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Abstract. The morphological complexity of urban envi-
ronments results in a high spatial and temporal variabil-
ity of the urban microclimate. The consequent demand for
high-resolution atmospheric data remains a challenge for at-
mospheric research and operational application. The recent
widespread availability and increasing adoption of low-cost
mobile sensing offer the opportunity to integrate observa-
tions from conventional monitoring networks with microcli-
matic and air pollution data at a finer spatial and temporal
scale. So far, the relatively low quality of the measurements
and outdoor performance compared to conventional instru-
mentation has discouraged the full deployment of mobile
sensors for routine monitoring. The present study addresses
the performance of a commercial mobile sensor, the Meteo-
Tracker (IoTopon Srl), recently launched on the market to
quantify the microclimatic characteristics of the outdoor en-
vironment. The sensor follows the philosophy of the Internet
of Things technology, being low cost, having an automatic
data flow via personal smartphones and online data sharing,
supporting user-friendly software, and having the potential
to be deployed in large quantities. In this paper, the outdoor
performance is evaluated through tests aimed at quantify-
ing (i) the intra-sensor variability under similar atmospheric
conditions and (ii) the outdoor accuracy compared to a ref-
erence weather station under sub-optimal (in a fixed loca-
tion) and optimal (mobile) sensor usage. Data-driven correc-
tions are developed and successfully applied to improve the
MeteoTracker data quality. In particular, a recursive method
for the simultaneous improvement of relative humidity, dew
point, and humidex index proves to be crucial for increasing

the data quality. The results mark an intra-sensor variability
of approximately ± 0.5 °C for air temperature and ± 1.2 %
for the corrected relative humidity, both of which are within
the declared sensor accuracy. The sensor captures the same
atmospheric variability as the reference sensor during both
fixed and mobile tests, showing positive biases (overestima-
tion) for both variables. Through the mobile test, the outdoor
accuracy is observed to be between ± 0.3 to ± 0.5 °C for
air temperature and between ± 3 % and ± 5 % for the rela-
tive humidity, ranking the MeteoTracker in the real accuracy
range of similar commercial sensors from the literature and
making it a valid solution for atmospheric monitoring.

1 Introduction

The coverage of the Earth’s surface by atmospheric monitor-
ing networks remains challenging, especially in remote lo-
cations, poor countries, and complex terrain. Within the last
category, the urban environment requires long-term monitor-
ing at high spatial and temporal resolutions as turbulence
structures play a key role in inertial and thermal ventila-
tion (Barbano et al., 2020; Cintolesi et al., 2021). To fill the
gap, classical urban observational networks are supported
by spot-on intensive field campaigns for intra-urban flow
detailing and turbulence analysis. The recent development
of low-cost sensors provides a novel opportunity to inte-
grate the existing monitoring networks with cheaper yet re-
liable solutions. Nowadays, monitoring protocols for fixed
low-cost weather stations have adopted crowdsourcing ap-
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proaches (Meier et al., 2017; Fenner et al., 2021) to in-
crease the spatial coverage of urban areas, with the creation
of community networks (Jiao et al., 2016) for environmen-
tal monitoring. Contextually, the adoption of mobile sensors
and smartphones is increasing, carrying the typical short-
comings of novel approaches, such as the lack of protocols
for mobile sensing, outdoor accuracy, and long-term relia-
bility. Data quality from mobile sensing will require suitable
but transferable sensor calibration strategies (Xu et al., 2019;
deSouza et al., 2022), as well as the development of accurate
correction algorithms (Huang et al., 2023). The development
of dedicated platforms (e.g. den Ouden et al., 2021) provides
a virtual environment where quality-controlled mobile data
can be safely stored and shared.

Two major classes of sensors have been developed ac-
cording to their application scopes, i.e. the study of micro-
climate and air quality. As a short note, air quality sensors
mostly monitor regulated pollutants, such as particulates, ni-
trogen dioxide and ozone, and/or greenhouse gases such as
carbon dioxide (e.g. Johnson et al., 2016; Van den Boss-
che et al., 2016; Puri et al., 2020; Gómez-Suárez et al.,
2022; Ganji et al., 2023). Microclimate sensors are firstly
designed for monitoring the urban thermal environment
(Kousis et al., 2022), but the radiative properties of the atmo-
sphere (Heusinkveld et al., 2023), evapotranspiration (Mark-
witz and Siebicke, 2019), and wind-related quantities (Droste
et al., 2020) have also found recent interest. A key ensem-
ble of this second category consists of mobile sensors suit-
able for measuring the thermo-hygrometric characteristics of
the atmosphere on the move. The sensor suite is typically
composed of a thermo-hygrometer or a thermo-logger, but
examples of complete weather stations mounted on moving
vehicles (Heusinkveld et al., 2014; Emery et al., 2021) or in-
tegration with automatic infrared cameras (Lindberg, 2007;
Acosta et al., 2022) are also documented. Two main cate-
gories of sensors are also used: research-grade instrumenta-
tion designed for conventional weather stations and adapted
for mobile use and low-cost mobile sensors. In addition, mo-
bile sensing using smartphones is also accessed nowadays
thanks to the presence of temperature sensors that are often-
times installed within some devices (e.g. Cabrera et al., 2021)
or the use of alternative data proxies such as the tempera-
ture of the smartphone battery (Overeem et al., 2013; Droste
et al., 2017), along with the potential crowdsourcing from
large communities. Oftentimes, the sensor fabric is modi-
fied, adding homemade radiation shields (Sun et al., 2009;
Leconte et al., 2015) and ventilation pipes (Tsin et al., 2016).
Despite walking being an explored option in the literature,
the vast majority of mobile monitoring is performed using
bicycles or motor vehicles. This allows a wide spatial cov-
erage of the urban and surrounding areas (Sun et al., 2019);
a large number of monitoring scans (Emery et al., 2021); a
long-term assessment (Charabi and Bakhit, 2011); and a va-
riety of monitoring techniques, including spot-on measure-

ments (Qaid et al., 2016) and transect inspections (Unger
et al., 2001).

The top-trend research topic is the urban heat island (UHI)
effect, where mobile sensing offers a denser representation of
the canyon-level air temperature (Stewart, 2011) inside the
urban context. Intra-urban UHI and local thermal effects are
attributed to the land cover, urban morphology, and aspect
ratio of the urban canyons. Yan et al. (2014) used an instru-
mented bicycle to infer the magnitude and spatial character-
istics of the air temperature variations related to the land-
scape parameters characterizing the immediate environment
of the measurement sites. Focusing on the street canyon, Sun
(2011) conducted a mobile survey by bike to show a posi-
tive correlation between the air temperature and the height-
to-width ratio of the canyon, green-area coverage, and build-
ing ratio. Covering a larger spatial area by instrumented car,
Noro et al. (2015) observed consistent temperature differ-
ences in the range of 0.5 to 2.5 °C, depending on the local
climate zone (LCZ, Stewart and Oke, 2012) passed through.
Shi et al. (2018) confirmed the applicability of mobile sen-
sors in assessing the thermal properties within high-density
heterogeneous urban contexts, evaluating an intra-LCZ air
temperature difference up to 2 °C within six diverse LCZs.
In agreement with traditional studies on the local-scale UHI
effect (e.g. Di Sabatino et al., 2020), these studies support
strategies that increase vegetation coverage at the expense of
buildings to mitigate urban warming and to create a com-
fortable thermal environment. Other uses of mobile sensing
include the assessment of the impacts of the urban morphol-
ogy on the cooling effect of small rivers (Park et al., 2019)
and the influence of external factors on the temperature field
within the urban context (Rajkovich and Larsen, 2016). The
temperature maps obtained through mobile sensing are also
suitable for validating numerical simulations (Hsieh et al.,
2016) and for application to thermal comfort and local cli-
mate stress (Koopmans et al., 2020).

The advantage of a mobile sensor is the large spatial
coverage ensured by continuous monitoring while moving,
which can be performed actively through ad hoc experi-
ments or passively during daily life activities. As a draw-
back, measurements will be dependent on both time and
space, revealing non-trivialness to assess phenomena such
as the UHI effect. Schwarz et al. (2012) introduced a cor-
rection for decreasing temperatures due to progressing time
so that they would not confound air temperature differences
due to changing surroundings with temperature differences
because of evening cooling. To compensate for the differ-
ent time responses of the mobile sensor related to the refer-
ence, namely the thermal inertia error, Qi et al. (2022) intro-
duced an initial temperature correction. In previous research,
the response time of mobile sensors was determined by cy-
cling through a tunnel (Brandsma and Wolters, 2012) or by
sensitivity tests comparing in situ and mobile measurements
(Emery et al., 2021). To deal with the response time at the
beginning of a monitoring session, we can use statistics to
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eliminate the time required by the sensor to adjust its internal
temperature to the ambient air. Depending on the scope of the
investigation, a temperature decline correction is needed to
compensate for the background temperature evolution while
completing the route (Brandsma and Wolters, 2012). Finally,
mobile sensors need a protocol for outdoor validation before
usage, which is missing in most applications from the litera-
ture. For low-cost sensors, this step is required owing to the
discrepancy often observed between the ideal accuracy of the
sensor (that acquired in the laboratory under controlled con-
ditions) and the real one evaluated in the field. Establishing
an outdoor protocol for low-cost sensors is mandatory to in-
fer the reliability of their measurements and under which cir-
cumstances they perform at their best (Brattich et al., 2020).
Similarly, research-grade instrumentation is mostly built for
fixed-location monitoring, and a reliability test should be per-
formed for mobile usage.

In this paper, we provide a quality assessment and perfor-
mance evaluation of a recently developed commercial mo-
bile sensor for monitoring the urban microclimate called Me-
teoTracker (MT), developed by IoTopon Srl. To the best of
our knowledge, the MT was used in very few scientific re-
search endeavours with promising results (Cecilia and Peng,
2022; Carraro, 2022). However, these evaluations focused
only on the air temperature data of a single MT with re-
spect to other low-cost mobile sensors, leaving gaps in the
overall performance evaluation. In the current paper, we aim
to provide a more robust and comprehensive assessment of
the MT outdoor performance, which includes evaluating the
intra-sensor variability of multiple MTs simultaneously oper-
ating under equal ambient conditions and validating the MT’s
measurements against a research-grade reference in both op-
timal (while moving) and non-optimal (as a fixed station) op-
erational usage. This investigation also provides a set of ex-
ploitable methods to correct the MT measurements and en-
hance their outdoor accuracy, validated for different climate
zones and seasons, and their sensor usage, customized for
each measured variable of the MT. Ultimately, this analy-
sis will evaluate the potential of the MT to be adopted as a
research-grade sensor.

After this introduction, Sect. 2 introduces the MT sen-
sor and data flow; Sect. 3 describes the multi-step proce-
dure adopted in this paper to address the sensor performance,
while Sect. 4 presents the results from each step. Section 5
contextualizes the MT performance in the context of mobile
sensing. Section 6 presents the conclusions.

2 The MeteoTracker

2.1 The sensor

The MT is a low-cost portable weather station (see
Fig. 1) that samples several meteorological variables while
moving jointly with its carrying vehicle (mobile sen-

Figure 1. The MT and its components. Left to right: the mini-
weather station, the mobile application, and the web platform. Col-
lage from https://meteotracker.com/ (last access: July 2022).

sor). The device hardware comprises a compact case
(75 mm× 75 mm× 35 mm) with a magnetic base to secure
the station to the vehicle, tested at regulatory speed limits
on highways. The case can also support the installation of
a string to secure the station to a non-metal moving object.
The aerodynamic shape supports the stability above the vehi-
cle, while the extensive frontal and back overtures (air filters)
enable a large air volume sampling and good internal venti-
lation. The sensing board is supplied by different capacitive–
resistive sensors, measuring air temperature T , relative hu-
midity RH, and atmospheric pressure P with a declared ac-
curacy close to that of a research-grade instrument (see Ta-
ble 1). In addition, the sensor measures the solar radiation
intensity indicator R, but the accuracy and operational range
are not provided by the manufacturer. Derived quantities are
also automatically computed by the station using known em-
pirical thermodynamic laws and formulas. Among those, the
dew-point temperature Td and the humidex index HDX (an
index which estimates the anthropogenic well-being asso-
ciated with climate; see Masterton and Richardson, 1979)
are both obtained by combining air temperature and relative
humidity in some capacities. For the dew point, Lawrence
(2005) explored the intricacies and possible empirical, theo-
retical, and simplified expressions with the classical thermo-
dynamics, while humidex is defined as

HDX= T + 0.5555(e− 10), (1)

where e is the water vapour pressure in hPa, and T is in de-
grees Celsius. Altitude Z in metres above the mean sea level
is also derived from the atmospheric pressure; with it, the
vertical thermal gradient is computed (in °C (100 m)−1).

The sensor is not shielded from solar radiation. Still, it is
supplied with a radiation error correction system (RECS), a
patent of the manufacturer to correct the effect of solar radia-
tion on temperature while the sensor is moving at more than
7 km h−1.

The station has an internal memory that ensures up to
250 h of usage, and it is remotely controlled, using a cus-
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tomized application on the user’s smartphone, through a one-
to-one connection (one station is controlled by one applica-
tion). Through the app, the user selects the sampling rate of
the sensors in terms of both frequency (at least 1 Hz) and
distance (at least 1 m), letting the device select and use the
highest resolution according to the vehicle’s speed. The user
decides to enable or disable the sensor calibration at each
start and stop of the vehicle and also decides on the tem-
perature correction due to the sensor movement (whether the
sensor usage is mobile or in a fixed location). The app uses
the smartphone GPS to geolocate the station and to compute
the initial altitude (see Sect. 3), and it provides the vehicle
speed Vs.

On the app, the user can visualize the livestreaming of the
monitoring session from a georeferenced map and the time
series of the measured variables. At the end of each session,
measurements are stored locally in the smartphone and up-
loaded on a dedicated online platform for visualization, data
retrieval, download, and sharing with other users.

2.2 Data flow and visualization

The mobile app and smartphone connectivity regulate the
flow of the data collected by the station. The station and
mobile app have to remain connected via Bluetooth for the
whole duration of the monitoring session to ensure the flow
and storage of the measurement (as a choice of the manufac-
turer, the station itself does not have an internal memory). A
stable GPS and internet connection are required to compute
the altitude during the monitoring session, to livestream the
monitoring session through the dedicated online dashboard,
and to upload the data on the platform once over. The user
can define the level of privacy (private, public, and public
anonymously) of the collected data before initiating a mon-
itoring session. Both public sessions will be streamed and
data will be shared through the platform. Public data on the
platform can be reached by other users through a dashboard,
with the permission to visualize or download depending on
the type of account bought alongside the device. An example
of data visualization on the dashboard is shown in Fig. 2.

The MT track is superimposed on a Google map, showing
the point-by-point georeferenced map of a measured variable
(air temperature in the example of Fig. 2), giving a qualitative
but effective intake of the collected measurements. The time
series of the same variables can be displayed directly on the
dashboard for a more quantitative disposal of the data.

The price of the device with full permission on the plat-
form in 2021 was EUR 119 (including taxes); the recent up-
dates (2023), the new connectivity tools, and the set of addi-
tional accessories have raised the costs of this sensor, which
remains below EUR 400.

Figure 2. Example of MT track and collected data as visualized on
the online dashboard. The coloured points on the map are the air
temperature measured by the sensor. Graphs are the reconstructed
time series of each measured and derived variable along the vehi-
cle track. Source: https://app.meteotracker.com/ (last access: July
2022).

2.2.1 A brief note on data storage

As previously described, the MT is not supplied with an in-
ternal memory; therefore, data collected during the monitor-
ing sessions flow directly into the smartphone application via
Bluetooth and are stored in the smartphone’s internal mem-
ory. The limitation to data storage is only due to the available
internal memory of the smartphone connected to the MT.
Limiting these considerations to the experience gathered dur-
ing the monitoring activities described within this paper, the
amount of memory necessary for running an MT monitoring
session is small: the smartphone application takes 53.1 MB
of space, and each data point collected within a monitoring
session is less than 2 KB. As a practical example, a monitor-
ing session of 500 km at the finer resolution generates fewer
than 17 MB of data. Once the monitoring session is ended
and the data are uploaded on the platform, data stored on the
smartphone can be deleted, saving internal memory.

3 Reliability assessment: a multi-step validation
process

The validation process of MT measurements is performed
in four steps: (i) identification and removal of the period of
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Table 1. Significant variables measured by the MT, with accuracy and operational range according to the manufacturer.

Variable Accuracy Operational range

Air temperature T (°C) ±0.5 °C under solar radiation and VS > 7 km h−1
−40–+125°C

Relative humidity RH (%) ±2 % 0 %–100 %
Atmospheric pressure P (hPa) ±3 Pa (relative) or ±50 Pa (absolute) –
Altitude above mean sea level Z (m) ±10 m (for the initial altitude value only) –

∗ RECS, patent of the manufacturer.

adjustment to the environmental conditions, (ii) evaluation
of the intra-sensor variability under similar operational con-
ditions, (iii) confrontation with a reference station in fixed-
location mode, and (iv) confrontation with a reference sta-
tion on the move. Three different cities hosted one or more
steps of this assessment, namely Bologna (steps i and ii) and
Savona (step iii) in Italy and Wageningen (iv) in the Nether-
lands. This choice ensures the testing of the sensors in dif-
ferent climate areas, classified following the Köppen–Geiger
climate classification (Beck et al., 2018) as humid subtropi-
cal climate (Cfa), hot summer Mediterranean climate (Csa),
and temperate ocean climate or subtropical highland climate
(Cfb), respectively, for Bologna, Savona, and Wageningen1.
Each step is a key element to assess the self-consistency of
the instrumentation and to evaluate its use for research pur-
poses. The process evaluates the strengths and weaknesses
of the MT, allowing us to expose the reliability limit of this
specific low-cost sensor but also enabling the study and com-
putation of possible post-processing solutions to improve the
data quality and usability.

3.1 Outlier removal and identification of the
adjustment period

As a fundamental step in data post-processing, the literature
has proposed several methods to identify and remove out-
liers from a dataset. Typical methods are based on the a pri-
ori assumption that the dataset can be divided into subpe-
riods wherein the measurements are distributed following a
known function (typically a Gaussian distribution). A well-
known example of these methods is given by Vickers and
Mahrt (1997), where the outlier is defined as a value larger
than 3.5 standard deviations from the mean in a certain time
interval. Using this method over 30 min windows, Barbano
et al. (2021) obtained a reliable cleaning performance for
fast-sampling meteorological data within the urban canopy.
Working with low-cost sensors for air quality and thermal
comfort detection, Brattich et al. (2020) applied the Hampel
filter (Hampel, 1974) to 1 min data to detect values beyond
2 median absolute deviations over 7 min windows and to re-
place them with the median over the same interval.

1Following the Köppen–Geiger climate classification: C is for
temperate, f is for no dry season, s is for dry summer, a is for hot
summer, and b is for warm summer

The aforementioned methods are tuned on traditional mea-
surement techniques, where instruments sample meteorolog-
ical or air quality data for a “long” period and at a fixed lo-
cation. We can infer that monitoring sessions with MTs will
be very short in time (as long as the vehicle travels) and fre-
quent, not providing a sufficient amount of data to make a
priori assumptions on their distribution. Moreover, we can
assume that, after each monitoring session, the user would
unmount the MT from the vehicle and bring it into an indoor
environment for security reasons. At the onset of the next
session, the MT will likely need a certain amount of time to
adjust to the change of location, i.e. a change in the ambient
temperature and relative humidity. The inter-quartile range
(IQR) outliers’ removal method (Hubert and Van der Veeken,
2008) serves the purpose of removing both the outliers and
the initial adjustment period. This method applies to the en-
tire sample, and it is not based on any assumption about the
data distribution. It is based on the definition of upper and
lower limits beyond which values are classified as outliers.
Specifically, any data point x is an outlier if

x <Q1− 1.5 IQR,

x > Q3+ 1.5 IQR, (2)

where Q1 and Q3 are the first and third quartiles, respec-
tively, and IQR=Q3–Q1. When needed, the IQR method is
pre-empted by a linear detrending. The outliers identified at
the beginning of the session mark the adjustment period and
are just removed. Outliers given by spikes within the session
are instead replaced with the median of the data distribution.

3.2 Intra-sensor variability

Low-cost sensors have proven to be reliable and accurate un-
der laboratory conditions, yet they show larger inconsisten-
cies when used outdoors under real-world atmospheric con-
ditions. This is due to the fast transitions and heterogeneity
of the atmospheric conditions compared to the rather con-
stant and homogeneous laboratory flow. The response of low-
cost sensors to the natural oscillations of the atmospheric
variables can cause discrepancies between sensors’ measure-
ments due to the different sensor responses. The intra-sensor
variability test is an open-air experiment, where multiple sen-
sors operate under the same environmental conditions to in-
fer the consistency among different sensors.
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Table 2. Overview of the intra-sensor variability tests

Session Initial date and
ID local time Duration Sensors

S1 30 Jun 2022, 14:30 60 min Eight
S2 30 Jun 2022, 16:00 50 min Six
S3 1 Jul 2022, 12:45 50 min Six

With regard to the scope, three monitoring sessions were
designed to operate multiple MTs simultaneously (in groups
of six, six, and eight MTs for practical reasons). During each
session, the MTs within each group were mounted on top
of a designated electric car and controlled by an equal num-
ber of smartphones by the passenger. The MTs were placed
side by side in the front part of the car’s top, as close as
possible to the car axis to avoid capturing flows from lat-
eral edges. The location on the car top minimizes the sen-
sor’s exposition to the direct heat sources of the car (engine,
brakes, wheels) while maximizing the exposition to the fresh
air that has not interacted with the car before being sam-
pled by the sensor. MTs were aligned perpendicularly to the
car axis along a single line: this prevents mutual shielding
and exposes each MT directly to the flow. The spacing be-
tween MTs was approximately twice the lateral dimension
of a single MT. A 50–60 min drive around the city centre and
outskirts is then performed during each session, starting and
ending at the Department of Physics and Astronomy of the
University of Bologna (44°29′57.1′′ N, 11°21′13.8′′ E) and
passing through different neighbourhoods and local ambient
conditions to capture most of the morphology variability of
the city. Table 2 summarizes the general information on the
sessions.

The three sessions were analysed independently due to the
change in the environmental conditions, the starts and stops
that occurred during the drive, and the slightly different tra-
jectories adopted. Thus, we adopted a first session to tailor
our post-processing schema to the measurements while test-
ing those on the remaining sessions.

3.3 Fixed-location comparison

The reliability and trustworthiness of low-cost sensors are
typically at stake when used outdoors as large and sharp tran-
sitions in the environmental conditions (sudden temperature
drops, wind gusts, etc.), as well as extreme regimes (satura-
tion, rain, and snowfall, etc.), are often demanding for sen-
sor accuracy. For these reasons, a comparison with research-
grade instrumentation is convenient to test the actual accu-
racy of low-cost sensors outdoors.

Differently from most of the instrumentation designed for
research purposes, the MT operates on the move, introduc-
ing a further degree of complexity to the validation proce-
dure. To counteract this limitation, a two-step validation is
provided, first using the MT as a fixed-location weather sta-

Figure 3. Stevenson screen (front right) and reference weather sta-
tion (middle back) locations on the building rooftop.

tion (Sect. 4.3) and then comparing its performance against a
previously validated mobile station (Sect. 4.4). For the fixed-
location comparison, an MT was placed behind a Stevenson
screen located on the rooftop of the CIMA Research Foun-
dation headquarters (44°17′59.2′′ N, 8°27′06.6′′ E) close to
a reference weather station of the Acronet network. Includ-
ing the sole sensors required for this study, the reference sta-
tion is equipped with a shielded transducer (t026 TTEPRH,
Siap+Micros S.p.A., Italy) sampling air temperature in the
range −30 to +60 °C, with an accuracy of ± 0.1 °C, and rel-
ative humidity between 0 % and 100 %, with an accuracy of
2 %. The Stevenson screen is required to shield the MT from
solar radiation and to minimize the sensor overheating, thus
replicating the work of the RECS when the sensor is mov-
ing, to expose the MT to the same environmental conditions
as the reference weather station, as deployed in Fig. 3. The
data acquisition for this analysis covered two separate pe-
riods of continuous measurements, lasting approximately 1
month each: from 19 December 2022 to 10 January 2023
(winter period) and from 11 July to 3 August 2023 (sum-
mer period). No weather conditions were discharged from
this analysis.
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Figure 4. A picture of the cargo bike with its equipment (a) and the
cycling route operated for comparison (b).

3.4 Mobile comparison

To test the MT under conventional operation conditions, two
sensors were mounted on a meteorological cargo bike (see
Fig. 4a) developed at Wageningen University (The Nether-
lands) to measure air temperature, relative humidity, wind
speed, and radiation in a reliable way (Heusinkveld et al.,
2014).

The temperature and relative humidity are measured with
a shielded thermometer–hygrometer (model CS215L, Camp-
bell Scientific, USA) with a radiation screen mounted at
1.2 m. Heusinkveld et al. (2014) ensure an accuracy of less
than 0.1 °C for air temperature and 2 % for relative humidity
(within the range of 10 %–90 %). Wind speed and direction
are measured with a Gill WindSonic (Gill Instruments, UK)
and are used to derive the ventilation speed, i.e. the speed of
the air sampled by the sensor and given by the vectorial com-
bination of the wind and cargo bike speeds. The MTs were
placed unshielded at the same height as the reference tem-
perature sensor, one to its left and the other to its right. With
this setup, the average temperature of the MTs corresponds to
the reference temperature. The reference temperature sensor
samples at 1 Hz; with an average cycling speed of 4 m s−1, it
corresponds to a sample every 4 m. The MTs measure with a
3 s sampling rate, resulting in a sample approximately every
12 m. A block average of 5 s is chosen for the comparison.

The data collection was performed in eight sessions from
11 January to 3 March 2023, lasting around 1 h each between
12:00 and 18:00 local time (except for a single evening ses-
sion starting at 20:30 local time). The dataset encloses dif-
ferent atmospheric conditions, mostly accounting for sunny
days when incoming radiation varies the most or for partially
cloudy conditions (with no precipitation). The cycling track
followed a fixed route, with a seemingly constant cycling

Figure 5. Distribution by the occurrence of the air temperature for
the example session, alongside the time evolution of the session.
The colours highlight the removed adjustment time after the appli-
cation of Eq. (2) (blue) compared to the filtered data distribution
and time series (red).

speed of 4 ms−1. This cycling route went through an open
grassland area near Wageningen (Binnenveld), a new resi-
dential area (Wageningen Noordwest), and the historic city
centre of Wageningen (see Fig. 4b).

4 Results

4.1 Removal of outliers and adjustment period

From a visual inspection of the data, there are no clear out-
liers inside the measuring periods. The stability of the MT
and its sampling rate minimize the possibility of spikes in
the data acquisition, actually preventing the occurrence of
outliers within the time series. Conversely, there is clear evi-
dence that, upon activation, the sensor undergoes a process
of adjustment to align with the surrounding ambient tem-
perature. Several preliminary tests were implemented during
wintertime to investigate the MT’s adjustment times accord-
ing to the different ambient conditions the MT has to adjust
to and the cooling rate it has to endure. All these tests were
performed by bicycle in Bologna. Equation (2) is applied to
isolate and remove these adjustment periods from the data
distribution of this test. Figure 5 picks an example session to
show the application of the outlier removal method.

The distribution of the air temperature follows a skewed
normal distribution, with a bimodal factor when outliers are
accounted for. The outliers compose the adjustment period,
and no further spikes are detected through the time series.
The maximum temperature recorded at the beginning of the
session in Fig. 5 is 17.0 °C, falling to 14.5 °C after apply-
ing Eq. (2). Similarly, the initial minimum humidity level is
recorded at 52 %, but it increases to 59 % during the same
time frame as that of the temperature drop after applying
Eq. (2) (not shown).
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Table 3 summarizes the average temperature changes, ad-
justment times, and cooling rates evaluated through the pre-
liminary tests and the mobile comparison test performed with
the cargo bike (Sect. 3.4).

Temperature changes and adjustment times are direct out-
comes of the outlier removal, while the cooling or heating
rates are computed as their ratios. The discrepancy between
adjustment periods and cooling or heating rates is due to the
initial air temperature and the different times of the day –
and, hence, the intensity of solar radiation. Natural ventila-
tion can also play a role in increasing the cooling rate. Over-
all, the cooling or heating rate of an MT under operational
use ranges between 0.5 to 1.7 °C min−1, accounting for an
adjustment time of 2.2–6.3 min according to this test. Table 3
only reports the application of the removal method to the air
temperature, but the same procedure has been independently
applied to the relative humidity, obtaining similar results. For
this reason, temperature alone is taken as a benchmark for
identifying the adjustment period.

To provide further support for the acclimatization process
of the MT, supplementary comparison tests with an analogue
thermometer are carried out both indoors and outdoors. Re-
sults of these tests suggest that a stationary MT takes 15 min
(on average) to achieve thermal equilibrium in a partially
controlled room from an initial temperature discrepancy of
2 °C. When exposed to outdoor conditions, the stationary MT
takes 10 min (on average) to drop its temperature of 2 °C.
Thanks to the thermal regulation induced by ventilation, the
adjustment times are largely reduced when the sensor is mov-
ing at a speed higher than 7 km h−1. For the intra-sensor vari-
ability test and the fixed-station comparison, we waited 15–
20 min after having prepared the experimental setup, letting
the MT adjust to the ambient air.

4.2 Intra-sensor variability and data correction
methods

The results of the intra-sensor variability analysis are pre-
sented alongside the development and application of data-
driven correction methods for data post-processing. The
scope of the corrections is to decrease the variability of data
around the mean and to increase the linear relationship of
each track to the mean within the session, thus reducing
the intra-sensor variability. In particular, a correction was
searched and applied wherever single tracks were consis-
tently over- or under-shooting the range represented by the
instrumental error applied to the session average. Session S1
is used as a test case, while S2 and S3 are the benchmark.
Data measured by the MTs are averaged every 5 s to remove
the discrepancy in the time–space acquisition dichotomy and
to homogenize the dataset. For each variable, the average
session is computed to explore the stability of each sensor
measure around the mean. The comparison for the measured
variables is shown in Fig. 6.

As a byproduct, the comparison masks the non-systematic
errors while enhancing the existing biases between different
measures. This results in large values of the determination
coefficient despite the single sensor measurements occasion-
ally being well beyond the range defined by the instrumental
error around the average session. This is the case for rela-
tive humidity (Fig. 6a) and less so for pressure (Fig. 6c).
While, for the pressure, the discrepancy between different
sensors accounts for up to 100 % of the instrumental error,
that for relative humidity accounts for up to 500 %. Pres-
sure does not display a homogeneous distribution of values
around the average session but rather shows a step-wise mea-
surement trend, probably owing to the low sensitivity of the
sensor. Air temperatures fall mostly within the instrumental
error (Fig. 6b), apart from a few values in two sessions. Air
temperature is considered to perform at a level of accuracy
in line with the manufacturer’s indication and will not un-
dergo any corrections. The solar radiation intensity indicator
(Fig. 6d) provides a dimensionless measure of the intensity
of solar radiation, with sensors being affected by different
shadowing along the track. The performance of this quantity
is qualitatively appreciable despite the lack of information on
the instrumental error preventing a more quantitative evalua-
tion.

From the measurements described above and the informa-
tion retrieved from the GPS of the smartphone, the sensor
automatically derives several quantities including altitude Z,
vehicle speed Vs, the dew point Td, and the humidex index
HDX (see Fig. 7).

The vehicle speed is self-consistent, despite an increasing
spread of values at low velocities (Fig. 6d). Despite the facts
that an instrumental error for the vehicle speed is not pro-
vided by the manufacturer (as it depends on the smartphone
the sensor is connected to) and that a more quantitative as-
sessment of this variable is precluded, this can still be used as
an indicator of the stability for different smartphone models.
As for the altitude, the phone GPS is involved in the compu-
tation of the vehicle velocity; thus, similarities between mea-
surements are expected but not granted.

Altitude above the mean sea level (Fig. 7c) is automati-
cally computed by the MT by retrieving the initial altitude
Z0 from an open web server using the location of the initial
latitude and longitude and then modifying its value along the
track according to the measured pressure using

Z =
T0

0s

((
P

P0

)−0sRd/g

− 1

)
+Z0, (3)

where T0, P0, and Z0 are the air temperature, pressure,
and altitude collected as the first data measure, respectively;
0s = 0.0065 °C m−1 is the standard atmospheric lapse rate;
g = 9.81 m s−1 is the acceleration due to gravity; and Rd is
the gas constant for the dry air. The nominal error of ± 10 m
associated with the altitude measurement is therefore a com-
position of the error propagation given by Eq. (3) and the
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Table 3. Average air temperature, temperature drop (in absolute value), adjustment time, and cooling rate for the different mobile monitoring
sessions involved in the tests. For each session, the date, starting time, and duration are also reported. Comp sessions are performed in
Bologna, and Cargo ones are from the mobile comparison in Wageningen. Multiple dates and start times refer to the individual days and the
beginning of each session, the values of which are averaged.

Session Date and local start time Duration Initial T T drop Adjustment Cooling rate
(min) (°C) (°C) Time (min) (°C min−1)

CompA 3 Mar, 13:59 38 16.6 2.6 5.9 0.5
CompB 3 Mar, 14:56 49 17.0 1.7 2.7 0.6
CompC 3 Mar, 15:56 47 18.8 4.8 2.8 1.7
CompD 20 Mar, 14:12 28 16.7 2.6 3.2 0.8
CompE 20 Mar, 17:24 46 14.9 1.7 2.2 0.8

CargoA 11 Jan, 12:00–16:00 55 11.7 1.4 2.2 0.6
CargoB 18 Jan–7 Feb, 12:00–14:00 55 9.4 5.2 5.5 0.9
CargoC 7 Feb–3 Mar, 16:30–20:30 55 13.3 6.3 5.2 1.2

Figure 6. The 5 s averages of relative humidity RH (a), air temperature T (b), barometric pressure P (c), and solar radiation intensity
indicator R (d) measured by each sensor as a function of the average session. Each colour identifies the measurement of a single MT. The
dashed line is the bisector, and the dotted lines are the instrumental error around the bisector.

GPS accuracy. It is worth noting that the accuracy of the GPS
is a property of the smartphone connected to the MT, and it
can change according to the smartphone brand and model.
Since this test was conducted using different smartphones,
we could have introduced an additional source of error. The
correction we are about to introduce will minimize this error,
but it is arguable that using the same smartphone model and
brand the correction would not be needed (at least if the error
from Eq. (3) is negligible). The large nominal error allows a
good altitude performance within the current test, but biases

between sensors are also evident. For this reason, an alter-
native procedure to compute altitude is proposed. It consists
of the retrieval of the altitude from a preferred web server
(such as the one used in this paper) or a digital elevation
model map for each latitude–longitude couple measured by
the GPS, thus bypassing Eq. (3). In other words, the sole er-
ror remaining in the computation of the altitude is associated
with the GPS signal. This procedure is more computation-
ally expansive than Eq. (3), but it ensures a better evaluation
of the altitude as long as the GPS signal is stable. Applied
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Figure 7. The 5 s averages of the dew point Td (a), humidex HDX (b), and altitude above mean sea level Z (c) derived by each sensor
as a function of the average session, along with the vehicle speed Vs (d) derived from the smartphones’ GPSs. Each colour identifies the
measurement of a single MT. The dashed line is the bisector, and the dotted lines are the instrumental error around the bisector.

to S1, the method grants a large improvement in the altitude
computation, with a drastic reduction in the sessions’ spread
around the mean one (Fig. 8).

The improvement in the altitude values enables the correc-
tion of pressure. From Eq. (3), we can derive an expression
for pressure Pc as

Pc = P0

(
0s

T0
(Zc−Z0)+ 1

)−g/(0sRd)

, (4)

where Zc is the altitude above the mean sea level as retrieved
from the web server. The recomputed pressure is shown in
Fig. 8. The correction collapses pressure from different sen-
sors within the instrumental range of uncertainty (around the
average session) while introducing a richer value distribu-
tion. This is supposedly caused by the larger sensitivity of
the GPS sensor compared to the barometer.

Using Pc, we can estimate a first correction formula for
the relative humidity. The relative humidity is defined as the
ratio between the water vapour pressure e and the satura-
tion water vapour pressure es. Assuming that the variability
of the total pressure is entirely driven by that of the water
vapour, δRH∝ δe. The application of this correction type to
the relative humidity revealed almost negligible results for
the dataset under investigation, and, for this reason, it was
discarded. Nonetheless, e and es are known to be functions
of the dew point Td and the air temperature T , respectively,
owing to a large number of empirical (e.g. the Magnus for-

mula) and theoretical (derived from the Clausius–Clapeyron
equation) expressions. The link between T , Td, and RH sug-
gests the possibility of finding correction methods for RH
based on these variables, to which the humidex index HDX
can be added owing to its dependency on both temperature
and relative humidity. Indeed, both Td and HDX show an
odd intra-sensor variability which is propagated from the rel-
ative humidity (see Fig. 7a, b), with the dew point being af-
fected the most. From its definitions in Eq. (1), the humidex
index depends more on the air temperature and less on rel-
ative humidity (or dew point). In the range of temperatures
where the humidex is defined, the adding term in the RHS
(right-hand side) of Eq. (1) is much smaller than T , and thus
the intra-sensor variability in the humidex is less pronounced
than Td and RH. The humidex index can be used as a starting
point for the correction procedure, which will ultimately al-
low us to correct RH, Td, and HDX. Practical definitions of
this index can be retrieved from Eq. (1), following the stan-
dard used by Environment and Climate Change Canada:

HDX= T + 0.5555
(

6.11e
(
L/Rw

((
1

273.16

)(
1

273.15+Td

)))
− 10

)
, (5)

where L, the latent heat of vaporization, is retrieved
from the linear interpolation of T knowing that
L(T = 0 °C)= 2.501× 106 J kg−1 and L(T = 100 °C)=
2.257× 106 J kg−1, while Rw = 461 J K−1 kg−1 is the gas
constant for a moist atmosphere. Alternatively, we can adopt
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Figure 8. The 5 s averages of the corrected altitude Pc (a) and pres-
sure Zc (b) as a function of the average session. Each colour identi-
fies the measurement of a single MT. The dashed line is the bisector,
and the dotted lines are the instrumental error around the bisector.

some Magnus formula for e so that

HDX= T + 0.5555
(

0.06RH100.03T
− 10

)
. (6)

Both empirical equations require T and Td in degrees Cel-
sius. Figure 9 shows the correlation and dispersion of the hu-
midex calculated with Eqs. (5) and (6) and the one directly
computed by the sensor. Each distribution resembles a Gaus-
sian shape, with a high degree of symmetry and mean (and
median) values close to 44 °C. Despite Eq. (6) being a better
approximation of the HDX retrieved by the sensors, Eq. (5)
already reduces the standard deviation of the distribution and
thus the intra-sensor variability. Substituting Eq. (5) into (6)
and solving for RH, we obtain an expression for the corrected
relative humidity RHc which only depends on the dew point
(and air temperature):

RHc = 100e
(
L
Rw

(
1

273.16−
1

273.15+Td

))(
100.03T

)−1
= 100

e

es
, (7)

where e is formulated following Environment and Climate
Change Canada, and es follows a simplified Magnus formula.

From Eq. (5), we can assume that the significant component
of the intra-sensor variation in HDX is given by Td. That is,
δHDX∝ δTd. Using the error propagation theory, the vari-
ability δHDX= | dHDX

dTd
|δTd. Solving for δTd, we get

δTd =−
Rw

L
(273.15+ Td)

2(3.39)−1

e
−

L
Rw

(
1

273.16−
1

273.15+Td

)
δHDX. (8)

The dew point is then corrected as

T c
d = Td− δTd (9)

and is used to recompute the humidex using Eq. (5). Equa-
tions (8), (9), and (5) are computed recursively to minimize
the intra-sensor differences of both Td and HDX. The mi-
nus sign in Eq. (8) is introduced to evaluate both positive
and negative components of the derivative in the error prop-
agation. After two iterations, the variability around the aver-
age session is already greatly reduced (see Fig. 10a, b). Note
that the recursive method is intrinsically going to diverge af-
ter a large number of iterations, thus imposing a truncation
after a few iterations. Here, truncation is done after visual-
izing the minimum variability, constrained to a range of val-
ues in agreement with the measurements. Using the recursive
method, we achieved a better agreement between sensors, en-
suring a smaller spread of values around the average session
and ensuring that they are constrained within the instrumen-
tal errors. Here, the instrumental error for the dew point is
derived from the approximated relation of Lawrence (2005):

Td = T −
RH− 100

5
. (10)

By comparing the dew point retrieved by the sensor and that
computed using Eq. (10), we observe two similar distribu-
tions (see Fig. 11), suggesting we can adopt Eq. (10) for the
computation of the dew-point error.

The agreement shown in Fig. 11 raises doubts about how
solid the dew-point data are when directly retrieved by the
MT. Equation (10) was suggested by Lawrence (2005) to
work in a moist environment, with RH≤ 50 %, with a possi-
ble extension to 40 % introducing a further correction, which
was meaningless for the present study. Nonetheless, values
below the 40 % threshold were observed, for which we can
assume the approximation works just well enough for deriv-
ing the dew-point error. In any case, this error evaluation is
limited to a medium–high humid environment and should be
further tested for more arid conditions. A further assessment
of the quality of the dew point retrieved from the sensor is
given in Sect. 4.3.

The error associated with the retrieved and corrected dew
point reads as

1Td =1T +
1
5
1RH. (11)
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Figure 9. Cumulative density distribution of the HDX index com-
puted using Eq. (5) (solid black) and Eq. (6) (solid blue) and di-
rectly by the sensor (solid red). The dashed lines, paired with sim-
ilar colours, represent the best normal distribution fit for each data
source. The number of bins for the discretization is equal to the
square root of the total number of data (equal for each distribution).

In an analogy, the error associated with the humidex index is
computed from Eq. (5) and reads as

1HDX=1T +
HDX−T

(273.15+ Td)
2
Rw

L
1Td. (12)

As dew point and humidex converge to their minimum vari-
ability, the corrected value of Td is used to recompute the
relative humidity using Eq. (7), and the resulting difference
from the average session is shown in Fig. 12.

Despite the fact that the correction is not always sufficient
to bring the variability within the instrumental error from the
average session (S2, for instance, would have required an er-
ror bar of ±3 % – not shown), the intra-sensor agreement is
largely improved, as also quantified by the root-mean-square
and mean bias errors listed in Table 4 for each session and
variable. The correction removes a consistent portion of the
sensor variability, producing a maximum value of uncertainty
around the average session of ± 1.2 % for S1.

All the corrections we have discussed so far have sub-
stantially improved the data quality. The absolute errors also
decrease, with an overall increase in the determination co-
efficients. We have already mentioned how the intra-sensor
variability assessed here creates a bias in the coefficient of
determination due to the dependence of the mean from its
constituents. Nonetheless, the initial large values of this co-
efficient suggest that the existing discrepancy between sen-
sors’ measurements is bias-driven, while tendencies are in
accordance. The increase in the determination coefficients
obtained through the correction methods explains the further
reduction in the non-linear uncertainties in the sensors’ mea-
surements. The error reduction is instead an indication of the
bias decrease; in other words, the sensors’ measurements col-
lapse closer to their average.

Figure 10. Calculated T c
d (a) and HDXc (b) after two iterations

using Eqs. (9) and (6) as a function of the average session, respec-
tively. Each colour identifies the measurement of a single MT. The
dashed line is the bisector, and the dotted lines are the propagated
instrumental error around the bisector evaluated using Eq. (11) for
Td and Eq. (12) for HDX.

The pressure–altitude correction encloses both tendency
and bias regulation effects. Pressure loses its step-wise con-
formation, favouring a more homogeneous data distribution
which increases the linear dependence between different sen-
sors. Altitude decreases the intra-sensor bias by reducing the
mean absolute percentage error (MAPE) of 87 % and 91 %,
and the root-mean-square error (RMSE) of 80 % and 82 %
in S1 and S2, respectively. The iteration method involving
relative humidity, dew point, and humidex is also success-
ful in reducing both biases and tendency discrepancies, es-
pecially for the first variable. The largest effect on dew point
and humidex is a decrease in the bias around the average,
with an efficacy of the correction in the range of 60 %–88 %
for both MAPE and RMSE, with a slightly better reduction
performance in the humidex. The correction also improves
the respective coefficients of determination, but the increase
is less impactful, possibly due to the stronger dependence of
both variables on the air temperature (which has high scores
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Table 4. Coefficient of determination R2, root-mean-square error RMSE, and mean absolute percentage error MAPE computed session by
session between the data obtained (measured, derived, or corrected) from each sensor and the respective average session. Below, the average
R2 within each session and the maxima RMSE and MAPE are reported.

Z Zc RH RHc Td T c
d HDX HDXc P Pc T R

R2 0.85 0.96 0.61 0.90 0.85 0.91 0.87 0.93 0.58 0.86 0.94 0.89
RMSE 7.1 m 1.4 m 6.9 % 0.4 % 1.4 °C 0.2 °C 2.6 °C 0.5 °C 2.0 hPa 0.8 hPa 0.3 °C 1.1
MAPE 11.2 % 1.5 % 17.8 % 0.9 % 6.3 % 0.7 % 5.9 % 0.8 % 0.2 % < 0.1 % 0.6 % 14.6 %

R2 0.96 0.99 0.63 0.85 0.92 0.88 0.82 0.94 0.86 0.97 0.95 0.9
RMSE 4.7 m 0.8 m 7.3 % 1.6 % 1.5 °C 0.6 °C 3.6 °C 0.6 °C 1.2 hPa 0.5 hPa 0.2 °C 0.9
MAPE 7.9 % 0.7 % 31.9 % 3.8 % 7.2 % 2.3 % 8.5 % 1.2 % 0.1 % < 0.1 % 0.4 % 9.6 %

R2 0.99 0.99 0.81 0.95 0.95 0.97 0.96 0.98 0.91 0.97 0.98 0.97
RMSE 0.7 m 0.7 m 4.3 % 0.3 % 0.9 °C 0.3 °C 1.5 °C 0.6 °C 0.7 hPa 0.4 hPa 0.3 °C 0.8
MAPE 0.9 % 0.5 % 8.9 % 0.5 % 3.9 % 1.3 % 3.4 % 1.3 % < 0.1 % < 0.1 % 0.9 % 9.3 %

RMSE is calculated as
(

1
n

∑n
i=1

(
xi −〈xi 〉

)2)1/2
, and MAPE is calculated as 100

n

∑n
i=1|

xi−〈xi 〉
xi
|, with xi being the iteration of variable x from each sensor, 〈beingxi 〉 the

average session of the same variable, n the number of finite data points in x.

Figure 11. Distribution of the occurrence of the dew point Td as
retrieved from the sensor (red) and computed using Eq. (10) (blue).
The purple area of the graph is where the two distributions superim-
pose one on the other. The bin width is 0.3 °C in an equal number
of bins among the distributions.

and did not need any correction) and, less so, on the rela-
tive humidity. Finally, the relative humidity experiences the
largest benefits from the correction method for both tendency
linearity and bias, as is already clear from a visual compar-
ison between Figs. 6a and 12. The linearity around the av-
erage session increases by 15 %–30 %, ensuring a more reg-
ular distribution of the data and the tendency among differ-
ent sensors’ measures. Even more evident is the improve-
ment by reducing the intra-sensor bias: MAPE and RMSE
increase by 78 %–95 %, which is > 90 % if we exclude S2,
where the correction method was not sufficient to shrink the
intra-sensor variability down to be within the instrumental
error due to the presence of an “outlier” sensor run. By re-
moving this odd sensor run, S2 aligns with S1 and S3 statis-

Figure 12. Corrected RHc using Eq. (7) as a function of the average
session. Each colour identifies the measurement of a single MT. The
dashed line is the bisector, and the dotted lines are the propagated
instrumental error around the bisector.

tics, allowing rigorous comparability between different MTs’
measurements.

4.3 Fixed-location comparison

The intra-sensor variability test has revealed the capability
of the MT to perform a self-consistent assessment of the en-
vironmental conditions, even though some corrections are
necessary to achieve a reasonable performance. In this and
the following section, we address the performance of the MT
against reference stations both in a fixed location and under
optimal usage conditions (i.e. on the move). As introduced in
Sect. 3.3, sensors’ comparisons during both winter and sum-
mer are investigated to verify the consistency of the previous
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results at both extremes of the annual thermodynamic cy-
cle. We selected periods of continuous measurements with-
out technical issues on both apparatuses. The winter period
under investigation has experienced mild weather conditions,
with warm temperatures for the season and relative humidity
never reaching saturation (according to the reference weather
station at the CIMA Research Foundation). Moreover, nei-
ther severe nor extreme weather phenomena were observed
during the period, thus facilitating the comparability between
the MT and the reference weather station. Within the sum-
mer of the new global temperature record concerning the
warmest July of the measurement era, Savona experienced a
warm summer with daily mean and maximum temperatures
above the climate average. The period included several heat-
waves striking the whole region, while no severe thunder- or
rainstorms were observed. The comparison is strictly limited
to air temperature and relative humidity as the weather sta-
tion does not measure any other variable relevant to the MT.
An assessment of the dew point and humidex is also pro-
vided as both quantities are necessary for the correction of
the relative humidity, as we have introduced in Sect. 4.2. To
strengthen the statistical robustness of air temperature and
relative humidity comparisons, the coefficient of determina-
tion is computed for each variable, alongside the mean per-
centage error (MPE) and the RMSE to address the goodness
of the linear fits. Differently from the intra-sensor variabil-
ity, here, the percentage error is not computed in an abso-
lute value to quantify the over- or underestimation of the MT
measurement compared to the reference one. Furthermore,
we computed the MPE for the negative and positive differ-
ences separately to better appreciate the overall over- and
underestimations by the MT. To avoid the miscalculation of
MPE for temperature differences across 0 °C, we previously
converted the air temperature into Kelvin. Willmott (1981)
introduced a decomposition of the mean square error (MSE)
into a systematic and an unsystematic component, separat-
ing biases from random errors. Following this philosophy,
we decomposed the RMSE into its systematic component,

RMSEs =

√√√√1
n

n∑
i=1

(
x̂i − yi

)2
, (13)

and its unsystematic component,

RMSEu =

√√√√1
n

n∑
i=1

(
xi − x̂i

)2
, (14)

where xi is the iteration of variable x from the MT, yi is
that for the reference weather station, n is the number of fi-
nite data points in x, and x̂i = ayi + b is the linear fit of x to
y. The systematic component is the consistent bias that pro-
duces the over- or underestimation of the reference values
by the MT measurement compared to the linear fit between
the two datasets. The unsystematic component evaluates the

scatter about the linear regression line of the MT measure-
ments. RMSE is used instead of the MSE for a better com-
parison with the intra-sensor variability test and the perfor-
mance evaluations found in the literature (see Sect. 5.2).

Figure 13 compares the air temperature and relative hu-
midity of the MT and the reference station for both winter
and summer periods.

For both quantities, data have been previously processed
and averaged every 10 min, and a linear fit is computed as a
result of the comparison. During both seasons, the air tem-
perature measured with the MT is in reasonable agreement
with the weather station despite a clear tendency to over-
estimate the reference values. The wintertime overestima-
tion also increases with increasing values of air temperature
(Fig. 13a). Apart from the possible intrinsic lack of accu-
racy of the MT, two factors may affect the performance of
the sensor. First, the MT is a mobile sensor used as a fixed
meteorological station; i.e. it is operated with a sub-optimal
working configuration. Second, the Stevenson screen is not
a perfect shield from solar radiation, the beam of which can
be reflected from multiple surfaces on the building rooftop
into the box volume. In addition, the natural ventilation of
the screen is partially prevented by its structure, and air may
become stagnant within its volume. It is worth noting that
the flat rooftop hosting the experiment is covered with black
tarpaulin, thus minimizing the reflection from one of the ma-
jor sources but increasing the emission temperature of the
rooftop, with a larger effect on stagnant air. As a result, the
combination of inhibited ventilation and enhanced radiation
might increase the air temperature within the screen volume,
especially at higher temperatures when we can expect larger
solar radiation. Nonetheless, the summertime overestimation
is homogeneously distributed along the entire temperature
range (Fig. 13c), suggesting that the possible air warming in-
side the Stevenson screen does not increase linearly with ei-
ther the air temperature or the solar radiation. Unfortunately,
with it being the case that the MT under the screen and the
weather station are not equipped for measuring solar radia-
tion, we can only leave these considerations as hypotheses.

The relative humidity measured by the MT is largely
overestimated compared to that of the weather station
(Fig. 13b, d). Given the outcomes of the intra-sensor vari-
ability test, this result is not unexpected. The linear fit of the
distribution suggests that the overestimation results from a
large bias by the MT. Therefore, we perform a new com-
parison with the reference station by applying the recursive
method to correct the MT measurement. The corrected rela-
tive humidity aligns better with the reference values: the ten-
dency remains almost unaltered from the original measure-
ment, and the bias correction is sufficient to provide a more
reasonable agreement. As for the intra-sensor variability test,
truncation at the second iteration is sufficient to obtain a rea-
sonable performance of the MT under real atmospheric con-
ditions.
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Figure 13. Air temperature T and relative humidity RH comparisons between MT (subscript MT) and reference weather station (subscript
WS) measurements for the winter (panels (a) and (b)) and summer (panels (c) and (d)) periods and relative linear fits. In (b) and (d), blue
dots and orange fits refer to the measured relative humidity, while red dots and green fits refer to the relative humidity corrected using Eq. (7).
The dashed line is the bisector, and the dotted lines identify the range given by the sum of the MT and weather station instrumental errors
around the bisector – that is, ± 0.6 °C for air temperature and ± 4 % for relative humidity.

For a more quantitative evaluation of the performance of
the MT, Table 5 condenses the values for the coefficient of
determination and the errors computed for the air tempera-
ture, relative humidity, and the corrected relative humidity
during both seasons.

All three variables score a high linear correlation with
the reference, with a clear tendency of the MT to overes-
timate the reference values. Winter air temperature shows
a positive percentage error, as witnessed by the measure-
ment bias for 67 % and the random error for 33 % (com-
puted as the ratios RMSEs/RMSE and RMSEu/RMSE,
respectively). Similar behaviour is found for the relative
humidity, with an even larger percentage error entirely
owed to its positive branch and a large RMSEs over the
RMSEu (RMSEs/RMSE�RMSEu/RMSE). The correction
adopted for the relative humidity reduces the distribution er-
rors, favouring a larger balance between over- and underes-
timation, as well as between bias and random errors. The
correction severely reduces the total percentage error of rel-
ative humidity, balancing positive and negative errors that,
on their, own are smaller than the MPE for the air tempera-
ture. The correction also reduces the error due to the bias to a
value that is smaller than the random error, with the RMSEs
being caused by the remaining overestimation tendency at
small relative humidities (see Fig. 13b). During summer, the

Table 5. Coefficient of determination R2; total (RMSE), systematic
(RMSEs), and unsystematic (RMSEu) root-mean-square errors; and
total (MPE), positive (MPEP), and negative (MPEN) mean percent-
age errors computed between the measurements of the MT used as
the predictor (x) and those of the weather station used as a reference
(y).

Winter Summer

T RH RHc T RH RHc

MPE 4.9 % 9.3 % 0.4 % 2.9 % 19.8 % 0.6 %
MPEP 5.0 % 9.4 % 3.3 % 3.5 % 19.8 % 7.3 %
MPEN −1.9 % −0.9 % −2.8 % −1.6 % 0 % −4.9 %

RMSE 1.1 °C 9.4 % 4.1 % 3.6 °C 18.8 % 7.0 %
RMSEu 0.4 °C 1.6 % 2.2 % 1.5 °C 10.4 % 4.6 %
RMSEs 0.7 °C 7.7 % 1.9 % 2.0 °C 8.4 % 2.4 %

R2 0.96 0.97 0.95 0.95 0.88 0.88

RMSE is calculated as
(

1
n

∑n
i=1

(
xi − yi

)2)1/2
, and MPE is calculated as 100

n

∑n
i=1

xi−yi
xi

, with
xi being the iteration of variable x from the MT and yi being that for the reference weather
station, while n is the number of finite data points in x. MPEP and MPEN are computed similarly
to MPE but summing only the positive and negative values of MPE, respectively.

MPE quantifies the air temperature overestimation at 2.9 %
of the measurement, with an overall reduction in the per-
centage error compared to the winter period. Once again,
the discrepancy for air temperature is distributed over a bias
responsible for the overestimation (accounting for 55 % of
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Figure 14. Dew point Td (a) and humidex HDX (b) distribution comparisons between the variables directly computed by the MT (red), the
variables derived from the weather station data using Eq. (15) for Td and using Eq. (6) for HDX (blue), and the variables obtained after two
iterations of the recursive method seen in Sect. 4.2 (purple). Panels (a) and (b) refer to the winter period, and panels (c) and (d) refer to the
summertime. The bin width is 0.5 °C on an equal number of bins among the distributions.

the error) and the random error responsible for the distribu-
tion spread around the reference value (45 %). The linearity
of the fit is respected. The relative humidity measured with
the MT overestimates the reference by 20 % on average (see
MPE in Table 5), being entirely outside the instrumental er-
ror (Fig. 13d). This causes the MT to observe multiple satura-
tion conditions, while the reference relative humidity rarely
exceeds 90 %. The Stevenson screen and the reduced ventila-
tion inside it can favour stagnant conditions, thus increasing
the relative humidity. However, the variability observed in
the measure of the relative humidity during the intra-sensor
variability test hinders this assumption. The RMSE and its
components describe a discrepancy from the reference which
is larger than the winter period, mostly due to the unsystem-
atic error. This is caused by the large numbers of values at
saturation that the MT detects, while the reference station ob-
serves relative humidities in the range of 70 %–95 %. In ad-
dition to the distribution spread, a bias is also evident, but the
linearity of the fit is respected. With the usual two iterations
of the correction method, we observe a huge improvement in
the agreement between MT and weather station data. Rela-
tive humidities below 50 % seem unaltered by the correction.
Small values of relative humidity linked with large values of
air temperature imply that humidex is determined mostly by
the second quantity and less so by the first (see Eq. 6). Since
the MT temperature does not change in the recursive method,

δHDX and δTd are small, as are T c
d → Td and RHc→ RH.

This shortcoming of the correction did not occur during the
intra-sensor variability test as the maximum air temperature
was 8 °C smaller than this investigation in Savona.

The recursive method enables us to further discuss the dew
point and humidex index. Neither quantity is measured by the
weather station, but they can be retrieved using known em-
pirical formulations and then compared with those retrieved
directly from the MT and computed through the iterations.
Specifically, the dew point Td for the weather station is de-
rived according to the Magnus formula so that

Td =
c1

(
ln
( RH

100

)
+

c2T
c1+T

)
c2− ln

( RH
100

)
−

c1T
c2+T

, (15)

where c1 = 243.04 °C and c2 = 17.625 °C according to Al-
duchov and Eskridge (1996). This formulation is consis-
tent with a relative humidity resulting from the ratio of wa-
ter vapour partial pressure and its value at saturation and
is in line with other formulations based on the Clausius–
Clapeyron equation (Lawrence, 2005). For consistency, the
humidex from the weather station is computed by using a
Magnus formulation as well according to Eq. (6).

Figure 14 displays the distributions of the MT (directly
derived by the sensor), the weather station (Eqs. 15 and 6),
and iterated values of Td and HDX. The distributions of MT
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data and data retrieved using the weather station share similar
shapes but with a bias shifting one from the other. The dew
point from the MT overestimates the distribution from the
weather station, while an underestimation is observed in the
humidex. This turnover is due to the formulations adopted
for Td and HDX, with the first being largely dependent on
RH (where the MT largely overestimates the weather sta-
tion) and the second being more dependent on T . During
summer only, the distributions are shaped similarly, with the
dew point resembling a skewed normal distribution with a
longer left tail, while the humidex is a bimodal distribution
covering the whole range of the index. The recursive correc-
tion method adopted for RH re-scales the distributions of Td
and HDX, aligning them to the weather station’s ones with
seasonal discrepancies. During winter, the corrected distribu-
tions display longer tails and fewer occurrences at the peaks,
but they provide a general improvement in line with the rela-
tive humidity. During summer, the corrected distributions en-
compass restricted ranges and more occurrences at the peaks.

The comparison obtained for these winter and summer pe-
riods accomplishes the two goals of this whole investigation:

– The recursive method to correct the relative humidity is
proven to be resourceful in retrieving the true relative
humidity of the ambient air, along with a reasonable es-
timation of the dew point and humidex index.

– The MT can capture the thermo-hygrometric properties
of the ambient air with an outdoor accuracy that resem-
bles that of the reference weather station but overshoots
the combined instrumental errors.

These accomplishments support the use of the MT as a fixed
weather station (under customized shielding conditions) to
monitor the mean thermal and hygrometric state of the atmo-
sphere.

4.4 Mobile comparison

The final test to assess the MT’s data quality is performed
under the normal operational mode of the sensor. An instru-
mented cargo bike is used as a benchmark for air temperature
and relative humidity data quality, as described in Sect. 3.4.
The comparison is performed by incorporating the measure-
ments from all eight cycling sessions into a single dataset.
The statistical characteristics of each variable pair (MT and
cargo bike) were computed for this single dataset. As we will
argue in this section, we believe the loss of information from
each session is not relevant for the quality test since there
is not a clear change in behaviour in their data distribution.
Only the coefficient of determination is truly overestimated
considering the single dataset; for this reason, it is not com-
puted.

Figure 15 shows the air temperature measured by the MT
as a function of that from the cargo bike. The temperature
range of each session is contained within 1 °C despite the

Figure 15. Air temperature T comparison between MT (subscript
MT) and cargo bike (subscript CB) measurements, including all the
cycling sessions, with each of them identified by a separate colour.
The dashed purple line is the linear best fit. The dashed line is the
bisector, and the dotted lines identify the range given by the sum
of the MT and cargo bike instrumental errors around the bisector –
that is, ± 0.6 °C.

cycling path covering both the city centre and the surround-
ings of Wageningen. Several ambient factors can be respon-
sible for this small thermal excursion, but they are beyond
the scope of this investigation. The key information is that
the MT captures the same thermal excursions within the en-
tire temperature range collected during the cycling sessions.
Moreover, the majority of the temperature data fall into the
error range across the bisector of the comparison, entailing a
better quality of data distribution compared to the results for
the fixed-location comparison (see Sect. 4.3). A small ten-
dency to overestimate the air temperature from the cargo bike
can be observed for each cycling section (Fig. 15). The linear
fit displays this overestimation, suggesting the presence of
an average bias of 0.3–0.5 °C in the MT data (which remains
within the instrumental error range of the MT and cargo bike
sensor combined).

The relative humidity measured by the MT shows the well-
known overestimation problems we have observed during the
previous tests (Fig. 16a). Relative humidity from the MT is
consistently outside the error range across the bisector in
comparison with the cargo bike, and the overestimation in-
creases with decreasing relative humidity. This behaviour is
also observed during the winter period of the fixed-location
comparison, where the increasing overestimation of the ref-
erence station data at a smaller relative humidity was asso-
ciated with an increasing overestimation at larger air tem-
peratures (see Fig. 13a). Under fair weather, the typical be-
haviour for air temperature is to increase when relative hu-
midity decreases and vice versa. Therefore, an overestima-
tion at a large temperature would call for an overestimation
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Figure 16. Measured RH and corrected RHc relative humidity com-
parison between MT (subscript MT) and cargo bike (subscript CB)
measurements, including all the cycling sessions, with each of them
identified by a separate colour. The dashed purple line is the linear
best fit. The dashed line is the bisector, and the dotted lines identify
the range given by the sum of the MT and cargo bike instrumental
errors around the bisector – that is, ± 4 %.

at a small relative humidity, as observed. However, the result
of the cargo bike test shows that air temperature and relative
humidity are completely disjointed and that the performance
of the temperature sensor is, once again, far better than that
of the relative humidity. Applying the recursive method, the
corrected relative humidity improves the agreement with the
cargo bike data. Both the overestimation and the increasing
discrepancy at smaller values are partially corrected, with a
general improvement in the MT data quality. Most of the cor-
rected values of relative humidity fall into the error range,
and the fit becomes almost parallel to the bisector.

As for the fixed-location comparison, the MPE (total, pos-
itive, and negative branches) and the RMSE (total, system-
atic, and unsystematic) are computed, and their values are
listed in Table 6. Air temperature shows MPEs and RMSEs
in line with the winter period of the fixed-location test (see
Table 5). The errors fairly describe the overestimation trend
(MPE>MPEP�MPEN) as a result of the MT positive bias

Table 6. Total (RMSE), systematic (RMSEs), and unsystematic
(RMSEu) root-mean-square errors; total (MPE), positive (MPEP),
and negative (MPEN) mean percentage errors; and mean absolute
error (MAE) computed between the measurements of the MT used
as the predictor (x) and those of the weather station used as a refer-
ence (y). Values are computed including all cycling sessions.

T RH RHc

MPE 6.4 % 11.5 % 3.0 %
MPEP 7.1 % 11.5 % 3.3 %
MPEN −2.3 % 0 % −1.2 %

RMSE 0.6 °C 11.9 % 5.4 %
RMSEu 0.2 °C 1.7 % 1.9 %
RMSEs 0.4 °C 10.2 % 3.5 %

MAE 0.33 °C 7.65 % 2.58 %

RMSE is calculated as
(

1
n

∑n
i=1

(
xi − yi

)2)1/2
, MPE

is calculated as 100
n

∑n
i=1

xi−yi
xi

, and MAE is

calculated as
∑n
i=1|xi − yi |, with xi being the iteration

of variable x from the MT and yi being that for the
reference weather station; n is the number of finite data
points in x. MPEP and MPEN are computed similarly to
MPE but summing only the positive and negative
values of MPE, respectively.

in the air temperature (RMSEs� RMSEu). The improve-
ment introduced with the recursive method (after two iter-
ations) is quantified by the error differences between RH and
RHc. The overestimation problem of the MT remains even
after the correction application, but its amplitude is dras-
tically reduced. The recursive method decreases the MPE
(both positive and total) by 73 % and the RMSE (total and
systematic) by 86 %. The positive bias between the MT and
the cargo bike remains as the slight increase in the random
error fraction RMSEu/RMSE is not sufficient to counterbal-
ance the relation of RMSE≥ RMSEs� RMSEu observed
for the measured RH. As for the air temperature, the cor-
rected relative humidity has statistical errors in line with the
fixed-location test (worse than winter and better than summer
periods).

To further investigate the reasons for the overestimation,
we inspect the incoming solar radiation and ventilation speed
measured by the cargo bike. Being unshielded and unventi-
lated, the MT can increase the temperature of its case or that
of the air sampled when stagnant. Both conditions can lead
to an overestimation of the air temperature and uncertain im-
plications for the relative humidity despite the software cor-
rection of the RECS. On the one hand, the increasing temper-
ature of the sensor case can dry the air sample, reducing the
relative humidity. On the other hand, stagnation can lead to
saturation and an increase in relative humidity. To investigate
the impact of both quantities on the sensor performance, the
percentage deviation of air temperature and corrected relative
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Figure 17. Percentage deviation of air temperature T (a) and cor-
rected relative humidity RHc (b) as a function of the incoming
shortwave radiation Sin and the ventilation speed Vs, including all
the cycling sessions. The black line with diamonds is the MPE com-
puted on each 50 Wm−2 bin of incoming shortwave radiation and
is plotted in the middle of the bin.

humidity are computed as

1% = 100
χMT−χCB

χMT
, (16)

where χ is either T or RHc, and the subscripts refer to the
MT (MT) or the cargo bike (CB). An average among bins of
incoming solar radiation serves as a bin-driven MPE (named
bin-averaged percentage deviation) to compare with those in
Table 6. Specifically, the MPE is computed within bins of
50 W m−2, averaging the 1% for each variable. Figure 17
displays the percentage deviations as a function of the in-
coming solar radiation and the ventilation speed.

As a common feature, air temperature and relative humid-
ity deviations cover a large range of variability. Temperature
distribution displays a positive trend, increasing the overes-
timation of the MT with increasing radiation. For solar ra-
diation in the range of 0–200 Wm−2, the bin-averaged per-

centage deviation is close to the MPE retrieved for the whole
distribution, describing a positive bias below 8 % compared
to the cargo bike. At the radiation peak of the investigated pe-
riod, the bin-averaged percentage error is almost 15 %, dou-
bling the low-radiation condition. On the contrary, relative
humidity has a negative trend, decreasing the MT deviation
from the cargo bike with increasing radiation and reaching
an overturning of the deviation sign starting at 200 Wm−2.
The bin-averaged percentage deviation is approximately 1 %
higher than the MPE in the range of 0–200 Wm−2 while de-
creasing below a value of 1 % above 300 Wm−2. The venti-
lation speed does not show a neat impact on either tempera-
ture or relative humidity. At 200–250 Wm−2, the percentage
deviation of air temperature increases with the ventilation
speed while decreasing within the previous and following
50 Wm−2 bins. Once again, the relative humidity deviation
behaves in opposition to air temperature.

The comparison with the measurements from the cargo
bike has proven the following:

– The recursive method is a resourceful tool for retrieving
the true relative humidity of the ambient air under the
standard working conditions of the MT.

– The MT tendency to overestimate both air temperature
and relative humidity (mostly within the instrumental
error) is a shortcoming of the sensor not induced by ex-
ternal factors (e.g. non-standard operational conditions).

– The MT can capture the thermo-hygrometric properties
of the ambient air while operating on the move with an
accuracy that resembles a certified mobile weather sta-
tion but that overshoots the combined instrumental er-
rors.

These accomplishments support the use of the MT as a mo-
bile weather station to monitor the mean thermal and hygro-
metric state of the atmosphere.

5 Discussion

5.1 Notes on the recursive method

The recursive method is the correction introduced to modify
the value of the relative humidity through an iterative cor-
rection of the dew point and the humidex. The underlying
hypothesis of this method is that the modification imposed
on the dew point is proportional to those on the humidex
and relative humidity, with air temperature being constant.
This hypothesis is most likely true as soon as the modifica-
tion is small since relative humidity can oscillate around a
constant air temperature. The performance of the MT tem-
perature sensor also suggests that large modifications can
be possible, with those being related to a bad MT perfor-
mance in measuring relative humidity rather than real atmo-
spheric variability. However, no physical principles support
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this method; it is rather a tentative solution to adjust a biased
sensor.

Being based on the error propagation theory, the recur-
sive method is divergent by definition. Both corrective terms
δTd and δHDX are positive at each iteration, rapidly bring-
ing RHc to unrealistic values. The introduction of a nega-
tive sign in the δTd equation alternates from positive to neg-
ative contributions to Tc; nonetheless, Fig. 18 shows a slow
but continuous decrease in the RHc, with a divergent end-
ing after several iterations. Note that the first iteration is only
needed to reproduce the measurements so we can argue that
the true iteration is i− 1. The number of iterations required
to reach a non-physical value of RHc depends on the recipro-
cal variation of air temperature and relative humidity. In the
specific case of Fig. 18, as RH increases from 0 % to 100 %,
T decreases from 45 to −5 °C, covering a full range of re-
alistic values for mid-latitudes. This implies a perfect sce-
nario where air temperature and relative humidity are per-
fectly (and inversely) correlated, while reality mostly shows
oscillations of air temperature around each value of relative
humidity and vice versa. A more complex variation in air
temperature with relative humidity modifies the effect of the
recursive method, amplifying or decreasing its impact at dif-
ferent values of RH. Nonetheless, the scope of this section
is to argue on the divergent nature of the recursive method.
Breaking the recursive method after a few iterations is there-
fore fundamental to avoid the result divergence and to ensure
that the final RHc is “close” to the original RH. In a way,
a small number of iterations constrains RHc to RH. For the
tests conducted in this paper, the recursive method only ne-
cessitated two iterations, involving a small decrease in rel-
ative humidity compared to the original measurement. Al-
though the number of tests is limited, the constant number of
iterations used to reach the best agreement with the reference
can be a recipe for future applications.

5.2 Performance comparison with other mobile sensors

The world of mobile sensors and stations comprises many
suites, ranging from research-grade instruments mounted on
moving carriers to low-cost sensors specifically designed for
mobile sensing. This comes with a variety of nominal (i.e.
evaluated by the manufacturer through laboratory testing un-
der ideal measuring conditions) accuracies that depend on
the quality of the sensor’s suite. From the literature survey
of this paper, the accuracy ranges between ± 0.1 to ± 1 °C
for air temperature and ± 1.5 % to ± 5 % for relative humid-
ity, with the MT falling into these ranges. Under outdoor
ambient conditions, operating a sensor with a non-optimal
setup (e.g. a sensor designed for monitoring in a fixed lo-
cation used as a mobile device) or using a low-cost sen-
sor decreases the chances of meeting the manufacturer ac-
curacy due to the response time of the instrument to the non-
stationarity of the ambient air. In this section, we contextual-
ize the performance of the MT in comparison with its refer-

Figure 18. Corrected relative humidity RHc as a function of the
measured RH at different iterations. The recursive method is built
over the full RH range and for air temperatures between −5 and
45 °C. The dashed line is the bisector.

ence to other validation studies for mobile sensors from the
literature. Although we are aware of the limits of compati-
bility of the different mobile sensors and the comparability
of the collected data (Schering et al., 2022), this comparison
serves as a qualitative way to rank the performance of MTs
compared to their competitors. We will take the results ob-
tained for the mobile comparison (Table 6 in Sect. 3.4) as the
sensor was used under a normal operational mode. Consider-
ing sensors usually mounted in fixed stations, HOBOs (On-
set Computer Corporation, USA) are the most widely used
for mobile sensing due to their compact design, moderate
cost, and research-grade reliability. Among those, Qi et al.
(2022) adopted a shielded HOBO MX2302 (air temperature
accuracy of± 0.2 °C) mounted on a cart at 1.5 m a.g.l. Along
the measuring track, the cart passed 14 fixed stations in the
area used as a reference. The comparison showed that 80 %
of measurements were in the accuracy range of the instru-
ment and that the MAE after reaching the optimal measur-
ing setup was in the range of 0.14 to 0.62 °C, in line with
this paper. Tsin et al. (2016) used a shielded temperature
sensor (Met One 064-2, with an accuracy of ± 0.1 °C sam-
pling at 10 s) mounted on a pipe, employing walking sam-
pling; a comparison with a fixed station nearby revealed an
underestimation in the range of 2 °C and a poor agreement
with data from Landsat (with a coefficient of determination
R2 of 0.04–0.38). Crowdsourcing air temperature using Ne-
tatmo urban weather stations (https://www.netatmo.com, last
access: November 2023), Meier et al. (2017) obtained an
RMSE in the range of 0.5–1.5 °C for spatially aggregated
raw data for hourly and daily urban air temperatures. A bet-
ter performance was obtained by Liu et al. (2017), who opted
for a shielded HOBO-THB-M002 (air temperature accuracy
of ± 0.2 °C) mounted on a bicycle, obtaining an RMSE and
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MAE within 0.3 °C when comparing the local UHI intensity
obtained from mobile sensors and that from nine reference
stations along the track. The bicycle is among the top choices
for mobile sensing, combining a good spatial coverage of
the investigated domain and a low moving speed facilitating
the comparison with the fixed reference. The bicycle is also
a practical solution for low-cost sensors owing to the low-
cost philosophy (no emission, low if no energy consumption,
small price of the vehicle). Rodríguez et al. (2020) developed
and tested a self-made temperature sensor, obtaining a devi-
ation from the fixed reference along the path in line with the
sensor accuracy (± 0.5 °C). Worse results were obtained by
Vieijra et al. (2023), approaching the accuracy (± 1 °C) with
an air temperature device based on the Adafruit BME280
sensor (developed by Bosch) when compared with fixed ref-
erences.

Other authors preferred to derive the real accuracy of the
mobile sensor in isolated chambers before using it in the
field. Although close to ideal conditions, this test offers a
second accuracy computation independently from the man-
ufacturer. Selected chambers for the scope are calibration
ovens (Skoulika et al., 2014) and isolated chambers (Cao
et al., 2020), where variations in temperature and humidity
are controlled. In the study by Skoulika et al. (2014), the real
accuracy of the BC15 thermo-hygrometer sensor (TROTEC
International GmbH & C. S.a.s.) was estimated to be in the
range of ± 0.2 to ± 1 °C, while Cao et al. (2020) reached
a maximum real accuracy of ± 0.48 °C and ± 1.9 % for the
sensor suite unit Smart-T (developed at Yale University). Al-
though we cannot perform a similar experiment, we can con-
duct an evaluation based on the field experiment, knowing
that we were exposed to a higher and faster ambient variabil-
ity than the laboratory tests. Being a mean approximation of
data distribution, the linear fit for air temperature and relative
humidity from the mobile test can be used to infer the out-
door accuracy of the MT. We can argue that the outdoor accu-
racy for air temperature is in the range of ± 0.3 to ± 0.5 °C,
while the corrected relative humidity ranges between ± 3 %
and ± 5%, with both values being in line with the ranges de-
picted in the literature.

Finally, Cecilia and Peng (2022) performed a first valida-
tion test of the MT, monitoring the air temperature and rela-
tive humidity against two 5400 WBGT Heat Stress Trackers
(Kestrel Instruments) on a bicycle path travelled along at low
speeds. The comparison showed a large agreement between
the MT and its references, with a coefficient of determina-
tion for both variables of R2

= 0.74 compared to R2
= 0.64,

obtained as an average of all sessions performed within the
carbo bike experiment of this paper.

6 Conclusions

This paper explores the outdoor performance of a novel mo-
bile sensor in performing consistent measurements of atmo-

spheric microclimate characteristics. The sensor under in-
vestigation is the MeteoTracker, a miniature weather station
suitable for monitoring the thermo-hygrometric environment
on the move. Three validation tests have been performed in
three different urban contexts to evaluate the sensor precision
and accuracy compared to the reference under different cli-
mates and seasons. Specifically, the city centre of Bologna
hosted an intra-sensor variability test to ensure the consis-
tency of measurements from different MTs under similar
ambient conditions. In Savona, a comparison with a refer-
ence meteorological station was performed using the MT as
a fixed monitoring station. Finally, a comparison with refer-
ence sensors was carried out in Wageningen under normal
operation mode thanks to the instrumented cargo bike devel-
oped herein. Several statistical parameters have been adopted
to quantify the MT performance in all tests and have been
compared to similar sensors from the literature. Satisfactory
performance was reached by the MT when the RMSE of each
test was close to the instrumental errors of the involved sen-
sors, which is sufficient for the scopes the sensor was built
for, i.e. crowdsourcing monitoring. The results showed that,
under optimal operational use (on the move), only the air
temperature satisfied the required performance with high-
quality statistical scores – that is, an RMSE smaller than
the sensor accuracy and an MPE ≤ 6.4 % due to a positive
bias. The relative humidity was the worst-performing vari-
able, with large intra-sensor variability (MAPE up to 32 %)
and a discrepancy from the reference (with similar RMSEs
and MPEs between 9 % and 20 % according to the test). The
other measured variables or derived quantities were affected
by large statistical errors when dependent on the relative hu-
midity, while pressure and altitude scored satisfactorily, but
improvements could be made.

Data-driven corrections were derived from known analyti-
cal formulations and online services for the bulk atmosphere
and were revealed to be mandatory for a quality improvement
of atmospheric pressure, location altitude, relative humidity,
dew point, and humidex index. Altitude was recomputed at
each GPS location using a web server, and the result corrects
the atmospheric pressure through the psychrometric formula.
Dew point, humidex, and relative humidity were involved in
a recursive method based on bulk formulations of all three
quantities that consistently improved after two iterations re-
gardless of the experimental type conducted in this investi-
gation. Despite the corrections, the general trend of the MT
is to overestimate the reference sensor more often by a con-
stant factor (bias) and less so by random uncertainty. The
validation tests also revealed the role of ancillary variables in
air temperature and relative humidity. Solar radiation proves
to have contrasting impacts on the MT performance: an in-
crease in solar radiation intensity enhances the gap between
the air temperature measured with the MT and the cargo bike,
decreasing the performance of the first sensor; on the con-
trary, relative humidity reduces the sensor’s gap with increas-
ing solar radiation, enhancing the performance of the MT.
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The outdoor performance of the MT aligns with most of
the mobile sensors whose accuracy and precision were eval-
uated in the field. Its real outdoor accuracy falls in the range
found in the literature for similar mobile sensors, and it is ob-
served to be between ±0.3 and ±0.5 °C for air temperature
and between±3 % and±5 % for relative humidity. However,
this partial and very qualitative ranking does not account for
the disparity in the cost of the sensors or for the different ex-
perimental designs used to assess their real outdoor accuracy.
Considering the trademark between the cost and the quality
of the sensor, the MT marks itself as a valid solution from
crowdsourcing experiments to long-term route monitoring,
providing quality data for atmospheric monitoring.
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