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Abstract. Low-cost optical particle sensors have the poten-
tial to supplement existing particulate matter (PM) monitor-
ing systems and to provide high spatial and temporal res-
olutions. However, low-cost PM sensors have often shown
questionable performance under various ambient conditions.
Temperature, relative humidity (RH), and particle composi-
tion have been identified as factors that directly affect the
performance of low-cost PM sensors. This study investigated
whether NO2, which creates PM2.5 by means of chemical re-
actions in the atmosphere, can be used to improve the cali-
bration performance of low-cost PM2.5 sensors. To this end,
we evaluated the PurpleAir PA-II, called PA-II, a popular
air monitoring system that utilizes two low-cost PM sensors
and that is frequently deployed near air quality monitoring
sites of the Environmental Protection Agency (EPA). We se-
lected a single location where 14 PA-II units have operated
for more than 2 years, since July 2017. Based on the oper-
ating periods of the PA-II units, we then chose the period
of January 2018 to December 2019 for study. Among the
14 units, a single unit containing more than 23 months of
measurement data with a high correlation between the unit’s
two PMS sensors was selected for analysis. Daily and hourly
PM2.5 measurement data from the PA-II unit and a BAM
1020 instrument, respectively, were compared using the fed-
eral reference method (FRM), and a per-month analysis was
conducted against the BAM-1020 using hourly PM2.5 data.
In the per-month analysis, three key features – namely tem-
perature, relative humidity (RH), and NO2 – were consid-
ered. The NO2, called collocated NO2, was collected from
the reliable instrument collocated with the PA-II unit. The
per-month analysis showed that the PA-II unit had a good
correlation (coefficient of determination R2 > 0.819) with

the BAM-1020 during the months of November, December,
and January in both 2018 and 2019, but their correlation in-
tensity was moderate during other months, such as in July
and September 2018 and August, September, and October
2019. NO2 was shown to be a key factor in increasing the
value of R2 in the months when moderate correlation based
on only PM2.5 was achieved. This study calibrated a PA-II
unit using multiple linear regression (MLR) and random for-
est (RF) methods based on the same three features used in the
analysis studies, as well as their multiplicative terms. The ad-
dition of NO2 had a much larger effect than that of RH when
both PM2.5 and temperature were considered for calibration
in both models. When NO2, temperature, and relative hu-
midity were considered, the MLR method achieved similar
calibration performance to the RF method. In addressing the
feasibility of utilizing distant NO2 measurements for calibra-
tion in lieu of collocated data, the study highlights the effec-
tiveness of distant NO2 when correlated strongly with collo-
cated measurements. This finding offers a practical solution
for situations where obtaining collocated NO2 data proves
to be challenging or costly. We assessed the performance of
different PA-II units to determine their efficacy. Our investi-
gation reveals a significant enhancement in calibration per-
formance across different PA-II units upon integrating NO2.
Importantly, this improvement remains consistent even when
employing models trained with different PA-II units within
the same location. Overall, this investigation emphasizes the
significance of NO2 in improving calibration for low-cost
PM2.5 sensors and presents insights into leveraging distant
NO2 measurements as a viable alternative for calibration in
the absence of collocated data.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Recently, attention has been paid to particulate matter (PM),
which not only has adverse effects on visibility but can also
impact human health by contributing to conditions such as
cardiovascular disease, asthma, and lung cancer (Liu et al.,
2018, 2013). PM that is less than 2.5 µm in diameter, re-
ferred to as PM2.5, can penetrate the lungs and may thus
increase the risk to human health. Globally, the estimated
number of adult deaths attributable to PM2.5 exposure is over
0.67, 1.6, and 2.1 million for lung cancer, cardiopulmonary
disease, and all causes, respectively (Evans et al., 2013). To
minimize the harmful effects, many countries regulate daily
and annual PM2.5 concentrations by monitoring PM2.5 lev-
els at air quality monitoring stations. The monitoring stations
use instruments based on federal reference methods (FRMs)
or federal equivalent methods (FEMs), which promote high
precision and accuracy. The US Environmental Protection
Agency (EPA) approves both FRMs and FEMs as official
designations for measuring ambient concentrations. Further-
more, the US EPA carries out various cooperative programs,
including those on ambient monitoring methods and tech-
nologies, with many other countries in the world. These in-
struments can provide high-quality measurements of PM2.5
concentrations at the installed locations and nearby surround-
ings. However, these instruments are sparsely distributed due
to the high cost of the equipment (10 000 to tens of thousands
of US dollars, USD), so they cannot provide spatial variabil-
ity. In other words, traditional monitoring stations frequently
provide air quality data with poor spatiotemporal resolution
due to the limited number of high-quality instruments.

As a cost-effective approach for a dense monitoring net-
work, many stakeholders and researchers have turned to low-
cost PM sensors that use a light-scattering technique for mea-
surement. In addition to their low cost, these sensors have the
advantages of low energy consumption and high sampling
frequency, and they are easy to deploy and operate compared
to traditional monitoring networks. Thus, low-cost PM sen-
sors have been deployed in several communities to measure
and report local air quality information (Jiao et al., 2016; Pur-
pleAir, 2018).

However, low-cost PM sensors are not suitable for regu-
latory purposes because the data reported can be question-
able in terms of accuracy, precision, and reliability. In worst-
case scenarios, low-cost sensors report no meaningful data
at all. Because manufacturers provide limited information
on sensors’ performance, some studies have been conducted
to evaluate the performance of a variety of low-cost sen-
sor models by comparing them with high-cost instruments
in laboratory and outdoor ambient environments (Alvarado
et al., 2015; Johnson et al., 2018; Olivares and Edwards,
2015; SCAQMD, 2017a, b; Wang et al., 2015; Holstius et
al., 2014; Austin et al., 2015; Gao et al., 2015; Kelly et al.,
2017; Mukherjee et al., 2017; Sousan et al., 2016; Feinberg
et al., 2018; Crilley et al., 2018; Badura et al., 2018; Liu et

al., 2019; Cavaliere et al., 2015; Kelly et al., 2017; Zheng
et al., 2018). Most sensors showed good performance under
laboratory tests where the sensors measured known concen-
trations of particles, such as polystyrene latex, in a cham-
ber. On the other hand, under ambient conditions, the per-
formance of low-cost sensors varied depending on the sen-
sor model and its deployed location. Some PM sensor units
have inconsistent precision between units of the same model
(Feenstra et al., 2019; Feinberg et al., 2018), while other PM
monitors, including the PurpleAir PA-II, have shown good
precision (Barkjohn et al., 2020; Pawar and Sinha, 2020;
Malings et al., 2020). Field evaluations of PurpleAir PA-II
units collocated with FEM instruments for approximately 2
months have shown good correlation with the FEM instru-
ments (SCAQMD, 2017c). Furthermore, it was shown that
PMS5003 sensors, which are used in PurpleAir PA-II moni-
tors, have a good correlation with the FEM monitors (Kelly
et al., 2017; Sayahi et al., 2019). However, the sensors still
require calibration for better performance before use in am-
bient conditions.

Several studies have developed calibration models for low-
cost PM sensors based on the following approaches: sim-
ple linear regression (Zheng et al., 2018), multiple linear
regression (Zimmerman et al., 2018), random forest (Zim-
merman et al., 2018), and neural networks (Si et al., 2020).
Moreover, to improve calibration performance, several stud-
ies have identified other factors in addition to PM2.5 concen-
tration that can affect the performance of low-cost sensors.
These typical factors include temperature, relative humidity,
and particle properties (composition and size distribution)
(Holstius et al., 2014; Gao et al., 2015; Kelly et al., 2017).
In particular, some low-cost PM sensors have been shown to
excessively overestimate PM2.5 concentrations under high-
relative-humidity conditions (Jayaratne et al., 2018). The rea-
son for this overestimation is that some aerosols can uptake
water via hygroscopy. To solve this problem, several correc-
tion models have been proposed, such as a correction model
based on the κ-Köhler theory (Crilley et al., 2018, 2020),
multiple linear regression (Barkjohn et al., 2021; Nilson et
al., 2022), and generalized additive models (Hua et al., 2021).
Analysis of direct factors, such as temperature, relative hu-
midity, and particle composition, can enhance the perfor-
mance of low-cost sensors. In addition to these direct fac-
tors, we examine the impact of the precursor gas NO2, act-
ing as a source of PM2.5 emissions, on calibration perfor-
mance in low-cost PM2.5 sensors. In general, PM2.5 arises
by secondary formation from a chemical reaction between
precursor gases, such as NO2, in the atmosphere some dis-
tance downwind from the original emission source (Hodan
and Barnard, 2004). This study aims to identify the signifi-
cance of the precursor NO2 and evaluate its potential for im-
proving the performance of low-cost PM2.5 sensors. To this
end, we considered two machine learning methods, multiple
linear regression (MLR) and random forest (RF), for calibra-
tion models using various feature vectors, including temper-
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ature, relative humidity, and NO2. The trained MLR and RF
models were evaluated on the test set, and their performance
was compared. From an implementable perspective on NO2
data, we investigated the feasibility of using data from dis-
tant NO2 regulatory instruments due to the questionable data
quality of low-cost NO2 sensors. The results of our study
showed that incorporating distant NO2, in addition to tem-
perature and relative humidity, into RF models yields lower
errors than RF models that only include temperature and rel-
ative humidity.

2 Methods

2.1 Measurement data

2.1.1 PurpleAir PA-II units

The PurpleAir PA-II outdoor air quality monitor was de-
veloped for measuring particulate matter of various sizes.
PA-II units can measure various particulate matter, as well
as temperature, relative humidity, and barometric pressure.
PurpleAir also developed a crowdsourcing platform to share
publicly gathered PM measurements obtained from all PA
units. From the PurpleAir website (https://www.purpleair.
com/map, last access: 8 August 2023), we can observe and
download data reported by all installed PA units.

A PA-II unit includes two identical PMS 5003 sensors.
The PMS 5003 sensors, based on a light-scattering princi-
ple, measure concentrations of PM1.0, PM2.5, and PM10 in
real time by counting the number of particles in a diame-
ter range, which flow through a fan at a rate of 0.1 L min−1.
Based on the number of particles counted per diameter, each
sensor estimates PM1.0, PM2.5, and PM10 concentrations and
then averages the concentrations every 80 s1. The PA-II unit
sends the averaged concentrations obtained from two PMS
sensors (A and B) to the PurpleAir server without storing the
data in the unit itself. The PA-II unit does not calibrate the
data, which implies it just collects the measured data.

The PurpleAir website provides the following information
about all PA-II units via a JSON formatted file: a name, a
unique ID, a latitude, a longitude, and an installation date.
Each PA-II unit has two unique IDs for each of its PMS sen-
sors, A and B.

2.1.2 Air quality measurement data from EPA

Outdoor air quality data collected from across the
US are publicly available through the US Environmen-
tal Protection Agency (EPA) website (https://epa.gov/
outdoor-air-quality-data, last access: 8 August 2023). Moni-
toring ambient air quality for purposes of determining com-
pliance with the US National Ambient Air Quality Standards

1After 30 May 2019, the averaging time was changed from 80
to 120 s.

(NAAQSs) requires the use of either FRMs or FEMs. FRM
and FEM instruments are accepted for methods for mon-
itoring the NAAQS pollutants, such as particulate matters
(PM2.5 and PM10), NO2, SO2, O3, and CO. Hourly measure-
ments of PM2.5 and PM10, as well as other pollutants such
as NO2, SO2, O3, and CO, obtained from FEM and non-
FEM instruments can be downloaded via the EPA’s applica-
tion programming interface (https://aqs.epa.gov/data/api, last
access: 8 August 2023) (U.S. EPA, 2011). Daily measure-
ments of PM2.5 obtained from an FRM instrument are also
available.

2.1.3 Selection of PA-II units and reference monitoring
sites

To investigate the performance of a PA-II unit itself and to
evaluate its calibration, we focused on PA-II units that are
installed close to an EPA monitoring site (i.e., reference site)
that provides reliable hourly PM2.5 concentrations. We use
the location information of the PA-II units and reference
monitors to find PA-II and reference monitor pairs that are lo-
cated less than 100 m from each other (Wallace et al., 2021).
Among the identified pairs, we selected a monitoring site, lo-
cated at Rubidoux, CA, that has 14 PA-II units as pairs and
can measure other pollutants such as NO2 on an hourly ba-
sis. The monitoring site is identified by a state code of 06,
a county code of 065, and a site number of 8001 (i.e., 06-
065-8001). This monitoring site is located in an urban resi-
dential area within the south coast air basin at an elevation
of 248 m. Air pollutants from the Los Angeles and coastal
areas are transported to this air basin, which is known to
have poor ventilation and may experience air stagnation dur-
ing the early evening and early morning periods. Local air
pollution includes NOx from diesel trucks since the city of
Jurupa Valley, which includes the community of Rubidoux,
is a main transportation corridor for diesel trucks, serving
three air cargo terminals and the ports of Los Angeles and
Long Beach.

Table 1 describes information about the 14 PA-II units,
such as their IDs, location (latitude and longitude), sensor
name, start time of measurements, end time of measure-
ments, and non-operating months2. While we present the ID
for only PMS sensor A of each PA-II unit, the ID of PMS sen-
sor B is the ID of PMS sensor A plus 1. The geographic in-
formation on 14 PA-II units and the monitoring site is shown
in Fig. S1 in the Supplement. Distances between PA-II units
and the monitoring site are shown in Table S1 in the Sup-
plement. The minimum and maximum distances between a
PA-II unit and the monitoring site are less than 10 and 100 m,
respectively.

Based on the non-operating months of the PA-II units
found, we selected an appropriate period of sample data from

2We define a non-operating month as the month when the num-
ber of days without the measurement data is larger than 10 d.
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Table 1. Information about 14 PA-II units, such as their ID, location (latitude and longitude), sensor name, start time of measurement, end
time of measurement, and non-operating months.

ID Latitude Longitude Sensor name Start time of End time of Non-operating
measurement measurement months

1866 33.999978 −117.41676 RIVR_Co-loc1 10 July 2017 27 April 2020 September, October, November, and
December 2018

1854 33.999503 −117.41602 RIVR_Co-loc2 10 July 2017 27 April 2020

2346 33.999978 −117.41676 RIVR_Co-loc3 31 July 2017 27 April 2020

2325 33.999978 −117.41676 RIVR_Co-loc4 31 July 2017 27 April 2020 September, October, November, and
December 2018

2167 33.999978 −117.41676 RIVR_Co-loc5 17 July 2017 27 April 2020

2155 33.999978 −117.41676 RIVR_Co-loc6 17 July 2017 27 April 2020 May, 2018

2612 33.999515 −117.41595 RIVR_Co-loc7 7 August 2017 27 April 2020

2758 33.999978 −117.41676 RIVR_Co-loc8 11 August 2017 27 April 2020 September 2018

3537 33.999381 −117.41601 RIVR_Co-loc9 20 September 2017 27 April 2020 May, September, October, November,
and December 2018

4748 33.999516 −117.41594 RIVR_Co-loc10 22 November 2017 27 April 2020 May, August, September, October, November,
and December 2018 and January 2019

4731 33.999504 −117.41593 RIVR_Co-loc11 22 November 2017 1 March 2019 January, February, March, September,
October, November, and December 2018

5280 33.99946 −117.41594 RIVR_Co-loc12 12 December 2017 27 April 2020 May, September, October, November,
and December 2018

5284 33.999451 −117.41591 RIVR_Co-loc13 12 December 2017 27 April 2020 May, September, October, November,
and December 2018

6806 33.999583 −117.41621 RIVR_Co-loc14 30 January 2018 27 April 2020 April, September, October,
and November 2018

6912 33.999482 −117.41627 RIVR_Co-loc15 31 January 2018 27 April 2020 April, September, October,
and November 2018

9226 33.999389 −117.41633 RIVR_Co-loc16 24 March 2018 27 April 2020 April, September, October, November,
and December 2018

9358 33.999319 −117.41638 RIVR_Co-loc17 25 March 2018 27 April 2020 April, September, October, November,
and December 2018

January 2018 to December 2019 (24 months). Among the 14
identified PA-II units, we chose several that had more than
23 months of valid measurement data during the period se-
lected for study. The selected units are RIVR_Co-loc2, 3, 5,
6, 7, and 8, which we call PA-II 2, 3, 5, 6, 7, and 8, respec-
tively.

Before using PM2.5 data from the PA-II units, we checked
the units’ data quality. We calculated the correlation among
the selected PA-II units considering both PMS 5003 sensors
for each PA-II unit for the correlation analysis. Since these
PA-II units are closely located, PM2.5 data should be highly
correlated. Figure 1 shows the correlation results for all PMS
5003 sensors included in the PA-II units. The numbers on
each axis represent the number of the selected PA-II units.
Boxes to the left and right of each number indicate PMS sen-
sors A and B for its corresponding PA-II unit, respectively.

The PMS sensor A of PA-II unit 2, PMS sensors A and B
of PA-II unit 5, and PMS sensor A of PA-II unit 6 all have
a poor correlation with other PMS sensors. In addition, sen-
sor A of PA-II unit 3 has slightly poor correlation with other
sensors. Based on these results, we selected PA-II units 7 and
8.

2.1.4 Data preprocessing of PA-II units

The PA-II units selected for study are long-term installations;
i.e., they have been in operation for more than 2 years. There-
fore, PA-II units may have abnormal data due to failure and
aging drift, so data quality control is required before cali-
brating the PA-II units. The quality control (QC) measure
has been shown to be important for developing correction
models of PA-II units (Barkjohn et al., 2021). Barkjohn et al.
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Figure 1. Correlation among all PMS 5003 sensors of the selected
units PA-II 2, 3, 5, 6, 7, and 8. The left and right of each number
on the x axis represent PMS A and B sensors for its corresponding
PA-II unit, respectively.

(2021) performed a QC measure by obtaining daily PM2.5
measurement data, but we applied the QC measure to ob-
tain hourly PM2.5 measurement data. The QC measure has
the following three steps: (i) data from both channels A and
B were removed when either channel A or B had a missing
value, (ii) data with abnormal temperature or relative humid-
ity values were removed, and (iii) data from channels A and
B were compared. In the first step, when we calculate 1 h av-
erages of PM2.5 measurements generated with 2 min (or 80 s)
intervals, we remove the 1 h average if the number of PM2.5
measurements is less than 27 (or 40). We considered two dif-
ferent measurement intervals for a PA-II unit because its old
interval had been 80 s until 30 May 2019. Its current inter-
val is 2 min. After calculating 1 h average data, we removed
all data points for the 1 h interval, where either sensor A or
B had a missing value. The second step deals with tempera-
ture and RH data. PA-II units occasionally report extremely
high or low values of temperature and relative humidity that
are inaccurate. Therefore, we removed the data points whose
corresponding time interval contained unrealistic measure-
ments of temperature or relative humidity. In this study, the
acceptable ranges of temperature and RH are (0 °F, 200 °F)
and (0 %, 100 %), respectively. Once the unacceptable data
points were removed, we calculated the 1 h average for tem-
perature and RH. The last step was to compare results for
sensors A and B in a PA unit to check data consistency. To
do this, we used the symmetric percentage error (SPE) as fol-
lows:

SPE=
2
(
|PMA

2.5| − |PMB
2.5|
)

|PMA
2.5+PMB

2.5|
, (1)

where PMA
2.5 and PMB

2.5 are hourly averaged PM2.5 concen-
trations from sensors A and B in the same PA-II unit, respec-
tively. We removed the relevant data points with SPE larger
than 0.61, which is 2 standard deviations. This value of SPE
threshold has been used for 24 h average PM2.5 concentra-
tions (Barkjohn et al., 2021), but we use it here for 1 h aver-
aged PM2.5 concentrations. The number of data points pro-
cessed for each pre-processing step in PA-II 7 is summarized
in Table S2.

The period of valid measurement data collected from the
PA-II units we selected is 24 months, such as from January
2018 to December 2019. The measurement data in the years
2018 and 2019 from the 2-year dataset were used for train-
ing and testing for our calibration models, respectively. The
reason why we split the 2-year dataset at a 1 : 1 ratio is that
PM2.5, as well as the other environmental parameters, such as
temperature and relative humidity, which we considered for
calibration models, have a seasonal pattern. Also, we used
whole-year dataset for training to learn the relationship be-
tween PA-II and regulatory measurement over seasonality
and thus enhance the performance of the calibration models
over all four seasons.

2.2 Instrument intercomparisons

The monitoring site we considered has an FRM instrument
and a BAM-1020 instrument with the parameter of 88502.
These instruments produce daily and hourly PM2.5 measure-
ment data, respectively. Since we measure the PA-II units at
intervals much shorter than a full day, it is much more rea-
sonable to compare the PM2.5 measurement of PA-II units
with that of a BAM-1020 instrument with a shorter measure-
ment interval rather than that of an FRM instrument for eval-
uating the accurate calibration performance of PA-II units.
However, we face the limitation that a BAM-1020 instrument
can be classified as a non-FEM-compliant device. Therefore,
our approach for analyzing PA-II units to appropriately re-
solve these issues is as follows: we compared the BAM-1020
instrument’s readings with daily PM2.5 concentrations col-
lected from an FRM instrument to ensure that the BAM-1020
provides an acceptable level of performance as an FRM in-
strument, which is enough to assess the calibration perfor-
mance of PA-II units. According to this affirmative observa-
tion, the BAM-1020 instrument can be used to evaluate the
calibration performance of low-cost PM2.5 sensors by com-
paring its readings with hourly PM2.5 measurement data of
PA-II units.

We compared daily and hourly PM2.5 measurement data
obtained from FRM and BAM-1020 instruments and a PA-
II 7 unit. Table 3 shows summary statistics of daily and
hourly PM2.5 measurement data from FRM and BAM instru-
ments and PA-II 73. These data suggest that a BAM-1020
instrument using non-FEM methods compares well to the

3A PMS 5003 sensor that collects PM2.5 concentrations from
within a PA-II unit exhibits a maximum consistency error of
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Figure 2. Scatter plot for daily PM2.5 comparison of BAM-1020
(non-FEM) instrument with the FRM instrument.

statistics achieved with the FRM method. However, the mea-
surements are not enough to evaluate how similar the perfor-
mance of the BAM-1020 is to that of the FRM instrument.
Hence, this study compared the performance of two instru-
ments using a linear fitting scheme. Figure 2 shows the cal-
ibration performance using linear regression. The R2, slope,
and intercept are 0.896, 0.923, and 0.741, respectively. Also,
the value of RMSE is 2.211 µgm−3. The BAM-1020 is close
to an FEM instrument with the parameter of 88101. In or-
der for the BAM-1020 to attain the 88101 code in terms of
performance, the following conditions must be satisfied: R2

is larger than 0.9, the slope is larger than 0.9 and less than
1.1, and the absolute value of the intercept is less than 2.0.
Slope and intercept are satisfied with the requirement, while
R2 does not meet the condition very slightly. Nonetheless,
the BAM-1020 instrument provides an acceptable level of
performance to evaluate the calibration performance of PA-
II units on an hourly basis.

Compared to the FRM and BAM-1020 instruments, the
PA-II 7 unit overestimates the maximum daily PM2.5 con-
centrations. Additionally, the mean daily PM2.5 concentra-
tion from the PA-II 7 unit was higher than that of the FRM
and BAM-1020 instruments. These results show that the PA-
II unit has a good correlation (r) with the FRM instrument for
the 2-year period of interest since its value is very close to 1.
However, a comparison of metrics from the FRM instrument
and the PA-II 7 unit did not correlate as favorably.

Next, we compared the PA-II unit’s hourly PM2.5 data with
those of the BAM-1020 instrument over the course of the

±10 µgm−3 at 0–100 µgm−3 and ±10 % at 100–500 µgm−3. The
sensor reports PM2.5 concentrations as integer values on a per-
second basis. A PA-II unit generates readings of its own PM2.5
concentrations by averaging its 1 s PM2.5 concentrations over 80
(or 120) s.

same 2-year period. We did not consider the FRM instru-
ment for exploring hourly PM2.5 measurement data since it
only produces daily concentrations. The PA-II unit’s maxi-
mum hourly PM2.5 measurement was almost twice that of
the BAM-1020. In other words, the PA-II unit overestimates
hourly PM2.5 concentrations. Figure 3 shows the comparison
of PM2.5 measurement data obtained from the BAM-1020
and the selected PA-II 7 unit, as well as temperature and rela-
tive humidity measured from the selected PA-II 7 unit during
the winter season (from December 2018 to February 2019).
The PA-II 7 unit showed a similar trend of PM2.5 concentra-
tion measurements to that of the BAM-1020 instrument, but
it generally overestimated hourly PM2.5 concentrations more
often than the BAM-1020.

In addition, we compared the hourly PM2.5 concentrations
of the PA-II unit with those of the BAM-1020 instrument in
terms of root-mean-square error (RMSE), mean-square er-
ror (MSE), mean absolute error (MAE), and correlation (r).
The results are as follows: RMSE of 6.194 µgm−3, MSE of
38.369 µgm−3, MAE of 7.919 µgm−3, and r of 0.876. The
PA-II unit had a good correlation with the BAM-1020 instru-
ment based on r . However, other metrics, such as RMSE,
MSE, and MAE, did not correlate well.

2.3 Feature selection for calibration models

Temperature and relative humidity have been identified in
previous studies as key factors for effective calibration. In
particular, relative humidity has been shown to affect low-
cost PM sensors under high-relative-humidity conditions.
Furthermore, few papers have considered NO2 in calibration
models (Hua et al., 2021) because NO2, which is known to
be a precursor to the formation of PM2.5 through chemical
reactions in the atmosphere, may indirectly affect PM2.5 con-
centrations. Therefore, we investigated the suitability of tem-
perature, relative humidity, and NO2 for the calibration of the
PA-II 7 unit.

To identify the independent variables relevant for calibra-
tion, we conducted a correlation analysis involving PM2.5
measurements from BAM-1020 and PA-II 7 unit readings, as
well as temperature and relative humidity data, spanning a 2-
year period. The results are illustrated in Fig. S2. The highest
correlation was observed between PM2.5 from BAM-1020
and the PA-II 7 unit, followed by NO2 measurements. Subse-
quently, relative humidity and temperature exhibited the next
level of correlation. As a result, we have identified temper-
ature, relative humidity, and NO2 as the selected candidate
features.

To explore the potential for enhancing the calibration per-
formance of low-cost PM sensors using temperature, relative
humidity, and NO2 as features, we conducted linear fitting.
Before considering temperature, relative humidity, and NO2,
we evaluate the monthly performance based on hourly PM2.5
data from the PA-II 7 unit compared to the BAM-1020 instru-
ment. Table 2 shows the values of the R2, RMSE, and MAE
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Figure 3. Hourly PM2.5 concentrations measured by BAM-1020 (non-FEM) and PA-II 7 and hourly temperature and relative humidity
measured by PA-II 7 from December 2018 to February 2019.

of hourly PM2.5 measurement data from the PA-II 7 unit
compared to those of the BAM-1020 instrument and the cor-
responding slope and intercept of each optimal linear fitting.
During the months of November, December, and January,
the PA-II unit is shown to have a high correlation – R2 of
0.813 to 0.936 – with the BAM-1020 instrument. This result
is supported by the field evaluation of PA-II units conducted
by the Air Quality Sensor Performance Evaluation Center
(AQ-SPEC) during the period of December 2016–January
2017, which showed the value of R2 as being 0.868 to 0.921
when the PA-II units were compared with the FEM. Sayahi et
al. (2019) showed that PMS sensors have a high correlation
with tapered element oscillating microbalance (TEOM) in-
struments during the winter season by providing R2 of 0.866
to 0.892. That is, the hourly PM2.5 measurement data from
PA-II units seem to be highly correlated with those of FEM
instruments during the months of November, December, and
January, which implies that the PM2.5 measurement perfor-
mance of PA-II is reliable, especially during winter seasons.
These months have different slopes and intercepts; for exam-
ple, January 2018 has a slope of 0.502 and an intercept of
3.898, while January 2019 has a slope and intercept of 0.397
and 1.961, respectively.

On the other hand, the PA-II 7 unit has a correlation lower
than 0.6 for the months of July and September 2018, as well
as of August, September, and October 2019. These months,
except September 2019, have larger RMSE values compared
to other months over the 2-year period, which need to be ca-
librated.

For multiple features, such as temperature, relative hu-
midity, and NO2, we used an MLR approach for regression
analysis of PA-II units compared to the BAM-1020 instru-
ment. A per-month analysis was conducted based on hourly
PM2.5 measurements from the PA-II 7 unit under several
feature vectors, such as (PM2.5), (PM2.5, T ), (PM2.5, RH),
(PM2.5, NO2), (PM2.5, T , RH), and (PM2.5, T , NO2), where
T and RH represent temperature and relative humidity, re-
spectively. For notational simplicity, we defined the above
feature vectors of (PM2.5), (PM2.5, T ), (PM2.5, RH), (PM2.5,
NO2), (PM2.5, T , RH), and (PM2.5, T , NO2) as 1, 2, 3, 4,
5, and 6, respectively. Figure 4 shows the R2 and RMSE re-
sults of multiple linear regression for selected months with
the above varying feature vectors. We considered feature vec-
tor 1 as a baseline for comparison among other feature vec-
tors. On January 2018, feature vector 5, referring to tem-
perature and relative humidity, had little effect on the re-
gression performance of R2 and RMSE. The amount of R2

increase by feature vector 5 from the baseline was around
0.001, and the amount of RMSE decrease was 0.038 µgm−3.
In the case of feature vector 6, including NO2 instead of
RH, R2 increased from the baseline by 0.015, while RMSE
was improved by 0.518 µgm−3. Similarly, for April 2018,
R2 (or RMSE) for feature vector 5 increased (or decreased)
by 0.01 (or 0.072 µgm−3) compared to its baseline. R2 and
RMSE for feature vector 6 increased by 0.05 and decreased
by 0.52 µgm−3 from the baseline, respectively. For regres-
sions in August and September 2019, an increase in R2 was
larger than 0.17 when feature vector 6 was considered, but
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Table 2. R2, RMSE, and MAE of the PA-II unit against the BAM-1020 based on the hourly PM2.5 measurement data for each month.

2018

January February March April May June July August September October November December

R2 0.936 0.799 0.845 0.759 0.659 0.695 0.359 0.816 0.591 0.784 0.829 0.905
RMSE 4.201 3.735 2.932 3.938 3.477 4.097 5.615 3.204 4.550 3.650 3.832 3.765
MAE 3.171 2.721 2.196 3.098 2.716 3.267 3.597 2.424 3.358 2.844 2.913 2.743
Intercept 3.898 4.229 2.898 7.090 4.694 7.925 6.721 4.692 6.357 2.682 3.269 1.445
Slope 0.502 0.475 0.525 0.446 0.486 0.475 0.434 0.459 0.382 0.420 0.409 0.472

2019

January February March April May June July August September October November December

R2 0.884 0.750 0.735 0.618 0.801 0.730 0.893 0.405 0.441 0.523 0.880 0.813
RMSE 3.326 2.940 2.753 3.703 3.146 3.403 4.127 4.220 3.292 4.768 4.474 3.866
MAE 2.485 2.216 2.124 2.892 2.349 2.700 3.082 2.564 2.558 3.360 3.238 2.934
Intercept 1.961 2.190 1.881 4.065 2.525 3.225 3.070 5.649 5.312 5.088 2.976 1.165
Slope 0.397 0.354 0.427 0.385 0.418 0.383 0.575 0.428 0.511 0.483 0.497 0.572

Table 3. Summary statistics of daily and hourly PM2.5 measured from an FRM, BAM-1020, and PA-II 7 unit.

Daily PM2.5 Hourly PM2.5

FRM BAM-1020 PA-II BAM-1020 PA-II

Min (µgm−3) 1.2 0 0.199 0 0.019
Max (µgm−3) 66.3 68.3 129.069 159 263.062
Mean (µgm−3) 11.69 12.13 18.247 12.171 18.367
Standard deviation (µgm−3) 6.88 9.16 13.854 9.23 17.61

it was less than 0.07 when feature vector 5 was considered.
These remarkable results suggest that NO2 is generally a key
factor that can improve the performance of PA-II units over
a year, even though the enhancement by NO2 does not meet
the values of 0.7 of R2 and 3.5 µgm−3 of RMSE during cer-
tain months, such as July 2018, August 2019, and October
2019.

2.4 Calibration methods

A per-month analysis with a combination of features, includ-
ing T , RH, and NO2, showed an effect on calibration for
the PA-II unit. However, it is challenging to use the per-
month linear fitting result to calibrate PA-II units because
each month has a different slope and intercept defined for the
linear fitting. Moreover, their values exhibit a change over the
years. For example, notably, the linear fitting result in April
2018 exhibited a higher RMSE than the fitting result in April
2019. On the contrary, the calibration performance in August
2018 was worse than that in August 2019.

We used a machine learning approach to develop a cali-
bration model, employing two machine learning algorithms,
such as multiple linear regression (MLR) and random forest
(RF). For both calibration methods, we considered various
combinations of features, including PM2.5 measured from

a PA-II unit, temperature, relative humidity, NO2, and their
multiplicative interaction terms.

2.4.1 Multiple linear regression (MLR)

An MLR method can be expressed as follows:

ŷ = β0+β1x1+ . . .+βnxn , (2)

where ŷ represents a response; n is the number of predic-
tor variables; βi values for i = 0,1, . . .,n are regression co-
efficients; and xi values for i = 1,2, . . .,n represent predic-
tor variables (called features). Using a linear equation with
multiple variables, we investigated the relationship between
features and a response.

All features in an MLR method should be independent.
However, many studies have considered PM2.5, temperature,
and RH, which are not independent (Magi et al., 2019; Ma-
lings et al., 2020). Some studies have introduced multiplica-
tive interaction terms (i.e., PM2.5×RH) to exploit interde-
pendence between features (Barkjohn et al., 2021). We also
consider multiplicative interaction terms in this study.

We use PM2.5 concentrations obtained from a reference
monitor as the response. As predictor variables, we consider
multiple features, such as PM2.5 measurement data from a
PA-II unit, temperature, relative humidity, NO2, and their
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Figure 4. R2 and RMSE using MLR method for the PA-II unit with the BAM-1020 for the selected months based on the following feature
vectors: 1 – (PM2.5), 2 – (PM2.5, T ), 3 – (PM2.5, RH), 4 – (PM2.5, NO2), 5 – (PM2.5, T , RH), and 6 – (PM2.5, T , NO2).

multiplicative interaction terms (i.e., PM2.5×RH, T×RH,
PM2.5×RH×T ).

2.4.2 Random forest (RF)

An RF is an ensemble ofK regression trees. Each regression
tree is trained with a bootstrap sample of an original training
dataset. The output of an RF is the aggregation of regression
trees, i.e., averaging estimates over all trees. Each regres-
sion tree is grown by selecting random m features among
M input features at each possible split. The best cut is cal-
culated for the randomly chosen features. Optimal cuts can
be achieved using the classification and regression tree split
criterion (CART), which compares the variance of the uncut
node and one of all possible cuts along m directions. Every
tree is fully grown with these splits (Breiman, 2001).

2.5 Performance evaluation metrics

In this study, we examined the root mean square error
(RMSE), mean squared error (MSE), mean absolute error
(MAE), and Pearson correlation coefficient r between daily
PM2.5 data from the FRM instrument and from the PA-II
units. In the cases of the RMSE, MSE, and MAE, the lower
its value is, the better the performance or the lower the differ-
ence in measurement data between the FRM instrument and
the PA-II units. The Pearson correlation coefficient is a met-
ric measuring a linear correlation between two variables. It is
a number between −1 and 1 that measures the strength and
direction of their relationship. As the coefficient approaches
an absolute value of 1, the values of measurement data from
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the FRM instrument and the PA-II units become more
similar. These performance metrics are expressed as follows:

RMSE=

√√√√1
n

n∑
i=1
(xi − yi)

2 , (3)

MSE=
1
n

n∑
i=1
(xi − yi)

2 , (4)

MAE=
1
n

n∑
i=1
|xi − yi | , (5)

where xi represents 1 h averaged (24 h period) sensor PM2.5
concentrations for the ith hour (day) (µgm−3), yi represents
1 h averaged (24 h period) FRM or BAM-1020 PM2.5 con-
centrations for the ith hour (day) (µgm−3), and n is the num-
ber of data points.

3 Results and discussions

3.1 Calibration performance

The 2-year dataset was divided into training and test sets at a
1 : 1 ratio, meaning the measurement data in the years 2018
and 2019 were used for training and testing, respectively. We
used the training set to learn calibration models based on
MLR and RF, and then we used the test set to evaluate the
calibration performance in terms of RMSE, MAE, and R2.
A calibration performance for the PA-II 7 unit using MLR
and RF methods was compared with several features, includ-
ing temperature, relative humidity, and NO2, as well as their
multiplicative terms.

3.1.1 MLR-based calibration model

Recently, calibration methods have employed multiplicative
interaction terms, such as PM2.5×RH and T×RH. In our
MLR models, we considered both additive and multiplica-
tive interaction terms. The additive terms in our models in-
clude raw PurpleAir PM2.5, T , RH, and NO2. We considered
multiplicative interaction terms that involve fewer than four
additive terms when NO2 was not included (i.e., we consider
PM2.5× T×RH) and fewer than three additive terms when
NO2 was included. There are 95 combinations of features.
Out of 95 combinations tested, only 52 combinations had
a p value of less than 0.05. Of those, we select 21 combi-
nations, among 52 combinations, by increasing the number
of additive terms and the number of multiplicative interac-
tion terms and identifying the combinations with the lowest
RMSE among the same numbers of additive terms and mul-
tiplicative interaction terms. The selected combinations were
shown in Table 4.

The calibration results of the PA-II 7 unit for test datasets
using the MLR method with 21 selected combinations are

presented in Table 5. Multicollinearity is a known issue with
MLR models as it can cause instability. One common method
to diagnose this issue is to use the variance inflation factor
(VIF) test for multicollinearity (Mansfield and Helms, 1982).
Out of the 21 combinations tested, most VIF values were less
than 5, indicating the absence of collinearity issues.

When a single additive term, such as T or RH, was applied,
the RMSE values for two combinations, no. 2 and no. 3, im-
proved by more than 0.208 µgm−3 compared to that consid-
ering only PM2.5. The inclusion of an additive RH term in an
MLR yielded a lower error than an additive T term did since
both RMSE and MAE for combination no. 3 were less than
those for combination no. 2. The MLR model with PM2.5,
the single additive term with RH, and its multiplicative inter-
action term with PM2.5 yielded similar RMSE and MAE val-
ues to the MLR model using PM2.5 and two meteorological
variables, such as T and RH, as demonstrated by the results
of combinations no. 4 and no. 5. When we considered two
meteorological variables and incorporated four multiplica-
tive interaction terms, such as PM2.5× T , PM2.5×RH, and
T×RH, the MLR model resulted in the lowest error, with an
RMSE of 4.151 µgm−3 and an MAE of 3.023 µgm−3, com-
pared to all combinations generated from PM2.5, T , RH, and
their multiplicative terms.

The MLR model of combination no. 10 with PM2.5 and
NO2 had an RMSE of 4.424 µgm−3, which was lower than
that of the MLR model with only PM2.5, whose RMSE
was 4.513 µgm−3, but larger than that of combination no.
2 with a single environmental variable and an RMSE of
4.305 µgm−3. This implies that the addition of a single mul-
tiplicative term in that model has no performance enhance-
ment. However, when the additive term T is incorporated
into an MLR model with PM2.5 and NO2, an RMSE of
3.997 µgm−3 can be achieved, which is lower than the val-
ues of all combination cases not including NO2, i.e., combi-
nations no. 1 to no. 9. Coefficients of PM2.5, T , and NO2 in
the MLR model, including T and NO2, were around 0.446,
0.110, and 0.112, respectively. The temperature had more im-
pact on error than relative humidity when considering NO2.
Considering both temperature and relative humidity together
with NO2 may cause a non-zero correlation of relative hu-
midity with other factors due to a p value of 0.083. When
some multiplicative terms were additionally integrated into
T , RH, and NO2, the MLR calibration models passed a p-
value test. The model based on combination no. 18 with four
additive terms, i.e., PM2.5, T , RH, and NO2, and multiplica-
tive interaction terms, including PM2.5×RH and T×RH,
achieved the lowest RMSE of 3.912 µgm−3. Considering
multiplicative terms with T and RH had little effect on cali-
bration performance, as shown in the results of combination
nos. 15, 19, and 20. From these results, we conclude that
considering NO2 together with meteorological variables and
their multiplicative terms or a single variable, such as tem-
perature, can improve the calibration performance of PA-II
units.
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Table 4. A list of selected feature vectors in MLR methods.

Feature vector PM2.5 T RH NO2 PM2.5× T PM2.5×RH PM2.5×NO2 T×RH T×NO2 RH×NO2 PM2.5× T×RH

1 X
2 X X
3 X X
4 X X X
5 X X X
6 X X X X
7 X X X X X
8 X X X X X X
9 X X X X X X X
10 X X
11 X X X
12 X X X
13 X X X X
14 X X X X X
15 X X X X X X
16 X X X X
17 X X X X X
18 X X X X X X
19 X X X X X X X
20 X X X X X X X X
21 X X X X X X X X X

Table 5. Calibration results (R2, RMSE (µgm−3), and MAE (µgm−3)) of hourly PM2.5 concentrations using MLR for the PA-II 7 unit
based on the selected combinations.

NO2 not included NO2 included

Feature vector Training set Test set Feature vector Training set Test set

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

1 0.803 4.272 3.279 0.731 4.513 3.418 10 0.806 4.241 3.259 0.741 4.424 3.329
2 0.814 4.150 3.185 0.755 4.305 3.194 11 0.806 4.236 3.255 0.741 4.423 3.326
3 0.813 4.160 3.203 0.760 4.263 3.165 12 0.826 4.010 3.075 0.789 3.997 2.871
4 0.820 4.087 3.109 0.763 4.232 3.132 13 0.827 3.997 3.071 0.789 3.993 2.857
5 0.816 4.125 3.174 0.763 4.234 3.129 14 0.829 3.977 3.042 0.792 3.962 2.843
6 0.821 4.069 3.093 0.765 4.211 3.100 15 0.829 3.975 3.041 0.793 3.954 2.838
7 0.822 4.054 3.098 0.772 4.154 3.043 16 0.826 4.008 3.077 0.790 3.986 2.866
8 0.824 4.040 3.086 0.772 4.151 3.023 17 0.829 3.979 3.028 0.789 3.990 2.863
9 0.825 4.022 3.075 0.771 4.161 3.012 18 0.831 3.958 3.029 0.798 3.912 2.793

19 0.831 3.950 3.026 0.796 3.925 2.790
20 0.832 3.945 3.025 0.797 3.920 2.782
21 0.832 3.941 3.019 0.797 3.913 2.777

3.1.2 RF-based calibration model

This study validated the performance of RF-based calibration
for PA-II units with 95 combinations of predictor variables
mentioned in the previous subsection. An RF was imple-
mented using the scikit-learn package in Python. An RF has
several hyperparameters, such as n_estimators, max_depth,
min_samples_leaf, and max_features, that need to be set
for the best performance over each combination of fea-
tures. For this study, the hyperparameters were tuned with
a random search method by 5-fold cross-validation based on
the training set. For a random search, the number of trees
(n_estimators) was set to 10, 20, 50, 100, 200, and 400. The
range of max_depth was set to 2, 4, 6, 8, 10, 16, and none.

The range of min_samples_leaf was set to 1, 2, 3, 4, and 5.
The range of min_samples_split was set to 2, 3, 5, 7, and 10.
The range of max_features was set to none.

We selected 22 combinations according to the above-
mentioned method. The selected combinations were listed
in Table 6. Table 7 summarizes calibration results, including
R2, RMSE, and MAE values of test sets for PA-II units using
the RF method with the selected combinations of features.

Like the MLR method, the RF method showed better per-
formance in the training set than in the test set. Some com-
binations had RMSE differences larger than 0.6 µgm−3 be-
tween training and test sets, while others had differences
smaller than 0.4 µgm−3. We note that some combinations
with multiplicative terms showed significant RMSE differ-
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Table 6. A list of selected feature vectors in RF methods.

Feature vector PM2.5 T RH NO2 PM2.5× T PM2.5×RH PM2.5×NO2 T×RH T×NO2 RH×NO2 PM2.5× T×RH

1 X
2 X X
3 X X
4 X X X
5 X X X
6 X X X X
7 X X X X X
8 X X X X X X
9 X X X X X X X
10 X X
11 X X X
12 X X X
13 X X X X
14 X X X X X
15 X X X X X X
16 X X X X
17 X X X X X
18 X X X X X X
19 X X X X X X X
20 X X X X X X X X
21 X X X X X X X X X
22 X X X X X X X X X X

Table 7. Calibration results (R2, RMSE (µgm−3), and MAE (µgm−3)) of hourly PM2.5 concentrations using RF for the PA-II 7 unit based
on the selected combinations.

NO2 not included NO2 included

Feature vector Training set Test set Feature vector Training set Test set

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

1 0.826 4.014 3.072 0.739 4.439 3.318 10 0.820 4.080 3.116 0.740 4.434 3.300
2 0.842 3.830 2.933 0.764 4.223 3.156 11 0.821 4.074 3.109 0.738 4.451 3.305
3 0.857 3.632 2.785 0.786 4.026 2.951 12 0.861 3.588 2.748 0.791 3.972 2.925
4 0.875 3.398 2.611 0.786 4.024 2.957 13 0.885 3.269 2.522 0.794 3.945 2.861
5 0.883 3.290 2.526 0.785 4.034 2.970 14 0.885 3.262 2.519 0.797 3.918 2.887
6 0.862 3.568 2.740 0.787 4.014 2.955 15 0.886 3.250 2.505 0.793 3.957 2.875
7 0.884 3.276 2.515 0.779 4.092 2.964 16 0.893 3.154 2.427 0.805 3.842 2.836
8 0.861 3.584 2.747 0.782 4.059 2.956 17 0.920 2.720 2.092 0.797 3.918 2.840
9 0.905 2.968 2.257 0.785 4.029 2.853 18 0.920 2.722 2.095 0.805 3.840 2.831

19 0.921 2.706 2.080 0.794 3.942 2.860
20 0.921 2.699 2.073 0.795 3.936 2.857
21 0.894 3.130 2.401 0.794 3.946 2.856
22 0.915 2.800 2.121 0.798 3.912 2.850

ences between two datasets, which might have occurred be-
cause of overfitting of the training dataset. Nonetheless, the
RF models with the other combinations had lower RMSE
values than the model using only PM2.5. Considering a sin-
gle environmental variable together with PM2.5 improved the
calibration performance in terms of values of RMSE and
MAE compared to the RF model with only PM2.5. Specif-
ically, RH had a more significant impact on the performance
enhancement of the RF calibration model than T , as seen in
the results of combination nos. 2 and 3. Including the addi-
tional multiplicative term of PM2.5×RH had an insignificant
effect on RMSE compared to the RF model with PM2.5 and

RH. Both meteorological variables together, i.e., combina-
tion no. 5, yielded lower RMSE values in the training set
compared to in the RF model with PM2.5 and RH, i.e., com-
bination no. 3, but similar RMSE values in the test set. In
contrast to MLR models, more than one multiplicative term,
i.e., combination nos. 6 to 9, bring about insignificant differ-
ences in RMSE compared to considering a single meteoro-
logical variable. When we analyze calibration methods with-
out NO2, the RF model with PM2.5, T , and RH improved
RMSE by 0.117 µgm−3 compared to the best MLR model.

Utilizing NO2 in RF models had different effects on cal-
ibration performance, depending on the combinations of
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predictor variables. The RF model of combination no. 10
with the additional NO2 term resulted in an RMSE of
4.434 µgm−3, which showed little improvement compared
to combination no. 1 with only PM2.5 and an RMSE of
4.439 µgm−3. The RF model with PM2.5 and NO2 had a
larger RMSE than the MLR model with the same features,
but the difference was not significant; it did not show enough
performance improvement to warrant adding the multiplica-
tive term of PM2.5×NO2 from combination no. 10. Adding a
single or two meteorological variables to RF models of com-
bination nos. 12 and 16 lead to remarkable performance en-
hancement over combination no. 10 with RH, with RMSE
decreasing by 0.462 µgm−3. Furthermore, RMSE dropped
by an additional 0.130 µgm−3 when T was added as an ad-
ditional feature. The combinations consisting of one or more
multiplicative interaction terms resulted in either an insignif-
icant improvement or a slight decline in the performance in
terms of RMSE and MAE when compared with combination
no. 16, consisting of PM2.5, T , RH, and NO2. In other words,
there is no need to consider multiplicative interaction terms
when using the RF model because there is no outstanding
performance improvement.

As with the MLR method, it was shown that including
NO2 as a consideration in RF methods can improve calibra-
tion performance. Moreover, by integrating two additional
variables, such as T and RH, even better calibration perfor-
mance can be achieved.

The RF method was shown to have a better performance
than the MLR method when NO2 was not considered. From
the viewpoint of RMSE, the best performances from MLR
and RF methods were 4.151 and 4.014 µgm−3, respectively.
However, when we consider NO2, the best MLR model is
not significantly different from the best RF model. For in-
stance, the RMSE values from the best MLR and RF mod-
els were 3.912 and 3.840 µgm−3, respectively. Their corre-
sponding R2 values differ slightly since their gap is only
0.008. Nonetheless, the MAE of 2.777 µgm−3 achieved from
the best MLR is lower than that achieved by the best RF,
which is 2.831 µgm−3. From these results, we conclude that
better calibration can be obtained by considering NO2 ad-
ditionally. Furthermore, when NO2 is considered, the MLR
model can enhance calibration performance without the need
for an RF model.

3.2 Effect of distant NO2 on calibration performance

In the previous subsections, it was demonstrated that includ-
ing NO2 as a consideration can effectively improve the cali-
bration performance of PA-II units. However, it is not always
feasible to have an NO2 instrument with high accuracy col-
located with a low-cost PM sensor. Instead, an alternative
approach is to collocate a low-cost NO2 sensor with a PA-
II unit, but this approach is hindered by the unreliability of
NO2 sensors. To address this issue, we investigated the use-

fulness of using data from distant NO2 instruments installed
with PA-II units for the calibration algorithm.

We selected two monitoring sites that measure NO2 near
the Rubidoux site. Two monitoring sites identified were
06-065-8005 and 06-071-0027. The distances between the
two monitoring sites and the Rubidoux site are 7.05 and
18.87 km, respectively. The correlations of NO2 measure-
ments obtained from the Rubidoux site with those of 06-
065-8005 and 06-071-0027 were 0.895 and 0.621, respec-
tively. The site 06-065-8005 had NO2 measurements that
were much more highly correlated with the Rubidoux site
compared with those from the site 06-071-0027. This result
can occur when the distance from the Rubidoux site to the
site 06-065-8005 is shorter than it is to the site 06-071-0027.

To evaluate the usefulness of distant NO2 measurements
in the calibration of a low-cost PM sensor, we used NO2 data
measured from monitoring sites near the PA-II 7 unit as a
test dataset rather than data from the collocated Rubidoux
site. When we trained calibration models with the measure-
ments from the PA-II 7 unit over 2018, we used highly ac-
curate NO2 concentrations measured by FEM instruments at
the Rubidoux site. Subsequently, to verify the trained cal-
ibration models, we utilized a separate test dataset featur-
ing distant NO2 measurements taken by FEM instruments at
sites 06-065-8005 and 06-071-0027. We considered this sce-
nario to evaluate our proposed calibration models, previously
trained with collocated NO2 concentrations and distant NO2
concentrations, when collocated NO2 measurements cannot
be collected.

Table 8 shows calibration performance using MLR and
RF methods with NO2 collected from the air quality mon-
itoring sites near the PA-II unit. In the case of MLR meth-
ods used with 06-065-8005 data, the difference in RMSE
between NO2 data obtained from a collocated NO2 instru-
ment, called collocated NO2, and a distant NO2 instrument,
called distant NO2, was less than 0.06 µgm−3 for every se-
lected combination defined in the previous two subsections
for the MLR and RF methods. All MLR models using dis-
tant NO2, except combination nos. 10 and 11, yielded lower
errors than all MLR models without NO2, as shown in Ta-
ble 5. For example, the worst RMSE of the MLR methods
using distant NO2 data (except combination nos. 10 and 11)
was 4.018 µgm−3, while the best RMSE without NO2 was
4.151 µgm−3. Like RMSE, other metrics, such as R2 and
MAE, also showed a calibration performance enhancement
for these combinations with distant NO2.

When we used an MLR algorithm with NO2 data, the re-
sult of the calibration performance for the monitoring site 06-
071-0027 showed a new aspect compared to that of 06-065-
8005. All MLR methods using distant NO2 data from site 06-
071-0027 had a higher RMSE than the MLR algorithm based
on data that did not include NO2 data from the collocated Ru-
bidoux instrument, which had an RMSE of 4.513 µgm−3, as
shown in Table 5. This result can be explained by comparing
the correlation of NO2 measured from the Rubidoux site with
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Table 8. Calibration result (R2, RMSE (µgm−3), and MAE (µgm−3)) of hourly PM2.5 concentrations using MLR and RF models for the
PA-II 7 unit based on the selected combinations with, in addition, distant NO2.

Site Feature MLR RF
ID vector

Collocated NO2 Distant NO2 Collocated NO2 Distant NO2

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

10 0.741 4.424 3.329 0.742 4.417 3.320 0.740 4.434 3.300 0.739 4.442 3.304
0 11 0.741 4.423 3.326 0.743 4.411 3.311 0.738 4.451 3.305 0.738 4.454 3.306
6 12 0.789 3.997 2.871 0.786 4.018 2.879 0.791 3.972 2.925 0.790 3.983 2.934
– 13 0.789 3.993 2.857 0.787 4.011 2.861 0.794 3.945 2.861 0.789 3.994 2.902
0 14 0.792 3.962 2.843 0.791 3.978 2.842 0.797 3.918 2.887 0.791 3.970 2.923
6 15 0.793 3.954 2.838 0.791 3.978 2.844 0.793 3.957 2.875 0.787 4.017 2.917
5 16 0.790 3.986 2.866 0.787 4.009 2.875 0.805 3.842 2.836 0.802 3.873 2.854
– 17 0.789 3.990 2.863 0.787 4.011 2.870 0.797 3.918 2.840 0.793 3.951 2.860
8 18 0.798 3.912 2.793 0.795 3.936 2.803 0.805 3.840 2.831 0.802 3.870 2.848
0 19 0.796 3.925 2.790 0.794 3.950 2.800 0.794 3.942 2.860 0.790 3.983 2.884
0 20 0.797 3.920 2.782 0.795 3.933 2.780 0.795 3.936 2.857 0.791 3.978 2.877

5
21 0.797 3.913 2.777 0.796 3.931 2.777 0.794 3.946 2.856 0.790 3.986 2.879

0.798 3.912 2.850 0.794 3.946 2.865

10 0.741 4.424 3.329 0.715 4.645 3.563 0.740 4.434 3.300 0.734 4.488 3.345
0 11 0.741 4.423 3.326 0.715 4.641 3.549 0.738 4.451 3.305 0.729 4.525 3.367
6 12 0.789 3.997 2.871 0.694 4.807 3.739 0.791 3.972 2.925 0.781 4.069 2.994
– 13 0.789 3.993 2.857 0.695 4.799 3.706 0.794 3.945 2.861 0.692 4.826 3.624
0 14 0.792 3.962 2.843 0.696 4.797 3.673 0.797 3.918 2.887 0.693 4.815 3.646
7 15 0.793 3.954 2.838 0.682 4.906 3.778 0.793 3.957 2.875 0.689 4.850 3.648
1 16 0.790 3.986 2.866 0.701 4.751 3.681 0.805 3.842 2.836 0.761 4.247 3.170
– 17 0.789 3.990 2.863 0.714 4.651 3.576 0.797 3.918 2.840 0.733 4.494 3.325
0 18 0.798 3.912 2.793 0.720 4.602 3.531 0.805 3.840 2.831 0.746 4.381 3.289
0 19 0.796 3.925 2.790 0.721 4.593 3.516 0.794 3.942 2.860 0.722 4.586 3.423
2 20 0.797 3.920 2.782 0.721 4.595 3.516 0.795 3.936 2.857 0.721 4.592 3.422

7
21 0.797 3.913 2.777 0.702 4.746 3.669 0.794 3.946 2.856 0.744 4.401 3.256

0.798 3.912 2.850 0.727 4.542 3.386

measurements from site 06-065-8005 and from site 06-071-
0027. The NO2 correlation between Rubidoux measurements
and site 06-065-8005 was 0.895, while the correlation with
site 06-071-0027 was 0.621. These results show that 06-065-
8005 data are much more correlated with the Rubidoux site
in terms of NO2.

In the case of RF models, the use of the distant NO2 data
from site 06-065-8005 increased RMSE compared to using
collocated NO2 data but not significantly since the maxi-
mum gap of RMSE values for all feature vectors considered
was just 0.060 µgm−3. Similarly to the MLR method, all RF
models referring to distant NO2 from site 06-065-8005, ex-
cept combination no. 11, resulted in a better calibration per-
formance than what was seen in combination no. 1 without
NO2, which had an RMSE of 4.439 µgm−3, as shown in
Table 7. Other metrics, such as R2 and MAE, also showed
a calibration performance improvement. In the case of RF
models using data from site 06-071-0027, calibration per-
formance for each combination was degraded compared to
the corresponding combination using collocated NO2, which

had similar results to the MLR model. As we explained pre-
viously, the higher the correlation of NO2 measurements
from the Rubidoux site with measurements from sites 06-
065-8005 and 06-071-0027, the better the calibration perfor-
mance of the RF model; that is, all combinations with distant
NO2 from 06-065-8005 provide a lower RMSE than those
from 06-071-0027. Moreover, when we consider the fact that
06-065-8005 has a high correlation of NO2 with the expen-
sive NO2 instrument collocated with the PA-II 7 unit, the best
RMSE for all combinations using the RF model is slightly
lower than that based on the MLR method.

In the case of 06-065-8005, RF models using distant NO2
resulted in lower, but insignificant, RMSE values compared
to MLR models using distant NO2. From these results, we
draw the conclusion that the use of NO2 collected from dis-
tant instruments with a high correlation with a collocated
NO2 site of PA-II units can improve the PA-II unit’s calibra-
tion performance. Furthermore, both MLR and RF models
can be good calibration models when distant NO2 is consid-
ered. This is different from the conclusion that calibration
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performance of RF models is better than MLR models (Zim-
merman et al., 2018).

3.3 Applicability of other PA-II units

We evaluated PA-II 8’s calibration performance in the fol-
lowing three cases:

1. Case 1. The calibration model is learned with
the measurements collected from the PA-II 8 in 2018,
and the calibration performance for the trained model is
evaluated using data measured from the PA-II 8 in 2019.

2. Case 2. This is similar to Case 1, except that
the calibration model is trained with the data measured
from the PA-II 7 in 2018.

3. Case 3. The measurement data from the PA-II 8
with collocated NO2 concentration in 2018 are used as
a training dataset, while the data collected from the PA-
II 8 with either collocated NO2 or distant NO2 concen-
tration in 2019 are used as a test dataset.

In Case 1, we evaluated the calibration model’s perfor-
mance with a test dataset consisting of measurement data
from the PA-II 8 in 2019. The calibration model is trained
with data collected from the same PA-II 8 in 2018. Table 9
shows the calibration results of the PA-II 8 using an MLR
method under two different cases: with and without NO2. We
selected the same feature vectors as defined in Table 4. We
observed that NO2 can enhance calibration performance be-
cause all MLR models using NO2, except combination nos.
10 and 11, yield lower errors and larger R2 values than those
without NO2. This observation aligns with the results shown
in Table 5. Additionally, compared to the calibration perfor-
mance for PA-II 7 shown in Table 5, PA-II 8 shows slightly
larger RMSE and MAE values but similar R2 values.

In Case 2, we evaluated the calibration model’s perfor-
mance using a training dataset collected from PA-II 7 in 2018
and a test dataset collected from PA-II 8 in 2019. Table 10
shows calibration results for PA-II 8 using the MLR method
under two different conditions, such as with and without
NO2. As with the observation in Table 9, NO2 is the key fac-
tor enhancing calibration performance. With the exceptions
of no. 10 and no. 11, all MLR models using NO2 yield lower
errors and larger R2 values than those without NO2. It is im-
portant to compare this result with that shown in Table 5 as
we used different test datasets. It could be expected that much
worse performance for all feature combinations listed in Ta-
ble 10 is achieved than for every corresponding feature vector
in Table 5 since the calibration model considered in Table 10
is tested with the data measured from the PA-II 8, whereas it
is trained with the measurement data collected from the PA-
II 7. R2 values of all feature vectors in Table 10 are similar to
those for each corresponding feature vector in Table 5. Un-
like R2, we observe larger RMSE and MAE values when we

populate the training dataset with measurements from PA-
II 8 rather than PA-II 7. The maximum differences in RMSE
and MAE for each feature vector in Tables 10 and 5 are 0.177
and 0.196 µgm−3, respectively.

The results shown in Tables 9 and 10 support our conclu-
sion that reliable and consistent PA-II units, which contain
two PMS 5003 sensors with high correlation, demonstrate
similar calibration performance. This implies that the pro-
posed calibration method can be applied to reliable and con-
sistent PA-II units generally.

Lastly, in Case 3, we evaluated the effect of collocated
and distant NO2 on the PA-II 8 unit’s calibration perfor-
mance. Table 11 shows the results of the MLR-based cali-
bration model for the PA-II 8 when it is verified with the test
data considering either collocated or distant NO2. As we ex-
plained in Sect. 3.2, we considered two monitoring sites mea-
suring NO2 near the Rubidoux site. One site (ID no. 06-065-
8005) had NO2 measurements that are much more highly
correlated with the Rubidoux site than those from the other
site (ID no. 06-071-00247). We refer to the NO2 concentra-
tions measured from these two sites as distant NO2. Three
columns describing the values of R2, RMSE, and MAE of
collocated NO2 in Table 11 are exactly the same as those
of NO2 included (i.e., collocated NO2) in Table 9. In the
case of site 06-065-8005, with high correlation with the Ru-
bidoux site, the consideration of the distant NO2 facilitates
improvement of the calibration performance since all MLR-
based calibration models using distant NO2, except combi-
nation nos. 10 and 11, produce lower errors and larger R2

values than those without NO2. This result is similar to when
we consider the collocated NO2. However, we observe that
adding distant NO2 to the test dataset, which is not highly
correlated to the NO2 measurement from the reference site,
deteriorates the calibration performance. This is likely be-
cause all combinations from no. 10 to no. 21 yield lower
R2 values and greater errors than all combinations exclud-
ing NO2, as shown in Table 9. This result is the same as the
observation of the PA-II 7 unit’s calibration results in Table 8.

Hence, the results we draw from Table 11 support the same
conclusions we drew from Tables 9 and 10. Reliable and con-
sistent PA-II units achieve similar calibration performance,
and our proposed calibration model can be applied to these
units generally.

3.4 Effect of training period

We evaluated the effect of the training period on calibra-
tion performances. We consider four different training pe-
riods (i.e., 3, 6, 9, and 12 months), and each training set is
constructed as follows: the training sets all end at the close
of 2018. Their start points are set in reverse order based on
training periods. For example, for 3 months, the training set
is from October to December 2018. Table S4 shows PA-II 7’s
calibration results using the MLR method for all four training
periods. The 3-month training period has the worst perfor-
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Table 9. Calibration results of hourly PM2.5 concentrations measured from the PA-II 8 in 2019 using MLR-based calibration model learned
with training data collected from the PA-II 8 in 2018.

NO2 not included NO2 included

Feature Training set Test set Feature Training set Test set
vector vector

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

1 0.786 4.312 3.304 0.731 4.559 3.468 10 0.788 4.292 3.295 0.741 4.468 3.381
2 0.798 4.196 3.211 0.749 4.397 3.299 11 0.789 4.289 3.293 0.742 4.459 3.375
3 0.797 4.208 3.231 0.760 4.307 3.223 12 0.809 4.079 3.127 0.783 4.087 2.982
4 0.803 4.142 3.147 0.763 4.277 3.191 13 0.810 4.070 3.123 0.785 4.072 2.966
5 0.800 4.173 3.201 0.759 4.311 3.219 14 0.811 4.051 3.099 0.788 4.042 2.951
6 0.805 4.123 3.127 0.762 4.281 3.185 15 0.811 4.050 3.099 0.788 4.040 2.950
7 0.806 4.111 3.134 0.767 4.242 3.143 16 0.809 4.076 3.128 0.785 4.071 2.970
8 0.807 4.099 3.127 0.768 4.227 3.121 17 0.811 4.050 3.083 0.785 4.071 2.967
9 0.808 4.091 3.121 0.770 4.214 3.128 18 0.813 4.033 3.087 0.791 4.015 2.915

19 0.814 4.028 3.084 0.791 4.019 2.911
20 0.814 4.023 3.083 0.792 4.006 2.895
21 0.814 4.021 3.081 0.792 4.002 2.892

Table 10. Calibration results of hourly PM2.5 concentrations measured from the PA-II 8 in 2019 using MLR-based calibration model learned
with training data collected from the PA-II 7 in 2018.

NO2 not included NO2 included

Feature vector Test set Feature vector Test set

R2 RMSE MAE R2 RMSE MAE

1 0.737 4.638 3.546 10 0.747 4.549 3.458
2 0.757 4.459 3.364 11 0.748 4.538 3.446
3 0.763 4.400 3.322 12 0.788 4.162 3.054
4 0.765 4.383 3.293 13 0.790 4.145 3.031
5 0.765 4.388 3.301 14 0.794 4.104 3.003
6 0.766 4.373 3.275 15 0.795 4.097 3.000
7 0.772 4.323 3.222 16 0.789 4.151 3.048
8 0.772 4.318 3.208 17 0.789 4.158 3.050
9 0.774 4.301 3.208 18 0.796 4.089 2.985

19 0.795 4.100 2.984
20 0.795 4.095 2.974
21 0.796 4.090 2.970

mance. The 6- and 9-month training periods generated bet-
ter performances than the 12-month training period. From
the viewpoint of using NO2, NO2 can improve calibration
performance in all four cases compared to using only tem-
perature and relative humidity. As the length of the training
period increases, calibration performance improves.

3.5 Uncertainty analysis

We performed an uncertainty analysis of the MLR-based cal-
ibration model by using a bootstrapping technique on a test
dataset. Table 12 shows the statistics of uncertainty analysis
for each feature vector and t values between two feature vec-
tors whose difference is the existence of NO2. We selected

eight feature vectors with various independent variables to
verify whether the addition of NO2 affects the performance
of our calibration model. The four feature vectors we consid-
ered are PM2.5, PM2.5, T , PM2.5, and RH and PM2.5, T , and
RH. We also added NO2 to create four other feature vectors,
namely PM2.5, NO2, PM2.5, T , NO2, PM2.5, RH, and NO2
and PM2.5, T , RH, and NO2. We generated 1000 test sets
using a bootstrapping technique with replacement. We eval-
uated mean and standard deviation values of RSMEs calcu-
lated over 1000 test sets for each feature vector. In addition,
we applied a t test to verify the effectiveness of adding NO2
to each feature vector. Consideration of NO2 additionally re-
duces mean values of RMSE for all four feature vectors. Con-
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Table 11. Calibration results of hourly PM2.5 concentrations mea-
sured from the PA-II 8 in 2019 using MLR-based calibration model
learned with training data collected from the PA-II 8 in 2018 (site
ID indicates the monitoring sites for distant NO2).

Site Feature MLR
ID vector

Collocated NO2 Distant NO2

R2 RMSE MAE R2 RMSE MAE

10 0.741 4.468 3.381 0.742 4.458 3.371
0 11 0.742 4.459 3.375 0.744 4.442 3.359
6 12 0.783 4.087 2.982 0.783 4.089 2.976
– 13 0.785 4.072 2.966 0.786 4.066 2.951
0 14 0.788 4.042 2.951 0.789 4.031 2.927
6 15 0.788 4.040 2.950 0.789 4.033 2.930
5 16 0.785 4.071 2.970 0.785 4.075 2.966
– 17 0.785 4.071 2.967 0.785 4.076 2.960
8 18 0.791 4.015 2.915 0.790 4.022 2.911
0 19 0.791 4.019 2.911 0.790 4.026 2.908
0 20 0.792 4.006 2.895 0.793 3.998 2.877
5 21 0.792 4.002 2.892 0.793 3.995 2.875

10 0.741 4.468 3.381 0.716 4.681 3.600
0 11 0.742 4.459 3.375 0.716 4.680 3.591
6 12 0.783 4.087 2.982 0.684 4.937 3.887
– 13 0.785 4.072 2.966 0.684 4.937 3.864
0 14 0.788 4.042 2.951 0.680 4.965 3.850
7 15 0.788 4.040 2.950 0.672 5.030 3.914
1 16 0.785 4.071 2.970 0.693 4.870 3.816
– 17 0.785 4.071 2.967 0.706 4.764 3.704
0 18 0.791 4.015 2.915 0.710 4.733 3.676
0 19 0.791 4.019 2.911 0.713 4.705 3.646
2 20 0.792 4.006 2.895 0.713 4.709 3.643
7 21 0.792 4.002 2.892 0.699 4.818 3.756

trarily to the mean value, the standard deviation of RMSE
values for every feature vector increases slightly with the ad-
dition of NO2. We evaluated the t value for the mean values
of RMSE for two feature vectors, with and without NO2; for
example, the t value between PM2.5 and PM2.5 with NO2.
Hence, we can evaluate four t values. The degree of freedom
(DoF) is 1998, so the relevant p values are much less than
0.00001. Therefore, the difference in the mean RMSE values
of the PM2.5-included and PM2.5-excluded groups is signif-
icant. From these results, we can conclude that the perfor-
mance of the MLR-based calibration model can be enhanced
with consideration of PM2.5 concentrations.

4 Conclusions

The factors directly affecting the performance of a low-cost
PM sensor, including temperature, relative humidity, and par-
ticle composition, have been scrutinized for their impact on
sensors’ performance enhancement. Additionally, this study
investigated the potential of NO2, a precursor gas that gives
rise to PM2.5 through atmospheric chemical reactions, to im-
prove the performance of the calibration model. To this end,

we used the PurpleAir PA-II unit, which contains two Plan-
tower PMS 5003 sensors, as a low-cost PM2.5 sensor. The
PA-II units need to be typically installed close to reference
monitoring sites measuring PM2.5 concentrations and other
pollutants, such as NO2, in order to analyze their calibration.
We identified an EPA-certified monitoring instrument whose
deployed location is within close proximity to the installed
location of 14 PA-II units, which satisfied the condition for
co-location with a reference monitoring site. The monitor-
ing site is located in Rubidoux, CA, USA. A study period of
2 years, i.e., from January 2018 to December 2019, was se-
lected to include all seasons. Two units among 14 PA-II units
were selected based on the availability of 23 months or more
of measurement data from each PA-II unit, as well as their
low intra-model variability through correlation analysis.

One of the two selected PA-II units was compared to FRM
and BAM-1020 instruments based on daily and hourly PM2.5
measurements. A comparison of the BAM-1020 instrument
with the FRM instrument was also conducted on a daily
PM2.5 measurement basis to evaluate the performance of the
BAM-1020. The BAM-1020 instrument had a slope of 0.923,
an intercept of 0.741, and an R2 of 0.896 compared to the
FRM instrument, which implies that it provides an accept-
able performance as a reference monitor for the calibration
of low-cost PM2.5 sensors. For a PA-II unit, the Pearson cor-
relation coefficient against the BAM-1020 instrument was
shown to be 0.928 on an hourly basis. The per-month anal-
ysis was conducted on hourly PM2.5 measurements of the
PA-II unit against the BAM-1020. Results showed that the
PA-II unit has a good correlation during the winter season,
i.e., November, December, and January, with an R2 value be-
tween 0.819 and 0.906, but a lower correlation during other
months. The performance of the PA-II units was not notably
affected by temperature or relative humidity (RH) during the
winter months. Temperature and/or RH were found to im-
prove R2 during June and July 2018, but this effect in 2019
was not the same as in 2018.

A per-month analysis showed that NO2 is a key factor that
increased the value of R2 during September 2018 and Au-
gust and September 2019. The effect of the addition of NO2
for the calibration of PA-II units was much larger when RH
and temperature were considered together. In particular, NO2
was shown to have more effect during months when the per-
formance of PA-II units is moderate. It is expected that NO2
can be used to improve the performance of low-cost PM2.5
sensors, but the effect of NO2 should be further investigated
for various ambient conditions.

Two methods for calibrating PA-II units, the multiple lin-
ear regression (MLR) and random forest (RF), were eval-
uated on a test set of 1 year of data. We considered ad-
ditive and multiplicative terms in two calibration methods.
The RF method yielded better performance than the MLR
method because it provides a larger R2, as well as smaller
RMSE and MAE when NO2, referred to as collocated NO2,
measured from the collocated monitoring site was not used
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Table 12. Statistics of uncertainty analysis in relation to selected feature vectors and t values.

Feature vector Mean of SD of Feature vector Mean of SD of t value DoF
RMSE RMSE RMSE RMSE

{PM2.5} 4.5095 0.1026 {PM2.5,NO2} 4.4202 0.1037 19.3580 1998
{PM2.5,T } 4.3084 0.1000 {PM2.5,T ,NO2} 3.9979 0.1173 63.7008 1998
{PM2.5,RH} 4.2598 0.0995 {PM2.5,RH,NO2} 4.1548 0.1074 22.6792 1998
{PM2.5,T ,RH} 4.2387 0.1050 {PM2.5,T ,RH,NO2} 3.9865 0.1156 51.0686 1998

for calibration. However, when collocated NO2 is consid-
ered, MLR models showed similar performance to RF mod-
els. When several features, such as PM2.5, temperature, RH,
NO2, and their multiplicative terms, are considered together
to calibrate PM2.5 measurement data using the MLR method,
the calibration performance was shown to increase remark-
ably compared to cases where only PM2.5 was considered.
For instance, the RMSE value decreased from 4.513 to
3.912 µgm−3. In RF models with collocated NO2, the in-
clusion of temperature and RH improved R2, RMSE, and
MAE by an increase of 0.018, a decrease of 0.172, and a
decrease of 0.119 µgm−3, respectively, compared to the best
RF models without NO2. Contrarily to the MLR model, mul-
tiplicative interaction terms do not affect calibration perfor-
mance with a certain direction compared to those without
NO2; some combinations of features provide slight enhance-
ment, while the others cause worse performance.

We showed that NO2 data could improve calibration per-
formance in both MLR and RF models. The NO2 data we
referred to were measured from an expensive reference mon-
itor and are very reliable. However, it is not always feasible to
have an NO2 instrument with high accuracy collocated with
a low-cost PM sensor. An alternatives is to use low-cost NO2
sensors. However, their performance remains questionable.
To solve this issue, we investigated the effectiveness of us-
ing NO2 measurements collected from distant reliable NO2
monitoring sites, called distant NO2, whose locations are not
that far from a low-cost PM2.5 sensor. It was demonstrated
that distant NO2 is effective for calibration models based on
the MLR and RF algorithms when distant NO2 has a high
correlation with collocated NO2. Furthermore, we showed
that the MLR method can achieve a similar calibration per-
formance compared to the RF method when reliable distant
NO2 is considered.

We performed an evaluation of different PA-II units and
found that incorporating NO2 significantly enhanced cali-
bration performance across different PA-II units. This con-
sistency held even when using models trained with differ-
ent sensors at the same location, reinforcing the reliability
of generating consistent data across these units. Addition-
ally, the uncertainty analysis underscored a substantial per-
formance boost by including NO2 in the MLR method, show-
ing a marked difference compared to its omission.
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