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Abstract. Radar observations of winter storms often exhibit
locally enhanced linear features in reflectivity, sometimes la-
beled as snow bands. We have developed a new, objective
method for detecting locally enhanced echo features in radar
data from winter storms. In comparison to convective cells
in warm season precipitation, these features are usually less
distinct from the background echo and often have more fuzzy
or feathered edges. This technique identifies both prominent,
strong features and more subtle, faint features. A key dif-
ference from previous radar reflectivity feature detection al-
gorithms is the combined use of two adaptive differential
thresholds, one that decreases with increasing background
values and one that increases with increasing background
values. The algorithm detects features within a snow rate
field rather than reflectivity and incorporates an underesti-
mate and overestimate of feature areas to account for uncer-
tainties in the detection. We demonstrate the technique on
several examples from the US National Weather Service op-
erational radar network. The feature detection algorithm is
highly customizable and can be tuned for a variety of data
sets and applications.

1 Introduction

Linear features of enhanced reflectivity, labeled as snow
bands, are often observed in winter storms and are an active
topic of research (Baxter and Schumacher, 2017; Ganetis et
al., 2018; Lackmann and Thompson, 2019; Kenyon et al.,
2020; Picca et al., 2014; Novak et al., 2004; McMurdie et

al., 2022; Colle et al., 2023). Snow bands that are ≥ 250 km
in length are described as primary or single bands, and sets
of roughly parallel smaller bands each less than 250 km long
are described as multi-bands (Ganetis et al., 2018). Primary
bands are typically associated with frontogenesis (Novak et
al., 2004), but the forcing mechanism for multi-bands is still
unclear (Ganetis et al., 2018). Unlike convective cells in rain
which usually have high reflectivities and a sharp reflectivity
gradient between the cell itself and the background reflectiv-
ity, snow bands have weaker reflectivities and stand out less
from the background, and the edges of snow bands can grad-
ually taper out, creating an irregular edge. Hence, objective
methods to identify convective and stratiform precipitation
in radar data of deep convection do not work well for winter
storms.

Much of the previous work to detect snow bands in radar
reflectivity data focused on identification of primary bands
and either ignored multi-bands or only addressed the stronger
subset of multi-bands. Novak et al. (2004) and Baxter and
Schumacher (2017) used dBZ thresholds (30 and 25 dBZ,
respectively) to identify primary band objects in National
Weather Service (NWS) Next Generation Radar (NEXRAD)
Level-III reflectivity regional maps. Kenyon et al. (2020)
identified primary snow bands for five winter seasons us-
ing Level-III reflectivity data. Kenyon et al. (2020) used a
20 dBZ threshold, with the caveat that there must be an em-
bedded region > 25 dBZ along at least half the axis that is
at least 10 dB greater than the background reflectivity. Level-
III reflectivity data has a precision of 5 dB and will inherently
not be able to identify features that are < 5 dB different from
the background. In general, methods that use fixed thresholds
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are sensitive to the radar calibration and the grid spacing of
the input data since reflectivity values are not invariant in
scale (Rinehart, 2004).

Several authors have used methods that adapt to changing
background reflectivity values in the wider storm and hence
better detect localized enhancements than fixed threshold
methods. Ganetis et al. (2018) identified both primary and
multi-band features by identifying echo regions in NEXRAD
Level-II regional reflectivity maps that were greater than
the upper sextile of reflectivity values for a given precipi-
tation region. Ganetis et al. (2018) classified primary bands
as objects that were ≥ 200 km and had an aspect ratio
(width / length) of≤ 0.5 and multi-bands as objects that were
< 200 km and had an aspect ratio ≤ 0.5. Objects that had an
aspect ratio > 0.5 and a length ≥ 10 and ≤ 100 km were la-
beled as cells. Radford et al. (2019) used NEXRAD base re-
flectivity (lowest elevation angle) mosaics for three winter
seasons and only considered objects that were 1.25 standard
deviations above the mean reflectivity, ≥ 250 km in length,
and with a minimum aspect ratio of 0.33, following the meth-
ods of Baxter and Schumacher (2017).

The Method for Object-Based Diagnostic Evaluation
(MODE), included in the Model Evaluation Tools (MET)
verification software package, is a popular tool for detect-
ing objects in meteorological data sets (Bullock et al., 2016).
Originally developed to compare forecast fields to observed
fields, MODE applies a convolution to a field and then uses
user-defined thresholds to find objects in the original field.
For example, the user can change the size of the convolution
radius used to smooth the input field and the single threshold
that determines whether an object is defined relative to the
smoothed background.

For some applications, detecting only strong snow bands is
sufficient. For our research, which aims to understand the en-
vironments in which snow bands form and the physical pro-
cesses that create them, a fuller picture of their life cycle is
needed. Visual inspection of sequences of radar data demon-
strates that advecting snow bands often undergo transitions
from faint to strong to faint before dissipating. In order to
study these structures, we needed an automated snow band
detection method that would detect a range of echo features
from faint to strong.

Our method, described in detail in Sect. 2, re-scales the
reflectivity field to an estimated snow rate to better discern
weak echo features and combines two differential adaptive
thresholds to determine if a feature stands out from the back-
ground. Based on the difference between a pixel and the
background average value, the algorithm determines if the
pixel is part of an enhanced feature. The algorithm “adapts”
the difference threshold to the mean background value. There
are two ways a pixel could pass this test. One is based on a
criterion that requires a decreasing difference with increas-
ing background value, while the other requires an increas-
ing difference with increasing background value. We use the
generic term “locally enhanced feature” to describe objects

that one would pick out by eye as distinct from lower back-
ground values. We define two varieties of locally enhanced
features, “strong” features that have larger differences from
the background and “faint” features that have smaller dif-
ferences from the background where the background field is
weak. The algorithm we developed for detecting locally en-
hanced features in winter storms is described in Sect. 2, ex-
amples of our technique are shown in Sect. 3, and a summary
is provided in Sect. 4. We contributed the software to the
open-source Python package, Py-ART (Helmus and Collis,
2016), where it is available for general use. Within this pa-
per, we will be using the terms “object”, which is commonly
used in the image processing literature, and “feature”, which
refers here to the meteorological application interchangeably.
We also define winter season storms of interest as those that
contain a substantial area of surface snowfall.

2 Methods

2.1 Data

To demonstrate our method, we use NEXRAD Level-II
radar reflectivity regional reflectivity maps composed from
several radars in the northeastern US (Tomkins et al.,
2022, 2023a, b). The regional maps use 2D Cartesian Cress-
man interpolation to a 2 km grid based on the 0.5° elevation
angle from several different radars. Where there is overlap
between adjacent radars, we use the point with the highest re-
flectivity value. Given the coarse vertical spatial resolution of
NWS operational radar volume coverage patterns, 3D Carte-
sian interpolation often smooths and obscures the fine-scale
horizontal features we need to discern faint objects. For our
application, the varying altitudes along the 0.5° elevation an-
gle scans that constitute the regional maps are preferable to
a constant altitude map that smooths key features we need
for our analysis. While we demonstrate our technique with a
specific set of NEXRAD radars in the northeastern US, the
technique can be applied to any gridded radar data.

2.2 Feature detection algorithm

The feature detection method described in this paper to iden-
tify locally enhanced reflectivity features in cool-season pre-
cipitation systems is built upon the implementation of adap-
tive thresholds for objective convective-stratiform precipita-
tion classification developed for warm-season storms in a se-
ries of papers by Churchill and Houze (1984), Steiner et al.
(1995), Yuter and Houze (1997), and Yuter et al. (2005). The
underlying idea, identifying the cores of features that exceed
the background value by an amount that varies with the back-
ground value, is well established (Steiner et al., 1995). These
types of algorithms are highly customizable and can be tuned
to a wide variety of data sets. So as to be more general pur-
pose, the software we contributed to the open-source python
package, Py-ART, can be configured to run either as a variant
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of established convective-stratiform precipitation algorithm
for warm-season storms or for the application described in
this paper for winter storms.

A data flow diagram of the winter storm algorithm using
the Yourdon symbol conventions (Woodman, 1988) shows
the key steps in the data processing (Fig. 1). The top-level
data flow (Fig. 1a) is shown with two levels of nested data
processing (Fig. 1b and c). The steps in Fig. 1c follow the
data flow steps from the Steiner et al. (1995) algorithm
to identify convective and stratiform precipitation from re-
flectivity in rain layers. Input parameter names and recom-
mended settings for detecting locally enhanced reflectivity
features in snow are provided in Table 1.

The feature detection algorithm outputs 2D arrays that in
effect simplify the input reflectivity field into faint feature,
strong feature, and background categories. Additional image
processing of this output based on the shape characteristics
of individual features such as aspect ratio, length, width, and
area can be used to further classify the features into differ-
ent types of banded and cellular features (e.g., Ganetis et al.,
2018).

2.2.1 Estimation of snow rate

A key difference from previous methods described in Sect. 1
is the use of an estimated snow rate field as the input for
the feature detection instead of a radar reflectivity field. A
very rough first-order approximation is that radar reflectiv-
ity dBZ∝ log10(mass3) for unrimed aggregates, where mass
is the mass per unit volume of precipitation-sized particles
(Matrosov et al., 2007). For rain, the radar reflectivity to mass
relationship can be approximated by dBZ∝ log10(mass2).
Multiple observational studies have shown that any one re-
lationship between reflectivity and snow rate has high uncer-
tainty, since the associated snow rate can vary by 2 orders of
magnitude for any given dBZ value (Fujiyoshi et al., 1990;
Rasmussen et al., 2003). This first step in the data processing
transforms reflectivity to a value that is more linear in liquid-
equivalent snow rate. We chose to use liquid-equivalent snow
rate rather than linear Z since it is more physically intuitive.
We do not use the derived snow rates for quantitative esti-
mates of precipitation. We only use them as an alternative
scaling factor to reflectivity in dBZ.

Empirical Z–S relations encompass ones for dry snow,
which have smaller changes in equivalent liquid per 1Z to
ones for wet snow, which have larger changes per1Z (Fig. 2;
Rasmussen et al., 2003). In order to obtain higher contrast
between locally enhanced Z in terms of snow rates, we use
the wet snowZ–S relationship from Rasmussen et al. (2003):
Ze = 57.3S1.67, whereZe is equivalent radar reflectivity with
units of mm6 m−3 and S is snow rate with units of mmh−1.
Our results are not sensitive to the absolute values of snow
rate, only to the relative anomaly from the background av-
erage. Examples of re-scaling the reflectivity field to a snow
rate field are shown in Fig. 3.

2.2.2 Calculation of smoothed background field

A locally smoothed background average snow rate field is
computed from the snow rate field (Fig. 3). The background
radius smoothing parameter is used to define a circular foot-
print surrounding each pixel (Fig. 1a). We found that use of
circular footprints produced better results than rectangular
footprints. The points within the circular footprint are aver-
aged to find the background value for that point. Feature de-
tection is sensitive to the size of the area used to calculate the
background value (not shown). We found a background ra-
dius of 40 km was the most suitable for detecting snow band
features in the NWS NEXRAD data. A larger background
radius will yield a smoother background average field used
to compare to the input field to find features. A smaller back-
ground radius is likely more suitable for warm-season pre-
cipitation systems, which usually have stronger reflectivity
gradients than cool-season precipitation systems. An exam-
ple of the locally smoothed background average snow rate
field is shown in Fig. 3.

When calculating the background average, a minimum
fraction of valid points within the footprint can be set so only
pixels with a sufficient amount of surrounding echo are used
in the analysis. We use a minimum fraction of 0.75 (i.e., the
footprint must contain at least 75 % echo coverage to be used
in the analysis). This is done to minimize small, spurious fea-
tures on the edge of the echo. The effects of the 0.75 mini-
mum fraction can be seen in Fig. 3, where there are differ-
ences between the more jagged echo outer edges in the snow
rate field (Fig. 3d–f) compared to the smoother echo edges
in the background field (Fig. 3g–i). Changing the minimum
fraction acts to change how much echo must be present in the
circular background footprint for a given pixel to be consid-
ered in the algorithm. A minimum fraction of zero would
yield a background field with identical outer edges to the
snow rate field.

2.2.3 Two adaptive differential thresholds for finding
feature cores

The background average field and the original snow rate field
are compared using two difference threshold schemes. Pix-
els where the difference between the snow rate field and the
background average field are greater than or equal to the
adaptive difference threshold constitute a feature’s core.

There are two individual pixel versus background differ-
ence relationships built into the algorithm, a cosine scheme
and a scalar multiplier scheme that are used in combination
and utilize units of mmh−1. A pixel is identified as fea-
ture core if the value of the pixel exceeds the background
by either adaptive threshold. If the pixel is only identified
as a core with the scalar multiplier scheme, it is labeled as
a faint feature. If it is identified as a core with the cosine
scheme, it is labeled as a strong feature. The cosine relation-
ship has a decreasing threshold with increasing background
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Figure 1. Data flow diagram of the winter storm feature detection algorithm. Dark blue ovals indicate processes, purple polygons indicate
input and output data, and orange elements indicate adjustable setting parameters used in the functions. Each arrow represents an input or
output to the associated functions. The reflectivity field and background average field are 2D arrays. The strong and faint snow features are
represented by distinct values in a 2D array. (a) Top level data flows. (b) The detailed steps within the “Step 3: Detect snow features” (blue)
box in panel (a). Panel (c) shows the detailed steps within the “Find features” (green) boxes in panel (b).

Table 1. Parameters used to detect locally enhanced echo features in winter storms. All input parameters to the algorithm as run for this
paper are provided, including those that are in effect turned off.

Parameter Value

Always core threshold 5 mmh−1

Min. core size 10 km2

Smoothing parameters
Background radius 40 km
Min. fraction for footprint 0.75

Cosine scheme parameters
Max. difference (i.e., a in Eq. 1) 1.5 mmh−1

Zero difference cosine value (i.e., b in Eq. 1) 5 mmh−1

Scalar scheme parameters Scalar difference (i.e., c in Eq. 2) 1.5

Core radii parameters Max. core radius 2 km
(turned off) Value for max. core radius 10 mmh−1

Background echo classification Min. value used 0 mmh−1

parameters (turned off) Weak echo threshold 0 mmh−1
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Figure 2. Reflectivity to snow rate (Z–S) relationships with log
scale x axis. The bold blue line indicates the relationship from Ras-
mussen et al. (2003) for wet snow used in this study. The bold red
line shows the relationship for dry snow from Rasmussen et al.
(2003), and the purple line shows the relationship for snow used
by the Finnish Meteorological Institute’s Doppler radar network
(Saltikoff et al., 2010).

value (Fig. 4a). The cosine scheme uses simple and intuitive
parameters to define a smooth, curved relationship between
the background value and the difference threshold. The scalar
multiplier scheme uses a difference threshold that increases
linearly as the background value increases (Fig. 4b). This al-
lows the scalar multiplier to pick up subtle features that are
not very distinct from the background when the background
values are small (i.e., in regions of weak precipitation). For
example, for a background value of 1 mmh−1, the cosine
scheme threshold is 1.4 mmh−1, while the scalar scheme
threshold is 0.5 mm h−1. After extensive testing on many ide-
alized and real examples from winter storms, we found that a
combination of both types of adaptive thresholds was needed
in order to detect the full range of reflectivity features from
faint to strong. The cosine scheme only identifies objects that
are very distinct from the background, while the scalar multi-
plier scheme identifies objects that are both very distinct and
not very distinct. We chose the particular equations described
here as they were both intuitive and easy to tune.

The cosine scheme’s decreasing difference threshold with
increasing background value is described in Eq. (1), where
S represents the snow rate at a pixel, Saverage represents the
background average snow rate, a represents a maximum pos-
sible difference value corresponding when the background
average value is 0 mmh−1, and b represents the background
average value where the corresponding difference threshold
is zero.

S−Saverage ≥ a cos
(
πSaverage

2b

)
(1)

Other similar equations with a decreasing threshold with
increasing background value would also likely be suitable.
The cosine scheme (Fig. 4a) is adapted from methods used to
identify convective and stratiform precipitation structures in
rain (e.g., Steiner et al., 1995; Yuter and Houze, 1997; Yuter
et al., 2005; Powell et al., 2016). The choice of this specific
equation is purposeful as it permits the same Python code
to be used with an input field of radar reflectivity from a rain
layer and appropriate parameter settings to exactly reproduce
the data processing of the original C++ code used in Yuter et
al. (2005).

Figure 4a shows how changing the maximum difference
(a in Eq. 1; horizontal dashed line) and zero difference co-
sine value (b in Eq. 1; vertical dashed line where the func-
tion would cross the x axis) changes the overall shape of the
difference function and thus the thresholds used to identify
pixels that are cores. Having a lower maximum difference
or zero difference cosine value will increase the number of
cores since it relaxes the difference threshold needed for a
point to be considered a core. The final tuning parameter
in the difference relationship is the “always core threshold”
which is the value above which all background points are
considered cores (vertical dashed line in Fig. 4). An absolute
threshold like the always core threshold is helpful for identi-
fying cores in regions where the background values are high.
It is particularly useful for the scalar scheme and provides
additional flexibility in turning. The zero difference cosine
value can be used in place of the always core threshold in the
cosine scheme. In our method, the value corresponding to a
pixel that is always part of a snow band is set at an equivalent
liquid precipitation rate of 5 mmh−1 (which corresponds to
a reflectivity value of 30 dBZ). For reflectivity fields in rain,
usually this value is set at or above 40 dBZ (rain rate of about
13 mmh−1).

The scalar multiplier scheme uses a linear function with
a difference threshold that increases with increasing back-
ground value up to the always core threshold (Fig. 4b). The
equation for the scalar multiplier scheme is described by
Eq. (2)m where S represents the snow rate at a pixel, Saverage
represents the background average snow rate, and c repre-
sents the scalar difference.

S−Saverage ≥ (c ·Saverage)−Saverage (2)

The scalar difference value (c in Eq. 2) changes the slope
of the difference threshold in Fig. 4b). A larger scalar differ-
ence value will yield a steeper slope and a greater difference
threshold needed for a given background average value.

Figure 4c shows both difference equations and is colored
coded by classification (strong feature, faint feature, back-
ground) based on the two different schemes. A detection
threshold that increases with increasing background value
helps to distinguish both the tapered edges of stronger fea-
tures and features that differ only slightly from the back-
ground. Figure 5 shows three examples of the output from

https://doi.org/10.5194/amt-17-3377-2024 Atmos. Meas. Tech., 17, 3377–3399, 2024



3382 L. M. Tomkins et al.: Automated detection of features in radar observations of winter storms

Figure 3. Close-up examples of (a)–(c) reflectivity [dBZ] re-scaled to (d)–(f) snow rate [mmh−1] and smoothing of the snow rate fields to
a (g)–(i) background average using a 40 km radius footprint. Panels (a), (d), and(g) show data from 7 February 2021 14:37:28 UTC with an
area of 263km× 222km; panels (b), (e), and (h) show data from 17 December 2020 16:26:01 UTC with an area of 472km× 361km; and
panels (c), (f), and (i) show data from 17 December 2019 16:23:59 UTC with an area of 326km× 306km. Grid spacing is 2km× 2km for
all examples.

Figure 4. Adaptive difference relationships used to determine the threshold between a pixel and its background value to designate the pixel
as a feature core. (a) Cosine scheme and (b) scalar multiplier scheme. Panel (c) shows the difference relationships in panels (a) and (b) and
is shaded based on the where each feature type is found. Note that the y-axis range in panel (b) extends further than in panels (a) and (c).
Input parameters used for tuning are annotated with dashed gray lines; see the text for full details.

both the cosine scheme and the scalar scheme. Both the co-
sine scheme and the scalar scheme pick up the strong features
from the snow rate (e.g., band of 10+mmh−1 in Fig. 5b),
but only the scalar scheme can identify the weaker features
including the fuzzy, irregular edges.

Examples in Appendix A demonstrate the influence of the
background radius, always core threshold, scalar difference,
zero difference cosine value, and maximum difference on the
algorithm output.
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Figure 5. Close-up examples of (a)–(c) snow rate [mmh−1], (d)–(f) feature cores detected with the cosine scheme, and (g)–(i) feature cores
detected with the scalar scheme. Panels (a), (d), and (g) are from 7 February 2021 14:37:28 UTC with an area of 263km×222km; panels (b),
(e), and (h) are from 17 December 2020 16:26:01 UTC with an area of 472km× 361km; and panels (c), (f), and (i) are from 17 December
2019 16:23:59 UTC with an area of 326km× 306km. Grid spacing is 2km× 2km for all examples.

2.2.4 Converting cores to contiguous features

To address isolated pixels within detected features, we per-
form a binary closing on the 2D array of cores to mitigate
these artifacts (Fig. 6a). A binary closing is an image dila-
tion followed by an image erosion that acts to fill in the holes
within a feature but keeps the feature at roughly the original
size (Jamil et al., 2008). We use a quasi-circular 5× 5 ker-
nel (Fig. 6b) for the binary closing to yield a more physically
realistic output as opposed to use of a square kernel.

After we perform the binary closing step, we then remove
objects that are less than 120 km2 in area. We found that this
value was suitable for our applications. No object capable
of meeting the band criteria of Ganetis et al. (2018) is less
than 120 km2 in area. An example of the binary closing and
small object removal on the cosine scheme cores from the
examples presented in Fig. 5 is shown in Fig. 7 to yield the
filtered, spatially contiguous features of interest.

There were two steps from the established convective-
stratiform algorithm that we turned off for our feature detec-
tion application to winter storms. An additional step can be

Figure 6. (a) Example of binary closing operation (image mor-
phology dilation then erosion) from https://docs.opencv.org/4.x/d9/
d61/tutorial_py_morphological_ops.html (last access: 12 Septem-
ber 2023) and (b) kernel used in binary closing operations.

applied to delineate a weaker echo subset of the background
echo. We do not use this for our application and set both the
weak echo and minimum value to 0 mmh−1 (Table 1). Al-
ternate values of these settings can be useful for tabulating
statistics of different magnitudes of background radar echo.
For the radar data set we were using, we found that the ad-
ditional step of using a radius of influence around each core
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Figure 7. Close-up examples of feature cores from cosine scheme (a)–(f) and scalar scheme (g)–(l) before and after binary closing and
removal of small objects. The bottom row represents the filtered cores. Panels (a), (d), (g), and (j) are from 7 February 2021 14:37:28 UTC
with an area of 263km× 222km; panels (b), (e), (h), and (k) are from 17 December 2020 16:26:01 UTC with an area of 472km× 361km;
and panels (c), (f), (i), and (l) are from 17 December 2019 16:23:59 UTC with an area of 326km× 306km. Grid spacing is 2km× 2km for
all examples.

pixel as part of the feature was not needed. To turn this off,
we set the maximum core radius to 2 km, the same as the in-
put grid pixel size (Table 1). For some applications, the radius
of influence step may be needed, especially for finer grids.

2.2.5 Snow storm faint and strong feature
identification method

Objects that are identified by the cosine scheme we define as
“strong” objects, while objects that are only identified by the
scalar multiplier and not by the cosine scheme are defined
as “faint” objects (Fig. 8). The separation into strong and
faint objects allows for analysis that addresses the relative in-
tensity of the observed reflectivity compared to independent
data sets, such as surface weather station snow rates. The out-

put of the algorithm can yield strong and faint portions of the
same contiguous feature and objects that are solely of one
type (Fig. 8g–i).

An important component of running the algorithm in prac-
tice is to account for uncertainties in the observed data and
that no one method for feature detection will work perfectly
in all situations. Similar to Yuter et al. (2005), we bound
our feature identification by running the algorithm on the
estimated snow rate field and two offsets of that field with
slightly higher and lower values to yield purposeful over-
estimates and underestimates of the feature detection. In-
creasing the radar reflectivity by 2 dB, converting to snow
rate, and then running the algorithm yields an overestimate
in feature area, while decreasing by 2 dB yields an under-
estimate. For the underestimate, since we do not consider
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Figure 8. Close-up examples of (a)–(c) filtered features from cosine scheme, (d)–(f) filtered features from scalar scheme, and (g)–(i) feature
detection output wherein portions of objects labeled as strong were detected in the cosine scheme and those labeled faint are only detected
in the scalar scheme. Panels (a), (d), and (g) are from 7 February 2021 14:37:28 UTC with an area of 263km× 222km; panels (b), (e), and
(h) are from 17 December 2020 16:26:01 UTC with an area of 472km× 361km; and panels (c), (f), and (i) are from 17 December 2019
16:23:59 UTC with an area of 326km× 306km. Grid spacing is 2km× 2km for all examples.

values ≤ 0 mmh−1 (Table 1), echo where the original re-
flectivity field ≤ 2 dBZ gets removed, so the underestimate
feature detection field will have less total echo area than the
best and overestimate feature detection fields. Bounding the
best-estimate feature detection field can be accomplished by
varying the input field slightly as we have done here or by
varying the difference equation. Both accomplish the same
goal of making minor adjustments to yield an underestimate
and overestimate in the field. We recommend adjusting the
field by at least ± 2 dB as this value is close to the mini-
mum uncertainty in the US NWS operational radar reflec-
tivity calibrations. As compared to the “best estimate”, the
underestimate version usually reduces the size of strong fea-
tures and amplifies the detection of faint features compared
to the best estimate. The overestimate version the snow field
usually yields larger feature sizes for the strong features and
damps the detection of the faint features compared to the best
estimate.

2.3 Visual de-emphasis of regions with mixed
precipitation

After we run the algorithm to detect features, we apply im-
age muting (Tomkins et al., 2022) as a separate step inde-
pendent of the feature detection algorithm to identify regions
of mixed precipitation in the winter storms. This step de-
emphasizes portions of the echo that pass through the 0 °C
level in the final visualized plots by utilizing information
from the radar’s correlation coefficient field. Regions where
the reflectivity is≥ 20 dBZ and the correlation coefficient are
≤ 0.97 are considered to be likely melting or mixed precipi-
tation and are colored in a grayscale (Tomkins et al., 2022).
The sharp temperature gradients in winter storms can yield
mixed-precipitation echo regions that resemble bands (e.g.,
Picca et al., 2014, their Fig. 2, and Colle et al., 2023, their
Fig. 7). It is important to remove these mixed-phase echoes
before interpreting the detected enhanced features as snow.
Full details of how the image muting is applied and evalu-
ated can be found in Tomkins et al. (2022).
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2.4 Limitations

The quality of the input data fields, including their calibra-
tion and precision, are constraints that impact the quality of
the output. For example, this particular algorithm would not
work well on input radar reflectivity data with 5 dB preci-
sion. Input data quality issues such as attenuation are not able
to be corrected inside the algorithm. As expected, when we
applied our algorithm to Ku-band and Ka-band radar data
collected from aircraft, we found that attenuation can affect
the detection of enhanced features. While the algorithm runs
fairly quickly (about 60 s per 601×601 size reflectivity input
field on our servers), there is room for improvement in code
efficiency and the potential for parallelization to be incorpo-
rated.

An important consideration when interpreting the feature
detection field is situational awareness of where snow is oc-
curring. Winter storms in the northeastern US often tran-
sition among multiple precipitation types, including snow,
rain, mixed, and melting precipitation. We tuned the algo-
rithm to work specifically in regions where we were reason-
ably confident that surface snow was occurring. Because re-
gions of rain typically have high reflectivities, they are al-
most always identified as enhanced features based on how
we tuned our algorithm to detect features in snow. Our im-
age muting technique (Tomkins et al., 2022) assists with the
interpretation of precipitation type within echo by identify-
ing regions of likely mixed and melting precipitation using
the correlation coefficient field. Additional independent data
sets such as surface air temperatures and surface-based pre-
cipitation type sensors can also help provide context for the
precipitation type observed by radar.

The “flashing” of features occurs when a particular en-
hanced feature alternates between being detected and not
being detected in sequential times. A key goal of the algo-
rithm development was to minimize flashing of individual
features in consecutive times. Small speckles are more prone
to flashing than larger area features, which is why we filter
out small objects. While we minimized flashing as best we
could, there are still times when features are not consistent
through time. Another aspect of flashing occurs where the
edges of enhanced features can alternate between strong and
faint.

With the “turning knobs” on the command line, it is
straightforward to test and to refine the input parameters for
the algorithm (see also Appendix A). There is no one set of
input parameters that will work perfectly every time. For best
results, the user needs to optimize the parameters for their
application. It is recommended to use a tuning data set of
test cases representing a wide range of possible input fields
including time sequences from a dozen or more real cases.
Like an out-of-tune piano, poor tuning will obviously lead to
poor results. The input parameters in Table 1 were tuned for
the US NEXRAD network of S-band radars and mid-latitude
northeastern US winter storms. These particular values will

likely need to be modified for other radar hardware and/or
other storm regimes such as polar winter storms.

3 Examples

We illustrate our algorithm on regional composites of
Level-II data from National Weather Service (NWS) Next-
Generation Radar (NEXRAD) network radars that were ob-
tained from the NOAA Archive on Amazon Web Services
(Ansari et al., 2018). Full details on how the composites are
created can be found in Sect. 2.1 of Tomkins et al. (2022).

Our examples span a range of cases and snow band in-
tensities including storms with and without primary bands
and multi-bands. The example from 7 February 2021 (left
column in Figs. 3, 5, 7, and 8) shows several strong bands
over Maryland and Virginia and a few faint objects as well.
The one from 17 December 2020 (middle column in Figs. 3,
5, 7, and 8) includes a strong primary band over northern
Pennsylvania and southern New York and several faint bands
over southern Pennsylvania. The data from 17 December
2019 (right column in Figs. 3, 5, 7, and 8) contains mostly
faint bands over New Hampshire and Maine. All the cases
shown also include portions of echo that contain mixed pre-
cipitation, which commonly occurs in US East Coast winter
storms. In each of the example regional cases, video supple-
ments illustrate the time continuity of the detection method
as features evolve and move through the domain.

Application in snow layers to identify faint and strong
reflectivity features

The spatial and temporal coherence of the bands is illustrated
in the sequences of images±1 h for each of Figs. 9–12 in the
Video Supplement. Individual bands form and dissipate as
the storm moves and evolves.

The winter storm from 7 February 2021 at 14:37 UTC ex-
hibited a primary band extending from northern Virginia to
Connecticut and faint multi-bands across Pennsylvania and
New York (Fig. 9). The underestimate field (Fig. 9c) also
has a strong primary band similar to the best estimate (al-
beit smaller and narrower). The few, small strong features
in the best estimate are detected as faint features in the un-
derestimate (Fig. 9c). The overestimate field (Fig. 9d) has
a wider strong band compared to the best estimate and has
more strong objects in general compared to the best estimate.
The strong, primary band traverses along the US East Coast,
while the faint multi-bands dissipate and form in the weaker
region in Pennsylvania and New York (Video Supplement
Animation-Figure-9).

The winter storm from 17 December 2020 over the north-
eastern US (Fig. 10) contained primary and multi-bands.
There are several large bands that extend over New York
and Massachusetts that are associated with high values in
the snow rate field and are identified as strong features

Atmos. Meas. Tech., 17, 3377–3399, 2024 https://doi.org/10.5194/amt-17-3377-2024



L. M. Tomkins et al.: Automated detection of features in radar observations of winter storms 3387

Figure 9. Demonstration of bounding the best-estimate feature detection with purposeful overestimates and underestimates using an example
from 7 February 2021 14:37:28 UTC that features a primary snow band and a few multi-bands. Locally enhanced features that include mixed
precipitation are image muted in gray (Tomkins et al., 2022). The area of the map is 1202km×1202km, and the grid spacing is 2km×2km.
(a) Re-scaled snow rate field (mmh−1 units) and feature detection (b) best estimate, (c) underestimate, and (d) overestimate. Feature detection
fields show background regions in teal, strong features in yellow, and faint features in orange. An animated version of this figure is available
in the Video Supplement Animation-Figure-9.

(Fig. 10). Over southern Pennsylvania there are other fea-
tures that do not stand out as much that are identified as faint
features (Fig. 10). As the storm evolves, the large band re-
mains roughly in the same location but changes shape while
the other, smaller features undergo more dramatic changes
(e.g., dissipate, break apart, strengthen) (Video Supplement
Animation-Figure-10). The faint bands over Pennsylvania
also evolve in time and space, some transitioning to strong
bands and some weakening and dissipating (Video Supple-
ment Animation-Figure-10). Similar to the previous exam-
ple, the underestimate has a narrower primary band and
has a lot more “faint” features compared to the best esti-
mate and overestimates. The overestimate shows very few

faint features and mostly amplifies the main strong features
(Fig. 10d).

The winter storm on 17 December 2019 was generally
weaker and had a lot of faint bands compared to the exam-
ple from 17 December 2020 (Fig. 11). Areas of the southern
part of the storm are image muted, indicating melting and
mixed precipitation and a transition to rain. The northern part
of the storm has numerous faint features over northern New
York, Vermont, New Hampshire, and Maine (Fig. 11a and b).
In this example, the faint bands are more coherent in time
and space than the other examples, some of these faint bands
evolve into strong bands, and some strong bands evolve into
faint bands (Video Supplement Animation-Figure-11).
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Figure 10. Demonstration of bounding the best-estimate feature detection with purposeful overestimates and underestimates using an exam-
ple from 17 December 2020 06:26:01 UTC that features several strong primary bands and a few faint multi-bands. Locally enhanced features
that include mixed precipitation are image muted in gray. The area of map is 1202km×1202km, and the grid spacing is 2km×2km. (a) Re-
scaled snow rate field (mmh−1 units) and feature detection (b) best estimate, (c) underestimate, and (d) overestimate. Feature detection fields
show background regions in teal, strong features in yellow, and faint features in orange. An animated version of this figure is available in the
Video Supplement Animation-Figure-10.

The winter storm from 7 February 2020 over the northeast-
ern US that is characterized by large regions of melting (gray
muted regions in Fig. 12). This example has a large, strong
object extending from Pennsylvania through New York but
does not have any faint bands or sets of multi-banded struc-
tures as discussed in Colle et al. (2023) (Fig. 12). This large,
long, and strong feature spans the transition from snow to
rain and is persistent in time for several hours (Video Sup-
plement Animation-Figure-12). It is very likely that the por-
tion of the strong band to the east of the SW–NW mixed-
precipitation area is rain rather than snow. Further feature
filtering by surface air temperature fields would be useful in
cases like this to isolate surface snow.

4 Summary

We present a novel method for identifying locally enhanced
features in radar observations of winter storms that uses a
combination of increasing and decreasing adaptive thresh-
olds as a function of average background values. Our method
identifies features from a snow rate field rather than radar re-
flectivity in order to better automatically identify human eye
discernable features in radar data of snow. Previous meth-
ods to automatically detect snow bands in radar observa-
tions either used inflexible thresholds and Level-III reflec-
tivity data (5 dB precision) or used adaptive thresholds that
were not able to detect objects that are not very distinct from
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Figure 11. Demonstration of bounding the best-estimate feature detection with purposeful overestimates and underestimates using a radar
example from 17 December 2019 16:23:59 UTC that features many faint multi-bands. Locally enhanced features that include mixed precip-
itation are image muted in gray. The area of map is 1202km× 1202km, and the grid spacing is 2km× 2km. (a) Re-scaled snow rate field
(mmh−1 units) and feature detection (b) best estimate, (c) underestimate, and (d) overestimate. Feature detection fields show background
regions in teal, strong features in yellow, and faint features in orange. An animated version of this figure is available in the Video Supplement
Animation-Figure-11.

the background. This new method facilitates both the de-
tection of stronger objects and fainter objects that are less
distinct from the background average in snow storms. The
wider range of characteristics of detected features provides a
more comprehensive basis for examining hypotheses relating
radar-observed features to surface snowfall and intra-storm
environments.

There is no one feature detection algorithm that is going
to produce perfect results every time. Our image processing
software facilitates easy adjustments to the algorithm tuning
from the command line and has built functionality for deter-
mining credible underestimates and overestimates of feature
areas. These underestimates and overestimates aid in bound-

ing the uncertainty in the feature detection field. The user is
advised to always test and refine the tuning parameters of the
algorithm on their data to ensure that the settings are ade-
quate for their purpose.

The output of the algorithm described in this paper yields
2D arrays with categorical values for different strengths of
detected radar echo features and background echo. These
output arrays can be input into image processing software to
yield statistics of feature characteristics such as area, aspect
ratio, orientation, convex hull, and centroid location. Object
attributes can be used to further subset objects and for com-
parison to other independent data sources. Additionally, this
algorithm can be applied to snow rate fields from numeri-
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Figure 12. Demonstration of bounding the best-estimate feature detection with purposeful overestimates and underestimates using a radar
example from 7 February 2020 13:27:58 UTC that features a large primary band, portions of which are mixed precipitation and image muted
in gray. The area of map is 1202km×1202km, and the grid spacing is 2km×2km. (a) Re-scaled snow rate field (mmh−1 units) and feature
detection (b) best estimate, (c) underestimate, and (d) overestimate. Feature detection fields show background regions in teal, strong features
in yellow, and faint features in orange. An animated version of this figure is available in the Video Supplement Animation-Figure-12.

cal forecast model output to yield feature objects for use in
nowcasting and for model evaluation.

Differential adaptive threshold methods for image seg-
mentation that distinguish locally enhanced features from a
varying background have applications to several areas in geo-
sciences. In satellite data analysis, detection of cold cloud
tops associated with deep convective storm anvils is often
defined based on absolute IR brightness thresholds (Schiffer
and Rossow, 1983; Arkin and Meisner, 1987; Machado and
Rossow, 1993), but tropopause heights can vary latitudinally,
regionally, and seasonally. Additionally, satellite passive mi-
crowave brightness temperature signatures associated with
local enhancements in scattering and emission by precipi-
tation are harder to discern over the more spatially varying

thermal characteristics of land as compared to ocean (Ferraro
et al., 2013).

Appendix A: Impact of tuning parameters

By design, adjusting the tuning parameters in the algorithm
changes the detected features in the output. To demonstrate
how each parameter influences the output, we run the al-
gorithm with many different configurations on an example
from Long Island, NY, in February 2021 (Fig. A1). Exam-
ple output of the scalar scheme portion of the algorithm
and how it varies with different combinations of scalar dif-
ference (1.2x, 1.5x, and 1.8x), background radius (20, 40,
and 60 km), and always core threshold (4, 5, and 6 mmh−1)
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is shown in Figs. A2–A4. Example output of the cosine
scheme portion of the algorithm and how it varies with dif-
ferent combinations of zero difference cosine value (4, 5, and
6 mmh−1), maximum difference (0.5, 1.5, and 2.5 mmh−1),
and always core threshold (4, 5, and 6 mmh−1) is shown in
Figs. A5–A7. As expected, a lower scalar difference (1.2x,
Fig. A2) picks up more distinct features and larger areas for
a given feature compared to a higher scalar difference (1.8x,
Fig. A4) since a lower scalar difference setting will result
in a smaller difference needed for a feature to be identified
from the background (Fig. 4b). In general, fewer separate
features with larger areas are identified when the background
radius is larger compared to when the background radius is
smaller (compare across a row from left to right in Figs. A2–
A4). As the always core threshold setting is increased from
4 to 6 mmh−1, the areas of detected features decrease as the
weaker values along the tapered edges of the local enhance-
ments fall below the detection threshold (compare down a
column from top to bottom in Figs. A2–A7). Similar to the
always core threshold, the areas of the detected features de-
crease as the zero difference cosine value increases from 4 to
6 mmh−1 as the tapered edges of the features no longer meet
the detection threshold (Figs. A5–A7). A lower maximum
difference value decreases the threshold needed to identify
cores when the background value is low. As the maximum
difference value increases, less echo is identified as a feature,
particularly along the edges of the locally enhanced features
(compare across a row from left to right in Figs. A5–A7). De-
pending on the user’s specific application, any one of these
54 variations may be most suitable. A key to this algorithm
is its built-in flexibility.

Figure A1. (a) Reflectivity [dBZ] and (b) snow rate [mmh−1] from the Long Island, NY, NEXRAD radar (KOKX) for 7 February 2021
16:14:13 UTC. Data are shown for a 401km× 401km grid with 2 km grid spacing.

https://doi.org/10.5194/amt-17-3377-2024 Atmos. Meas. Tech., 17, 3377–3399, 2024



3392 L. M. Tomkins et al.: Automated detection of features in radar observations of winter storms

Figure A2. Example of how changing the tuning parameters impacts the feature detection output from the scalar scheme. Data shown are
for a 401km× 401km grid with 2 km grid spacing from 7 February 2021 16:14:13 UTC from the Long Island, NY, NEXRAD radar. The
corresponding input reflectivity field is shown in Fig. A1a, and the snow rate field is shown in Fig. A1b. The scalar multiplier of 1.2x is held
constant in all nine panels, and the always core threshold and background radius are varied. Each column shows feature detection calculated
with a 20 km (a, d, g), 40 km (b, e, h), and 60 km (c, f, i) background radius. Each row shows a feature detection field calculated with an
always core threshold of 4 mmh−1 (a–c), 5 mmh−1 (d–f), and 6 mmh−1 (g–i).
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Figure A3. Example of how changing the tuning parameters impacts the feature detection output from the scalar scheme. Data shown are
for a 401km× 401km grid with 2 km grid spacing from 7 February 2021 16:14:13 UTC from the Long Island, NY, NEXRAD radar. The
corresponding input reflectivity field is shown in Fig. A1a, and the snow rate field is shown in Fig. A1b. The scalar multiplier of 1.5x is held
constant in all nine panels, and the always core threshold and background radius are varied. Each column shows feature detection calculated
with a 20 km (a, d, g), 40 km (b, e, h), and 60 km (c, f, i) background radius. Each row shows a feature detection field calculated with an
always core threshold of 4 mmh−1 (a–c), 5 mmh−1 (d–f), and 6 mmh−1 (g–i).
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Figure A4. Example of how changing the tuning parameters impacts the feature detection output from the scalar scheme. Data shown are
for a 401km× 401km grid with 2 km grid spacing from 7 February 2021 16:14:13 UTC from the Long Island, NY, NEXRAD radar. The
corresponding input reflectivity field is shown in Fig. A1a, and the snow rate field is shown in Fig. A1b. The scalar multiplier of 1.8x is held
constant in all nine panels, and the always core threshold and background radius are varied. Each column shows feature detection calculated
with a 20 km (a, d, g), 40 km (b, e, h), and 60 km (c, f, i) background radius. Each row shows a feature detection field calculated with an
always core threshold of 4 mmh−1 (a–c), 5 mmh−1 (d–f), and 6 mmh−1 (g–i).
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Figure A5. Example of how changing the tuning parameters impacts the feature detection output from the cosine scheme. Data shown are
for a 401km× 401km grid with 2 km grid spacing from 7 February 2021 16:14:13 UTC from the Long Island, NY, NEXRAD radar. The
corresponding input reflectivity field is shown in Fig. A1a, and the snow rate field is shown in Fig. A1b. The zero difference cosine value
of 4 mmh−1 and background radius of 40 km are held constant in all nine panels, and the always core threshold and maximum difference
are varied. Each column shows feature detection calculated with a maximum difference of 0.5 mmh−1 (a, d, g), 1.5 mmh−1 (b, e, h), and
2.5 mmh−1 (c, f, i). Each row shows a feature detection field calculated with an always core threshold of 4 mmh−1 (a–c), 5 mmh−1 (d–f),
and 6 mmh−1 (g–i).
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Figure A6. Example of how changing the tuning parameters impacts the feature detection output from the cosine scheme. Data shown are
for a 401km× 401km grid with 2 km grid spacing from 7 February 2021 16:14:13 UTC from the Long Island, NY, NEXRAD radar. The
corresponding input reflectivity field is shown in Fig. A1a, and the snow rate field is shown in Fig. A1b. The zero difference cosine value
of 5 mmh−1 and background radius of 40 km are held constant in all nine panels, and the always core threshold and maximum difference
are varied. Each column shows feature detection calculated with a maximum difference of 0.5 mmh−1 (a, d, g), 1.5 mmh−1 (b, e, h), and
2.5 mmh−1 (c, f, i). Each row shows a feature detection field calculated with an always core threshold of 4 mmh−1 (a–c), 5 mmh−1 (d–f),
and 6 mmh−1 (g–i).
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Figure A7. Example of how changing the tuning parameters impacts the feature detection output from the cosine scheme. Data shown are
for a 401km× 401km grid with 2 km grid spacing from 7 February 2021 16:14:13 UTC from the Long Island, NY, NEXRAD radar. The
corresponding input reflectivity field is shown in Fig. A1a, and the snow rate field is shown in Fig. A1b. The zero difference cosine value
of 6 mmh−1 and background radius of 40 km are held constant in all nine panels, and the always core threshold and maximum difference
are varied. Each column shows feature detection calculated with a maximum difference of 0.5 mmh−1 (a, d, g), 1.5 mmh−1 (b, e, h), and
2.5 mmh−1 (c, f, i). Each row shows a feature detection field calculated with an always core threshold of 4 mmh−1 (a–c), 5 mmh−1 (d–f),
and 6 mmh−1 (g–i).

Code availability. We submitted functions that run the feature de-
tection algorithm to the Py-ART GitHub repository (Helmus and
Collis, 2016) to facilitate use of this technique by others. They
were accepted and released in Py-ART version 1.14.1. The Py-
ART function used to create the figures in the paper can be
accessed via https://arm-doe.github.io/pyart/API/generated/pyart.
retrieve.feature_detection.html (Helmus and Collis, 2016). An ex-
ample of how to use the function is provided here: https://arm-doe.
github.io/pyart/examples/retrieve/plot_feature_detection.html (last
access: 27 November 2023).

Data availability. The NWS NEXRAD Level-II data used in
Figs. 9–12 can be accessed from the National Centers for En-
vironmental Information (NCEI) at https://www.ncei.noaa.gov/
products/radar/next-generation-weather-radar (Amazon Web Ser-
vices, 2023). The radar composites created from the NEXRAD
Level-II data used in Figs. 9–12 can be accessed from a Dryad
repository at https://doi.org/10.5061/dryad.rbnzs7hj9 (Tomkins et
al., 2023b).

Video supplement. Below is a list of animations with captions and
filenames. All animations can be viewed at https://av.tib.eu/series/
1524/ (Tomkins, 2023e). Individual animations can be viewed by
following the DOI URL.

Animation-Figure-9 (https://doi.org/10.5446/63170, Tomkins,
2023a) is an animated plot of Fig. 9 demonstrating bounding the
best-estimate feature detection with purposeful overestimates and
underestimates using an example from 7 February 2021 13:30–
15:30 UTC that features a primary snow band and a few multi-
bands. Locally enhanced features that include mixed precipitation
are image muted in gray (Tomkins et al., 2022). (a) Re-scaled snow
rate field (mmh−1 units) and feature detection (b) best estimate,
(c) underestimate, and (d) overestimate. Feature detection fields
show background regions in teal, strong features in yellow, and faint
features in orange.

Animation-Figure-10 (https://doi.org/10.5446/63171, Tomkins,
2023c) is an animated plot of Fig. 10 demonstrating bounding the
best-estimate feature detection with purposeful overestimates and
underestimates using an example from 17 December 2020 05:30–
07:30 UTC that features several strong primary bands and a few
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faint multi-bands. Locally enhanced features that include mixed
precipitation are image muted in gray. (a) Re-scaled snow rate field
(mmh−1 units) and feature detection (b) best estimate, (c) under-
estimate, and (d) overestimate. Feature detection fields show back-
ground regions in teal, strong features in yellow, and faint features
in orange.

Animation-Figure-11 (https://doi.org/10.5446/63172, Tomkins,
2023b) is an animated plot of Fig. 11 demonstrating bounding the
best-estimate feature detection with purposeful overestimates and
underestimates using an example from 17 December 2019 15:30–
17:30 UTC that features many faint multi-bands. Locally enhanced
features that include mixed precipitation are image muted in gray.
(a) Re-scaled snow rate field (mmh−1 units) and feature detection
(b) best estimate, (c) underestimate, and (d) overestimate. Feature
detection fields show background regions in teal, strong features in
yellow, and faint features in orange.

Animation-Figure-12 (https://doi.org/10.5446/63168, Tomkins,
2023d) is animated plot of Fig. 12 demonstrating bounding the
best-estimate feature detection with purposeful overestimates and
underestimates using an example from 7 February 2020 12:30–
14:30 UTC that features a large primary band, portions of which are
mixed precipitation and image muted in gray. (a) Re-scaled snow
rate field (mmh−1 units) and feature detection (b) best estimate,
(c) underestimate, (d) overestimate. Feature detection fields show
background regions in teal, strong features in yellow, and faint fea-
tures in orange.
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