
Introduction 
This is a brief documentation for Matlab code simulating OFR responses to changes in exhaust gas 

concentrations and calculating the SOA production factors with different methods. 

The documentation does not cover the classes and functions in detail. The best way to learn the use 

of the code is to read the paper and check the examples in ‘plotScripts’ folder. 

Classes 

Ofr 
This class contains: 

• The name of the OFR 

• OFR transfer function (called ‘rtd’ in the class) 

• Parameters tpeak and tmean of the transfer function. The mean residence time is tpeak and tmean 

is the residence time corresponding to the maximum value of the transfer function. 

Once the class instance is created, it is possible to add the transfer function with function ‘setRtd’. 

The class automatically calculates tpeak and tmean based on the transfer function. 

Cycle 
This class contains: 

• The original gas concentrations, SOA formation potential, speed profile and exhaust flow rate 

of a driving cycle. 

• The gas concentrations sampled from CVS. 

• Cumulative emissions, momentary SOA production factor and cumulative SOA production 

factor (i.e., the production factor between the beginning of the cycle and time t). 

• Function ‘soaPfBetween’ to calculate the SOA production factor between any two points in 

the driving cycle. 

Once an OFR class has been added to the Cycle with function ‘addOfr’, the class contains also: 

• Gas concentrations and SOA formation potential measured downstream the OFR sampling 

from tailpipe. 

• Gas concentrations and SOA formation potential measured downstream the OFR sampling 

from CVS. 

• Cumulative emissions, momentary SOA production factors and cumulative SOA production 

factors calculated with different methods that are presented in the paper. 

o Depending on the method used, the OFR-specific emissions do not necessarily 

represent anything measured downstream of the OFR. For example, in ‘standard’ 

method, the cumulative OFR CO2 emission for the OFR is identical to the original CO2 

emission. 

• Exhaust flow rate convolved with the OFR transfer function (to be used when calculating the 

emissions with ‘convolution’ method). 

• Note that simulating concentration at OFR outlet at t = 0 s requires knowledge of inlet 

concentration at t < 0 s because of the residence time of the OFR. To make the simulation at 

t = 0 s possible, it is assumed (in function ‘simulateRtd’) that the OFR has been sampling 



stable concentration between -700 s < t < 0 s. The value of the stable concentration in this 

period is assumed to be the inlet concentration at t = 0 s. 

Other functions: 

• deconvolveOfrData 

o Deconvolves the SOA concentration that is simulated at OFR outlet when sampling 

directly from tailpipe (i.e., the vector cycle.ofr.tailpipe.soa_g_per_m3). 

• setOfrDelayCorrection 

o By default, the OFR data is delay-corrected with the value of tpeak. The delay-

corrected concentration data is denoted with ‘_shifted’. This function changes the 

delay correction value, and also recalculates the emission data for the specific OFR 

since the delay-corrected concentration data is used in most PF calculation methods. 

• soaPfBetween 

o Calculates the SOA PF for a specific interval within the driving cycle based on the 

true data or concentrations measured at OFR outlet. In case of OFR, the user must 

choose which method will be used. 

Examples 

Example 1 
Create a cycle (with name ‘A’) where gas concentrations are constant and exhaust flow rate follows a 

step function, the speed data is not available, SOA yield is assumed to be 0.15, and adding an end 

buffer of 600 s where all concentrations and the exhaust flow rate are zero: 

c.time = (1:1:100)'; 

c.hc_ppm = 10.*ones(size(c.time)); 

c.co2_percent = 5.*ones(size(c.time)); 

c.exhFlow_m3_per_s = 1e-3.*ones(size(c.time)); 

c.exhFlow_m3_per_s(50:end) = 1e-2; 

c.speed = NaN; 

soaYield = 0.15; 

endBufferLength = 600; 

 

cycle = Cycle('A', c, soaYield, endBufferLength); 

Note that all data must have 1 s time resolution. 

Next, compare the concentration of HC at tailpipe to the concentration in CVS (the tailpipe 

concentration is constant but the CVS concentration not because of the changing exhaust flow rate): 

figure; 

plot(cycle.original.time, cycle.original.tailpipe.hc_ppm); 

hold on; 

plot(cycle.original.time, cycle.original.cvs.hc_ppm); 

 

Example 2 
Create a cycle with a square pulse of 10 ppm HC and constant exhaust flow rate: 

c.time = (1:1:100)'; 

c.hc_ppm = zeros(size(c.time)); 

c.hc_ppm(10:20) = 10; 

c.co2_percent = 5.*ones(size(c.time)); 

c.exhFlow_m3_per_s = 1e-3.*ones(size(c.time)); 

c.speed = NaN; 



soaYield = 0.15; 

endBufferLength = 600; 

 

cycle = Cycle('A', c, soaYield, endBufferLength); 

 

Create a class for DOFR and add the DOFR transfer function (corresponding to ‘low’ UV lamp setting 

and length of 700 s) to it. Add the DOFR class to the cycle: 

dofr = Ofr('DOFR'); 

dofr.setRtd(calcDofrRtd('low',700)); 

cycle.addOfr(dofr); 

 

Plot the true HC concentration, HC concentration downstream DOFR and the delay-corrected HC 

concentration downstream DOFR: 

figure; 

plot(cycle.original.tailpipe.hc_ppm); 

hold on; 

plot(cycle.DOFR.tailpipe.hc_ppm); 

plot(cycle.DOFR.tailpipe.hc_ppm_shifted); 

 

 


