is based on the determination
of the Doppler shift fy of the backscattered signal by an on-
board signal processor. A number of methods are available
to determine fy (Frehlich, 1995), but the DL manufacturers
usually do not disclose to the customer the details of the im-
plemented algorithm. The performance of the estimation al-
gorithms and thus the quality of V; may vary. The assessment
of the performance of the estimation algorithms is generally
based on the probability density function (PDF) of the ve-
locity estimates. According to Frehlich (1995), the PDF of
velocity estimators performing well is characterized by a lo-
calized distribution of “good” estimates centered around the
true mean velocity and a fraction of uniformly distributed bad
estimates. This leads to the following frequent distinction in
DL radial wind measurements:

V. — Vi + Ve in the case of good estimate
Tl W in the case of bad estimate,

ey
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with V, denoting a random instrumental error (Stephan et al.,
2018). In the literature, bad estimates are mostly described
as random outliers or noise uniformly distributed over the re-
solved velocity space (Frehlich, 1995; Dabas, 1999). It can
be shown that the occurrence of noise in a series of radial
velocity measurements based on a conical scan can be de-
termined by means of the autocorrelation function (ACF)
evaluated at lag 1 (Appendix B). In particular, for a conical
scan with high azimuthal resolution of A6 ~ 1° as used in
this work, ACF = 1 indicates noise-free measurements, while
ACF < 1 gives an indication of the occurrence of noise.

Typical examples for DL78 measurements that differ in
terms of their noise characteristics are shown in Fig. 1.
Each measurement example reflects a different 30 min time
period and range gate height. Per column, different analy-
sis diagrams are provided for each measurement example.
Noise-free measurements indicated by ACF = 1 (Fig. 1c) are
shown in the column on the left. Apart from the superim-
posed small-scale fluctuations which reflect natural turbulent
fluctuations, the time series plot of radial velocities (Fig. 1a)
and the corresponding velocity—azimuth display (VAD) plot
(Fig. 1c) show a clean sinusoidal course without any random
outlier. The sinusoidal course is typical for measurements
with conically scanning DL systems and manifests itself in
a U-shaped bimodal distribution of the radial velocities pro-
vided the wind field was stationary (Fig. 1d). In the middle
and right columns the measurements are contaminated with
noise, which is indicated by ACF=0.8 and ACF=0.3, re-
spectively (Fig. 1g, k). Here, the periodic signals are tem-
porarily interrupted by bad estimates randomly representing
“any” value in the velocity range 19 ms~! (Fig. le, i). Fur-
thermore, differences in the distribution of bad estimates are
noticeable. In contrast to the measurements in the middle
column where the bad estimates appear quite uniformly dis-
tributed (type A noise hereafter), an additional higher aggre-
gation of bad estimates around zero (type B noise hereafter)
is noticeable in the right column. This becomes particularly
clear by comparing the corresponding panels with the VAD
diagrams (Fig. 1g, k) and those with the histograms of the
radial velocities (Fig. 1h, 1). Note that contrary to Fig. 1d the
characteristic U-shaped distribution in Fig. 11 can no longer
be recognized because it mixes with a Gaussian-like distri-
bution of bad estimates. Finally, for each measurement ex-
ample a clear difference in the level of the signal intensities
is noticeable (Fig. 1b, f, j). With SNR values around —10 dB
the signals are strong in the noise-free case, and with values
smaller than —15 dB the signals are weak in the noisy cases.
It is important to point out that for the noisy cases the sig-
nal levels are mostly the same and thus do not provide any
indication about the type of noise distribution.

All three measurement examples have been taken with
the same DL system under identical configuration (e.g.,
N, =2000 pulse accumulations). Despite the low pulse ac-
cumulations there are measurement cases with and without
noise. This can be explained by the natural variability in the
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atmospheric aerosol content over the course of a day and with
altitude. Aerosols act as backscattering targets and their at-
mospheric loading influences the quality of the DL signals
and therewith the amount of noise in the measurements. A
sufficiently large amount of aerosol can contribute to noise-
free DL measurements even for low pulse accumulations.
Little aerosol combined with low pulse accumulation, how-
ever, represents an unfavorable constellation for achieving
good data quality.

Concerning the differences in the bad estimate distribu-
tions, to the authors’ knowledge up to now there have been
no user reports about nonuniform bad estimate distributions
in DL measurements available. A uniform distribution of bad
estimates indicates that the noise component of the spectrum
of the lidar signal is white noise (Stephan et al., 2018). It is
believed that additional non-white DL noise sources such as
shot noise, detector noise, relative intensity noise (RIN), and
speckles (Hellhammer, 2018) cause these nonuniform type B
noise characteristics. At this point more in-depth investiga-
tions would be necessary but cannot be carried out within
the scope of this work. It is worth pointing out, however,
that the occurrence of type B noise is not a system-specific
DL78 problem. During the FESSTVaL (Field Experiment on
Sub-mesoscale Spatio-Temporal Variability in Lindenberg)
campaign (Hohenegger et al., 2023), there was the opportu-
nity to compare the measured data from three StreamLine
and four StreamLine XR Doppler lidars (see Sect. 2.1) posi-
tioned side by side and configured identically using the scan
mode outlined in Smalikho and Banakh (2017). The com-
parison revealed type-B-like noise contamination within the
measured data for several systems albeit to varying degrees
(see Figs. C1 and C2 in Appendix C). This suggests that this
type B noise issue is at least typical for StreamLine DL sys-
tems.

3 Pros and cons of commonly used filtering techniques

In the previous section it has been shown that DL radial ve-
locity measurements obtained using the measurement strat-
egy proposed in Smalikho and Banakh (2017) can show a
strikingly high proportion of noise. The successful applica-
tion of the associated retrieval method to determine turbu-
lence variables from DL measurements, however, requires
a probability of bad estimates close to zero (Smalikho and
Banakh, 2017; Banakh et al., 2021). Hence, a careful pre-
processing of measurement data to detect and remove noise
is necessary.

Different filtering techniques to separate reliable data from
noisy measurements can be found in the literature. A closer
look at the underlying principles of radial velocity quality
assessment allows a rough subdivision into two categories
of filtering methods: (1) one category makes use of addi-
tional parameters from post-processing of Doppler spectra
and (2) the other uses statistical analysis tools applied to
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Figure 1. Examples for measurements from one and the same conically scanning Doppler lidar. Each column represents measurements
during a 30 min interval at different times and range gates (i.e., measurement heights along the line of sight) which are characterized by
different kinds of noise (left: noise-free, middle: type A noise, right: type B noise). The plots of each row depict the measurements from
different perspectives. The first row shows a time series plot of the radial velocities (V;) (a, e, i). In a similar way the second row (b, f, j)
illustrates the corresponding signal intensities (SNR) of the measurements. Here, the horizontal dotted line indicates an SNR threshold level
calculated as proposed in Abdelazim et al. (2016) for Ny = 2000 (see Sect. 3.1). The third row (c, g, k) shows the DL. measurements from
a VAD perspective, i.e., a display of the radial velocity as a function of the azimuth angle. The ACF value indicates the degree of noise
contamination in the measured time series (see Appendix B). The fourth row (d, h, 1) shows histograms of V;.

time series of DL radial velocity estimates. The method be-
hind the first category is the well-known SNR thresholding
technique. Methods representing the second category are, for
instance, the median absolute deviation (MAD) originating
from Gauss (1816), consensus averaging (CNS) introduced
by Strauch et al. (1984), the filtered sine wave fit (FSWF) by
Smalikho (2003), or the integrated iterative filter approach by
Steinheuer et al. (2022). The last two methods mentioned are
directly integrated into a retrieval method for wind or wind
gusts. A more detailed review of these and further filtering
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methods that belong to the second category mentioned above
is given in Beck and Kiihn (2017). In this section the advan-
tages and disadvantages of these different filtering method
categories are examined using the SNR and CNS filter as an
example.

3.1 SNR thresholding

The signal-to-noise ratio (SNR) is determined from the
Doppler spectra and is defined as the ratio between the signal
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power and the noise power. The first bears the meaningful in-
formation in a measurement and the latter is considered to be
an unwanted signal contribution that is blurring this informa-
tion. The higher the level of signal power and the smaller the
level of noise power, the better the SNR and thus the quality
of the radial velocity estimate.

In practice, DL users are often faced with deciding on a
suitable SNR threshold value (SNRyesh hereafter) to sepa-
rate good from bad estimates. Depending on how the mea-
surement data are used later on, the expected uncertainty
of the radial wind velocity also plays a role in this deci-
sion. Pearson et al. (2009) provide a guideline on that issue
based on an experimental approach. The results showed good
agreement with theoretical results based on an approximate
equation introduced by Rye and Hardesty (1993), reading

o= 2(n0'5/a)0'5(1 10.160) (Av/Ng-S) , )

with « = SNR/((27)*3(Av/B)) and N, = M N, (SNR).
Here, o denotes the error estimate of the radial velocity in the
weak signal, multipulse-averaged regime, N, the number of
accumulated pulses, B the bandwidth, Av the signal spectral
width, and M the gate length in points. For more details see
Appendix D. Note that Eq. (2) can be used in two ways. On
the one hand, it provides an estimate for the uncertainty of the
radial velocity estimate depending on the SNR. On the other
hand, it provides guidance to calculate SNRpresh for a pre-
scribed acceptable uncertainty in the Doppler lidar estimate.
Examples for an evaluation of Eq. (2) for different numbers
of N, are given in Fig. 2. The curves basically show how the
uncertainty of the measurements decreases with increasing
SNR. Additionally, the effect of pulse accumulation becomes
visible. For the same requirement on the uncertainty of the
Doppler estimate, e.g., o < 0.5 ms~!oro <0.1ms™!, the
corresponding SNR threshold value for reliable data would
be lower for Doppler estimates based on higher pulse accu-
mulations (e.g., SNRresh = —24 dB or SNRyresh = —17 dB
for N, =30 000) than for Doppler estimates based on a lower
number of pulse accumulations (e.g., SNRresh = —18.5dB
or SNRyresh = —11dB for N, =2000). Another approxi-
mate equation to determine SNRyesh 1S suggested in Abde-
lazim et al. (2016). Taking into account the number of accu-
mulated pulses N, only, they propose the following equation
for an SNR threshold determination:

1 V2
NN

Example results for SNRyresh derived from Eq. (3) for dif-
ferent N, are also given in Fig. 2.

The turbulence retrieval proposed by Smalikho and Ba-
nakh (2017) requires measurements with a probability of
bad estimates close to zero. The example shown in Fig. 3
clearly illustrates that with SNRpresh = —12.7 dB calculated
by means of Eq. (3), a universally valid first-guess SNR

SN Rihresh = (3)
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Figure 2. (a) Examples of calculated SNR threshold values depend-
ing on the number of accumulated pulses N based on the approach
by Abdelazim et al. (2016) and the approach by Rye and Hard-
esty (1993). (b) Example plots for the change in the theoretical
standard deviation o of the Doppler velocity estimates depending
on the signal-to-noise ratio (SNR) following the approach by Rye
and Hardesty (1993). The curves are valid for different N, and the
following system-specific parameters: B =2 x 19ms~!, M = 10,
Av=13ms L.

threshold satisfying this requirement across all measuring
height ranges can be obtained. Here, estimates for V; from
range gate number 4 to 99 are displayed against their asso-
ciated SNR values. While bad estimates randomly filling the
entire search band 19 ms~! can be observed to the left of
the threshold line, none can be found to the right. If one fur-
ther relaxed this threshold, the probability of bad estimates
would increase. From Eq. (2) it can be additionally inferred
that with SNRyesh = —12.7 dB measurement uncertainties
less than 0.1 ms~! can be expected. Though it is important
to note that by applying SN Riresh = —12.7 dB to DL radial
velocity measurements, as shown with the examples given
in Fig. 1 as well as Fig. 5a, c, and e, a huge fraction of ob-
viously good estimates would be discarded. A reduction of
data availability would be the consequence, making a rep-
resentative derivation of wind and turbulence products often
difficult or even impossible. This is a limiting factor of this
kind of approach to distinguish between good and bad esti-
mates (Dabas, 1999).
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Figure 3. Doppler velocity vs. SNR plot from conically scanning
Doppler lidar measurements with Ny =2000 accumulated pulses.
The plot includes full-day measurements for all range gates between
the 4th and 99th range gate. The vertical lines denote different SNR
thresholds based on different approaches, namely by Abdelazim
et al. (2016) with a Doppler velocity uncertainty of o < 0.1 m s—1
(dot) and by Rye and Hardesty (1993) with a Doppler velocity un-
certainty of o < 0.5 ms~—! (dash—dot). See Fig. 2 for exact SNR
threshold numbers.

3.2 Consensus averaging

Methodically different from the SNR thresholding technique
is the consensus averaging (CNS) method introduced by
Strauch et al. (1984). The method was originally developed
to exclude outliers from radar wind profiler data. A schematic
that explains the CNS approach is shown in Fig. 4. Here
noise-contaminated measurements of V; from several sin-
gle conical scans executed one after the other are displayed
using the VAD perspective. Separating the range of mea-
surement directions (0 to 360°) into equidistant intervals
Ii =[G —1A0,iA0] (i =1,2,3,...,n with n € N), the ba-
sic idea is to seek within each /; along the V; axis for this
subset of data satisfying both (i) the occurrence within a pre-
scribed interval AV;, which is assumed to be a typical value
for the atmospheric wind variance, and (ii) the provision of
data availability X;*** which, however, must not fall below
a prescribed value Xipesh. Similar to the SNR thresholding
technique, the difficulty exists in a meaningful choice of AV,
and Xresh as will be shown in more detail below.

If the focus is on the derivation of turbulence variables,
including the determination of variances caused by eddies
in turbulent flow, the problem of this CNS approach is that
it requires an a priori estimate of the variance which is ac-
tually being attempted to be derived. If AV, does not cor-
respond to the true atmospheric situation, e.g., the assumed
value for AV; is too small or too large, it may happen that ei-
ther measurements bearing relevant wind information are re-
jected or that bad estimates remain in the dataset. Examples
of this are given in Fig. 5b, d, and f assuming AV; =3 ms~!
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Figure 4. Schematic representation of a possible practical imple-
mentation of the CNS (consensus) averaging method based on an
approach by Strauch et al. (1984) (see Sect. 3.2). The data in the
green boxes have already been identified as reliable. The blue box
illustrates the process of searching the reliable data, and the gray
boxes stand for azimuthal intervals that still need to be analyzed.

and Xhresh = 60 %. The early morning 30 min measurement
example from 25 May 2021 with the timestamp 04:30 UTC
(Fig. 5b) shows noise-contaminated DL measurements dur-
ing weak wind and turbulence conditions. At this time the
actual wind variance was obviously lower than assumed by
AV, so that the prescribed interval AV, gave room for the
inclusion of bad estimates which had to be accepted as reli-
able due to the CNS concept. The afternoon example from
25 May 2021 with the timestamp 16:00 UTC (Fig. 5d) shows
DL measurements during stronger wind and turbulence con-
ditions than in the morning. Additionally, at some point dur-
ing the 30 min interval a change in the wind direction con-
tributes to a phase shift in the sine signal represented by
some of the scan circles. Mainly because of this nonstation-
arity the variability of the Doppler velocity measurements
is obviously larger than assumed by AV; =3 ms~! in some
azimuth sectors so that relevant information characterizing
this nonstationarity remains outside of the interval AV; and
is discarded by the CNS. Note that at this point the focus
is on the performance of the CNS and not on reconstructed
wind and turbulence variables. Hence, this non-applicability
of the CNS method during nonstationary measuring intervals
needs to be considered apart from the question of whether
a derivation of wind and turbulence variables is meaningful
if nonstationarity occurs. In Sect. 5 it will be shown that a
wrong inclusion of bad estimates or a false exclusion of good
estimates because of a non-compatible A V; compared to the
actual atmospheric situation has the consequence that turbu-
lence products (e.g., TKE) calculated based on improperly
pre-filtered measurement data may be either overestimated
or underestimated.

Another limitation of the CNS filtering technique is that
it expects a uniform distribution of bad estimates for a suc-
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Figure 5. VAD plot examples from conical DL measurements with N, =2000 pulse accumulations illustrating the application of the SNR
thresholding (a, ¢, e) and the CNS (b, d, f) noise filtering method. The examples represent three different 30 min measuring intervals at
different range gates and with different levels of noise contamination. The SNR threshold value of —12.7 dB has been calculated using the
approach by Abdelazim et al. (2016). A6 = 1°and AV, =3m s~1 were used for the application of the CNS.

cessful application. This becomes evident by considering the
CNS filtering results for the measurement example shown in
Fig. 5f. This example represents the type B noise case shown
in Fig. 1. Here, the subsets of Doppler velocities found by
the CNS for some of the azimuthal sectors often do not rep-
resent the desired good estimates because the high density of
bad estimates around zero erroneously shifts the range AV,
bearing a maximum of data availability towards zero. In this
case the nonuniform distribution of the bad estimates makes
a successful application of the CNS impossible. Note that the
disadvantages worked out here can be generalized to all sta-
tistical methods used for outlier detection which require ad-
ditional assumptions about the distribution and the variance
of the quantity of interest.

4 Ideas for new filtering techniques

The filtering techniques discussed in the previous section are
not efficient enough if DL measurements with both the high-
est possible data availability and a probability of bad esti-
mates close to zero are required. New filtering techniques
with improved performance concerning this demand are pre-
sented in this section. In particular, depending on the mea-
surement’s noise characteristics two different approaches (re-
ferred to as approach I and approach II hereafter) for new
filter techniques are discussed. Including a coarse filter and a
filter for post-processing each approach consists of two sep-
arate filtering steps which are carried out one after the other,
i.e., approach I=coarse filter I+ filter for post-processing
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and approach II = coarse filter II + filter for post-processing,
while using different perspectives of data representation to
analyze the occurrence of bad estimates in the DL measure-
ments. Both coarse filters make use of the VV90D perspec-
tive, which will be introduced in Sect. 4.1. The application of
the post-processing filter requires the well-known VAD per-
spective.

4.1 Framework of the VV90D perspective

The VVO90D perspective represents a diagram in a rectan-
gular coordinate system where each radial velocity value V;
obtained from a conically scanning DL is plotted versus its
counterpart measured at an azimuthal shift of 90°. In par-
ticular, for a time series of radial velocity measurements
Vi(R, 0;t) this means that V = V;(R,0;¢) is plotted along
the y axis and V90 = V.(R, 0 — 90°; t*) is plotted along the
x axis. Here, R denotes the range gate, 6 the azimuth angle
along the scan circle, and ¢ the timestamp of the measure-
ment. Note that t* denotes the timestamp of the shifted coun-
terpart value. The motivation underlying this graphic repre-
sentation of DL measurements will be explained in more de-
tail using the two noise-free measurement examples shown
in Fig. 6. In particular, measurements from a conically scan-
ning DL visualized in both a V; —¢ diagram and a VV90D
plot are shown in Fig. 6a and d and Fig. 6b and e, respec-
tively. The plots in the upper line reflect a homogeneous
and stationary measurement example (case 1) which can be
clearly seen by the smooth sinusoidal course of the radial
velocity, i.e., V ~ sin(@), with a nearly constant amplitude
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(Fig. 6a). The same measurement example visualized in a
VVI0D diagram shows clear circular patterns (Fig. 6b). The
latter can be explained by taking the phase shift identity
sin(f —90°) = — cos 6 into account, yielding V90 ~ —cos6.
Therewith paired data points (x = V90, y = V) plotted in a
rectangular coordinate system describe a circle. Note that
this way of looking at DL measurements shows analogies to
the harmonic oscillator where the time evolution of both dis-
placement and motion are frequently visualized in a phase-
diagram plot to show the 90° phase relationship between ve-
locity and position much more clearly (Vogel, 1997). The
plots in the lower line of Fig. 6 represent a nonstationary
measurement example (case 2). Due to the sinusoidal course
superimposed with smaller fluctuations and a varying ampli-
tude (Fig. 6d) the corresponding VV90D diagram (Fig. 6e)
of the same measurements shows a slightly wider and more
blurred ring structure.

A quantitative description of the VV90D ring structures is
provided with the diagrams shown in Fig. 6¢c and f. These
diagrams are referred to as r; —count{V;} diagrams here-
after. Here, r; denotes the radius of a pre-defined circular ring
ri—Ar <r; <r;+Ar with origin at (x =0, y = 0) and width
Ar in the VV90 plane. The quantity count{V;} denotes the
number of measurement data that can be found in this ring.
Note that these data represent a circular-ring-related subset
V; of the whole measurement series, i.e., V; C {V}. Taking
the equation of a circle into account, i.e., r = x2+ y2, in prac-
tice both the subset V; and count{V;} can be determined by
identifying the radial velocities V = V;(R, 60;t) of the mea-
surement time series that satisfy the relation

r=+vV90?+ V2, )

with the range of radii r defined through the boundaries of the
circular ring r; — Ar <r; <r; + Ar. In order to generate the
r; —count{V;} diagrams shown in Fig. 6¢ and f the full area
of the VV90 plane has been subdivided into closely spaced
circular rings of increasing radius (i =0,...,n with n € N)
with discrete fixed steps Ar = 0.5ms~!. Note that this value
turned out to be a viable choice if using the r; — count{V;}
diagram as a tool in a filtering procedure (see Sect. 4.2).
For case 1, the data availability of measured radial veloci-
ties is constrained to only a few circular rings with r; rang-
ing between 5 and 6.5ms~!, with the largest fraction of
measurements in the circular ring with 7; =5.5ms~! (see
Fig. 6¢). Additionally, due to the stationary wind field con-
ditions the obtained availability distribution is strictly uni-
modal and symmetric. For case 2 the measurements are dis-
tributed over a broader range of circular rings with r; tak-
ing values between 0.5 and 12.5ms~!. The largest frac-
tion of the measurements occurs within a circular ring with
ri=45ms™! (see Fig. 6f). The distribution of data availabil-
ity is nearly unimodal but asymmetric. The examples shown
in Fig. 6 represent just two specific situations, and a great va-
riety of VV90D and associated r; — count{V;} diagrams may
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result for different atmospheric and lidar signal conditions,
including multi-modal distributions (not shown here). In the
following we refer to the VV90D diagram and the associ-
ated r; — count{V;} diagram as the framework of the VV90D
perspective.

Compared to the commonly used VAD visualization tech-
nique, the framework of the VV90D perspective represents
an alternative way of displaying radial velocity measure-
ments from a conically scanning DL and opens up new pos-
sibilities for data analysis at the same time. In the next sec-
tion it will be shown how this framework can be used to de-
velop suitable filtering techniques of bad estimates in noisy
DL data.

4.2 Coarse filtering techniques

Two different coarse filtering techniques are presented next.
The underlying ideas are motivated by characteristic fea-
tures of good and bad estimates in the VV90D diagram,
which will be briefly explained. For this purpose the noise-
contaminated measurement examples of type A and type B
from Sect. 2.2 are used. Compared to noise-free DL. measure-
ments, noticeable features of noise-contaminated DL mea-
surements in the VV90D are the greater spread of paired
DL data (x = V90, y = V) and a lack of clear circular pat-
terns (Fig. 7a, d). In the associated r; — count{V;} diagrams
(Fig. 7b, e) this also goes along with a broader distribu-
tion of available data points over a larger range of circular
rings. Furthermore it is obvious that for the type B noise
measurement example the more densely distributed bad esti-
mates around zero make a cross-shaped region visible in the
VVI0D (Fig. 7d) and cause a pronounced secondary peak in
the r; — count{V;} diagram (Fig. 7e). Additionally, by exam-
ining in more detail the properties of the data occurring in the
three color-coded circular rings, it becomes apparent that cir-
cular rings with a high data number mostly contain reliable
DL radial velocities, i.e., good estimates. This can be seen
from the fact that the data occurring in these rings mostly fol-
low the expected sinusoidal course of the DL measurements
(see the black dots in Fig. 7c, f). It is also striking that this
happens in a dense sequence of data points. For circular rings
with an increasingly lower data number the associated data
subsets V; contain increasingly more measurements that de-
viate from the sine, i.e., radial velocities which reflect bad es-
timates taking any value within the velocity space 19 ms~!
(see the orange dots in Fig. 7c, f). It is noticeable here that
bad estimates in such subsets V; mostly occur as singular
points having no further data points in the immediate envi-
ronment. Note again that the type B measurement example
represents an exception here. While the circular ring r; with
the global peak in the r; —count{V;} diagram contains mostly
good data, the circular ring with the secondary peak contains
mostly bad estimates (see the red dots in Fig. 7f).
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Figure 6. Examples of a graphical visualization of radial velocity measurements from a conically scanning DL using the framework of the
VVI0D perspective for two cases with stationary (a—c) and nonstationary (d—f) winds. The panels in each row illustrate in sequence: a time
series plot of the measured radial velocity over a 30 min time period (a, d), the same data plotted using the VV90D perspective (b, e), and
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Figure 7. Examples of noise-contaminated DL measurements over a 30 min time period analyzed using the framework of the VV90D
perspective. The upper (a—c) and lower (d—f) rows show measurements contaminated with type A and type B noise, respectively (see Fig. 1).
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colors) are located in the time series plot.
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4.2.1 Filtering by single point analysis — coarse filter I

One specific property emerging from the analysis of noisy
DL data above is that if subsets V; of data points binned by
circular rings r; — Ar <r; <r; + Ar are analyzed individ-
ually, good estimates mostly occur in a dense sequence of
points following the sinusoidal course of the measurements,
while bad estimates mostly occur as singular points having
no further data points in the immediate environment and take
any value within the velocity space 20 ms~!. These prop-
erties open a first way for the development of a filter tech-
nique for bad estimates, namely, by detecting and discarding
singular points in circular-ring-related subsets V; of measure-
ments. Practically, this can be implemented as follows. Use
the framework of the VV90D perspective. Consider all circu-
lar rings spanning the VV90 plane individually. To select the
ring-related data points, always start with the original time
series and set all measurement points to a non-numeric flag
value (e.g., NaN) which do not satisfy Eq. (4). This gives for
each circular ring a certain ring-specific time series which
has the length of the original one but where only measure-
ment points are allocated with a numerical value which oc-
cur in the respective circular ring. Then, for each of the ring-
specific time series sequentially check each position of the
time series for flagged predecessor and successor positions
within a pre-defined azimuthal environment. Positions oc-
cupied by an unflagged value, i.e., a numerical value, but
with flagged predecessor and successor positions can be re-
garded as a singular point and discarded. Finally, the result-
ing circular-ring-related time series have to be merged back
to one full time series which then represents a filtered time
series where most of the bad estimates should be excluded.
This filtering technique is referred to as coarse filter I here-
after. Note, however, that not all bad estimates necessarily
occur as singular points. Hence, it is possible that a minor
portion of bad estimates will still remain in the measure-
ment series. Those can be discarded using classical outlier
detection methods (e.g., the 3o rule applied to differences of
radial velocity measurements of two consecutive azimuthal
measurement points) which are only effective if outliers are
real outliers in the sense that they represent only a few un-
usual observations. In the case of noise-contaminated mea-
surements the fraction of bad estimates is too high, which
would not justify considering them to be outliers in the orig-
inal sense.

Results that can be obtained using coarse filter I applied to
the measurement examples of Fig. 7 are shown in Fig. 8. It
turns out that bad estimates can be best removed from mea-
surements including type A noise (Fig. 8a). During the sub-
interval of enhanced noise in the time series of the radial ve-
locities, however, a severe thinning of data is striking, which
reflects good estimates (Fig. 8b). This erroneous exclusion
of good estimates happens when the number of measurement
data, i.e., count{V;}, is comparatively low for a larger num-
ber of circular rings. That is because low values of count{V;}
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also mean that there is an increased probability that good
estimates appear more frequently as singular points. Unfor-
tunately, the latter makes the performance of coarse filter I
weaker the more bad estimates are included in the time series
of Doppler velocities (Fig. 8d, e) since an increased num-
ber of bad estimates increases the number of sparsely filled
circular rings extending over the whole VV90 plane. From
the VAD perspective, however, it can be seen that despite
the strong data thinning the remaining data points represent
a suitable first guess for good estimates of the time series
which reveal the range of good estimates for each azimuthal
direction (Fig. 8b). Considering the results of coarse filter I
for the type B noise example the performance of the filter-
ing technique is not convincing. Here, a huge fraction of bad
estimates belonging to the type “noise around zero” remains
in the dataset after applying the filtering method (Fig. 8e).
From that we conclude that the specific distribution charac-
teristics of type B noise measurements prohibit the possibil-
ity to distinguish between good and bad estimates by means
of singular point detection.

4.2.2 Filtering based on ACF analysis — coarse filter II

The underlying idea of coarse filter II makes use of another
specific property that can be derived from the analysis of
noise-contaminated measurements using the framework of
the VVO0D perspective. It has already been described above
that circular rings r; — Ar <r; <r; + Ar with a compara-
tively high data number count{V;} mostly include good es-
timates and for circular rings with a decreasing data number
the occurrence of bad estimates increases. Thus, it is to be ex-
pected that an evaluation of the ACF of circular-ring-related
data subsets V; with a high data number would yield ACF
(r = 1;i)~ 1. In contrast, for circular-ring-related data sub-
sets V; with a low data number this value would be compara-
bly low (see Sect. 2.2 and Appendix B). This property opens
up a second way for the development of a filter technique for
bad estimates, namely by selecting only circular rings and the
associated subsets of the entire time series of measurements
with an ACF value not falling below a pre-defined threshold
(ACFresh hereafter). Practically, this can be implemented
as follows. Use the framework of the VV90D perspective.
Seek in a first step that circular ring r; — Ar <r; <r; + Ar
in the r; — count{V;} diagram with an absolute maximum in
the data number (i.e., search for r; with MAX(count{V;}).
Next, temporarily set all data points of the original measure-
ment time series V = V;(R, 0; t) to a non-numeric flag value
(e.g., NaN) which do not satisfy Eq. (4) for the circular ring
with the central radius r; previously determined. This gives
an initial guess for a filtered time series yi= Vrf(R, 6;1). To
check for low noise contamination by means of the ACF, re-
place the flagged positions of the time series V! with an esti-
mated numerical value from the respective unflagged prede-
cessor and successor positions using linear interpolation and
calculate the ACF. The replacement of flagged positions is
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Figure 8. Examples of the outcome of coarse filter I. The upper (a—c) and lower (d—f) rows show measurements contaminated with type A
and type B noise, respectively (see Fig. 1). The plots in each row show, from left to right, a comparison of the time series before (RAW) and
after the application of coarse filter I using a V; — ¢ diagram (a, d), a comparison of the time series before and after filtering using the VAD
perspective (b, e), and a comparison of the associated histograms of the radial velocities (c, f).

a necessary technical step to maintain the length of the time
series and therewith the azimuthal distances between the sin-
gle measurement points of the series. The latter is important
since consecutive measurement data with different azimuthal
distances would correlate differently with each other, which
in turn would affect the ACF (see Appendix B). If the good
quality of this filtered time series is reasonably assured, i.e., if
ACFl(r = 1) ~ 1, the unflagged values of vi= Vrf(R, 0;1)
can be regarded as reliable. In the same way as just described,
by means of further iteration steps it is possible to gradu-
ally increase the number of reliable measurement data by re-
peating the above-described procedure taking not only the
data from subsets V; at circular rings r; — Ar <r; <r; + Ar
with MAX (count{V;}) into account but also those from ad-
jacent circular rings rj+1 — Ar <rjt1 <rijt] + Ar, whereas
the data number determines the order. This effectively results
in the consideration of a wider circular ring with an accord-
ingly higher number of data. The latter are constituents of
a newly filtered time series Vinew — Vrf“ew (R,0;1) after the
kth iteration. As long as the added subsets V;+; from adja-
cent circular rings include mostly good estimates, the asso-
ciated ACF of the newly generated times series will remain
close to 1, i.e., ACFfnew (t = 1) ~ 1, and the iteration can be
continued. The iteration has to be stopped if the ACF of the
newly generated time series falls below a pre-defined thresh-
old, i.e., if ACFMev (7 = 1) < ACFpresh. That happens when
the recently added data represent subsets of circular rings
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with an increased fraction of bad estimates. In this case, the
result from the previous iteration step can be considered the
best possible filtered time series with a maximum possible
data availability and a low proportion of bad estimates at the
same time. More detailed information useful for practical im-
plementation of coarse filter II is given in Appendix F.

For the measurement examples shown in Fig. 7 relevant
technical details concerning coarse filter II are shown in
Fig. 9. The change in ACF™v with each iteration step is il-
lustrated in Fig. 9c and f. The circular rings included with
each iteration step until the iteration has been stopped and
the associated data points of the subsets V; are color-coded
in Fig. 9b and e and Fig. 9a and d, respectively. The final
filter results of the measurement series that can be obtained
using ACFpresh = 0.95 are shown in Fig. 10. The filter results
based on coarse filter II differ from the results obtained based
on coarse filter I (see Fig. 8) in two respects. One advantage
of coarse filter II over coarse filter I is that fewer good es-
timates are incorrectly rejected, which is accompanied by a
noticeably higher availability of good estimates. This can be
verified based on the histograms comparing the distributions
of the measurements from both the original and the filtered
time series, which are shown in Figs. 8c and f and 10c and f,
respectively. One disadvantage of coarse filter I over coarse
filter I is that the hit rate of the filter goal of rejecting bad es-
timates is lower. This disadvantage of coarse filter II is more
frequently observed for type A noise-contaminated measure-
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ments if the conditions during the measurement interval are
nonstationary (see Fig. 10a—b) than for stationary intervals
(not shown here). In this case an increase in the threshold
value (e.g., ACFresh = 0.99) would help to better remove
bad estimates; however, this would be at the expense of re-
moving more good estimates which describe the nonstation-
arity in the wind field. For type B noise-contaminated mea-
surement intervals this issue also occurs for nonstationary
measurement intervals (see Fig. 10d—e).

4.3 Post-processing filter for optimization

The coarse filter results presented in Sect. 4.2.1 and 4.2.2
are not yet satisfactory for the following reasons. Firstly, the
frequently unjustified rejection of good estimates after apply-
ing coarse filter I results in an unnecessary reduction of reli-
able measurement data. Secondly, the number of remaining
bad estimates after applying coarse filter II is still too high.
Hence, additional efforts are required to further optimize the
filter results. Therefore, the results of coarse filters I and II
will be treated as intermediate results only at this point. Pos-
sible further optimization steps are considered in more detail
next. The entirety of these steps represents the filter for post-
processing. Note that all analyses are from now on carried
out using the VAD perspective.

4.3.1 Two-stage MAD filter

The median absolute deviation (MAD) is a well-known
statistical tool for outlier detection in measured datasets
(Iglewicz and Hoaglin, 1993) having a unimodal and sym-
metrical distribution (see Sect. 3). Here, the MAD is used as
an additional filter step following coarse filter II. The term
“outlier” refers to a few uncontrollable and abnormal obser-
vations which seem to lie outside the considered population.
If X ={x1,x2,...,x,}, withn € N, is a given dataset of mea-
surements that is normally distributed (i.e., N'(1, 02) with
mean p and variance o2 ), the MAD is defined through

MAD = median(]x; — median(X)|). (®)]

According to Iglewicz and Hoaglin (1993), values x; are re-
garded as outliers if they are not included in an interval given
by

. MAD
xi <median(X) +qg———=. (6)

0.6745°

D
median(X) —q m <

The cut-off value g is mostly chosen arbitrarily. Iglewicz and
Hoaglin (1993) suggest ¢ = 3.5. A modification of the MAD
is the so-called double MAD, which can be used for non-
symmetric distributions (Rosenmai, 2013). The MAD outlier
detection method works in analogy to the 3¢ rule of thumb
(Grénicher, 1996) but is classified as the more robust one.
Robust in this context means that the median and MAD itself
are less affected by outliers than the mean or the standard
deviation o. Having this in mind, care has to be taken when
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applying the MAD method to DL radial velocity measure-
ments including a huge fraction of bad estimates. In such a
case bad estimates can no longer be considered only a few
unusual observations and it is not unlikely that the median
is also influenced by them so that the requirements for an
application of the MAD are no longer met. For this reason,
the MAD is only used here as a post-processing filter for DL
measurements that were previously filtered with coarse fil-
ter I

Looking at the pre-filtered DL measurements from the
VAD perspective (Fig. 10b, e), the application of the MAD
outlier detection method is followed in two steps. In the first
stage (MAD_part_I, hereafter) we apply the MAD azimuth-
wise, i.e., to datasets representing measurements from only
one direction. In the second stage (MAD_part_II, hereafter)
we apply the MAD to a dataset representing squared devia-
tions (V; — VFSWF)2 of radial velocity measurements V; from
sine wave fit radial velocities VFSWF. In order to determine
the latter the so-called filtered sine wave fit (FSWF) as a
wind vector estimation technique introduced by Smalikho
(2003) has been used. This technique requires knowledge
about the standard deviation o of good estimates which has
been estimated based on the filter results of MAD_part_I. In-
termediate results of the two-stage MAD applied to the out-
come of coarse filter II (Fig. 10b) are illustrated in Fig. 11.
From our experience we know that employing MAD_part_1I,
particularly by means of the double MAD filter technique
(Rosenmai, 2013), may contribute to retain the azimuthal
variability in V;. The latter is important, especially when the
wind field was inhomogeneous and nonstationary during the
30 min measurement interval. This can be seen in Fig. 11a,
illustrating the outcome of MAD_part_I. Here, relevant mea-
surements reflecting the nonstationarity of the wind field still
remain in the filtered dataset even if they deviate substantially
from the rest of the azimuthal dataset, as can be seen, for
instance, around the azimuth angles 6 = 80° and 6 = 250°.
However, it is also noticeable in Fig. 11b that after apply-
ing MAD_part_I not all bad estimates could be removed
from the dataset. This can be explained by the fact that of-
ten not enough data per azimuth sector were available for a
reliable calculation of the median and MAD. For that rea-
son MAD_part_II becomes necessary to further improve the
bad estimate detection rate. Corresponding filter results are
illustrated in Fig. 11b and clearly show that the fraction of
remaining bad estimates could be substantially reduced. Un-
fortunately, MAD_part_II also contributes to a severe cut-off
of a huge fraction of directional variability which was ac-
tually possible to avoid by applying MAD_part_I. This can
be attributed to the choice of the cut-off (here: ¢ = 3.5) and
very clearly shows the fundamental issues when using statis-
tical filter methods where cut-off values have to be carefully
chosen and cannot be generalized as would be required for a
routine application.
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Figure 11. Intermediate results of the two-stage MAD filter ap-
plied to the outcome of coarse filter II for the type A measure-
ment example shown in Fig. 10b. The outcome of MAD_part_I and
MAD_part_II is shown in panels (a) and (b), respectively. Further-
more in panel (a) the results of a filter sine wave fit (FSWF) are
shown, which has been calculated based on a standard deviation
(here 0 = g =2.13ms~!) obtained from the colored data reflect-
ing the results of MAD_part_I.

4.3.2 Determination of the sinusoidal corridor of good
estimates

The main advantage of coarse filter I over coarse filter II is
the better performance with respect to the detection of bad es-
timates, which makes the two-stage MAD filter as a follow-
up filter step of coarse filter I redundant at this point. The dis-
advantage of coarse filter I, however, lies in the strong rejec-
tion of many obviously good estimates (see Sect. 4.2.1). Next
apossibility is described regarding how to reverse wrong data
rejection decisions in order to increase the availability of re-
liable measurements again.

It has been shown in Sect. 4.2.1 that the outcome of coarse
filter I for noise-contaminated measurements of type A
(Fig. 8a—c) is a dataset representing a suitable first guess
for good estimates if visualized using the VAD perspective
(Fig. 8b). Hence, the roughly filtered data can be used to
narrow down the sinusoidal area in the VAD space where
most of the good estimates can be found. This in turn of-
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fers the possibility to re-activate radial velocities within the
area boundaries as good data that were discarded after ap-
plying coarse filter I. The outcome of such a re-activation as
a post-processing step of coarse filter I is shown in Fig. 12.
The identified borders of the area which define the corridor
of good estimates shown in Fig. 12a and d have been de-
termined in the following two consecutive steps: firstly by
calculating the min and max radial velocity values for each
azimuthal direction and secondly by calculating the upper
envelope of the max values and the lower envelope of the
min values over the interval 0 to 360°. Then the re-activation
of falsely rejected good estimates is done by considering all
measurement points within the corridor defined by the upper
and lower envelopes to be good estimates. The correspond-
ing results of this step are shown in Fig. 12b and e. Note
that the procedure described above to determine the area of
good estimates is relatively simple and has its weaknesses,
especially in the case of low data availability, which compli-
cates the determination of the envelope due to a small num-
ber of available min and max values. For such conditions a
more sophisticated approach is needed. The re-activation re-
sults for the measurement example characterized by type A
noise shown in Fig. 12b match the data one would identify
as good data well from a visual point of view. Furthermore,
the re-activation step is accompanied by a strong increase
in reliable data compared to the outcome of coarse filter I
(compare Figs. 8c and 12c). Hence the higher data availabil-
ity achieved in this way may contribute to an improvement
of the variance statistics required for a turbulence product re-
trieval. In contrast, the re-activation step fails if applied to
type B noise-contaminated measurements, which is shown
in Fig. 12e. This is due to both the poor first-guess results
for good estimates after applying coarse filter I, which does
not contain enough details to correctly narrow down the si-
nusoidal area of good estimates, and some of the remaining
bad estimates that belong to the specific class of noise around
zero. Note that to discard the latter, here we omitted the two-
stage MAD as a follow-up filter of coarse filter I. This is be-
cause we know from our experience that the generally signif-
icantly lower data availability of reliable measurement data
after the application of coarse filter I compared to coarse fil-
ter II turns out to be unfavorable for a successful MAD ap-
plication.

So far the re-activation step of falsely rejected good esti-
mates introduced above has been discussed in the context of
a post-processing of filter results after applying coarse filter I.
Even if an unjustified data loss of good estimates after an ap-
plication of coarse filter II is not that substantial the above-
described re-activation step can also be applied to the out-
come of coarse filter II. However, for the reasons mentioned
in Sect. 4.3.1 this requires a previously executed two-stage
MAD filter. The corresponding results are shown in Fig. 13
where the significantly better results for the type B noise ex-
ample (Fig. 13d—f) are obvious. The disadvantage, however,
is that with the re-activation step a substantial number of bad
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Figure 12. Results of the filter for post-processing applied to the outcome of coarse filter I (see Fig. 8) for two measurement examples
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discarded good estimates (b, €), and the associated histograms which provide an overview of the final data availability of V; estimates
identified as good data (c, f).
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Figure 13. Results of the filter for post-processing applied to the outcome of coarse filter I in combination with a follow-up two-stage MAD
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estimates in the region around the reflection point of the si-
nusoidal corridor of good estimates is also assigned to the
set of good data. At this point the corridor of good estimates
and the horizontal band reflecting a higher concentration of
noise around zero overlap, and no clear distinction between
good and bad estimates is possible. This can also be seen by
comparing the histograms shown in Figs. 10f and 13f.

Finally, it should be mentioned that with the re-activation
of initially discarded data in the identified corridor of good
estimates there is always a risk of returning a certain number
of bad estimates if the raw measurements were contaminated
with noise. Since bad estimates can be distributed over the
whole measurement space of 19 ms~! they potentially also
occur in the corridor of good estimates. However, as long as
the interest is only in mean wind and turbulence statistics,
which are primarily obtained using the VAD perspective, the
effect of such a small fraction of bad estimates is expected to
be negligible.

4.4 Intercomparison of approach I and approach II
under different atmospheric wind conditions

In the previous subsections the limits of the usability of ap-
proach I and approach IT depending on the type of noise have
been discussed. The type of noise, however, is not the only
factor affecting the applicability of the two different filtering
techniques. Their success is also linked to the strength and
temporal evolution of the wind during the measurement pe-
riod. This becomes obvious by comparing the filter results of
approach I and approach II for both type A and type B noise
(Figs. 14 and 15) while considering the following categories:
(I) weak and stationary wind, (II) strong and stationary wind,
(IIT) weak and nonstationary wind, and (IV) strong and non-
stationary wind.

Comparing the filter results for measurements with type A
noise the outcomes of approach I and approach II are equally
good for category I and II (Fig. 14b, e and c, f), but for cat-
egory III and IV the results based on approach I (Fig. 14h,
k) turn out better than based on approach II (Fig. 14i, 1). The
differences in the results for category III and IV are not be-
cause bad estimates have not been correctly detected by ap-
proach IT but rather due to the wrong rejection of a substantial
number of obviously good estimates. This error can be traced
back to a bimodal distribution in the measurement-related
r; —count{V;} diagram (not shown) caused by the nonsta-
tionarity of the wind field during the 30 min measurement in-
terval. Here, the secondary peak was incorrectly interpreted
as noise around zero (see Sect. 4.2.2). Note that coarse fil-
ter II of approach II is not designed to make this distinction
and thus fails when applied to situations belonging to cate-
gory IIT and I'V. In contrast, when comparing the filter results
for type B noise measurements (Fig. 15) approach II is bet-
ter than approach I for category I and II. This can be seen
not only visually but also numerically by means of the ACF.
While the ACF values were between 0.23 and 0.37 in the
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unfiltered time series (Fig. 15a, d), after applying the filter-
ing technique the ACF takes values between 0.98 and 0.99
for approach II (Fig. 15c, f) but only values around 0.92 for
approach I (Fig. 15b, e). Finally, two more findings are con-
sidered worth mentioning here: firstly, measurements during
wind conditions belonging to category III are obviously dif-
ficult to manage for both approaches, indicated by the com-
parably poor ACF values of the fully filtered time series in a
range between 0.87 and 0.89 (Fig. 14h, i). Secondly, it be-
comes obvious that, particularly during weak wind condi-
tions (i.e., category I and III), the bands of good estimates
sometimes seem too narrow from a purely visual point of
view. This observation holds for both of the filter approaches
(Fig. 14b, ¢ and h, 1). The reason for this lies in the method
to determine the envelope in connection with the final re-
activation step of previously discarded good estimates (see
Sect. 4.3.2). As aresult, some information on the actual vari-
ability is lost in the filtered dataset. This in turn may result in
an underestimation of variances as will be shown in Sect. 5.1.
Knowledge and insights gained from the overview given in
this section are important to develop a strategy to implement
the filtering techniques for operational use. More detailed in-
formation on a strategy that can be used for an implementa-
tion of approach I and approach II is given in Appendix G.

S Turbulence retrieval based on pre-processed DL
measurements using traditional and the new filter
technologies

Depending on the filtering technique used, the decision about
which of the radial velocities are classified as good or bad
estimates can turn out very differently. Hence, it is to be ex-
pected that differently pre-filtered DL measurements may re-
sult in differences in the retrieved turbulence variables. This
section aims to demonstrate that due to the higher sensitivity
of the newly introduced filtering techniques concerning both
the rejection of bad estimates and the acceptance of good es-
timates, the quality and data availability of DL-based turbu-
lence measurements (e.g., TKE retrieved following Smalikho
and Banakh, 2017) can be improved. For DL measurements
with a probability of bad estimates close to zero this method
delivers reasonable results (see Appendix H). Thus, if differ-
ently pre-filtered DL data are used as input for the retrieval
process, large errors in the retrieved TKE can be attributed to
either a faulty noise filtering that leaves bad estimates in the
filtered dataset or to an overfiltering that removes too many
reliable data points.

5.1 Comparisons with sonic anemometer as an
independent reference

In order to be able to assess the quality of TKE variables

based on differently pre-filtered DL measurements, as an in-
dependent reference, sonic data from a 99 m tall meteorolog-
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Figure 14. Overview of the final filter results of approach I and approach II for DL measurement examples contaminated with type A
noise. The examples of each column represent four selected atmospheric conditions with respect to the wind situation: weak and stationary
wind (category I), strong and stationary wind (category II), weak and nonstationary wind (category III), and strong and nonstationary wind
(category IV). The panels in the first row show the time series of the respective RAW data of the DL radial velocity measurements over a
measurement interval of 30 min. The panels in the second (third) row show both the RAW data and the filter results of approach I (approach II)

in different colors.

ical mast are used. The measurements were performed with
a USA-1 sonic anemometer (Metek GmbH) at a sampling
rate of 20 Hz, and the raw data were processed with EddyPro
(LiCor Inc.) software. The mast is operated at GM Falken-
berg at a distance of about 80 m towards SSW from the DL
system.

Results of an intercomparison of TKE retrievals based
on differently pre-filtered DL data versus sonic TKE
measurements are summarized in Fig. 16. Three dif-
ferent cases are analyzed: TKE retrievals calculated by
means of (i) SNR-threshold-based filtered input data using
SNRhresh = —12.7dB (Fig. 16a—d), (ii) CNS-based filtered
data (Fig. 16e-h), and (iii) CF-based filtered data (Fig. 16i—
1). Here CF (combined filter) stands for a combined applica-
tion of approach I and approach II because of the occurrence
of type A and type B noise in the DL78 measurements (see
Sect. 2.1-2.2 and Appendix G). For each case an additional
distinction is made between TKE products which are subject
to different quality control (QC) steps. Here, the minimum
requirement for a TKE value representing a 30 min mean is
that its retrieval is based on more than 60 % of reliable mea-
surements of V; during the measurement interval (lev_c here-
after). Since the TKE reconstruction method relies on a vari-
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ety of theoretical assumptions (e.g., see Eq. 22 in Smalikho
and Banakh, 2017) a further QC step proves the fulfillment
of these requirements (lev_b hereafter). To obtain meaning-
ful results the evaluations are based on a 2-month dataset of
DL measurements at GM Falkenberg which were collected
during FESSTVaL from 18 May to 17 July 2021.
Considering the Doppler lidar TKE retrieval based on a
pre-filtering of the measurements using the SNR threshold
approach, the problems that arise in connection with routine
turbulence measurements (see Sect. 1) can be supported here
numerically. Although good data quality is achieved com-
pared to sonic measurements (R2 =0.99 and RMSD =0.21;
Fig. 16a), data availability is very low (36.77 %; Fig. 16d).
TKE values based on CF pre-filtered DL data have al-
most comparable data quality (R? = 0.98 and RMSD =0.23;
Fig. 16i) but score additionally with a significantly higher
data availability (82.57 %; Fig. 161). TKE results based on
CNS pre-filtered DL data are also characterized by a higher
data availability (78.85 %; Fig. 16h) but have poorer data
quality (R?=0.97 and RMSD =0.27; Fig. 16e). To explain
the latter, the time series plot comparisons between DL data
and sonic data displayed in Fig. 16b and f for the example
day 25 May 2021 are helpful. This day is a typical exam-
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Figure 15. Same as in Fig. 14 except that DL measurements con-
taminated with type B noise are considered. Categories III and IV
are not available.

ple day with noise-contaminated DL measurements over the
whole day but with an obvious higher density of bad esti-
mates in the early morning between 04:00 and 07:00 UTC
and in the afternoon from 16:00 UTC onwards (see Fig. HI,
2 — Appendix H). Note that during these time intervals no
reliable TKE values are available if an SNR threshold pre-
filtering is used. In contrast, using CNS pre-filtered data,
retrieved TKE values are available for these time periods,
which, however, are partly subject to errors if compared with
sonic data. For instance, DL-based TKE values obtained at
04:30 and 16:00 UTC show either a pronounced overestima-
tion or underestimation if compared with sonic-based TKE
measurements. With a closer look into the DL radial veloc-
ity measurements from which these 30 min TKE values have
been retrieved, this overestimation and underestimation can
be easily explained (see Fig. 5b, d). For the measurement
period between 04:00 and 04:30 UTC the prescribed search
interval AV; =3ms~! was too large so that bad estimates
remained in the dataset and introduced an additional vari-
ance contribution, yielding an overestimation of the TKE.
For the measurement period between 15:30 and 16:00 UTC
the value for AV; was too small so that relevant features
of the wind field were not captured. As a consequence, the
dataset and thus the derived variances are not representative
for the 30 min measurement interval, yielding an underesti-
mation of the TKE value. These examples clearly show the
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weaknesses of the CNS filtering technique if the AV; search
interval is inadequately selected. With a fixed AV; during
24/7 routine measurements such situations occur quite fre-
quently, which explains why the data quality of TKE val-
ues retrieved from CNS pre-filtered DL data is worse com-
pared to TKE retrieved from pre-filtered DL data using the
SNR thresholding technique. Note that with the newly intro-
duced CF filtering technique the above-described issues can
be avoided and therewith more reliable TKE values can be
derived (Fig. 16j, 1).

One additional interim note should be given on the high
sonic TKE value of ~7m?s~2 at 16:00 UTC (Fig. 16f). This
value is likely caused by an instationary wind field during
the 30 min measuring interval rather than due to eddies in the
turbulent flow. For that reason this value should be flagged
as non-reliable. The problem, however, is that with the CNS
filtering technique relevant wind information characterizing
this nonstationarity would be rejected so that the identifica-
tion of such nonstationarity would not be possible.

Another way to compare TKE variables retrieved from dif-
ferently pre-filtered DL measurements is based on the use of
a so-called Bland and Altman plot (Fig. 16 ¢, g and k). This
kind of plot was introduced by Bland and Altman (1986)
to statistically assess the comparability between two mea-
surement methods. The advantage of this statistical evalua-
tion method is that it not only provides insight into system-
atic deviations (bias) and limits of agreement but also re-
veals how the differences between two measurement meth-
ods depend on the magnitude of the measurement value. For
the Bland—Altman plots shown in Fig. 16 c, g, and k, the
y axis shows the percentage error (PE) between two paired
measurements, i.e., 100 x (TKEpr — TKEgonic)/TKEsonic,
and the x axis represents the average of these values, i.e.,
(TKEpL 4+ TKEgonic)/2. Additionally, the horizontal lines in-
dicate the mean percentage error (PE) and twice the stan-
dard deviation (£20¢) from the mean. The latter denotes the
statistical limits of agreement. For the Bland—Altman plot
shown in Fig. 16¢ the mean percentage error is close to zero
(PE = —0.84 %). This indicates that there are hardly any sys-
tematic differences between DL-based TKE retrievals using
the SNR threshold method for noise filtering and sonic-based
TKE measurements. Additionally it can be seen that there is
a nearly symmetric distribution of the paired points around
the horizontal line denoting PE, with a slight tendency to-
wards a more frequent underestimation by the DL for small
TKE values and a more frequent overestimation for higher
TKE values. As a result, in 95 % of the cases the DL deliv-
ers a TKE value that is up to 39 % smaller or up to 37 %
larger than the one measured by the sonic anemometer. With
the exception of an offset of about 2.7 % in bias and the lim-
its of agreement, qualitatively similar results can be derived
when comparing DL-based TKE retrievals using the CF filter
with sonic-based TKE (Fig. 16k). The Bland—Altman com-
parisons for DL-based TKE values using the CNS filter re-
veal less good correspondence (Fig. 16g). Although the mean
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Figure 16. Comparison of Doppler-lidar-based TKE at 95 m height with data from a mast equipped with a sonic device at 90 m height.
The measurement period was from 18 May to 17 July 2021. Each column represents the comparison of different TKE products based on
differently pre-filtered input data. SNR threshold filtered data with SNR}resh = —12.7 dB and consensus (CNS) filtered data have been used
in the left and middle column, respectively. Input data obtained using a combined filter (CF) application of approach I and approach 11
have been used in right column. The panels of each column represent comparisons between DL and sonic data using different visualization
techniques. These are, from top to bottom, scatterplots, time series plots (1 d only, 25 May 2021), Bland—Altman plots, and histograms. The
abbreviation “QC: lev_x" in the scatterplots (a, e, i) refers to different levels of product quality control (see Sect. 5.1).
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percentage error (PE = —0.63 %) does not significantly dif-
fer from the results shown in Fig. 16 c, the range between the
limits of agreement is larger (PE +20 = {+40%, —41%}).
Furthermore, a slightly different point cloud distribution can
be seen. Especially for larger TKE values there seems to be
a greater underestimation of DL-based TKE retrievals com-
pared to sonic TKE.

5.2 Comparisons with alternative reference data

With increasing altitudes the probability of bad estimates in
DL radial velocity measurements increases. This is due to the
typically decreasing aerosol density, which is also noticeable
in weaker SNR values. Therefore, the actual robustness of
the filtering methods can be tested much better at larger mea-
suring heights, where the methods have to cope with an in-
creased occurrence of noise. Unfortunately, the tower-based
measurements at GM Falkenberg are only provided up to
99 m height so that for higher altitudes no independent refer-
ences for a comparison are available. For that reason an al-
ternative way based on the following strategy is used. In the
subsequent analysis, DL TKE values obtained using the SNR
threshold method for noise filtering are used as an alternative
reference intended to replace the missing sonic data at higher
altitudes. This can be motivated by two arguments. On the
one hand, it could be shown that the comparison of TKE val-
ues based on SNR pre-filtering with independent sonic data
provided the best results (see Fig. 16). On the other hand
the SNR thresholding approach is a standard method to ex-
clude bad estimates from DL measurements. For that reason
confidence in the validity of TKE products based on SNR
pre-filtering is very high and TKE products based on differ-
ently pre-filtered input data should be comparable by similar
performance of the filtering method.

Comparisons of TKE products based on SNR pre-filtered
DL data with those based on CNS filtering and CF filtering
for measurement heights between 45 and 500 m are shown
in Fig. 17a-b and c—d, respectively. There are two obvi-
ous issues with the CNS filtering that become apparent in
Fig. 17a and b: on the one hand, the clear underestimation
of larger DL-based TKE values for values above 2 m? s>
and, on the other hand, the occurrence of a significant num-
ber of strongly overestimated TKE values in a range of
0.06m?>s~2 < TKE < 0.5 m? s~2. These errors are caused by
the deficiencies of the CNS filter method already described
in Sect. 3.2, i.e., an inappropriate choice of the search inter-
val AV;. In contrast, the comparisons shown in Fig. 17c and
d reveal better agreement between TKE retrievals based on
SNR pre-filtered DL data with those based on CF filtering.
This is evident from both a visual and statistical perspective.
For instance, the higher sensitivity of the CF filter with re-
spect to the rejection of bad estimates and the acceptance of
good estimates contributes with PE 420 = {+10%, —17 %)
to much better limits of agreement than observed for TKE
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retrievals based on CNS pre-filtered DL data (PE +20 =
{+38 %, —39 %}).

6 Summary

First test measurements for a desired routine application of
DL turbulence measurements based on the approach outlined
in Smalikho and Banakh (2017) revealed unforeseen diffi-
culties concerning the quality of radial velocity estimates.
These difficulties turned out to be the consequence of the
specific requirements of the scanning strategy and the associ-
ated limitation of pulse accumulations feasible for the mea-
surements. During a 24/7 application over a period of sev-
eral months and therewith a naturally varying aerosol load
in the atmosphere, this limitation frequently became obvi-
ous through comparably weak values for the SNR and an in-
creased fraction of “bad” estimates (random outlier; noise)
in the measurements. If not properly filtered, bad estimates
can contribute to large errors in the retrieved turbulence vari-
ables. This raised the issue of an appropriate noise filter-
ing, i.e., a method that can be used to separate “good” from
bad estimates in a series of radial velocity measurements,
prior to a turbulence product retrieval. Looking for a suit-
able noise filtering method, first of all differences in tradi-
tionally used filtering techniques have been worked out and
respective advantages and disadvantages were discussed. Us-
ing the example of the well-established SNR thresholding
technique a literature-based overview of the different pos-
sibilities of an SNR threshold determination was given. In
this context a selection of theoretical approaches taking into
account the number of accumulated pulses for a radial ve-
locity estimate was verified. In the practical application the
approximate equation by Abdelazim et al. (2016) turned out
to be the most appropriate one if a complete removal of all
bad estimates is essential. However, during the verification it
also became clear that the strong increase in the SNR thresh-
old value with decreasing pulse accumulations significantly
reduces the availability of reliable (good) radial velocity esti-
mates. This would strongly limit the derivation of turbulence
variables and thus the intended routine application. In con-
trast to the SNR thresholding technique the advantage of the
CNS approach was confirmed, namely the higher data avail-
ability after the filtering process. The quality of the filtered
time series, however, was often not satisfactory for a turbu-
lence retrieval. Two causes could be identified for this: (1) an
a priori assumption about the radial velocity variance as a
prerequisite for the application of the CNS method and (2) an
application limitation to DL measurements characterized by
uniformly distributed noise (i.e., white noise). The first point
is critical, since turbulence measurements essentially rely on
variance measurements. It has been shown that inappropriate
assumptions either reject too many good estimates or leave
too many bad estimates. This is particularly the case when
the a priori assumed variance is either too small or too large

Atmos. Meas. Tech., 17, 3187-3217, 2024



3208

filter type: CNS

E. Pischke and C. Detring: Ideas for new filter options for DL. measurements

QC: lev_b, height: 45 - 500 m

5-18-2021 - 7-17-2021, at 45-500 m 2 5-18-2021 - 7-17-2021
10* QC:lev b ’ i s 200 0% ©°
o o ¥ 100
2 100 L ralell Py +20: 37.63
£ S d _ ;
j 3 0 }PE-044
:§ 1071 ﬁ -20: -38.52
¥ g -100
2 _ a
R =0.97 E
-2 RMSD = 0.28 Lt
10721 [a] < —200 [b]
o
102 101 10° 10! - 1073 1072 107! 10° 10t
TKEp, s [m?/s?] 0.5 (TKEp @ + TKEpgsw) [m?2/s?]
filter type: CF
L L QC: lev_b, height: 45 - 500 m
5-18-2021 - 7-17-2021, at 45-500 m g 5-18-2021 - 7-17-2021
10t Qc: lev_b < 200
§
& ¥ 100
0100 ~
E ] +20: 1025
= 3 0 {PE:-3.46
b W 20 -17.17
g 107t =
[ 5, —100
[=}
RZ =0.99 g
102 RMSD = 0.14 [C] é« 200 [d]
1072 107! 100 10! - 1073 1072 107 10° 10!

TKEp s [m2/s?]

0.5 (TKEp,o + TKEp sw) [m?/s?]

Figure 17. Comparison of TKE from DL based on differently pre-filtered measurement data prior to the TKE retrieval as proposed in
Smalikho and Banakh (2017). Scatterplot (a) showing TKE products based on CNS pre-filtering (TKE; cns) against TKE products based
on a pre-filtering using the SNR thresholding technique (TKEp; snr) with SNRpesh = —12.7 dB. Similarly, scatterplot (¢) showing TKE
products based on CF pre-filtering (TKE; cr) against TKE products based on a pre-filtering using the SNR thresholding technique. The
scatterplots include all available DL measurements up to 500 m height over a measurement period from 18 May to 17 July 2021. In analogy,
the same applies for the Bland and Altman (BA) plots (b, d). Here, the relative percentage difference between TKER; cns (TKEp; cr) and
TKEp; snr products is plotted against its mean value. For more details concerning BA plots see Sect. 5.1.

compared to the true atmospheric situation. As a result, er-
rors in the retrieved turbulence variables occur, for instance
an underestimation or overestimation in the TKE, which has
been shown by comparing the TKE with independent refer-
ence measurements. The second point mentioned above is
a serious limitation if the noise distribution in DL measure-
ments with low pulse accumulation does not represent white
noise. This was observed with the StreamLine DL system
from the manufacturer HALO Photonics, which was used for
the DL test measurements in this study. In particular, another
type of noise was identified, showing a pronounced aggre-
gation of noise values around zero. To our knowledge, this
type of noise has not yet been described and analyzed in the
literature. At this point it is still unclear whether this type of
noise is an issue with either the way that the Doppler spectra
are being processed in the case of low SNR by the Stream-
Line DL signal processor or an instrument-specific technical
issue. Overall, we finally came to the conclusion that the fil-
tering techniques available so far were not appropriate to be
used in a pre-processing step to generate noise-free data that
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can serve as a suitable input for the derivation of turbulence
variables.

The drawbacks of the frequently used filtering techniques
motivated our work to seek new ideas for filter methods that
can be applied to noise-contaminated measurements from
conically scanning DL systems with low pulse accumulation.
They should allow for both accurate noise filtering and the
largest possible data availability. Two different approaches
(I + II) were pursued in order to account for possible emerg-
ing differences in the noise distribution. Their basic structure
consists of two parts, namely a coarse filter and a so-called
filter for post-processing. Although each approach has a dif-
ferent coarse filter (I + II) they are applied in both cases based
on a newly introduced framework of the VV90D perspective.
By plotting the time series of radial velocity measurements
(V) from conically scanning DL against the same measure-
ment series but with a phase shift by 90° (V90) the graph of
noise-free DL measurements shows distinctive circular pat-
terns which are increasingly faint the noisier the data are.
Using this perspective on the measurement data, coarse fil-
ter I works by identifying bad estimates in terms of singu-
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lar points occurring in subsets of the full measurement se-
ries which are confined to different circular rings of radius
R and fixed width in the VV90 plane. Coarse filter II ex-
ploits the fact that the autocorrelation function can provide
valuable information about the general existence of bad esti-
mates in noise-contaminated measurements. The filter works
by means of an iterative consideration of circular rings with
increasing width in the VV90 plane and the calculation of
the autocorrelation function of the measurement data that can
be found in these rings. Within the iterative process circu-
lar rings with mostly good data can be easily located if the
autocorrelation function is used to define a termination cri-
terion. Generally, both coarse filters give a useful first guess
about good estimates. Depending on the type of noise, either
coarse filter I or coarse filter II shows a better performance
with respect to data availability and reliability of the data
which were assessed as good in this way. The filter for post-
processing is applied by considering the DL measurements
using the well-known VAD perspective, where reliable mea-
surements from a number of subsequent conical scans typi-
cally describe a sinusoidal band. Based on the first-guess in-
formation about good estimates from the coarse filter (I + II)
the filter for post-processing was developed to determine the
envelopes of this sinusoidal band and thus to further narrow
down the whole area of good estimates.

The results obtained with both newly introduced filter
approaches were qualitatively and quantitatively verified.
While the qualitative verification was based on a purely vi-
sual assessment of the filter results, the quantitative verifica-
tion was based on an evaluation of the TKE that was calcu-
lated using the filtered measurements as input data for the tur-
bulence retrieval. Because still included bad estimates after
the filtering process would introduce large errors in the final
TKE product this is an indirect way to verify the filter results.
It could be shown that the deficiencies in the filtered time
series and the related problems regarding data availability
and quality of derived turbulence variables emerging through
an application of traditional filter methods have been signifi-
cantly reduced with the new filter approach. In this way, we
have found a solution to deal with noise-contaminated DL
measurements if low pulse accumulations for the radial ve-
locity estimates are used. Therewith we have also created a
basis to be able to use the turbulence retrieval as outlined in
Smalikho and Banakh (2017) for a 24 /7 routine application.

This new filter method can also be applied beyond the ap-
plication described here generally to other DL applications
using conical scans. One example could be DL wind gust re-
trievals based on a scan mode as described in Steinheuer et al.
(2022). Their mode also uses a small number of pulses (3000
pulses per ray) to provide high temporal resolution, which is
necessary for the derivation of wind gusts defined based on
3 s running mean wind data (World Meteorological Organi-
zation, 2018). It remains for future work to apply this new
filter for wind gust retrieval.
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Appendix A: StreamLine DL custom scan files

For the configuration of the Doppler lidar to measure turbu-
lence variables as proposed by Smalikho and Banakh (2017),
two files (*.txt, *.dss) are required. These were created under
the guidance of the user manual for the StreamLine scanning
Doppler lidar system (Revision 04, #DOC 0004-01355 by
Lumibird) and have the following content.

routine.txt
A.1=50,5.1=694,P.1=0%A.2=50,5.2=5000,P.2=-24514

2?1:50, S.1=694,P.1=12000000%A.2=50,S.2=5000,P.2=-24514
W80000

A.1=50,5.1=694,P.1=0%A.2=50,5.2=5000,P.2=-24514
WO

routine.dss

000000 routine 2 C O
010000 routine 2 C O
020000 routine 2 C O
220000 routine 2 C O
230000 routine 2 C O

First a configuration file rout ine. txt is created, which
defines all information about acceleration (A), speed (S), and
position (P) of the two motors of the DL scanner, as well as
wait times (W) if necessary. More detailed explanations can
be found in Sect. 6.4.2 of the user manual. For the operation
of the Doppler lidar, the scan scheduler is set to use a daily
scan file routine.dss, in which the routine. txt file
is used (column 2). Additionally, start times of measurements
(hhmmss), the number of samples per ray (k), whether the
scan is of step/stare (S) or CSM (C) type, and the focus po-
sition must be specified. A detailed explanation of the use of
the daily scan schedule can be found in Sect. 6.4.3 of the user
manual.

Appendix B: Quantification of the occurrence of noise

A quantification of the occurrence of noise in a series of ra-
dial velocity measurements based on a conical scan is feasi-
ble by means of the ACF. Noise-free radial velocity measure-
ments based on a conical scan geometry follow a sinusoidal
curve when plotting V; against its corresponding azimuthal
measurement direction 6. Hence, consecutive measurements
along the curve are not independent from each other, and
with a high azimuthal resolution of the measurements neigh-
boring radial velocities are highly correlated. The situation is
different with noise-contaminated measurements. Here, the
sinusoidal course in the series of consecutive measurements
is occasionally interrupted by far-off bad estimates such that
consecutive measurement values are completely independent
of each other; i.e., they do not correlate. An indication of to
what degree a signal is similar to a shifted version of itself as
a function of the displacement t is given by the ACF. It will
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be shown next that the ACF proves to be helpful to distin-
guish between measurement periods with and without noise
contamination.

Assuming horizontally homogeneous and stationary wind
field conditions, DL. measurements taken along the scan-
ning circle are described through V= usin(f)sin(¢) +
vcos(f) sin(¢) + w cos(¢), where u, v, and w denote the 3D
wind vector components, 6 the azimuth angle determining
the measurement direction along the scanning circle, and ¢
the zenith angle of the inclined laser beam (Pédschke et al.,
2015). Note that for a continuous conical scan over a number
of rounds the azimuthal angle in turn has to be regarded as a
function of time, i.e., & = 6(¢). This makes the DL measure-
ments over a specified time interval a periodic signal, reading

. . 21
Vi =sin(¢) [u sin (T t+ to>

scan

2

+vcos< t—l—to)] + wcos(¢p). (B1)

scan

For simplicity let us assume v = 0. Then it can be shown that
the ACF of the periodic signal V;(¢) has a cosine shape, i.e.,

uzsinz(qb)
C

ACF(1") = —

2
05 (T il t*) +w?cos’(¢), (B2)

where t* denotes the time delay (Sienkowski and Kawecka,
2013). In the case of returning to a view of V; as a function
of the azimuthal angle 6 and taking into account that in the
atmosphere vertical motions are typically much smaller than
horizontal ones, i.e., w < u, Eq. (B2) can be further simpli-
fied and rewritten in the following normalized form:

y ACF(7) = cos(7), (B3)

with y = 2u"2sin "2 (). Using this notation, the parameter
T = (27 /Tscan)T* denotes an azimuthal displacement. For
discrete and equidistant measurements along the scan circle
the latter can generally be written as T = n A9, where A6 de-
notes the measurement resolution along the scanning circle
and n € N denotes the lag index of the displacements in the
series of measurements. Hence, using Eq. (B3) it can be eas-
ily verified that for noise-free DL measurements with an az-
imuthal resolution of A8 = 1° the correlation between neigh-
boring measurements, i.e., n = 1, along the scan circle is
closeto 1,i.e., ACF(t = 1)~ 1 (here, A6 is inradians). Note,
however, that with decreasing azimuthal measurement reso-
lution, i.e., an increase in A6, the distance between neigh-
boring measurements becomes larger and thus the correla-
tion lower. For instance, with an azimuthal measurement res-
olution of Af = 36° a correlation of ACF(t = 36)~ 0.8 be-
tween neighboring points may be expected (Fig. B1). These
theoretically derived results can be verified by calculating the
ACEF for the noise-free measurements shown in Fig. 1. Note
that despite the obvious non-inhomogeneity and nonstation-
ary of the wind field the correlation of neighboring measure-
ment points is close to 1, i.e., ACF(r = 1)~ 1 (see Fig. 1c).
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In contrast, by considering the noise-contaminated measure-
ment examples the occasional independence of neighboring
measurements due to the occurrence of bad estimates inter-
rupting the sinusoidal course of the measurements is reflected
by low correlation values, namely ACF(t = 1) = 0.77 for the
type A noise example and ACF(tr = 1)~ 0.33 for the type B
noise example (see Fig. 1g, k). Hence, these examples show
that the ACF can be used as an indicator for the general oc-
currence of noise in the series of DL measurements, but with-
out precise knowledge of which of the measurements are bad
estimates. Generally it holds that

ACF(n = 1; A8) = ACF,x : no noise

ACF(n = 1; Af) < ACF,x : noise.

Here, ACF,ax determines the maximum expected correlation
between neighboring measurement points indicated by n =

1. Depending on the azimuthal resolution A6, ACFp,x takes
different values which can be calculated using Eq. (B3).
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Figure B1. (a) Two theoretical examples for radial velocity mea-
surements V; from a conically scanning Doppler lidar with dif-
ferent azimuthal resolution, i.e., A6 =6° and Af =36°. Gray
background indicates the corresponding continuously resolved sine
curve. (b) Normalized lag k = A6 autocorrelation values of the con-
tinuous sine shown in (a) for azimuth steps between A9 = 1° and
A0 =90°. The dots indicate the maximum expected value of the au-
tocorrelation function ACF (n = 1; Af) = ACFnax between neigh-
boring azimuthal measurement points for the discrete measurement
series of different azimuthal resolution A6 shown in (a).
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Appendix C: Intercomparison of background noise
distribution between different StreamLine and
StreamLine XR Doppler lidar systems

Background noise characteristics are best analyzed based on
DL measurements at high altitudes where atmospheric sig-
nals are unlikely due to low aerosol density. DL measure-
ments from three different StreamLine DL systems (DL78,
DL172, DL177) at 1729 m height and from four different
StreamLine XR DL systems (DL44, DL146, DL143, DL161)
at 1737 m height are shown in Figs. C1 and C2, respectively.
Note that the differences in the vertical height between the
two types of DL systems are due to the different DL range
gate lengths (i.e., 30 m for the StreamLine DL and 48 m for
the StreamLine XR DL). The measurements represent the
same measurement period, i.e., 29 July 2021 between 02:40
and 03:10 UTC. At the time of the measurement, all seven
Doppler lidar systems were positioned next to each other at
the GM Falkenberg site and were operated with the same
configuration (see Sect. 2.1). Type B noise (i.e., high den-
sity of bad estimates around zero; see Sect. 2.2) characteris-
tics are very pronounced in all three StreamLine DL systems
(Fig. Cla—c). In the measurements with the StreamLine XR
DL systems, type B noise is weak to moderate (Fig. C2a—d).
None of the DL systems really show pure white noise char-
acteristics (Figs. Cla2—c2 and C2a2-d2), i.e., uniformly dis-
tributed radial velocity estimates. Note that the measurement
example for the DL161 is the only system that still has some
signal at 1737 m height (Fig. C2d), although the measure-
ments for all systems took place under the same atmospheric
conditions.

DL78 , vertical height = 1729.15 m, date: 2021-07-29
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Figure C1. Measurements from three different Doppler lidar StreamLine systems at 1729 m height. Panels (al)—(c1) show radial velocity
time series plots from measurements with DL78, DL.172, and DL 177 over a time interval of about 30 min. Panels (a2)—(c2) represent the

associated radial velocity distributions.
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Figure C2. Measurements from four different Doppler lidar StreamLine XR systems at 1737 m height. Panels (al1)—(d1) show radial velocity
time series plots from measurements with DL44, DL.146, DL.143, and DL177 over a time interval of about 30 min. Panels (a2)-(d2) represent

the associated radial velocity distributions.

Appendix D: Radial velocity uncertainty estimates

An equation for uncertainty estimates of DL radial velocity
is given in Pearson et al. (2009) and reads

o(ms =2 (n°~5/a)0'5 (1+0.16a) (AU/N§~5) . (DD

with
« = SNR/ [(Zn)O'S(Av/B)] , (D2)
Np = M N, (SNR). (D3)

Here, the system parameters Ny, B, and M denote the accu-
mulated photocount, the bandwidth used, and the gate length
in points, respectively. The signal spectral width Av depends
on both instrumental and atmospheric conditions (Doviak
and Zrnic, 1993), i.e.,

Av = oot =V (07)? + (094)?, (D4)

with o; given through (please see Eqs. 6 and 7 in Frehlich,
2004)
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0 =Aw/2, (D5)
n2/2)1/2  0.1873906
e (In2/2)" /= _ 9 ’ (D6)
T At At

where A denotes the wavelength of the Doppler lidar. Here,
At denotes the pulse width which is used to calculate the
spectral width w and which can be transformed into a spectral
width o; in velocity space via Eq. (DS5). Note that in Pearson
et al. (2009) not the pulse width Atz but the pulse length Ar is
given as a lidar parameter. With knowledge of Ar the pulse
width At can be calculated via

Ar =cAt)2, (D7)
where ¢ denotes the speed of light (Frehlich, 2004). The

value o, in Eq. (D4) denotes the atmospheric broadening fac-

tor. In Pearson et al. (2009) it is assumed that o, = I ms~!.
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Appendix E: On the determination of the critical radius
re

Using the framework of the VV90D perspective, the critical
radius r. can be determined by analyzing DL measurements
from higher range gate numbers where only background
noise and no true signal characterizes the DL measurements.
An example for such a situation is shown in Fig. E1. Here the
circular rings with central radii r; below r, = 4.5 show an in-
creased availability of data which can be clearly assigned to
“noise around zero”. For r; > r. the data availability is al-
most uniformly distributed. We know from our experience of
working with various DL systems that the noise character-
istics can be different. For that reason the above-described
features are characteristic for the DL used in our studies and
cannot be generalized.
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Figure E1. Noise characteristics of the Doppler lidar DL78. The
data represent a 30 min time interval at range gate number 90. The
panels on the left show (a) the VVI90D perspective of the radial
velocity measurements and (b) the corresponding r; — count{V;}
diagram to describe the availability of data in different circular
rings r; — Ar <r; <r; + Ar spanning the (V90, V) plane where
i=1,...,nwithn € Nand Ar =0.5ms_1.Thepanels on the right
are with regard to their order analogous to the plots shown in Fig. 1,
i.e., (¢) the time series plot of the DL radial velocity estimates,
(d) the corresponding time series plot of the signal-to-noise ratio
(SNR), (e) the corresponding VAD plot of the measurements, and
(f) the histogram of DL radial velocity estimates.
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Appendix F: Guidance on a practical implementation of
coarse filter II

From a practical point of view there are four further issues
which are worth pointing out for DL users when applying
coarse filter II. Firstly, from our experience we know that
for an azimuthal resolution of A6 = 1° a value of ACF(t =
1) < 0.95 indicates a relatively high fraction of bad esti-
mates (see also the examples shown in Fig. 1). Hence for
a successful application of the method the threshold value
ACFresh =0.95 is recommended. For DL measurements
with azimuthal resolution lower than A = 1° this value can
be different (see Sect. B). Secondly, it can be useful to ap-
ply coarse filter II a second time for a further improvement
of the filter results. Prior to a second application, however,
the diagrams representing the VV90D perspective have to be
re-drawn based on the filtered time series obtained from the
first application of coarse filter II but with a phase shift in the
opposite direction, i.e., A® = +90°. The outcome of a sec-
ond application of coarse filter II (indicated by capital letter
B in the plot legends) in comparison to the results obtained
from the first application (indicated by capital letter A in the
plot legends) is shown in Figs. 9 and 10. In these cases, how-
ever, the second application (i.e., coarse filter IT — B) has no
significant advantage compared to the first application (i.e.,
coarse filter II — A) since the ACF values for each iteration
step (see Fig. 9c, d) remain above the ACF threshold value.
Hence, there is no need to discard subsets V; from the circu-
lar rings r; — Ar <r; <r; + Ar under consideration. Note,
however, that although no data have been discarded the fi-
nal filter results after the second application (see Fig. 10)
show a reduced data availability in comparison to the first
application. This effect is a rather technical consequence of
the opposite shift of the filtered time series obtained based
on the first application. Thirdly, there are also practical lim-
its in the application of coarse filter II. They arise when for
the initial circular ring with a maximum number of data the
value of the data count is already very low. This is especially
the case when the original time series is highly contaminated
with noise. In this case the gaps due to flag values of the ini-
tially determined time series are too large so that no mean-
ingful results are obtained with a linear interpolation to fill
these gaps. Accordingly, the corresponding ACF value of the
time series is not suitable to be used as a trustworthy indica-
tor for the occurrence of bad estimates. Since it is difficult to
give a threshold value for the required frequency maximum
to exceed in order to get reliable ACF results, it is recom-
mended to always check the ACF of the finally filtered time
series and to use only those filtered series where the condition
ACF > ACFesh is met. Fourth, in the case of pronounced
type B noise it may happen that the data availability in circu-
lar rings including most of noise around zero is comparable
to the availability of data in rings including most of the true
signals, i.e., good estimates (see Fig. 7e). The challenge in
such a case is to ensure that for the generation of the initial
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filtered time series the circular ring r; — Ar <r; <r; + Ar
with MAX(count{V;}) has been chosen correctly, i.e., the
subset of high data availability with the good signals instead
of the bad signals. To achieve this it may be helpful to al-
ways test the data availability distribution per circular ring
(i.e., the distribution displayed in the r; —count{V;} diagram)
on multi-modality. When multi-modality occurs and a cir-
cular ring with a central radius r; < r. representing a local
maximum of data does exist, all circular rings with central
radii r; < r. should be excluded prior to employing coarse
filter II. Here, r. denotes a critical radius below which one
has to expect a pronounced concentration of bad estimates
if the noise is of type B. How this value can be determined
is described in more detail in Appendix E. For the DL used
in our studies we found r. = 4.5. This value is also rela-
tively constant with time and explains the missing data in the
r; —count{V;} diagram shown in Fig. 9¢ for r; < 4.5 com-
pared to the »; —count{V;} diagram shown in Fig. 7e for
the same measurement interval. It should be noted, however,
that the above-described procedure of circular ring exclusion
is not recommended for type-B-contaminated measurements
during weak and stationary wind conditions. In such a case
multi-modality in the ; — count{V;} diagram is not expected
either; since with decreasing wind speeds circular rings in-
cluding most of the true signals and circular rings including
most of the noise around zero increasingly merge, it carries
the risk of discarding a huge fraction of good estimates. The
latter would negatively affect the possibility to derive reliable
wind and turbulence values during weak wind conditions.

Appendix G: Strategy for implementation of approach I
and approach 11

The systematic intercomparison of both filtering techniques
in Sect. 4.4 leads to the following general conclusion: for
filter approach I the most limiting factor is noise around
zero (type B noise), while problems may arise for filter ap-
proach II due to nonstationarity in the wind field. These lim-
iting factors are very different in nature. For approach I the
limitations are due to issues with the DL system’s back-
ground noise. This seems to be an instrumental issue and
there might be a chance to get this problem solved by the
manufacturer. In contrast, the limitation of approach Il is that
it cannot be used for all wind situations. The DL end user has
no influence on this and would therefore have to accept these
limitations when using the filter approach. Hence, from our
point of view there are two options for an implementation of
the filtering techniques into an operational product retrieval
process. Provided that the DL’s background noise is always
of type A, an implementation of approach I appears to be
sufficient to detect and reject bad estimates. If the DL sys-
tem’s background noise varies between type A and type B
noise both filtering techniques should be implemented. This
should be combined with a decision strategy that ensures the
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employment of approach I in the case of measurements con-
taminated with type A (or no) noise or the employment of
approach Il in the case of type B noise. In order to be able to
choose between the two options a good understanding of the
measurement systems’ noise characteristics is required.

The combined application of both approaches presents an-
other challenge for the implementation process. From a vi-
sual perspective on the measurement data it is easy to dif-
ferentiate between type A and type B noise. However, for
a routine processing an automated decision-making strategy
would be required. This could be arranged as follows: first
one could apply both filter approaches for each measurement
interval under consideration. In doing so one obtains for each
measurement interval two differently filtered datasets which
do not necessarily have to be the same. If one knows the
good radial velocities, one also knows the bad ones at the
same time. Hence, with correct filtering the distributions of
the bad estimates can provide useful information about the
type of noise occurring over the measurement interval. In the
case of type A noise one would expect uniformly distributed
data, whereas in the case of type B noise a maximum close
to zero would be characteristic (see also Sect. 2.2). Eventu-
ally, on this basis a decision on the appropriate filter method
would be possible.

Appendix H: TKE from noise-free DL measurements

For DL measurements without noise issues (Fig. H1, 1),
reasonable TKE products based on the turbulence retrieval
method outlined in Smalikho and Banakh (2017) can be ob-
tained (Fig. H2). The method relies on a work by Kropfli
(1986) where the focus was on the determination of TKE
from radar measurements. When transferring the approach
to DL measurements, Smalikho and Banakh (2017) suggest
additional correction terms for both the underestimation of
TKE due to pulse volume averaging effects (atz) and an over-
estimation due to the instrumental error of the radial veloc-
ity estimation (062). A comparison of DL-based TKE mea-
surements with independent sonic measurements at a mea-
surement height of 90m is shown in Fig. H2. To clarify
the effect of the o2 and o2 corrections, TKE values with-
out (KR1986 hereafter) and with the suggested corrections
(SM2017 hereafter) are shown. With the KR1986 retrieval
the TKE underestimation due to the pulse averaging effect
is most pronounced during night, i.e., while the atmospheric
boundary layer is in a stable state. Under stable conditions,
smaller-scale eddies primarily exist which obviously could
not be fully resolved over the pulse volume. During the day
the corrections are smaller because the main fraction of the
observed TKE was associated with larger and thus resolvable
eddies. Although with SM2017 values of TKE are overesti-
mated on average by 6.3 %, the results are in better agree-
ment with sonic data than the KR1986 values which under-
estimate the TKE by —12.45 % on average. Therewith the
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finally corrected TKE is in good agreement with the sonic
TKE, which gives evidence for a proper functioning of the
retrieval method itself.

3215

2 4-4-2019 20 4»4»2019, range gate: 5
2 @ [1c] 10!
E o E 1 g
~ >
s o : e
S 3 s
= g -10 S
% -20 8 : z
00:00 04:00 08:00 12:00 16:00 20:00 00:00 2= 1o 3 10°
time [UTC] SNR [dB]
- 5-25-2021 , 20 : 5-25-2021, range gate: 5 .
) : [22] T 2c] | |20
E o I ngunte R a— | - :
~ > <
> 3 = [
-20 3 5
3
—_ > S
g 0 [2b] 5 %
- " a 2
= —20 B .. S IR sl 8 =
z R . _ . R o = -
00:00 04:00 08:00 12:00 16:00 20:00 00:00 30 o 0
time [UTC] SNR [dB]

Figure H1. Time series plots of Doppler lidar radial velocity V; (1a, 2a) and corresponding SNR values (1b, 2b) from a conically scanning
Doppler lidar for one day, i.e., 4 April 2019, with good measurement conditions which are reflected in relatively high SNR values and another
day, i.e., 25 May 2021, with unfavorable measurement conditions which are reflected in relatively low SNR values. The corresponding
(Vr, SNR) plots are shown in panels (1¢) and (2¢). The dotted lines in panels (1b), (1c¢), (2b), and (2¢) indicate the SNR threshold value

SNRypresh = —12.7 dB.
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Figure H2. (a) Time series of TKE at 90 m height derived from
sonic anemometer measurements and from DL data using the meth-
ods proposed by Kropfli (1986) (KR1986) and Smalikho and Ba-
nakh (2017) (SM2017), respectively, for 4 April 2019. (b) Relative
error between Doppler lidar TKE and sonic TKE for the sample day
shown in (a). The horizontal lines indicate the corresponding mean
relative error over the whole day.
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