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Abstract. Ocean surface wind speed (i.e., wind speed 10 m
above sea level) is a critical parameter used by atmospheric
models to estimate the state of the marine atmospheric
boundary layer (MABL). Accurate surface wind speed mea-
surements in diverse locations are required to improve char-
acterization of MABL dynamics and assess how models sim-
ulate large-scale phenomena related to climate change and
global weather patterns. To provide these measurements,
this study introduces and evaluates a new surface wind
speed data product from the NASA Langley Research Center
nadir-viewing High Spectral Resolution Lidar – generation 2
(HSRL-2) using data collected as part of the NASA Aerosol
Cloud meTeorology Interactions oVer the western ATlantic
Experiment (ACTIVATE) mission. The HSRL-2 can directly
measure vertically resolved aerosol backscatter and extinc-
tion profiles without additional constraints or assumptions,
enabling the instrument to accurately derive atmospheric at-
tenuation and directly determine surface reflectance (i.e., sur-
face backscatter). Also, the high horizontal spatial resolution
of the HSRL-2 retrievals (0.5 s or ∼ 75 m along track) al-
lows the instrument to probe the fine-scale spatial variabil-
ity in surface wind speeds over time along the flight track
and over breaks in broken cloud fields. A rigorous evalu-
ation of these retrievals is performed by comparing coin-

cident HSRL-2 and National Center for Atmospheric Re-
search (NCAR) Airborne Vertical Atmosphere Profiling Sys-
tem (AVAPS) dropsonde data, owing to the joint deployment
of these two instruments on the ACTIVATE King Air aircraft.
These comparisons show correlations of 0.89, slopes of 1.04
and 1.17, and y intercepts of −0.13 and −1.05 ms−1 for lin-
ear and bisector regressions, respectively, and the overall ac-
curacy is calculated to be 0.15± 1.80 ms−1. It is also shown
that the dropsonde surface wind speed data most closely fol-
low the HSRL-2 distribution of wave slope variance using the
distribution proposed by Hu et al. (2008) rather than the ones
proposed by Cox and Munk (1954) and Wu (1990) for sur-
face wind speeds below 7 ms−1, with this category compris-
ing most of the ACTIVATE data set. The retrievals are then
evaluated separately for surface wind speeds below 7 ms−1

and between 7 and 13.3 ms−1 and show that the HSRL-2 re-
trieves surface wind speeds with a bias of∼ 0.5 ms−1 and an
error of∼ 1.5 ms−1, a finding not apparent in the cumulative
comparisons. Also, it is shown that the HSRL-2 retrievals are
more accurate in the summer (−0.18± 1.52 ms−1) than in
the winter (0.63± 2.07 ms−1), but the HSRL-2 is still able to
make numerous (N = 236) accurate retrievals in the winter.
Overall, this study highlights the abilities and assesses the
performance of the HSRL-2 surface wind speed retrievals,
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and it is hoped that further evaluation of these retrievals will
be performed using other airborne and satellite data sets.

1 Introduction

The layer between the ocean and free troposphere, known
as the marine atmospheric boundary layer (MABL), hosts
various processes such as the modulation of sensible and la-
tent heat fluxes, the exchange of gases such as carbon diox-
ide, the evolution of clouds, and the transport of aerosol
particles (Neukermans et al., 2018). Improved characteriza-
tion of MABL dynamics is required to accurately simulate
large-scale phenomena related to climate change and global
weather patterns (Paiva et al., 2021). This characterization re-
lies on a combination of global numerical weather prediction
(NWP) models and real observations (Carvalho, 2019). One
of the most influential parameters that drives these MABL
processes is ocean surface wind speeds or wind speeds at
10 m above sea level (hereafter called surface wind speeds).
Therefore, instruments such as lidar are used to provide accu-
rate surface wind speed measurements in various geographi-
cal locations to improve estimations of the MABL state glob-
ally. For instance, satellite lidar systems that measure aerosol
and cloud vertical distributions, such as the lidar on board the
NASA Cloud–Aerosol Lidar and Infrared Pathfinder Obser-
vation (CALIPSO) satellite, also have the capability to pro-
vide horizontally resolved surface wind speed data. The un-
derlying principle of lidar surface wind speed retrievals was
first derived by Cox and Munk (1954), where bidirectional
reflectance measurements of sea surface glint are used to es-
tablish a Gaussian relationship between surface wind speeds
and the distribution of wind-driven wave slopes. To probe
these surface wave slopes, lidar instruments emit laser pulses
into the atmosphere and measure the reflectance (or backscat-
ter) of those laser pulses from particles, molecules, and the
ocean surface. The magnitude of the measured signal is then
used to estimate the variance of the wave slope distribution
(i.e., wave slope variance) and therefore surface wind speed.
Note that reflectance and backscatter are used interchange-
ably throughout this paper.

Although many studies have expanded upon the origi-
nal Cox–Munk relationship (e.g., Hu et al., 2008; Josset et
al., 2008, 2010a; Kiliyanpilakkil and Meskhidze, 2011; Nair
and Rajeev, 2014; Murphy and Hu, 2021; Sun et al., 2024),
these parameterizations do not account for atmospheric at-
tenuation by aerosols and therefore have difficulty in cali-
brating the measured ocean surface reflectance accurately.
This presents a difficulty for elastic backscatter lidars like
CALIPSO, for which the signal is typically calibrated high in
the atmosphere where molecular backscatter dominates and
aerosol backscatter is insignificant or can be accurately es-
timated. The problem lies in the transfer of this calibration
to the ocean surface, which entails accounting for the atten-

uation of the transmitted and backscattered light by the in-
tervening atmosphere between the calibration region and the
ocean surface. If coincident aerosol optical depth (AOD) data
are available (e.g., from MODIS in the case of CALIPSO de-
tailed in Josset et al., 2008), then they may be used to esti-
mate the intervening attenuation and transfer the calibration.
However, such data from passive sensors including MODIS
are only available during daytime, are typically not produced
in the vicinity of clouds, and may have unacceptably high un-
certainties for accurately accounting for aerosol attenuation.
Estimation of the attenuation from the lidar data alone re-
quires an assumption of the aerosol extinction-to-backscatter
ratio (or “lidar ratio”), so errors in the assumed value can lead
to an incorrect estimate of attenuation, especially when AOD
is high. Because of this, the surface wind speed estimates in
Hu et al. (2008) were limited to scenes with no clouds and
negligible aerosol loading.

This study addresses retrieving surface wind speed di-
rectly from lidar without other assumptions or external
constraints by employing the high-spectral-resolution lidar
(HSRL) technique through the NASA Langley Research
Center (LaRC) airborne High-Spectral-Resolution Lidar –
Generation 2 (HSRL-2) instrument (Hair et al., 2008). The
HSRL-2 can directly measure vertically resolved aerosol
backscatter and extinction profiles without relying on an as-
sumed lidar ratio or on other external aerosol constraints,
enabling accurate estimates of the attenuation of the atmo-
sphere. Therefore, the surface reflectance can be directly de-
termined, providing a measure of the wave slope variance
and thus surface wind speed. Note that the HSRL-2 oper-
ates at a nadir-viewing geometry, which is detailed more in
Sect. 2.4. At nadir or near-nadir incidence angles, the sur-
face contribution of the lidar surface backscatter signal is the
largest and is therefore sensitive to changes in wind speed
(Josset et al., 2008, 2010a, b), making it possible to introduce
relatively simplified models of sea surface reflectance. How-
ever, Li et al. (2010) demonstrated that for higher-incidence-
angle lidar systems (> 15°), the sensitivity of the lidar sur-
face signal would rapidly decrease as these highly non-nadir
incidences shift the signal towards a subsurface contribution
rather than a surface one. A more recent lidar study based on
the highly non-nadir (∼ 37°) Aeolus UV HSRL (Labzovskii
et al., 2023) indirectly confirms this phenomenon by show-
ing low agreement between passive remote sensing reflectiv-
ity and Aeolus surface reflectivity parameters over water sur-
faces such as oceans. For these reasons, an opportunity to re-
trieve ocean surface wind speeds using lidar ocean backscat-
tering has been shown to be effective only for nadir or near-
nadir lidar systems such as the HSRL-2.

This study details the HSRL-2 surface wind speed retrieval
methodology and evaluates this surface wind speed prod-
uct through comparison with measurements from National
Center for Atmospheric Research (NCAR) Airborne Verti-
cal Atmospheric Profiling System (AVAPS) dropsondes. This
work leverages an extensive data set from the NASA Aerosol
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Cloud meTeorology Interactions oVer the western ATlantic
Experiment (ACTIVATE) mission, the multiple scientific and
technological objectives of which are described in Sect. 2.1
(Sorooshian et al., 2019). The mission consisted of six de-
ployments between 2020 and 2022 and featured the joint de-
ployment of the HSRL-2 and dropsonde launcher on one of
its two aircraft to enable direct comparison between the two
instrument data sets. The mission, dropsonde and HSRL-2
instrumentation, HSRL-2 algorithm, and the methods and re-
sults of evaluating the accuracy of the HSRL-2 surface wind
speed data retrievals are all detailed in the following discus-
sion.

2 Methods

2.1 ACTIVATE mission description

The HSRL-2 ocean surface wind speed product is assessed
during the ACTIVATE campaign, which is a NASA Earth
Venture Suborbital-3 (EVS-3) mission. The primary aim
of ACTIVATE is to improve knowledge of aerosol–cloud–
meteorology interactions, which are linked to the highest
uncertainty among components contributing to total anthro-
pogenic radiative forcing (Bellouin et al., 2020). There are
three major scientific objectives: (i) characterize interre-
lationships between aerosol particle number concentration
(Na), cloud condensation nuclei (CCN) concentration, and
cloud drop number concentration (Nd), with the goal of de-
creasing uncertainty in model parameterizations of droplet
activation; (ii) advance process-level knowledge and simu-
lation of cloud microphysical and macrophysical properties,
including the coupling of aerosol effects on clouds and cloud
effects on aerosol particles; and (iii) assess remote sens-
ing capabilities to retrieve geophysical variables related to
aerosol–cloud interactions. This study focuses on the third
objective, which has already received attention with AC-
TIVATE data for retrievals other than ocean surface wind
speeds (Schlosser et al., 2022; Van Diedenhoven et al., 2022;
Chemyakin et al., 2023; Ferrare et al., 2023). ACTIVATE
built a large volume of flight data statistics over the western
North Atlantic Ocean (WNAO) by flying six deployments
across 3 years (2020–2022), with a winter and summer de-
ployment each year (Sorooshian et al., 2023). Winter de-
ployments included the following date ranges: 14 February–
12 March (2020), 27 January–2 April (2021), and 30 Novem-
ber 2021–29 March (2022). Summer deployments were as
follows: 13 August–30 September (2020), 13 May–30 June
(2021), and 3 May–18 June (2022). Across all 3 years, 90
King Air flights during the winter deployments were per-
formed with 373 dropsondes launched, while 78 flights dur-
ing the summer deployments took place with 412 dropsondes
launched.

Two NASA Langley aircraft flew in spatial and temporal
coordination for the majority of the total flights (162 of 179).

A “stacked” flight strategy was developed where a low-flying
(< 5 km) HU-25 aircraft collected in situ data in and just
above the MABL, while a high-flying (∼ 9 km) King Air air-
craft simultaneously provided remote sensing retrievals and
dropsonde measurements in the same altitude range. In doing
so, the stacked aircraft would simultaneously obtain data rel-
evant to aerosol–cloud–meteorology interactions in the same
column of the atmosphere and provide a complete picture
of the lower troposphere (Sorooshian et al., 2019). In situ
measurements of gases, particles, meteorological variables,
and cloud properties were conducted by the HU-25 Falcon.
The King Air payload included the NASA Goddard Insti-
tute for Space Studies (GISS) Research Scanning Polarime-
ter (RSP) and the two instruments relevant to this work: the
NASA LaRC HSRL-2 and the NCAR AVAPS dropsondes
(Sorooshian et al., 2023). An advantage of the joint deploy-
ment of HSRL-2 and AVAPS dropsondes on the King Air
is that the data are spatially synchronized at launch, with
wind drift of the dropsondes during descent accounted for
with procedures summarized in Sect. 2.2.

The rationale for flying over the WNAO in different sea-
sons was to collect data across a wide range of aerosol and
meteorological regimes, with the latter promoting a broad
range of cloud conditions (Painemal et al., 2021). A signif-
icant meteorological feature is the North Atlantic Oscilla-
tion, which is the oscillation between the Bermuda–Azores
High (high pressure system) and the Icelandic Low (low
pressure system; Lamb and Peppler, 1987). In the summer,
the Bermuda–Azores High is at its peak and introduces east-
erly and southwesterly trade winds (Sorooshian et al., 2020).
Starting in the fall, the Icelandic Low becomes prominent
and introduces westerly winds in the boundary layer. The
balancing act between these pressure systems dictates the cli-
mate of the North Atlantic and the prevailing transport pro-
cesses (Li et al., 2002; Creilson et al., 2003; Christoudias
et al., 2012). These transport processes that vary season-
ally explain why winter flights coincided with more offshore
(westerly) flow containing aerosol types impacted by anthro-
pogenic influence (e.g., Corral et al., 2022), whereas summer
flights included more influence from wildfire emissions and
African dust, among other sources both natural and anthro-
pogenic in nature (Mardi et al., 2021; Aldhaif et al., 2020).
Winds and turbulence tend to be stronger in the winter due to
higher temperature gradients between the air and the ocean
(Brunke et al., 2022). This prevalence of turbulent condi-
tions, which typically coincides with cold air outbreak con-
ditions, allows for a higher fraction of available aerosol par-
ticles in the MABL to activate into cloud droplets in the
winter compared to in the summer (Dadashazar et al., 2021;
Kirschler et al., 2022; Painemal et al., 2023). Therefore,
this study region allows the HSRL-2 surface wind speed re-
trievals to be evaluated in various meteorological and aerosol
loading conditions.
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2.2 Dropsondes

The AVAPS system deployed during the ACTIVATE mis-
sion utilized the newer, more reliable NRD41 “mini-sondes”.
Their smaller form factor along with updates to their launch-
ing hardware increased reliability for launches since these
instruments could be used with more aircraft and launcher
configurations (Vömel and Dunion, 2023). A variable num-
ber of dropsondes were launched per flight, usually three to
four for routine flights, with more being launched for spe-
cific targeted flight opportunities. With response times much
less than 1 s, the AVAPS samples position, wind speed (with
0.5 ms−1 uncertainty; Vömel and Dunion, 2023), and state
variables such as pressure, temperature, and humidity all the
way to ∼ 6 m above the ocean surface. The data are then
post-processed via the NCAR Atmospheric Sounding Pro-
cessing Environment (ASPEN) software, where any spuri-
ous data are removed, including any data returned from the
ocean surface itself (Martin and Suhr, 2021). More details on
the AVAPS system and its usage on other aircraft and mis-
sions can be found in Vömel et al. (2021), and details of its
usage in ACTIVATE specifically can be found in Vömel and
Dunion (2023). Not many studies exist on surface wind speed
validation of aircraft instruments with dropsondes (Bedka et
al., 2021), so this study also highlights the potential of using
dropsondes to validate aircraft surface wind speed data.

2.3 HSRL-2 instrument description

The NASA LaRC HSRL-2 is an airborne lidar instrument
designed to enable vertically resolved retrievals of aerosol
properties, such as aerosol backscatter and depolarization, at
three wavelengths (355, 532, and 1064 nm), aerosol extinc-
tion at two wavelengths (355 and 532 nm; Hair et al., 2008;
Burton et al., 2018), and aerosol classification (Burton et
al., 2012). In addition to these aerosol products, other re-
trieval capabilities include retrievals of atmospheric mixed
layer height (Scarino et al., 2014), of ocean subsurface par-
ticulate backscatter and attenuation coefficients (Schulien et
al., 2017), of cloud optical properties (in development), and
of 10 m surface wind speeds, the latter of which is the focus
of this study. Details of the laser receiver optics and detec-
tors are described in detail in Hair et al. (2008). This analysis
utilizes the 532 nm data channels that include a total scat-
tering channel (both molecular and particulate scattering),
molecular scattering only, and the cross-polarized channel,
all of which are internally calibrated during flight. Key to
determining the optical transmission and subsurface signals
is a molecular channel that filters essentially all the partic-
ulate and specular scattering using the iodine notch filter as
described in Hair et al. (2008), determining both the laser
transmission down to the surface and the correction of the
subsurface scattering contribution to the integrated surface
backscatter signal.

The laser is a custom-built 200 Hz repetition rate Nd:YAG
laser emitting at 1064 nm, which is converted to both the
second and third harmonic wavelengths of 532 and 355 nm,
respectively. The output laser energies are nominally 34 mJ
(1064 nm) and 11 mJ (532 and 355 nm each), and each is set
to a divergence (1/e2) of approximately 0.8 mrad, giving a
beam footprint diameter on the ocean surface of∼ 7 m for the
nominal 9 km King Air flight altitude. The telescope is set to
a full field of view of 1 mrad, giving a viewing footprint di-
ameter of 9 m at the ocean surface at nominal flight altitude.
All three wavelengths are transmitted coaxially with the tele-
scope through a fused silica window in the bottom of the air-
craft and are actively bore sighted to the receiver. The HSRL-
2 incorporates high-speed photomultiplier tubes (PMTs) and
custom amplifiers to allow data collection at 120 MHz sam-
pling rates with 40 MHz bandwidths. Data are sampled at
120 MHz (1.25 m in the atmosphere and 0.94 m in the ocean)
with 16-bit digitizers, and single-shot profiles are summed
over 100 laser shots during 0.5 s, which is the fundamental
acquisition interval before storing to a disk. The aircraft in-
corporates an Applanix Inertial Navigation System (INS) to
record the aircraft altitude at 0.5 s time intervals correspond-
ing to each 100-shot data profile.

2.4 HSRL-2 surface wind speed retrieval method

As mentioned in the previous section, a lidar system emits
laser pulses into the atmosphere, and the backscattered light
from particles (aerosols) and molecules is collected with a
telescope and imaged onto optical detectors, where the gen-
erated analog electrical signal is digitally sampled as a func-
tion of time. Backscatter is also received from the reflection
of the laser pulse off the ocean surface and is referred to as
the “surface return” signal. To derive surface wind speeds,
the surface backscattered (180°) reflected radiance (βsurf;
units sr−1) is estimated from the surface return signal and
related to the wave slope variance (σ 2), as detailed in Josset
et al. (2010b), through

βsurf =
CF

4πσ 2cos5(θ)
e
−

tan2(θ)
σ2 , (1)

where CF is the Fresnel coefficient and is set to 0.0205 as
given in Venkata and Reagan (2016), and θ is the angle of
incidence of the laser with the ocean surface. As noted in the
Introduction section, the HSRL-2 is operated in a nadir-only
viewing geometry (i.e., not scanning). However, there is a
small offset from this nadir incidence angle due to the pitch
and roll angles of the King Air aircraft. This offset angle is
measured by the Applanix INS and is then used in Eq. (1)
to derive the wave slope variance. The median pitch and roll
angles depend on the flight conditions (e.g., wind and fuel
loads) but ranged from 2 to 5° for pitch and < 1° for roll
during ACTIVATE flights. The surface wind speed data are
screened to limit the pitch and roll to less than ±3° from the
median values, resulting in HSRL-2 incidence angles of< 3°
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for roll and < 8° for pitch. This screening effectively selects
cases where the aircraft is flying straight and level legs.

The mean wind speed at 10 m above the sea surface (U )
is then derived using a piecewise empirical relationship be-
tween surface wind speed and wave slope variance from Hu
et al. (2008), where

U =

(
〈σ 2
〉

0.0146

)2

, 〈σ 2
〉< 0.0386, U < 7ms−1, (2a)

U =

(
〈σ 2
〉− 3.0× 10−3

5.12× 10−3

)
, 0.0386≤ 〈σ 2

〉< 0.0711,

7ms−1
≤ U < 13.3ms−1, (2b)

U = 10
(
〈σ2
〉+0.084
0.138

)
, 〈σ 2
〉 ≥ 0.0711,U ≥ 13.3ms−1. (2c)

The relationships shown in Eqs. (2a)–(2c) were derived by
Hu et al. (2008) using comparisons between the Advanced
Microwave Scanning Radiometer for EOS (AMSR-E) sur-
face wind speeds and the CALIPSO backscatter reflectance
mentioned in Sect. 1; they agree identically with the Cox–
Munk relationship for surface wind speeds between 7 and
13.3 ms−1 and the log-linear relationship proposed by Wu
(1990) for surface wind speeds above 13.3 ms−1.

With respect to surface wind speed retrievals, the HSRL-
2 instrument offers two major advantages over standard
backscatter lidars such as CALIPSO: (1) it can account for
atmospheric attenuation between the aircraft and the surface,
so retrievals can be performed without constraining the re-
trieval to low-AOD conditions (i.e., negligible aerosol load-
ing) or assuming the lidar ratio, and (2) it has high-vertical-
resolution sampling (1.25 m) that enables accurate correction
for ocean subsurface scattering, which makes a small but
non-negligible contribution to the measured surface return.
The equations for the HSRL-2 532 nm measurement chan-
nels are

Pmol(r)=Gmol
1
r2F(r)β

‖
m(r)T

2(r), (3a)

Ptot(r)=GmolGi2
1
r2

×
[(
β‖p (r)+β

‖
m(r)

)
+Gdep

(
β⊥p (r)+β

⊥
m (r)

)]
T 2(r), (3b)

where Px is the total measured signal per sampling interval
by the lidar, and r denotes the range from the lidar. Here the
mol subscript denotes the measured signal on the molecular
channel, which is obtained by blocking particulate backscat-
ter and surface return signals using an iodine vapor filter.
The tot subscript denotes the “total” backscatter calculated
from the sum of two measurement channels: the co-polarized
channel and the cross-polarized channel. These channels are
essentially elastic backscatter lidar channels similar to the
532 nm channels on CALIPSO, in that they measure atten-
uated backscatter from both molecules and particles. The co-
polarized channel measures backscatter that is polarized par-
allel to the linear polarization of the transmitted laser pulses,

and the cross-polarized channel measures backscatter with
polarization perpendicular to the laser pulses. The volume
backscatter coefficient, β (units: m−1 sr−1), is separated into
components arising from either molecular scattering (m) or
particulate scattering (p) and by polarization parallel (‖) or
perpendicular (⊥) to the laser. The combined collection ef-
ficiency, optical efficiency, and overall electronic gain for
the signals are denoted by Gx . The T 2 factor is the two-
way transmission of the atmosphere, which accounts for both
molecular scattering and particulate scattering as well as ab-
sorption between the lidar and range r . A full description of
the instrument channels is available in Hair et al. (2008).

Equations (3.1) and (3.2) are generalized such that the
backscatter coefficients and transmission factors can be from
either the atmosphere or the ocean, depending on the altitude
(or depth) of the scattering volume. Also, the transmission of
the molecular backscatter through the iodine vapor filter, F ,
is based on either the atmosphere (atm) or the ocean (ocn)
scattering regions, as they have different backscatter spectra
and thus different iodine filter transmission factors, both of
which are determined by laboratory calibrations and mod-
eled molecular scattering spectra (Hair et al., 2008). Calibra-
tion operations are conducted during each flight to provide
the relative gain ratios between the molecular (mol) and co-
polarized (par) channels, Gi2, and between the co-polarized
and cross-polarized (per) channels, Gdep, such that

Gi2 =
Gpar

Gmol
, Gdep =

Gper

Gpar
. (4)

After the internal gain ratios (Eq. 4) are applied, the two sig-
nals (Eqs. 3.1 and 3.2) have the same relative gain. As will
be shown below, the retrieval implements ratios of these two
signals, and therefore neither the absolute gain nor any other
absolute calibration factor is required to determine the sur-
face backscatter.

To calculate the surface backscatter, the overall system re-
sponse must be accounted for. The measured signal (P ) is the
convolution of the normalized system response (L) with the
ideal measured signal (i.e., infinite detection bandwidth and
delta-function-like laser pulse), this signal being the gain-
scaled (G), range-scaled

(
1
r2

)
, attenuated (T 2) backscatter

coefficient (β, units m−1 sr−1), which can be written as

Pideal(r)=G
1
r2 β(r)T

2(r), (5a)

P(r)=G

∫
∞

−∞

L(r − ρ)Pideal(ρ)dρ. (5b)

The system response includes the impact of the laser’s tem-
poral pulse shape, detector response, and analog electronic
filter response.

To account for different scattering media and to better
understand how the system response impacts the surface
backscatter calculation, it is helpful to separate the total scat-
tering channel, Ptot(r), into three contributions: atmosphere
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Figure 1. Visualization of HSRL-2 measurement signals as de-
scribed in Eqs. (5a), (5b), (6), (7a), and (7b). The dashed line de-
notes ideal total backscatter signal from the atmosphere, surface
reflection, and the ocean subsurface. Blue and black lines denote
measured signals from total and molecular scattering channels, re-
spectively. Red and green lines show the ocean-corrected signal and
the ocean surface backscatter, respectively. Dots indicate the alti-
tudes of digitized samples. The sampling rate is 120 MHz, resulting
in a vertical spacing of 1.25 m in the atmosphere and 0.94 m in the
ocean.

(atm), surface (surf), and ocean (ocn) as the following equa-
tion.

Ptot(r)= P
atm
tot (r)+P

ocn
tot (r)+P

surf
tot (r) (6)

Using Eqs. (5a) and (5b), the last term in Eq. (6), P surf
tot (r),

can be written as

P surf
tot (r)

=GmolGi2

∫
∞

−∞

L(r − ρ)
1
ρ2 βsurfδ(ρ− rs)T

2(ρ)dρ, (7a)

P surf
tot (r)=GmolGi2L(r − rs)

1
r2

s
βsurfT

2(rs), (7b)

where the range to the ocean surface is rs, and the volume
backscatter coefficient for the ocean surface is represented as
βsurfδ(ρ− rs; units: m−1 sr−1), where δ(ρ− rs) is the Dirac
delta function centered at rs. Figure 1 illustrates the vertical
distributions of the measured signals Ptot (black) and Pmol
(blue) along with the P surf

tot (green) component of Ptot. Note
that zero altitude is the location of the ocean surface (Fig. 1).

It is seen from Fig. 1 and Eq. (7b) that the surface compo-
nent P surf

tot of the measured signal Ptot is not localized to the

surface but is instead spread above and below the surface via
convolution with the system response function. The atmo-
sphere and ocean components of Ptot are also impacted by
the convolution, as is Pmol. Rearranging Eqs. (7a) and (7b)
and integrating the total surface backscatter component over
the full vertical extent of the system response function (i.e.,
to ±1z), the surface response function can be eliminated in
the representation of βsurf, as shown in Eq. (8).

βsurf =
1

GmolGi2

r2
s

T 2(rs)

∫ rs+1z

rs−1z
P surf

tot (r)dr (8)

Of course, the measurement that can be accessed is Ptot,
not the surface component, P surf

tot . If Ptot were substituted
for P surf

tot in Eq. (8), βsurf would be overestimated due to
the contribution of ocean subsurface backscatter. The atmo-
spheric contribution is negligible (i.e., < 0.05 %) and can be
ignored. The magnitude of the contribution of the ocean sub-
surface scattering depends on the level of ocean particulate
(hydrosol) as well as molecular seawater backscatter. The
magnitude of this scattering relative to the surface backscat-
ter can impact the retrieved surface wind speed accuracy. For
example, atU = 7ms−1 and assuming pure seawater (i.e., no
hydrosols), the integrated total surface signal would be 5.7 %
higher than the integrated surface backscatter. This results in
a decrease of 0.75 ms−1 (−11 % error) in the estimated sur-
face wind speed. At a 20 ms−1 surface wind speed, the error
in the calculated surface wind speeds results in a decrease
of 2.7 ms−1 (−14 % error). The ocean subsurface correc-
tion becomes less as the particulate scattering (or absorption)
increases due to increased attenuation in the seawater and
therefore contributes less over the integration window around
the ocean surface. Therefore, the ocean subsurface contribu-
tion is higher for clear water compared to turbid water. For
example, in the case illustrated in Fig. 1, the seawater partic-
ulate and molecular scattering are equal, resulting in a con-
tribution of only 3.8 % to the integrated surface backscatter
as compared to the case with no particulate scattering noted
above (5.7 %). The atmospheric signal contribution is much
less (∼ 100 times smaller) than the ocean subsurface signal,
and therefore its contribution is considered negligible. Fortu-
nately, the high vertical resolution of the HSRL-2 instrument
enables the ocean subsurface contribution to be estimated.
The separation of the molecular signal also enables estima-
tion of the two-way transmittance, T 2, and gain factor,Gmol,
in Eq. (8).

For the HSRL-2 instrument, the two-way transmittance is
determined directly from the measured molecular channel,
Pmol. The two-way total (particulate and molecular attenu-
ation) transmittance to the surface can be calculated as fol-
lows:

T 2(rns)=
1

Gmol

Pmol(rns)r2
ns

F(rns)β
‖
m(rns)

, (9)

where F is the iodine vapor filter function (known from lab
and in-flight calibration), β‖m is the molecular backscatter co-
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efficient for the atmosphere (computed from pressure and
temperature data from a reanalysis model), and Pmol(rns)r2

ns
is the range-scaled molecular channel signal near the ocean
surface (where rns is the near-surface range). In practice, this
is computed by averaging data from 60 to 180 m above the
surface. This range is somewhat arbitrary but is chosen as a
balance between ensuring that the signal does not include any
of the surface reflectance and that the signal is low enough
to capture most of the attenuation down to the surface. Sub-
stituting Eq. (9) into Eq. (8), one can solve for the surface
backscatter,

βsurf =
1
Gi2

∫ rs+1z
rs−1z

r2P surf
tot (r)dr

Pmol(rns)r2
ns

F(rns)β
‖
m(rns)

. (10)

To account for the ocean subsurface contributions to the mea-
sured signal, Eqs. (5a) and (5b) can be rearranged as

P surf
tot (r)= Ptot−P

atm
tot (r)−P

ocn
tot (r). (11)

A benefit of the HSRL-2 retrieval algorithm is that one can
use the molecular channel signal to determine the ocean sig-
nal near the surface (see Fig. 1). To determine the near-
surface ocean signal, an estimate of the total ocean scatter-
ing ratio (TSR) is employed, which is the ratio of molecu-
lar plus hydrosol backscatter divided by molecular backscat-
ter. An estimate of the near-surface TSR (TSRocn) is com-
puted, using the quotient of the total and molecular channels
(Ptot/Pmol) averaged over a small range of depths just below
the depth at which the surface signal response goes to zero,
as the following equation:

TSRocn ≡

(
βp+βm

βm

)
=
Focn(r)

Gi21r

∫ rs+21z

rs+1z

Ptot(r)

Pmol(r)
dr, (12)

where Focn accounts for the spectral transmission of the
molecular seawater backscatter through the iodine vapor fil-
ter and is determined via in-flight and laboratory calibra-
tions. The ocean subsurface component of the total channel
backscatter is estimated as the following equation:

P ocn
tot (r)= TSRocnGi2

Pmol(r)

Focn(r)

below the surface (r > rs). (13)

Here the assumption is that the TSR is vertically constant
near the surface over the 0.5 s (∼ 75 m horizontal resolution)
integration of the lidar signals. Combining Eqs. (10), (11),
and (13) and ignoring the atmospheric contribution P atm

tot to
the total channel signal, one can compute the absolute surface
backscatter using the two measured channels as

βsurf =

∫ rs+1z
rs−1z

(
Ptot(r)

Gi2
−TSRocn ·Pmol(r)

)
r2dr

Pmol(rns)r2
ns

Fatm(rns)β
‖
m(rns)

. (14)

Figure 2. Estimated absolute difference in calculated surface wind
speed if reflectance from whitecaps is not included. The lidar sur-
face backscatter is higher than the specular reflectance if whitecaps
are present, which results in a lower estimated surface wind speed
if not accounted for in the retrieval.

The use of the molecular channel in this way cancels out the
absolute system gain constant (Gmol), provides an estimate
of the two-way transmittance of the atmosphere, and enables
subtraction of the ocean subsurface backscatter. It does not
require precise knowledge of the system response function or
any other assumptions. With Eq. (14), one can calculate the
wave slope variance using Eq. (1) and then use Eqs. (2.1)–
(2.3) to derive surface wind speeds.

In addition to the specular reflection from the surface,
whitecaps or sea foam can increase the lidar backscatter sig-
nal. As noted in Josset et al. (2010b), the contribution of scat-
tering by the whitecaps on the ocean surface has been treated
as Lambertian scattering. There is a wavelength dependence
of the scattering at longer wavelengths due to water absorp-
tion, based on measurements presented by Dierssen (2019)
covering wavelengths from 0.4 to 2.5 µm. Measurements pre-
sented here are at 532 nm, a region of the visible spectrum
where scattering from foam is relatively constant with wave-
length. The contribution of whitecaps is typically modeled
with a constant average reflectance and an effective-area-
weighted fraction that varies with surface wind speed (Whit-
lock et al., 1982; Koepke, 1984; Gordon and Wang, 1994;
Moore et al., 2000). Following Moore et al. (2000), we have
estimated the average reflectance due to the whitecaps as a
function of surface wind speed, and the difference becomes
> 1 ms−1 for surface wind speeds > 15 ms−1 based on this
relationship (Fig. 2). The main observation is that there are
limited data (49 data points) above 13.3 ms−1 that can be
compared to the dropsonde surface wind speeds to evalu-
ate this relationship. Moreover, since the correction depends
on surface wind speed, an iterative calculation is required to
use this relationship, as the backscatter is dependent on wind
speed.

Alternatively, Hu et al. (2008) used a full month of
CALIPSO-integrated surface depolarization ratio data (the
ratio of the integrated cross-polarized channel to the inte-
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grated co-polarized channel across the surface) and applied
an empirical correction to the reflectance that was determined
using AMSR-E data as the ground-truth data set to increase
the correlation of the data sets. The correlation was based
on much more data than the ACTIVATE matchups between
HSRL-2 and dropsondes, limiting the utility of a similar
analysis with the HSRL-2. In addition, there are significant
differences in the configurations of CALIPSO and HSRL-
2 that limit implementation of the same empirical relation-
ship. First, the CALIPSO integrated surface depolarization
includes the subsurface contributions due to its 30 m verti-
cal resolution, whereas the HSRL-2 surface depolarization is
integrated over only a few meters, as shown in Fig. 1. Sec-
ond, the CALIPSO data are based on global data, which are
dominated by oligotrophic (clear) waters, whereas a signifi-
cant fraction of the HSRL-2–dropsonde comparisons is from
eutrophic and mesotrophic waters near the coast and along
the shelf. Third, there is a significant difference in footprint
size between HSRL-2 and CALIPSO (8 m versus 90 m), with
the HSRL-2 instantaneous footprint area being greater than
2 orders of magnitude smaller and, considering the HSRL-
2 along-track averaging (100 laser shots) compared to the
CALIPSO single-shot data, greater than 1 order of magni-
tude smaller in terms of the area over which surface depolar-
ization is integrated.

2.5 Collocation and statistical procedures

Since surface wind speeds are the focus of this study, first
the dropsonde wind speed data points closest to 10 m (alti-
tude of 11.56± 3.19 m for the 577 points) above sea level
are recorded for each launch (multiple launches per flight)
to allow meaningful comparison with the HSRL-2 surface
wind speeds. Since one data point was taken per dropsonde
for each flight, there are 160 recorded dropsonde measure-
ments for 2020, 245 measurements for 2021, and 335 mea-
surements for 2022. Then, the HSRL-2 surface wind speed
retrieval closest in space and time to the corresponding drop-
sonde measurement is recorded. Collocation between the
HSRL-2 and the dropsondes is constrained to below 30 km
horizontally and to below 15 min temporally to remove out-
liers, while trying to maximize the number of data points to
be used in the study. Further constraining these distance and
time conditions would eliminate more data points with neg-
ligible improvement to the statistics, as shown by Figs. S1
and S2 in the Supplement. Due to missing data in the HSRL-
2 data set and the removal of outliers based on collocation
constraints, 577 data points are available for comparison be-
tween the dropsondes and the HSRL-2 (Fig. 3).

After the surface wind speed data are prepared using the
procedure above, scatterplots, the correlation coefficient (r),
linear regression, and ordinary least-squares bisector regres-
sion (OLS-bisector) are used to visually demonstrate how
well HSRL-2 surface wind speed data match dropsonde data
and to show any potential variability in the data. Since the

Figure 3. Map of 577 ACTIVATE dropsondes launched from the
King Air between 2020 and 2022, which are used to evaluate the
HSRL-2 surface wind speed retrievals introduced in this study.

OLS-bisector technique is less common than linear regres-
sion, a brief explanation of their differences is provided. In
a linear regression, X is treated as the independent variable,
while Y is treated as the dependent variable. In other words,
one observes how Y varies with changes to fixed X values.
An OLS-bisector is known as an error-in-variable regres-
sion technique, where X and Y are both dependent variables
and thus both subject to error. An OLS-bisector regresses Y
on X (standard OLS) and then regresses X on Y (inverse
OLS), then bisects the angle of these two regression lines
(Ricker, 1973). Although other error-in-variable techniques
exist (e.g., Deming regression and orthogonal distance re-
gression), the OLS-bisector technique was chosen because
it calculates the error present in both data sets using the bi-
sector rather than assuming an error a priori like the exam-
ples mentioned (Wu and Yu, 2018). After performing these
regressions, histograms of surface wind speed deltas, which
are defined as HSRL-2 surface wind speed minus dropsonde
surface wind speed, are created to show the distribution and
spread of the data more easily. The mean and standard devia-
tion (SD) of the surface wind speed deltas are computed and
then used to define the mean error (mean±SD). This met-
ric is used to evaluate how accurately the HSRL-2 retrieves
surface wind speeds.

3 Results and discussion

3.1 Case studies

Before delving into the HSRL-2–dropsonde surface wind
speed intercomparisons in full statistical detail, surface wind
speed data from two ACTIVATE research flights are ana-
lyzed: research flight 29 on 28 August 2020 and research
flight 14 on 1 March 2020. These flights are analyzed to

Atmos. Meas. Tech., 17, 3515–3532, 2024 https://doi.org/10.5194/amt-17-3515-2024



S. Dmitrovic et al.: HSRL-2 retrievals of ocean surface wind speed 3523

demonstrate the ability of the HSRL-2 to (1) provide pro-
files that show the spatial variability in surface wind speed
over time, which are beneficial to observe phenomena like
sea surface temperature dynamics and cloud evolution, and
(2) sample the surface in broken cloud scenes, showing that
the retrievals are not limited to cloud- and aerosol-free con-
ditions like in Hu et al. (2008).

3.1.1 Research flight 29 on 28 August 2020

Research flight 29 was a nearly cloud-free day where an
above-average number of dropsondes were launched, and
the ACTIVATE aircraft were coordinated with the CALIPSO
satellite overpass. These conditions allow for the examina-
tion of how the high horizontal spatial resolution of the
HSRL-2 (∼ 75 m along the track as mentioned in Sect. 2.4)
influences its retrievals and how the data can be used to
track sea surface temperature (SST) gradients common to
the WNAO (Painemal et al., 2021), as seen in Fig. 4. Note
that Fig. 4a uses SST data from the Modern-Era Retro-
spective Analysis for Research and Applications, Version 2
(MERRA-2; Gelaro et al., 2017) to contextualize the SST
gradients present in the WNAO, but no comparisons with
MERRA-2 surface wind speed data are performed in this
study.

It is seen that changes in the HSRL-2 surface wind speeds
(Fig. 4b) correspond to changes in SST (Fig. 4a), especially
at 17:51 and 18:24 UTC (coordinated universal time; all in-
stances of time in the text are in UTC). As the aircraft ap-
proaches and crosses the SST boundary at 17:51 (i.e., SST
increasing), there is a corresponding increase in surface wind
speeds. The reverse observation can be seen when the air-
craft approaches and crosses the boundary at 18:24 (i.e., SST
decreasing), where surface wind speeds noticeably decrease.
Although further analysis is needed to rigorously examine
the relationship between surface wind speed and SST, these
observations show that the HSRL-2 has the high horizontal
spatial resolution needed to probe the fine-scale variability in
surface wind speeds and has the potential to improve atmo-
spheric modeling of MABL processes. These profiles capture
the spatial gradients in surface wind speeds that would other-
wise not be available with the dropsondes alone, since these
instruments can only take point measurements as they drop
vertically to the surface and therefore cannot provide the hor-
izontal spatial extent like the derived HSRL-2 surface wind
speed product can.

3.1.2 Research flight 14 on 1 March 2020

Next, research flight 14 is shown in Fig. 5 to demonstrate the
ability of the HSRL-2 to sample in broken cloud scenes. This
flight, along with the associated morning flight on 1 March
2020, has been the subject of several studies owing to its co-
incidence with cold air outbreak conditions (see cloud streets
in Fig. 5a) and a flight strategy that allowed for detailed

characterization of the evolving aerosol–cloud system as a
function of distance offshore (Seethala et al., 2021; Chen et
al., 2022; Li et al., 2022; Tornow et al., 2022; Sorooshian
et al., 2023). The morning flight focused on a location with
very detailed characterization including stacked level flight
legs (i.e., a “wall”), with the Falcon flying below, in, and
above clouds and the King Air flying aloft to further char-
acterize the same region. The afternoon flight consisted of
both aircraft flying back to that same location, adjusting the
sampling strategy to fly along the boundary layer wind di-
rection in a quasi-Lagrangian fashion to keep studying the
evolution of the air mass characterized in the morning. The
afternoon flight is chosen because it shows the full range of
cloud conditions from clear to completely overcast. There-
fore, the HSRL-2 surface wind speed retrievals are able to be
evaluated in this range of conditions.

As the aircraft approaches the cloud scene at 19:18, there
is a noticeable and steady increase in HSRL-2 surface wind
speeds. The reverse observation is seen at 21:15, where the
HSRL-2 surface wind speeds start to decrease steadily. As
highlighted in the 28 August 2020 case study, the high hor-
izontal spatial resolution of the HSRL-2 retrievals enables
these spatial gradients to be observed. Another important
takeaway is that the HSRL-2 is still able to sample the sur-
face in cloud scenes, as seen by the almost-complete surface
wind speed profile in Fig. 5b. Although a gap in data oc-
curs at 20:15, where cloud cover is most substantial, some
retrievals are still present in that area. The reason is that the
HSRL-2 can probe the surface through gaps between clouds,
allowing the surface wind speed retrievals to take place. Al-
though the HSRL-2 retrievals would be unavailable in over-
cast cloud scenes, the ability of the instrument to sample the
surface in broken cloud fields and not just aerosol- and cloud-
free scenes is a significant benefit of the lidar and the HSRL
technique.

3.2 HSRL-2–dropsonde comparisons

Now, the collocated HSRL-2 retrievals and dropsonde mea-
surements of surface wind speed are compared, and the re-
sults are shown in Fig. 6.

The comparison yields correlation coefficients of 0.89,
slopes of 1.04 and 1.17, and y intercepts of −0.13 and
−1.05 ms−1 for linear and bisector regressions, respectively.
Note that the correlation coefficients are the same for the
linear and bisector regressions throughout this analysis, so
they are listed as one value throughout Sect. 3.2. Using the
mean and SD values in the same figure, the mean error or
accuracy of the HSRL-2 surface wind speed retrievals is
0.15± 1.80 ms−1. These results show that on average, the
HSRL-2 slightly overestimates surface wind speeds and that
the estimation can be off by about 2 ms−1 in either direction.

Now that the HSRL-2 retrievals have been broadly eval-
uated, Fig. 7 shows how their accuracy varies per 1 ms−1

interval in surface wind speed. This plot also provides the
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Figure 4. (a) Flight map of the King Air (black line) and dropsondes (dark yellow circles) overlaid onto a map of MERRA-2 mean sea
surface temperature (SST) data (GMAO, 2015) for research flight 29 on 28 August 2020. The dashed white line corresponds to the CALIPSO
overpass coincident with the King Air flight path. Time stamps represent where the King Air crosses over sharp SST changes associated with
the Gulf Stream. (b) Time series of surface wind speed data from HSRL-2 and dropsondes for the same flight, where the solid black line
signifies total HSRL-2 surface wind speed data, and circles indicate collocated surface wind speed data points. Dashed black lines represent
time stamps of interest as indicated in (a).

Figure 5. (a) Flight map of the King Air (red line), Falcon (yellow line), and dropsondes (dark yellow circles) overlaid onto Geostationary
Operational Environmental Satellite (GOES-16) cloud imagery for research flight 14 on 1 March 2020. Blue stars represent time stamps
where the King Air crosses over from cloud-free to cloudy areas. (b) Time series of surface wind speed data from HSRL-2 and dropsondes
for the same flight, where lines signify total HSRL-2 surface wind speed data, and circles indicate collocated surface wind speed data points.
Dashed blue lines represent time stamps of interest as indicated in panel (a).

opportunity to compare the Hu et al. (2008) model with the
models proposed by Cox and Munk (1954) and Wu (1990)
to see if some of the error in the HSRL-2 retrievals can be
attributed to model characteristics.

It is seen that the mean Cox–Munk and Wu surface wind
speed values are higher than the mean Hu values from 0 to
7 ms−1, showing that the Cox–Munk and Wu relationships
overestimate dropsonde surface wind speeds more than the
Hu relationship does. The variability (i.e., SD) around the
mean per bin is similar between the three models, which is
1.59 ms−1 for Hu, 1.43 ms−1 for Cox–Munk, and 1.55 ms−1

for Wu, on average. Although similar, the SD of the Hu sur-
face wind speeds found here is ∼ 0.4 ms−1 lower than the
one found in Fig. 6. This could be attributed to an SD not

being able to be calculated for the 17 to 18 ms−1 bin since it
only contained one point.

Although it is apparent that the Cox–Munk and Wu
retrievals overestimate dropsonde observations for surface
wind speeds below 7 ms−1, it is still unclear which of the
models performs better overall. Therefore, the y axis from
Fig. 7 is converted to wave slope space, and the result of this
modification is shown in Fig. 8. HSRL-2 wave slope is used
because it directly reports the original measurements of sur-
face reflectance rather than the estimated values of surface
wind speed. Using the original data ensures that uncertainty
is coming from the actual HSRL-2–dropsonde comparisons
rather than from potential errors in the conversion from wave
slope to surface wind speed.
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Figure 6. Scatterplots with associated histograms for HSRL-2–dropsonde collocated surface wind speed data points using the ACTIVATE
2020–2022 data set. N represents the number of data points.

Figure 7. HSRL-2 surface wind speed using the Hu, Cox–Munk,
and Wu models versus mean dropsonde surface wind speed cal-
culated per 1 ms−1 bin. A histogram of dropsonde surface wind
speeds is also included to show their distribution.

From Fig. 8, it is more easily seen how the dropsonde
surface wind speed distribution compares with the Hu,
Cox–Munk, and Wu parameterizations. Dropsonde surface
wind speeds match the Hu and Cox–Munk parameteriza-
tions quite closely but not the Wu parameterization between
7 and 13.3 ms−1, although some divergence is seen above
∼ 10.5 ms−1. However, a critical observation that is more
apparent in Fig. 8 than in Fig. 7 is how the dropsonde data
most resemble the Hu distribution for surface wind speeds
below 7 ms−1. This improvement is substantial, especially
since most of the surface wind speeds in ACTIVATE fall
into this category. Surface wind speeds above 13.3 ms−1 sub-
stantially diverge from all models, especially speeds above
16 ms−1. As mentioned previously, there are few surface
wind speed observations in this category, so more measure-
ments are necessary to make meaningful comparisons be-

Figure 8. HSRL-2 wave slope variance versus mean dropsonde sur-
face wind speed calculated per 1 ms−1 bin. Ideal Hu, Cox–Munk,
and Wu distributions are included to show how well observed drop-
sonde data match each parameterization. A histogram of dropsonde
surface wind speeds is also included to show their distribution.

tween the two data sets. Overall, Figs. 7 and 8 demonstrate
the benefits of using the Hu parameterization in this study
and why surface wind speeds above 13.3 ms−1 are not the
main focus of the comparisons in this section. Further anal-
ysis is warranted to rigorously compare the performance of
various surface reflectance models and potentially apply cor-
rections (i.e., whitecap correction for surface wind speeds
above 13.3 ms−1), but the aim of this paper is to evaluate
the LARC HSRL-2 surface wind speed retrieval algorithm
using the available ground-truth dropsonde measurements.

Now that the Hu relationship has been deemed the more
effective model through the preliminary analysis shown in
Figs. 7 and 8, a more rigorous statistical analysis is per-
formed for surface wind speeds (1) below 7 ms−1 and (2) be-
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tween 7 and 13.3 m s−1 to assess the overall accuracy of the
HSRL-2 retrievals in these categories (Fig. 9).

Intercomparisons for surface wind speeds below 7 ms−1

(Fig. 9a) show correlation coefficients of 0.66, slopes of 0.65
and 0.99, and y intercepts of 1.10 and −0.49 ms−1 for lin-
ear and bisector regressions, respectively. The accuracy of
the HSRL-2 retrievals is calculated to be−0.54± 1.34 ms−1,
showing that the HSRL-2 on average underestimates surface
wind speeds, and this estimation could vary by± 1.34 ms−1.
For surface wind speeds between 7 and 13.3 ms−1 (Fig. 9b),
correlation coefficients of 0.75, slopes of 0.64 and 0.85, and
y intercepts of 3.80 and 1.87 ms−1 are reported for linear
and bisector regressions, respectively. The mean error of
0.56± 1.49 ms−1 shows that the HSRL-2 overpredicts sur-
face wind speeds by about ∼ 0.5 ms−1 on average, with a
variability of ±∼ 1.5 ms−1. Therefore, the means from both
categories average out to ∼ 0 ms−1 since they are approx-
imately the same but in opposite directions. Separating the
data into these categories highlights an important result that
could not be seen in the cumulative data (Fig. 6): one can ex-
pect bias of up to ∼ 0.5 ms−1 in either direction and error of
up to ∼ 1.5 ms−1 on average for most HSRL-2 surface wind
speed retrievals in ACTIVATE.

The data are then divided into winter and summer deploy-
ments (dates provided in Sect. 2.1), as shown in Fig. 10, to
assess the HSRL-2 retrieval accuracy in different seasons.

As seen in Fig. 10a, the winter surface wind speed in-
tercomparisons show correlation coefficients of 0.88, slopes
of 0.95 and 1.08, and y intercepts of 1.03 and −0.08 ms−1

for linear and bisector regressions, respectively. The summer
surface wind speed intercomparisons (Fig. 10b) have corre-
lations of 0.87, slopes of 1.08 and 1.24, and y intercepts of
−0.69 and −1.68 ms−1. Finally, the mean errors for winter
and summer, respectively, are reported as 0.63± 2.07 and
−0.18± 1.52 ms−1. It is seen that the error in the HSRL-2
estimations of surface wind speeds is larger for winter than
for summer, most likely due to the higher fraction of sur-
face wind speeds above 13.3 ms−1 and lower fraction below
7 ms−1 in the winter. This observation makes sense because
of the increased presence of clouds, precipitation, and white-
caps for the higher surface wind speeds observed in the win-
ter. These observations show that HSRL-2 retrievals of sur-
face wind speed are more accurate in the summer versus the
winter. However, the HSRL-2 can still make numerous ac-
curate retrievals, as shown by Fig. 10 and the 1 March 2020
research flight discussions. Caution must still be exercised
when using data from days featuring turbulent meteorologi-
cal conditions that could induce whitecaps and/or substantial
cloud cover that could limit the HSRL-2 or that prevent the
HSRL-2 from sampling the surface.

Statistics evaluating the HSRL-2 surface wind speed re-
trievals (Figs. 6, 9, and 10) are summarized in Table 1 for
convenience.

4 Conclusions

This study introduces a new 10 m surface wind speed prod-
uct from the NASA Langley Research Center (LARC)
nadir-viewing High-Spectral-Resolution Lidar – Generation
2 (HSRL-2) instrument and demonstrates its use and ac-
curacy. The HSRL-2 retrievals are evaluated using NCAR
AVAPS dropsonde surface wind speed data collected during
the NASA ACTIVATE field campaign. ACTIVATE featured
the joint deployment of the HSRL-2 and AVAPS dropsondes
during six deployments from 2020 to 2022, enabling the ac-
curacy of the HSRL-2 surface wind speed retrievals to be as-
sessed using coincident dropsonde measurements. Compar-
isons of HSRL-2 and dropsonde surface wind speeds show
correlations of 0.89, slopes of 1.04 and 1.17, and y intercepts
of−0.13 and−1.05 ms−1 for linear and bisector regressions,
respectively. The accuracy of the HSRL-2 retrievals, as de-
noted by mean error, is calculated to be 0.15± 1.80 ms−1.
It is also observed that the dropsonde surface wind speed
measurements more closely match the Hu et al. (2008) wind
speed–wave slope variance model than with the Cox and
Munk (1954) and Wu (1990) models for surface wind speeds
below 7 ms−1, which is an important finding because most
ACTIVATE surface wind speeds fall into this category. After
this overview of model performance, the HSRL-2 retrievals
for surface wind speeds separated into the below 7 ms−1 and
between 7 and 13.3 ms−1 categories are then evaluated in
more detail. For surface wind speeds below 7 ms−1, correla-
tions of 0.66, slopes of 0.65 and 0.99, and y intercepts of 1.10
and−0.49 ms−1 are found, and the accuracy of the retrievals
is found to be −0.54± 1.34 ms−1. Surface wind speeds be-
tween 7 and 13.3 ms−1 show correlations of 0.75, slopes
of 0.64 and 0.85, and y intercepts of 3.80 and 1.87 ms−1,
and the retrieval accuracy is shown to be 0.56± 1.49 ms−1.
Statistics are not reported for surface wind speeds above
13.3 ms−1 because there are too few points in this category
to make meaningful comparisons. These results showcase
an important observation not seen in the cumulative results,
which is that the HSRL-2 estimates surface wind speeds with
a bias of±∼ 0.5 ms−1 and an error of±∼ 1.5 ms−1. Lastly,
the data are divided into winter and summer deployments
(the dates denoted in Sect. 2.1) to assess how the HSRL-2
performs between seasons. The winter surface wind speed
data comparisons show correlations of 0.88, slopes of 0.95
and 1.08, and y intercepts of 1.03 and −0.08 ms−1, and the
summer data show correlations of 0.87, slopes of 1.08 and
1.24, and y intercepts of −0.69 and −1.68 ms−1 (linear and
bisector regressions, respectively). The accuracy of the lidar
retrievals is reported as 0.63± 2.07 and −0.18± 1.52 ms−1

for winter and summer, respectively. These findings show
that HSRL-2 retrievals are more accurate in the summer than
in the winter but still provide substantial (N = 236) and ac-
curate surface wind speed data in winter as well.

This retrieval method offers a new path forward in air-
borne fieldwork for the acquisition of surface wind speed
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Figure 9. Scatterplots with associated histograms for HSRL-2–dropsonde collocated surface wind speed data points for (a) surface wind
speeds < 7 ms−1 and (b) surface wind speeds between 7 and 13.3 ms−1. Note that the x- and y-axis ranges vary to better showcase results
in individual panels. N represents the number of data points.

Table 1. Summary of all HSRL-2–dropsonde surface wind speed comparison statistics shown in Figs. 6, 9, and 10. The two values for
slope and y intercept refer to those for the linear and bisector regressions, in that order. R values are the same for both linear and bisector
regressions, so they are listed as one value.

N r Slope Y intercept Mean error
(ms−1) (ms−1)

Overall 577 0.89 1.04 / 1.17 −0.13 /−1.05 0.15± 1.80
Wind speed< 7 ms−1 292 0.66 0.65 / 0.99 1.10 /−0.49 −0.54± 1.34
7ms−1

≤ wind speed< 13.3ms−1 236 0.75 0.64 / 0.85 3.80 / 1.87 0.56± 1.49
Winter 236 0.88 0.95 / 1.08 1.03 /−0.08 0.63± 2.07
Summer 341 0.87 1.08 / 1.24 −0.69 /−1.68 −0.18± 1.52

data at a high spatial (∼ 75 m along track) and time (0.5 s)
resolution, as demonstrated by two case study flights (re-
search flight 29 on 28 August 2020 and research flight 14 on
1 March 2020). The high horizontal spatial resolution of the
HSRL-2 allows it to probe the fine-scale variability in sur-

face wind speeds over time. As a result, the instrument pro-
vides near-continuous profiles of surface wind speeds over
time that correspond to MABL phenomena such as SST dy-
namics and cloud evolution. Another important conclusion
about the HSRL-2 surface retrievals is that the instrument can
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Figure 10. Scatterplots with associated histograms for HSRL-2–dropsonde collocated surface wind speed data points for (a) winter and
(b) summer deployments. Data are highlighted based on surface wind speed categories: 7ms−1

≤ wind speed< 13.3ms−1, wind speed
< 7 ms−1, and wind speed ≥ 13.3 ms−1. N represents the number of data points.

detect the surface in broken cloud scenes and is not limited
to aerosol-free conditions like in Hu et al. (2008). Overall,
having such data can benefit model assimilation efforts and
consequently several scientific applications related to air–sea
interactions, such as estimating heat fluxes, gas exchange, sea
salt emissions and aerosol transport, and cloud life cycle.

Forthcoming work will continue assessments of surface
wind speed measurements during ACTIVATE by comparing
dropsonde data to in situ measurements taken by the Turbu-
lent Air Motion Measurement System (TAMMS) on board
the Falcon aircraft at its various altitude flight legs (between
120 m and 5 km; Thornhill et al., 2003). Additional work is
also warranted to assess the surface wind speed retrievals per-
formed by the other ACTIVATE remote sensor, the Research
Scanning Polarimeter (RSP), to fully demonstrate the remote
sensing capabilities of ACTIVATE.

Data availability. ACTIVATE airborne data are available through
https://doi.org/10.5067/SUBORBITAL/ACTIVATE/DATA001
(NASA Langley Research Center, 2020). MERRA-2 mean
sea surface temperature data are taken from the 2 d 1 h
Time-Averaged Single-Level Assimilation Surface Flux
Diagnostics V5.12.4 (M2T1NXFLX) product found at
https://doi.org/10.5067/7MCPBJ41Y0K6 (GMAO, 2015). GOES-
16 data are from https://doi.org/10.5067/ASDC/SUBORBITAL/
ACTIVATE-Satellite_1 (NASA/LARC/SD/ASDC, 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-17-3515-2024-supplement.
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