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Abstract. Given the importance of constraining cloud
droplet number concentrations (Nd) in low-level clouds, we
explore two methods for retrieving Nd from surface-based
remote sensing that emphasize the information content in li-
dar measurements. Because Nd is the zeroth moment of the
droplet size distribution (DSD), and all remote sensing ap-
proaches respond to DSD moments that are at least 2 or-
ders of magnitude greater than the zeroth moment, deriving
Nd from remote sensing measurements has significant un-
certainty. At minimum, such algorithms require the extrapo-
lation of information from two other measurements that re-
spond to different moments of the DSD. Lidar, for instance,
is sensitive to the second moment (cross-sectional area) of
the DSD, while other measures from microwave sensors re-
spond to higher-order moments. We develop methods using a
simple lidar forward model that demonstrates that the depth
to the maximum in lidar-attenuated backscatter (Rmax) is
strongly sensitive toNd when some measure of the liquid wa-
ter content vertical profile is given or assumed. Knowledge of
Rmax to within 5 m can constrain Nd to within several tens of
percent. However, operational lidar networks provide vertical
resolutions of> 15 m, making a direct calculation ofNd from
Rmax very uncertain. Therefore, we develop a Bayesian opti-
mal estimation algorithm that brings additional information
to the inversion such as lidar-derived extinction and radar re-
flectivity near the cloud top. This statistical approach pro-
vides reasonable characterizations of Nd and effective radius
(re) to within approximately a factor of 2 and 30 %, respec-
tively. By comparing surface-derived cloud properties with
MODIS satellite and aircraft data collected during the MAR-
CUS and CAPRICORN II campaigns, we demonstrate the
utility of the methodology.

1 Introduction

The number of cloud droplets per unit volume (Nd) is es-
sential for characterizing cloud properties. Particularly for
lower-tropospheric liquid-phase clouds, Nd forms a bridge
between atmospheric aerosol and the Earth’s albedo by de-
termining how condensed water is partitioned into droplet
surface area. Higher droplet concentrations for a given con-
densed mass result in more surface area and more reflec-
tive clouds (Twomey, 1974). Thus, many cloud parameter-
izations used in models include Nd as one of the moments in
multi-moment cloud schemes where the other moment is typ-
ically related to the mass mixing ratio (Gettelman and Mor-
rison, 2015; Thompson and Eidhammer, 2014; Seifert and
Beheng, 2005). Conceptually, using Nd as a baseline param-
eter makes sense since droplets typically condense on hygro-
scopic aerosol particles (hereafter cloud condensation nuclei
or CCN), thereby fixing Nd as the water droplets grow in
an updraft. The initial Nd at the cloud base would be an up-
per limit onNd in the ascending updraft because coalescence
processes would reduce Nd, and precipitation would further
scavenge cloud droplets. However, aircraft observations of-
ten show that for shallow clouds less than 1 km in depth with
minimal precipitation, Nd is reasonably constant with height
(Miles et al., 2000) and strongly correlated with CCN (Mc-
Farquhar et al., 2021).

In this paper, we revisit the methodology used in Mace et
al. (2021; hereafter M21) and attempt to extend that method-
ology with a focus on lidar measurements from below the
cloud. In M21, a method derived therein was applied to non-
precipitating clouds For which the layer-averaged radar re-
flectivity provided the primary source of information. While
M21 used the lidar measurements at the cloud base to con-
tribute to the first guess, M21 did not fully exploit the in-
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formation content available in the lidar measurements. Here,
we more thoroughly examine what the lidar signal near the
cloud base can tell us about cloud properties in optically thick
boundary layer clouds. Because the lidar backscatter is much
larger at the cloud base than in subcloud drizzle, we apply the
methodology to lightly precipitating and non-precipitating
clouds.

2 Methods

2.1 Instruments and comparison approach

We focus on data collected during the summer of 2018 from
two ship-based campaigns on the Australian research vessel
(R/V) Investigator and the Australian icebreaker Aurora Aus-
tralis during voyages between Hobart, Australia, and East
Antarctica. These campaigns are known, respectively, as the
second Clouds, Aerosols, Precipitation, Radiation and atmo-
spheric Composition Over the SoutheRn Ocean (CAPRI-
CORN II) and Measurements of Aerosols, Radiation, and
Clouds over the Southern Ocean (MARCUS). These cam-
paigns and a detailed accounting of instrumentation are de-
scribed in McFarquhar et al. (2021) and Mace et al. (2021).

The key observations we focus on in this paper are verti-
cally pointing depolarization elastic-backscatter lidars, verti-
cally pointing W-band radars, microwave radiometers, and
ancillary measurements provided by radiosondes and sur-
face meteorological instruments. This combination of active
and passive instruments (radar, lidar, and radiometer) have
become common in many cloud- and precipitation-focused
field campaigns and enable the derivation of cloud proper-
ties as described herein. One important synergy in this in-
strument suite is that the lidar is very sensitive to the droplets
at cloud base, while the radar is most sensitive to the cloud-
top region where the droplets are largest in non-precipitating
clouds, thereby providing immediate information on cloud
layer depth. In terms of the measurable quantities, the lidar-
attenuated backscatter measurement is sensitive to the second
moment of the droplet size distribution (DSD), the radar to
the sixth moment of the DSD, and the microwave radiome-
ter to the integrated condensed mass in the vertical column
(liquid water path or LWP, hereafter). For non-precipitating
clouds, Frisch et al. (1998) illustrate how the radar reflec-
tivity profile, being proportional to the square of the con-
densed mass, can be cast as a weighting function to verti-
cally distribute the LWP. The lidar then, being the most sen-
sitive to the smaller droplets that compose the DSD, pro-
vides information regarding how the mass is distributed into
the droplets. Combining the layer depth information and the
LWP, we have immediate and critical information regard-
ing the degree of adiabaticity of the layer (Albrecht et al.,
1990). We seek to exploit these synergies in the algorithms
described in the following sections.

While we focus on the information in surface-based mea-
surements, we also take advantage of airborne in situ mea-
surements and measurements provided by satellites. Again,
with a theme of synergy, in situ data provide a direct mea-
sure of the cloud properties we seek to infer from remote
sensing measurements in unique and rare instances of co-
ordination, while the satellite data provide regional obser-
vations from frequently occurring overpasses. The satellite
overpasses over periods of weeks to months provide good
coverage of diverse cloud fields collected over the course of
a campaign. We make use of these additional platforms to
both validate our algorithms but also to provide context and
understanding of the processes at work in a particular cloud
field.

2.2 Theory and assumptions

The observed lidar-attenuated backscatter βobs can be com-
bined with other measurements to derive Nd in fully attenu-
ating liquid-phase clouds when measured from the surface.
Even though light precipitation may be present, we assume
that βobs is dominated by a droplet distribution (N(D)) that
is describable by a modified gamma function. Following Ap-
pendix B in Posselt and Mace (2014),

dN (D)
dD

=N0

(
D

D0

)α
exp

(
−
D

D0

)
, (1)

where dN(D)
dD is the droplet number concentration per unit

size D (with units of cm−4 in the centimeter–gram–second
(cgs) unit system). N0 (with units of cm−4), D0 (with units
of cm), and α (unitless) are, respectively, the characteristic
number, diameter, and the shape parameter of the N(D) dis-
tribution function. This simple integrable function allows us
to express the microphysical quantities, Nd, q (liquid water
content), re (effective radius), σ (extinction), and Z (radar
reflectivity in the Rayleigh limit), with the following expres-
sions by integrating over all D:

Nd =N0D00(α+ 1) (2)

q = ρ
π

6
N0D

4
00(α+ 4) (3)

re =
D0

2
(α+ 3) (4)

σ =
π

2
N0D

3
00(α+ 3) (5)

Z =N0D
7
00(α+ 7) , (6)

where ρ is the density of liquid water, and 0 is the gamma
function. re is derived as the ratio of the third moment of
N(D) to the second moment of N(D), followed by appli-
cation of the recursion relationship of the gamma function.
For σ , we assume that the extinction efficiency can be ap-
proximated as 2 for integrations over typical water droplet
distributions. The radar reflectivity Z is written as the sixth
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moment of the DSD consistent with the Rayleigh approxima-
tion, which is valid for cloud droplets and radar wavelengths
up to the W band (∼ 94 GHz or ∼ 3 mm wavelength). Con-
version from conventional units (of mm6 m−3) to units in the
cgs system (cm3) requires the multiplication of Z by 10−12.
Using Eqs. (2)–(6), we develop relationships among the vari-
ables as follows:

Nd =
3
4

1
kπρ

q

r3
e
, (7)

Z = qr3
eC, (8)

σ =
3

2ρ
q

re
, (9)

where k = (α+2)(α+1)
(α+3)2 , and C = 480(α+7)

π0(α+4)(α+3)3 . Equation (9)
was first derived by Stephens (1978) and illustrates a path-
way to deriving Nd from multispectral satellite reflectance
measurements. For instance, the bispectral method applied
to MODIS (Nakajima and King, 1990; Platnick et al., 2003)
returns measurements of optical depth (τ ) and re. Since τ
is the vertical integral of σ , Eq. (3) can be adapted for use
with satellite retrievals. A full derivation and error analysis
of deriving Nd and other quantities from bispectral satellite
retrievals is presented in Grosvenor et al. (2018; hereafter
G18).

Following Platt (1977), and extending through the work of
Hu et al. (2007) and Li et al. (2011) among others, we express
the observed lidar-attenuated backscatter as

βobs(R)= β(R)e
−2

∫
ησdR. (10)

βobs is the result of two-way attenuation through the cloud to
a point R (range) in the layer, and σ is the extinction coef-
ficient with units of inverse length where σ is expressed in
terms of the lidar ratio, S = σ

β
. A factor η hereafter referred

to as the multiple scattering factor accounts for the addition
of photons to the observed signal due to multiple scattering in
optically dense clouds. Defining the layer-integrated total at-
tenuated backscatter as γ =

∫
β‖+⊥ and the layer-integrated

depolarization ratio as δ =
∫
β⊥∫
β‖+⊥

, we express η =
(

1−δ
1+δ

)2

(Hu et al., 2009). Platt et al. (1999) relate S with η, accord-
ing to Sη = 1−T 2

2γ , where T is the layer transmittance. When

the layer is fully attenuating (T = 0), S = 1
2ηγ .

Figure 1 illustrates two examples of βobs profiles measured
by a micropulse lidar (Lewis et al., 2020) on board the Au-
rora Australis during MARCUS. Note that the units of the
lidar signal in Fig. 1 are expressed as normalized relative
backscatter (NRB) in Fig. 1 that is equivalent to βobs via a
calibration constant. We convert NRB to βobs using a cali-
bration technique described in O’Connor et al. (2004). We
see the typically small βobs below the cloud that is due to
aerosol and molecular scattering in Fig. 1a, while in Fig. 1b,
there is a contribution from drizzle (observed by a collocated
W-band radar; not shown). There is an immediate increase in

βobs at a height where condensed liquid water droplets near
the cloud base activate, grow rapidly with height, and begin
to dominate the lidar signal scattering. βobs then increases
exponentially, according to Eq. (4), until the two-way atten-
uation causes βobs to reach a maximum value which decays
exponentially. We define the range from cloud base to the
maximum in βobs as Rmax. Beyond Rmax, βobs gains more
contribution by multiple-scattered light, depending on the li-
dar field of view, and in liquid clouds, the signal becomes
increasingly depolarized relative to the transmitted signal be-
cause the orientation of the electric field vector is modified
by the directionality of each scattering event. The progres-
sive depolarization of the scattered signal is a function of the
droplet size distribution (Hu et al., 2009). The overall result
is quantified by η, which is a factor of less than 1 that effec-
tively adds signal to βobs in Eq. (10). The logarithmic decay
of βobs was shown by Li et al. (2011) to be related to σ as
follows:

ησ =−
lnβ(R2)obs− lnβ(R1)obs

2(R2−R1)
, (11)

where (r2− r1) is the range over which the change in βobs
is calculated. Because we have estimated η from measure-
ments, we can estimate σ in the optically thick part of the
layer beyond the peak in βobs using linear regression. Li et
al. (2011) compare σ derived from this method to estimates
of σ derived from passive reflectances and find an uncertainty
of ∼ 13 %, although we assume it to be higher (20 %) below.
This method’s accuracy depends on calculating the rate at
which the signal decays with depth in the layer. In practice,
we fit a regression line to βobs at ranges beyond Rmax until
the signal is a factor of 2 above the lidar noise floor. We de-
termine the lidar noise level from the mean βobs well beyond
the point of full attenuation in the cloud layer. The goodness
of the linear regression fit depends on the number of mea-
surements in this range where the signal is decaying. The
accuracy depends on the vertical resolution of the lidar mea-
surements for a given σ . The accuracy of the fit is tracked
and used to estimate uncertainty.

2.3 Direct calculation of Nd and re

The growth of the lidar signal from cloud base to Rmax can
be used to gain information about the cloud layer. Taking the
natural logarithm of both sides of Eq. (10), recognizing that
βSc = σ , and then differentiating with range r in the cloud
layer, we can write

∂ lnβobs

∂R
=
∂ lnσ
∂R
− 2ησ. (12)

We next derive an expression relating σ in terms ofNd and q.
We can simply expressN0 in terms ofNd, asN0 =

Nd
D00(α+1) ,

and substitute it into Eq. (5) as

σ =
π

2
Nd

0(α+ 1)
D2

00(α+ 3) . (13)
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Figure 1. Two examples of normalized relative backscatter (NRB;
Campbell et al., 2002) from micropulse lidar data collected during
MARCUS on 26 January 2018. Panel (a) shows a profile in a non-
drizzling cloud collected at 02:50:30 UTC. Panel (b) shows a profile
collected at 02:22:30 UTC that had subcloud drizzle, as indicated
by the cloud radar. The green line indicates the height determined
to be cloud base, while the red line indicate the maximum in βobs.
The distance between the green and red lines is defined as Rmax.

Then we solve the expression for σ in Eq. (5) for D0, where
D3

0 =
σ

π
2 N00(α+3) , then substitute it into Eq. (3), and rear-

range it to obtain D0 =
3
ρ
q
σ
0(α+3)
0(α+4) . Now substitute the ex-

pression for D0 into Eq. (13) and rearrange as follows:

σ =N
1
3

d q
2
3B, (14)

where B =
(

9π
2ρ2

[0(α+3)]3

[0(α+4)]20(α+1)

) 1
3 collects constants and as-

sumptions. Now we combine Eqs. (12) and (14):

d ln(βobs)

dr
=
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3

d
σ

d
dr

(
q

2
3

)
− 2ησ.

Solving the derivative for q,

d
dr

(
q

2
3

)
=

2
3
q−

1
3

dq
dr
,

substituting into Eq. (14), and then, when simplifying, we
arrive at

d ln(βobs)

dr
=

2
3

dlnq
dr
− 2BηN

1
3

d q
2
3 ,

and then solve for Nd as follows:

N
1
3

d =

2
3

dlnq
dR −

dln(βobs)
dr

2Bηq
2
3

. (15)

Since q = fad0lR, where 0l is the layer mean adiabatic liq-
uid water lapse rate that depends on temperature and pres-
sure and the moist adiabatic lapse rate (G18), we substitute

into Eq. (15); noting that dlnq
dR =

1
R

, we can write Eq. (15) as

Nd =

(
2
3r −

dlnβobs
dr

2η(0lRfad)
2
3B

)3

. (16)

Now where dln(βobs)
dr = 0 at Rmax, we simplify the expression

to arrive at

Nd =
1

27B3η302
l R

5
maxf

2
ad
. (17)

In Eq. (17), Nd is a function of observable quantities with
an assumption that the liquid water profile has an adiabatic
shape. The DSD shape parameter α is also assumed and typ-
ically given a value that conforms to in situ data (see be-
low). fad, which scales the adiabatic liquid water content,
can be calculated as the ratio of the vertically integrated liq-
uid water mass or liquid water path (LWP) that is readily
retrieved from measurements collected by a microwave ra-
diometer (Turner et al., 2016) to the adiabatic LWP that can
be derived by integrating 0l over the depth of the layer (G18).
The depth of the layer must be determined from some means
such as a vertically pointing cloud radar or perhaps from re-
cent radiosonde soundings. Thus, Nd can be derived with a
combination of a depolarization lidar, some means of deter-
mining cloud top, and a microwave radiometer. Neither the
lidar nor the radar, if present, must be calibrated to derive
Nd with Eq. (17). With LWP and Nd and a measure of layer
depth, it is straightforward to estimate a characteristic cloud
droplet size. Typically, the cloud-top re is most representative
of the layer reflectance and is derived from bispectral mea-
surements such as MODIS (to which we will compare later).
Following G18,

re =

( 3h
4πρl

0lfad

kNd

)1/3

, (18)

where h is the layer thickness, and k is the cubed ratio of a
volume-weighted characteristic droplet size to the effective
droplet size assumed constant at 0.8.

Figure 2 shows the response of Eqs. (17) and (18) to typi-
cal ranges of Rmax and fad. In these calculations, we fix η at
0.4 (a typical value for the lidar on CAPRICORN II) and the
cloud layer thickness at 500 m. We find that Rmax contributes
most significantly to theNd calculation, given the fifth power
exponent in the denominator of Eq. (17).Nd ranges from near
1000 cm−3 for low Rmax values that would correspond to
very opaque layers to values smaller than 10 cm−3 for layers
withRmax exceeding 100 m. These correspond to the approx-
imate typical extremes for Rmax found in measurements. re
ranges from 5 µm for small Rmax to more than 50 µm for very
large Rmax, corresponding to the change in Nd from high to
low, respectively. For a given Rmax, an increasingly adiabatic
cloud layer causesNd to decrease and re to increase. This ten-
dency makes physical sense, since, for our simple conceptual
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Figure 2. Response of Eq. (18) (a; re) and Eq. (17) (b; Nd) to typical values of Rmax and fad.

model of an adiabatically increasing q profile, increasing fad
for a given LWP and layer thickness (h) implies more liq-
uid water in the profile. Therefore, for a given Rmax, fewer
but larger droplets are required to achieve a given extinction
profile that allows the lidar beam to penetrate the layer.

While Eqs. (17) and (18) produce physically plausible re-
sults, as illustrated in Fig. 2, the sensitivity of Nd to the un-
certainty in Rmax is substantial. The resulting uncertainty in
Nd then translates into uncertainty in re. Clearly, with the
typical range in Rmax between a few tens of meters to val-
ues not much greater than about 100 m, the vertical resolu-
tion of the lidar has a significant bearing on how well we can
know Rmax. Lidars in operational networks typically oper-
ate with range bin spacing of between 10 and 15 m. The mi-
cropulse lidars operated by the U.S. Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM) pro-
gram (Mather, 2021) use 15 m spacing, while Vaisala laser
ceilometers use a range bin spacing of 10 m. We use a boot-
strap approach to evaluate the effect of this uncertainty in
Rmax. We assume that the 1 standard deviation of uncertainty
in Rmax would be half of the range bin spacing. Fixing the
uncertainty in fad and η at 20 % and allowing a variable
Rmax uncertainty of 1, 5, 10, and 15 m, we use a normally
distributed set of random numbers to perturb the Rmax, fad,
and η about their assumed values prior to the implementa-
tion of Eqs. (9) and (10). In total, 25 000 iterations are used
to compute the frequency distribution of the resultingNd and
re (Fig. 3) for each Rmax uncertainty. We find that range bin
spacing in excess of 10 m is inadequate for calculating Nd. A
30 m range bin spacing results in a normalized standard de-
viation in the Nd distribution for the example shown here of
∼ 3. The re normalized standard deviation is approximately
29 % in this case. The uncertainty in Nd and re decreases
as the uncertainty in Rmax is reduced from 15 to 1 m. At 1
and 5 m uncertainty in Rmax corresponding to 2 and 10 m
range bin spacing,Nd (re) has fractional uncertainties of 0.16
(0.16) and 0.55 (0.18), respectively. These levels of uncer-
tainty would convey useful information about a cloud layer,
although the magnitude of the uncertainty as illustrated by
the frequency distribution (blue) in Fig. 3 illustrates that the

uncertainty is non-negligible relative to the typical ranges
of these quantities. The ranges of uncertainty that we en-
counter with typical operational lidars and ceilometers are
only marginally to insignificantly informative.

2.4 An optimal estimation algorithm

To lessen the effects of uncertainty in Rmax, we attempt
to bring additional information to bear by developing
a Bayesian optimal estimation (OE) inversion algorithm
(Maahn et al., 2020) to retrieve Nd and re. This methodol-
ogy allows us to use additional data sources that contribute
to our understanding of dropletNd and re while balancing the
observational and forward modeling errors that contribute to
retrieval uncertainty. In addition to the independent variables
in Eqs. (9) and (10), we also use the layer σ derived from
the lidar data (Eq. 5) and the radar reflectivity near the cloud
top (Ztop) from a collocated millimeter radar. We choose to
use the radar reflectivity near the cloud top to avoid, to the
extent possible, multimodal droplet distributions that often
occur as drizzle or snow sediments through a cloud layer.
Near the layer top, at least for reasonably shallow clouds, we
assume the precipitation droplet mode to be nascent and the
cloud droplet distribution to be approximately unimodal. In-
spection of aircraft in situ drop size distributions collected
over multiple campaigns reasonably support this assumption
(Lawson et al., 2017). Ztop provides a useful constraint on
the liquid water profile’s shape and conveys information on
fad and re. We define an observational vector,

y =
[
Rmax σ LWP Ztop.

]
(19)

An observational error covariance matrix, Sy , is a 4× 4 ele-
ment matrix that records the uncertainty in the measurements
in y due to random noise and uncertainties in the forward
modeling of that quantity along the diagonal. We allow co-
variance among the observations using the correlations listed
in Table 1 and the variances of the individual quantities as
listed along the diagonal. These correlations are derived from
the CAPRICORN II and MARCUS combined data set. We
find significant correlations among the measurements in y.
These correlations show that the measurements in y are not
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Figure 3. Sensitivity of Eq. (17) (a) and Eq. (18) (b) to the uncertainty in input parameters. The insets list the resulting uncertainties
corresponding to the color-coded frequency distributions. The insets list the normalized standard deviations for an assumed standard deviation
in Rmax of 1, 5, 10, and 15 m. The lidar range gate spacing would be twice the standard deviation in Rmax.

independent and are not, therefore, unique in terms of infor-
mation. We address the information content below.

The quantities to be estimated and their covariance are de-
noted in the state vector x, respectively:

x =
[
Nd re

]
. (20)

And Sx is a 2× 2 element matrix that records the uncertain-
ties in x along the diagonal. re is assumed to be near the layer
top, as defined in Eq. (18).

We use x and additional observations and assumptions to
derive a forward calculation of y or F(x) based on initial
and incremental x guesses (see below) with a simple forward
model. Our forward model begins with the observed thermo-
dynamics such as temperature, pressure and relative humid-
ity profiles, cloud base height, and layer thickness. With an
observed or simulated LWP and a temperature-dependent 0l ,
we create a vertical profile of liquid water that varies with an
adiabatic shape scaled by fad. Using an assumed shape pa-
rameter (α = 2; justified below), we then calculate profiles of
re and Nd, allowing us to estimate the terms in y, using the
simple lidar equation (Eq. 10), and the expressions for Z and
σ in Eqs. (6) and (5).

To derive x from y using OE, we express the first-order
derivatives of y with respect to x in a Jacobian matrix, Kx ,
that has the dimensions of the number of elements in y

(Eq. 19) by the number of elements in x (Eq. 20):

Kx =

∂Rmax
∂Nd
=−0.29 ∂σ

∂Nd
= 0.24 ∂LWP

∂Nd
= 0 ∂Ztop

∂Nd
= 0.01,

∂Rmax
∂re
= 0.92 ∂σ

∂re
=−2.9 ∂LWP

∂re
= 0.44 ∂Ztop

∂re
= 1.2.

These terms are calculated analytically using the expressions
in Eqs. (2)–(10), (14), and (17). Also, we set ∂LWP

∂Nd
= 0 be-

cause we assume that the amount of water made available for
condensation is the result of thermodynamics, while how that
water is distributed into droplets depends more on the CCN
that is available for the water to condense onto. The quanti-
ties listed in the Kx matrix show typical values of the terms
for case 5 listed in Table 2 below in terms of ∂ ln(y)

∂ ln(x) . We find

that re influences σ , LWP, and Ztop in predictable ways. For
instance, the derivative is negative in the re–σ relationship.
The sensitivities of the observations in y are much more sen-
sitive to re than to Nd, illustrating the challenge of retrieving
Nd with remote sensing observations, as discussed earlier.

The OE formalism derives x by balancing the uncertain-
ties and information in the measurements with what is known
about the statistical properties of x given the atmospheric
state. The information from prior knowledge is contained in
an a priori vector of statistical estimates of the quantities in x
(Eq. 21) or xa and their covariance, Sa. For the prior estimate
of Nd, we reason that coincident cloud condensation nuclei
(CCN) measurements provide an upper limit on the droplet
number. These measurements were collected during MAR-
CUS and CAPRICORN II and are available hourly when the
wind direction was favorable by not contaminating aerosol
inlets with ship exhaust (Humphries et al., 2021). These
hourly CCN measurements, collected by a Droplet Measure-
ment Technologies (DMT) CCN-100 at 0.2 % supersatura-
tion, are simply multiplied by 0.8 to account for coalescence
processes and are used in xa. We found that the use of CCN,
while a broad constraint and upper bound on Nd, was quite
necessary for accurate convergence of the OE algorithm. The
hourly standard deviation of the CCN is then used along the
diagonal of Sa. When CCN are not available within the pre-
vious 6 h, we use averages of the surface-based CCN mea-
surements for the latitudinal bands from 40–50, 50–60, and
> 60° S (Humphries et al., 2023). For the prior value of re, we
use the 0.8×CCN, the LWP, and layer thickness in Eq. (10).
For re, we use in situ aircraft data collected during the South-
ern Ocean Clouds, Radiation, Aerosol Transport Experimen-
tal Study (SOCRATES; McFarquhuar et al., 2021) that was
conducted in the Southern Ocean region south of Hobart,
Australia, during the austral summer of 2018 by the NSF/N-
CAR High-performance Instrumented Airborne Platform for
Environmental Research (HIAPER) Gulfstream V (GV) air-
craft. In this campaign, the GV completed 15 research flights.
We combine the Cloud Droplet Probe (CDP; manufactured
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Table 1. Sources of uncertainty estimates (diagonal) and correlations (off diagonal) among measurements in y (Eq. 11) used in the OE
algorithm. Correlations are derived from the combined MARCUS and CAPRICORN II data sets.

Rmax σ LWP Ztop

Rmax Lidar range
bin space

σ −0.58 20 % (Li et
al., 2011)

LWP +0.24 −0.22 20 g m−2 (LWP< 100)
30 % (LWP> 100)
(Turner et al., 2016)

Ztop +0.23 +0.48 +0.47 1 dB Capricorn,
4 dB MARCUS
(Kollias et al., 2019)

by DMT) and 2D-S (manufactured by SPEC Inc.) measure-
ments into a single droplet size distribution (DSD) and use
a moments minimization method (Zhao et al., 2011) to es-
timate Eq. (1) for each low-level cloud 1 s DSD. See Baum-
gardner et al. (2017) and Lawson et al. (2006) for discussions
of the in situ droplet probes. W-band radar reflectivity is then
calculated using Eq. (6). For a particular retrieval where we
have a measured Ztop, the SOCRATES data set is searched
for all instances where Z is within 1.5 dB of the measure-
ment, and the prior re is then estimated from the mean of the
in situ measurements. For the covariance among the quan-
tities in Sa, we know from the analysis of in situ data that
re and Nd are strongly correlated (G18) at a level of ∼ 0.7
among those terms.

The OE formalism also allows us to quantify the added
uncertainty in our forward model calculations due to model
parameters and assumptions (Maahn et al., 2020; Austin and
Stephens, 2001) which we take to include α (droplet distri-
bution function shape parameter), fad (the adiabaticity of the
column), and η. We find that a value of α = 2 with a standard
deviation of 1.5 reasonably characterizes the in situ cloud
data collected during SOCRATES. fad is estimated by tak-
ing the LWP and cloud thickness observations collected over
the MARCUS and CAPRICORN II voyages and deriving a
linear regression of fad in terms of LWP following Miller et
al. (1998); to wit, fad = 1.− (0.002×LWP). With LWP (in
g m−2), this equation returns fad= 0.6 for LWP= 200 g m−2

and 0.5 for LWP= 250 g m−2. The scatter in the LWP− fad
observations suggests an uncertainty in this estimate of 0.15.
η is derived from the depolarization lidar data following the
method described in Hu et al. (2007). While the uncertainty
in this quantity is difficult to assess, when examining the
consistency of the estimates over periods of persistent cloud
cover, we determined that an uncertainty of 30 % is reason-
able. A term of the form KbSbKT

b is added to the instrumen-
tal uncertainties, where Kb is a Jacobian matrix that contains
the first derivatives of the measurements in y with respect

to α, fad, and η determined through finite differences in the
forward model:

Kb =

∂Rmax
∂α
=−0.08 ∂Rmax

∂fad
=−0.60 ∂Rmax

∂η
=−0.63,

∂σ
∂α
= 0.11 ∂σ

∂fad
= 0.55 ∂σ

∂η
= 0.03,

∂LWP
∂α
= 0.20 ∂LWP

∂fad
= 1.0 ∂LWP

∂η
= 0.0,

∂Ztop
∂α
=−0.35 ∂Ztop

∂fad
= 2.0 ∂Ztop

∂η
= 0.0.

The numbers in the Kb matrix expression are in terms of
∂ ln(y)
∂ ln(x) and are derived from the forward model over the phys-
ically reasonable ranges of the parameters. We find that these
numbers vary by less than 20 % in the Capricorn and MAR-
CUS data sets. Sb contains the variance of α, fad, and η de-
termined from in situ and remote sensing measurements. We
assume that the covariance among these quantities can be ne-
glected.

The inversion of y for x then follows a standard itera-
tive approach by applying a Gauss–Newton minimization
technique derived in Rodgers (2000); see also Maahn et
al. (2020). In this approach, successive guesses of x are de-
rived using the well-known expression,

δx =
(
Sa+KxSyKT

x

)−1 [
S−1

a
(
x̂− xa

)
+KT

x S−1
y

(
y−F

(
x̂
))]
, (21)

where x̂ is a present guess, F(x̂) is the forward estimate of
the measurements in y using the present guess. δx then be-
comes the next increment on x̂. Equation (21) is iterated un-
til either a convergence criterion is met or divergence of the
result occurs. Typically, fewer than 10 iterations are neces-
sary if the algorithm converges, which it does > 90 % of the
time in non-precipitating conditions, while convergence oc-
curs less frequently as drizzle and light snow increase due to
the inability to accurately estimate Rmax.
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2.5 Optimal estimation algorithm evaluation

The response of the OE algorithm is equivalent to the results
presented in Fig. 3, except that additional information is used
to hopefully lessen the effects of uncertainty in Rmax. In Ta-
ble 2, we list six cases that we use to examine the response
of the OE algorithm in terms of the retrieved quantities and
their uncertainties. Cases 2, 4, and 6 differ from cases 1, 3,
and 5, respectively, only by the level of uncertainty applied.
Cases 2, 4, and 6 use 2 times the listed uncertainties in cases
1, 3, and 5, but otherwise have identical inputs. Cases 1 and
2 are designed to illustrate a situation that might be found
in a heavy aerosol environment with a low Rmax, high σ ,
and low Ztop that produces high Nd, small cloud drops, and
moderately high LWP. Cases 3 and 4 show the opposite with
a rather large Rmax and lower σ . Ztop is set higher with a
larger LWP. The algorithm returns a small Nd and large re
in cases 3 and 4. Cases 5 and 6 are in between the two ex-
tremes. fad in these cases range from 0.8 to 0.9, and this is
by design, as the cloud depth is specified. The uncertainties
listed in Table 2 are used in cases 1, 3, and 5; except for Ztop,
which is listed in decibels, the uncertainties are a fraction of
the measurement. As a fraction of the returned values, the 1
standard deviation uncertainties do not change significantly
from case to case, and they respond predictably to a doubling
of the observational errors that increase approximately by a
factor of 2. We also test the OE uncertainty by randomly per-
turbing the observations about their stated uncertainties until
the error statistics converge. These are reported in Table 2 in
the “bootstrapping” rows. The bootstrap experiment gener-
ally returns uncertainty in re that is equivalent to or slightly
smaller than the OE results. ForNd, the bootstrap experiment
returns marginally larger uncertainties than the OE results.

The Shannon information content measures the extent to
which the observations reduce the uncertainty in the prior.
The studies of L’Ecuyer et al. (2006) and Cooper et al. (2006)
provide detailed discussions of this concept. Doubling the
observational uncertainty reduces the information content by
approximately one-third. The number of independent param-
eters is fewer than the number of elements in y (the observa-
tions) because the observations are correlated. For instance,
as shown in Table 2, Rmax and σ both constrain Nd, while
LWP and Ztop constrain re. Even in the lower error cases, the
observations do not provide sufficient information to retrieve
three independent quantities, suggesting that the results are
correlated and not independent.

The uncertainty in re remains roughly equivalent to the re-
sults shown in Fig. 3, although we consider the results of the
OE to be more accurate because a better accounting of the
information is used. Notable is the magnitude of the uncer-
tainties for the retrieved Nd. We find that it remains large,
although the additional information provided by the other
observations reduces the uncertainty compared to the results
in Fig. 3. We also tested how well the OE algorithm with-
out Rmax would do where just extinction is the primary con-

straint on Nd. This was accomplished by setting the Kx term
as ∂Rmax

∂Nd
= 0. We found that for the uncertainties in the other

quantities listed in Table 2, the uncertainty in Nd was ap-
proximately 150 %, showing that Rmax is a useful quantity in
this regard. However, retrieval of Nd remains highly uncer-
tain when the lidar range bin spacing exceeds 5 m.

To provide a more realistic evaluation of the OE algorithm
performance, we use data collected during the SOCRATES
campaign, where ramps (constant rate ascents and descents
between cloud base and cloud top) through low-level cloud
layers were conducted. Such a ramp is depicted in Fig. 4
which was collected on 18 February 2018 (hereafter 2/18)
at 05:10 UTC when the GV was conducting a mission near
R/V Investigator at 57° S and 142° E. We will expand on the
18 February case study below. For this analysis, we focused
on 1 s data collected by the CDP that recorded droplet spec-
tra in 2 µm size bins up to 50 µm. The aircraft entered the
cloud layer with a temperature near −5 °C at 1100 m. q and
re steadily increased as the GV ascended and exited the cloud
layer approximately 90 s later at an altitude of 1450 m, where
q reached a maximum of 0.4 g m−3 and was∼ 15 µm near the
cloud top. We note an interesting structure in the vertical re
profile, with a sudden decrease near 1375 m. During this as-
cent, Nd was quite variable but averaged 150 cm−3 through
most of the ramp until 1375 m where there is an abrupt in-
crease in Nd to ∼ 225 cm−3 in conjunction with the decrease
in re. Integrating q vertically through the layer, the LWP was
65 g m−2, with an adiabatic LWP of 80 g m−2, suggesting a
sub-adiabatic layer with fad of ∼ 0.8. The radar reflectivity
time series (discussed later) shows that drizzle was occurring
sporadically during this case. We used the cloud droplet con-
centrations collected during the ramp to get Rmax (32 m), the
expression for Z (Eq. 6) to estimate Ztop (−15 dBZe), and
the cross-sectional area of the droplet distribution to estimate
σ (layer mean of 30 km−1 and layer optical depth (τ ) of 14).
These values were used as input to the lidar forward model.
We implement the OE algorithm with fad and LWP to get a
retrieved Nd of 165 cm−3 and re of 14 µm, which is in rea-
sonable agreement with the input data.

We repeated this exercise for other ramps collected during
SOCRATES, excluding ramps that were super-adiabatic or
had non-adiabatic structure in the vertical profile, reasoning
that the finite distance over which the ramps occurred (∼ 10–
20 km) had the potential to sample cloud elements of vary-
ing properties. For instance, on 2/18, three additional ramps
were rejected. The observational uncertainties used in the in-
version are as discussed above for cases 1, 3, and 5. Fig-
ure 5 shows the relationship between the observed and re-
trieved Nd and re, showing that the OE algorithm can rea-
sonably capture the characteristics of the cloud layers. While
we would expect the algorithm to provide a reasonable com-
parison of the retrieved and observed Nd and re in this rather
contrived experiment, we note that the OE uncertainty, for
the most part, extends over the 1 : 1 line, suggesting that the
characterization of uncertainty in the retrieved quantities is
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Table 2. Cases used to illustrate the response of the OE algorithm. Observables are listed in columns 2–5 with uncertainties in parentheses.
The retrieved quantities, their uncertainties in the OE algorithm, and using a bootstrap approach (see text) are in lower rows. We also list
the Shannon information content in bits and the number of independent observations in the retrieval as derived from the OE formalism; see
Rodgers (2000). Cases 2, 4, and 6 have observational uncertainties that are a factor of 2 greater than cases 1, 3, and 5.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Rmax 38 (4) 38 (8) 62 (6) 62 (12) 56 (5.5) 56 (11)
σ (km−1) 28 (4.5) 28 (9) 16 (2.5) 16 (5) 23 (3.5) 23 (7)
Ztop (dBZ) −19 (2) −19 (4) −12 (2) −12 (4) −15 (2) −15 (4)
LWP (g m−2) 126 (30) 126 (60) 101 (25) 101 (50) 150 (37) 150 (74)
Nd (cm−3) 229 231 36 37 95 91
Nd OE uncert. (fraction) 0.69 0.83 0.70 0.84 0.70 0.84
Nd bootstrap uncert. (fraction) 0.77 0.93 0.88 1.2 0.95 1.2
re (µm) 9.8 9.9 16 15 13 12
re OE uncert. (fraction) 0.24 0.42 0.19 0.40 0.18 0.40
re bootstrap uncert. (fraction) 0.23 0.35 0.28 0.32 0.27 0.34
Info (bits) 3.1 1.2 3.6 1.2 3.5 1.7
No. ind params 1.7 1.4 1.7 1.4 1.7 1.4

Figure 4. Ramp through a marine boundary layer (MBL) cloud layer on 18 February 2018 collected by instruments on the NSF/NCAR
Gulfstream V during SOCRATES. This ramp was conducted near R/V Investigator during CAPRICORN II. As a function of height between
the cloud base near 1100 m and cloud top near 1450 m, the panels show (a) q, (b) re, and (c) Nd.

a reasonable estimation of the actual uncertainty in the algo-
rithm.

3 Results and discussion

In this section, we present independent comparisons of the
results of the Nd OE algorithm using a detailed case study
collected when the Terra satellite passed over R/V Investi-
gator approximately 1 h prior to an in situ sampling period
conducted by the NSF/NCAR GV during SOCRATES on
18 February 2018 (2/18). We then expand our view to ex-
amine comparisons of multiple overpasses of the ship by the
NASA MODIS instrument on the Terra and Aqua satellites
during the 2018 summer campaigns.

3.1 A case study

The 2/18 case study provides a unique opportunity for in-
dependent comparisons of the algorithm with data collected

while the GV aircraft operated in the vicinity of R/V Investi-
gator and with an overpass of the Terra satellite that provided
independent retrievals of τ and re (Platnick et al., 2003) from
which we can derive LWP and Nd (G18) using the MODIS
τ and re. During this case study period, the ship remained
stationary at 56.6° S and 141.5° E to facilitate coordination
with the GV. Figure 6 illustrates the data collected from the
shipboard instruments. The lidar-attenuated backscatter indi-
cates a fully attenuating layer through the entire period. With
a cloud base temperature near−5 °C, the lidar depolarization
ratio data suggest that the cloud base phase and the subcloud
precipitation were liquid. The W-band radar on R/V Investi-
gator indicated episodic drizzle events of 10–20 min duration
roughly every hour, and some of it was rather heavy. Inter-
vening periods without drizzle had radar reflectivity near the
detection threshold of the radar (∼−25 dBZe in the CAPRI-
CORN II configuration). The radar and sounding data col-
lected at the ship showed that the layer was topped by a
strong marine inversion near 1.5 km, which is in agreement
with the GV ramp in Fig. 4. The LWP was variable be-
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Figure 5. Comparison of observed and derived Nd (a) and re (b) from SOCRATES ramps. The error bars on the retrieved quantities are as
derived from the optimal estimation.

tween 50–60 g m−2 during periods without drizzle to val-
ues near 250 g m−2 during periods of drizzle. The retrieved
cloud properties varied depending on the proximity of a driz-
zle event. While the algorithm did not converge in regions of
heavier drizzle, we find near the boundaries of several drizzle
events that the Nd decreased to 20–30 cm−3 and re increased
to be more than 20 µm. Otherwise, the algorithm tended to
produce Nd in the range of 100 cm−3 and re in the 10 µm
range.

A Terra MODIS overpass occurred at 00:25 UTC. We col-
lect the level 2 retrieval of τ and re in a region of 50 km
diameter centered on the ship, and the ship data are collected
between 23:00 UTC on 17 February and 01:30 UTC on 2/18.
The comparison results are shown in Fig. 7 (see also Fig. 6).
A broad distribution of LWP is demonstrated during this pe-
riod that has a similar character in both data sets. The ship has
an LWP mode near 160 g m−2 that is due to the drizzle event
that is evident near 00:00 UTC in Fig. 6. The mean LWP from
the ship is slightly larger than MODIS, but the two are in
broad agreement. The distributions of re in the two data sets
overlap with the surface data skewed to larger values, likely
because of the predominance of the drizzle event. The Nd
retrievals also demonstrate broad agreement with quite wide
distributions, even though the ship Nd is skewed to smaller
values. The ship τ distribution is skewed to smaller values
than MODIS, consistent with larger re and smaller Nd. We
note that τ and re are the quantities that are most directly
retrieved from the MODIS algorithm, whereas the LWP and
especially Nd require additional assumptions.

On the other hand, the surface data LWP is independent of
the radar, lidar, and other measurements and requires a mini-
mum of assumptions to derive from the microwave radiome-
ter brightness temperatures (Turner et al., 2016). Nd and re
from the surface data require a complicated algorithm, and τ
from the surface data is calculated using Eq. (9). Thus, the
surface-derived τ would include the errors in the surface re-
trieval of re. While there are biases in the comparison, given
the substantial differences in the two independent data sets,

we conclude that the comparisons demonstrate a reasonably
consistent picture of the cloud field during the overpass.

The GV arrived at the ship at approximately 02:00 UTC
on 2/18 and operated in the vicinity of the ship for roughly
2 h. It conducted ramps, level legs within the cloud layer,
and legs above and below the layer for aerosol and remote
sensing applications. We compare data collected during this
time by gathering the aircraft data within 50 km of the ship.
The effective radius is derived from the aircraft CDP data in
the upper half of the layer (above 1.2 km), and the aircraft
Nd is collected from the CDP data in the lowest half of the
layer. The comparison of Nd and re distributions is shown in
Fig. 8. The aircraft re data are bimodal, while the ship re-
trieved re are unimodal and centered on the lower mode of
the aircraft re distribution. We interpret the lack of bimodal-
ity in the ship-based re data as being due to the algorithm not
converging in regions of heavier drizzle as noted above. The
aircraft penetrations of drizzle and non-precipitating clouds
result in the bimodality in the re distribution, as shown in
Fig. 8. The Nd distributions are broadly similar, but the ship
results are biased to lower values. The extent to which there
is a bias toward the lower part of the cloud layer in the ship
data is unclear. Regardless, both distributions are centered
just in excess of 100 cm−3. This comparison suggests that the
surface-based OE algorithm reasonably replicates the cloud
layer properties in this case.

Overall, we find that the aircraft, satellite, and surface-
based data sources provide similar and very interesting
characterizations of the cloud and CCN on 2/18. Twohy
et al. (2021) in their Supplement show that the air mass
above the marine boundary layer on 2/18 had one of the
highest sulfur-based concentrations of CCN recorded dur-
ing SOCRATES at 224 cm−3. The air mass observed on 2/18
followed a trajectory from the deep south over the Antarc-
tic continent and the biologically productive waters of the
Southern Ocean. The high concentrations of sulfate CCN in
the free troposphere imply that the new particle formation
along the trajectory was likely responsible for the high CCN
(McCoy et al., 2021). The CCN at the surface measured on
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Figure 6. Surface-based measurements and derived properties from data collected on 18 February 2018 on R/V Investigator near 55.6° S
and 141.5° E. (a) Radar reflectivity (Z) with the ceilometer cloud base indicated by purple dots, (b) lidar-attenuated backscatter, βobs,
(c) extinction derived from βobs, (d) re and LWP, and (e) Nd. The blue circles in panels (d) and (e) and the inset values are from an overpass
at 00:25 UTC (vertical dashed line) of MODIS on Terra. CCN at 0.25 % supersaturation is shown in panel (e) using red circles.

R/V Investigator was near 210 cm−3, which is slightly lower
than that measured on the aircraft.

On the other hand, Nd seems to be consistently in the
100 cm−3 range from the surface, ship, and MODIS, except
for the near-cloud-top maxima in Nd observed by the GV
in the ramp demonstrated in Fig. 4. The other ramps (not
shown) also had values of Nd near the CCN values of 200–
250 cm−3. We speculate that the difference between CCN
and Nd is mostly likely due to precipitation droplet scav-
enging and coalescence process that is actively generating
drizzle in this case. The high CCN from the free tropo-
sphere transported to this location from the south is likely
mixing into the marine boundary layer through entrainment
(the cloud-top spike in Nd in Fig. 4) and being processed
through clouds explaining the lower surface CCN. The cloud
properties (Nd in the 100 cm−3 range) are a drizzle- and

coalescence-damped response to the higher free-tropospheric
CCN.

3.2 Expanded MODIS comparison

Finally, we compare with the MODIS-derived cloud prop-
erties from overpasses of the ships during the MARCUS and
Capricorn campaigns. With MODIS instruments on the Terra
and Aqua satellites and the ships being at sea over extended
periods, we found several events where suitable low-level
clouds occurred over the ships during MODIS overpasses.
Table 3 lists the information about the 14 overpasses of the
ships that we use for the comparison in Fig. 9. Our approach
was to examine a 50 km region of MODIS data centered on
the ship, and we compiled surface data from 90 min periods
before and after an overpass. We find reasonable agreement
in the comparisons. The LWP is an interesting quantity since,
as stated above, it is independent of theNd−re retrieval. The
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Figure 7. Comparison of properties observed and derived from data collected on R/V Investigator (blue) with cloud properties derived from
a Terra MODIS overpass at 00:25 UTC on 18 February 2018. (a) re, (b) LWP, (c) optical depth, and (d) Nd. The vertical red line in panel (d)
shows the 0.25 % supersaturation CCN measured on R/V Investigator at this time.

Figure 8. Comparison of Nd (a) and re (b) derived from the surface-based data collected on R/V Investigator (red) with data collected from
the NSF/NCAR GV on 18 February 2018. Cloud properties are compiled over the period from 02:00–04:00 UTC.

LWP from the MODIS data, on the other hand, is derived
from the τ and re algorithm that uses a bispectral method
(Nakajima and King, 1990) so that the MODIS LWP would
carry forward any uncertainties in τ and re. The agreement,
however, is reasonable and with little bias. Most of the cases
have LWP< 200 g m−2, since we focus on non- to lightly
precipitating cloud scenes. The re of the cases range over
values that are very small, corresponding to cases near the
Antarctic continent with high Nd and no precipitation to re
that exceeds 15 µm. The comparison in re is unbiased and
with a reasonable correlation. While Nd also demonstrates a
reasonable correlation, there does appear to be a slight bias
in the comparison, with the surface data being, on average,
20–30 cm−3 higher than MODIS. The optical depth appears
unbiased for values smaller than∼ 15 but then seems to show
a bias for values of more than 15, with MODIS being larger
than the surface-based results. More data are highly desirable
to establish how well and under what circumstances these
data sets agree or not, but this comparison is encouraging.

4 Summary and conclusions

Given the importance of knowing cloud droplet number
concentrations (Nd) in low-level clouds for understanding
how these clouds interact with aerosol and precipitation-
producing processes to influence the Earth’s albedo, we have
explored two techniques that allow us to derive Nd and layer
effective radius (re) using surface-based remote sensing tech-
niques with an emphasis on the information brought to this
problem by lidar data. The depth that a laser pulse penetrates
a cloud layer is a function of the amount of water droplet
cross-sectional area presented to the laser pulse, and that
cross-sectional area is dependent upon the Nd and the liquid
water content (q). This observable is quantified by the lidar-
attenuated backscatter, βobs (Eq. 10), that is modulated by
the directionality of the scattering as represented by the mul-
tiple scattering factor. As the lidar beam penetrates a cloud
layer, the signal initially increases until two-way attenuation
causes the signal to reach a maximum, after which it decays
exponentially, depending upon multiple scattering. The rate
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Table 3. List of the MODIS overpasses shown in Fig. 9.List of the MODIS overpasses shown in Fig. 9.List of the MODIS overpasses shown
in Fig. 9.List of the MODIS overpasses shown in Fig. 9.List of the MODIS overpasses shown in Fig. 9.

Date/time Location Satellite Campaign
(yyyy/mm/dd)

2018/01/29, 04:50 UTC 61.4° S, 139.3° E Aqua CAPRICORN II
2018/02/04, 04:15 UTC 65.6° S, 150.0° E Aqua CAPRICORN II
2018/02/05, 04:55 UTC 63.9° S, 150.0° E Aqua CAPRICORN II
2018/02/07, 23:50 UTC 62.8° S, 143.6° E Terra CAPRICORN II
2018/02/13, 05:45 UTC 63.9° S, 132.1° E Aqua CAPRICORN II
2018/02/18, 00:25 UTC 56.5° S, 141.6° E Terra CAPRICORN II
2018/02/20, 00:10 UTC 50.2° S, 143.7° E Terra CAPRICORN II

2018/01/02, 01:10 UTC 66.3° S, 110.5° E Terra MARCUS
2018/01/05, 01:40 UTC 66.2° S, 110.2° E Terra MARCUS
2018/01/05, 07:20 UTC 66.1° S, 110.0° E Aqua MARCUS
2018/01/06, 02:25 UTC 64.0° S 111.3° E Terra MARCUS
2018/01/10, 04:25 UTC 47.0° S 142.6° E Terra MARCUS
2018/02/23, 08:05 UTC 59.3° S, 89.3° E Aqua MARCUS
2018/02/24, 03:05 UTC 56.9° S, 95.4° E Terra MARCUS

Figure 9. Comparison of MODIS-derived cloud properties with
cloud properties derived from data collected during the MARCUS
and CAPRICORN II campaigns in the Southern Ocean during aus-
tral summer 2018. Error bars are 1 standard deviation of the re-
trieved cloud properties during the time and over the spatial extent
of the two data sets. The Pearson correlation coefficient of the com-
parison is shown as an inset in each panel.

of increase in βobs is easily quantified if Nd and q are known
or, turning the problem around, one can calculateNd if βobsis
observed and q is known. The math becomes more tractable
where the lidar signal is at a maximum (a distance we term
Rmax), since the rate of change in βobs is zero there (Eqs. 16
and 17). The liquid water content, q, can be expressed in
terms of the rate of increase in q with height for an adia-

batic cloud, which can be made more realistic by scaling the
q profile by an adiabaticity factor that can be derived from
LWP and cloud layer depth. This simple model (Eq. 17) can
be implemented with an estimated cloud depth, LWP, and a
lidar. The effective radius near the cloud top can then be de-
rived (Eq. 18).

The method, however, is very sensitive to uncertainty in
Rmax which is, in turn, dependent on the vertical resolution
of the lidar. Since Rmax typically ranges from a few tens of
meters to maybe as much as 100 m, the uncertainty in derived
Nd becomes prohibitively large (> 100 %) for range resolu-
tions much above 15 m. Rmax also depends on an estimate
of where in the vertical profile activation of cloud droplets
begin. In non-precipitating clouds, this level is easily dis-
cerned to be where the signal first rises significantly above
the aerosol and molecular background. In light precipitation,
this level is less obvious, and we extrapolate the signal to a
level of signal strength that was previously identified in non-
precipitating conditions. We found empirically that the cloud
base identified by most automated ceilometer or lidar algo-
rithms typically identify a cloud base to be very near where
the lidar-attenuated backscatter reaches a maximum which
is not useful in this context. Uncertainty in Rmax translates
predictably into uncertainties in re. Another limitation of the
method is the need to estimate the q profile above cloud base.
We take advantage of an assumed adiabatically shaped q pro-
file to estimate q at the point where βobs reaches a maximum.
This allows us to essentially have two pieces of information
to solve Eq. (2), with the third, α, being assumed. A cloud
that does not have this adiabatic shape in q would, therefore,
not provide an accurate estimate of Nd and re. Additionally,
the cloud must be fully attenuating to have an accurate value
for Rmax. We assume that most optically thick stratocumulus
would satisfy these assumptions. Note that it would be dif-
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ficult to adapt this method to down-looking observing sys-
tems from aircraft or satellite because of the assumption of
the adiabatic shape of the q profile. The tops of many ma-
rine boundary layer (MBL) clouds contain a region where q
is decreasing with height from a layer of maximum q due to
the interaction with dry air at the layer top. The depth of this
region would depend on the strength of the marine inversion
and the amount of mixing.

To lessen the effects of uncertainty inRmax, we bring more
information to bear on the problem by quantifying the cloud
layer extinction in terms of the rate of decay of the lidar sig-
nal beyond Rmax using a published methodology (Li et al.,
2011). In addition, we use the radar reflectivity near the cloud
top as a constraint on the q profile and re. This is cast in
an optimal estimation (OE) algorithm that seeks to balance
the uncertainty in the observations and uses prior informa-
tion such as CCN concentrations that provide an upper limit
on Nd. The OE algorithm is only marginally successful in
reducing the uncertainty in Nd and re. The uncertainties, es-
pecially on Nd, remain substantial since Rmax provides the
most significant information on Nd, and the other measure-
ments provide minimal constraint on Nd, as quantified in the
Jacobian (Kx) matrix. What we find interesting but not sur-
prising is that the use of CCN as a prior constraint allows us
to balance the information content in Rmax and the other ob-
servations with what we know as a significant constraint on
Nd and, to a lesser extent, re. Overall, the OE uncertainties
that are shown to be reasonable through a bootstrapping ex-
periment and through comparison to aircraft data are in the
range of just under a factor of 2 for Nd and 30 % for re for
lidar range bins of 10–30 m. The only way to reduce this un-
certainty is to have dedicated lidar measurements that have
a vertical resolution that is smaller than 10 m. Using com-
parisons with in situ aircraft data and with cloud properties
derived from MODIS, we show that the OE algorithm pro-
vides results consistent with the uncertainty in the data and
retrievals.

Finally, a case study is explored that shows how syner-
gistic remote sensing data from the surface, especially when
combined with aircraft and satellite data, can be exploited.
The 18 February 2018 case study that took place in the
Southern Ocean near 56° S and 141° E suggests how long-
range aerosol transport of an air mass from the biologically
productive waters of the deep southern latitudes modulated
the cloud properties that existed on this day. The CCN mea-
sured at the surface and from the GV aircraft was about a
factor of 2 larger than the ∼ 100 cm−3 Nd inferred from the
ship-based remote sensing and MODIS data and observed by
the GV. This difference between Nd and CCN was likely a
response to the widespread precipitation processes that were
occurring on this day.

Code and data availability. All data used in this
study are available in public archives. MODIS
cloud products can be found for Terra and Aqua at
https://doi.org/10.5067/MODIS/MOD06_L2.006 (Platnick et
al., 2015a) and https://doi.org/10.5067/MODIS/MYD06_L2.006
(Platnick et al., 2015b). ARM data can be obtained
at https://www.arm.gov/data/ (last access: 1 Septem-
ber 2023; https://doi.org/10.5439/1508389, Sivaraman
et al., 2020; https://doi.org/10.5439/1255094, Koontz et
al., 2024; https://doi.org/10.5439/1027369, Zhang, 2024;
https://doi.org/10.5439/1595321, Keeler et al., 2024;
https://doi.org/10.5439/1999490, Cadeddu and Tuftedal,
2024; https://doi.org/10.5439/1973911, Lindenmaier et
al., 2024; https://doi.org/10.5439/1320657, Muradyan et
al., 2024; https://doi.org/10.5439/1593144, Cromwell and
Reynolds, 2024; https://doi.org/10.5439/1974348, Walton, 2024;
https://doi.org/10.5439/1971078, Stuefer et al., 2024). SOCRATES
data are available at https://doi.org/10.26023/K5VQ-K6KY-
W610 (UCAR/NCAR – Earth Observing Laboratory, 2019) and
https://doi.org/10.26023/M3KV-1SS0-DF10 (UCAR/NCAR –
Earth Observing Laboratory, 2018). CAPRICORN II data are
available at https://doi.org/10.25919/5f688fcc97166 (Protat et al.,
2020). Computer code for this study, including all analysis code
and graphic generation code is written in the IDL language. The
code is available upon request to the corresponding author.
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