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Abstract. As one of the dominant sinks of aerosol particles,
wet scavenging greatly influences aerosol lifetime and inter-
actions with clouds, precipitation, and radiation. However,
wet scavenging remains highly uncertain in models, hinder-
ing accurate predictions of aerosol spatiotemporal distribu-
tions and downstream interactions. In this study, we present a
flexible, computationally inexpensive method to identify me-
teorological variables relevant for estimating wet scavenging
using a combination of aircraft, satellite, and reanalysis data
augmented by trajectory modeling to account for air mass
history. We assess the capabilities of an array of meteoro-
logical variables to predict the transport efficiency of black
carbon (TEBC) using a combination of nonlinear regression,
curve fitting, and k-fold cross-validation. We find that accu-
mulated precipitation along trajectories (APT) – treated as
a wet scavenging indicator across multiple studies – does
poorly when predicting TEBC. Among different precipita-
tion characteristics (amount, frequency, intensity), precipi-
tation intensity was the most effective at estimating TEBC
but required longer trajectories (> 48 h) and including only
intensely precipitating grid cells. This points to the contri-
bution of intense precipitation to aerosol scavenging and the
importance of accounting for air mass history. Predictors that
were most able to predict TEBC were related to the distribu-
tion of relative humidity (RH) or the frequency of humid con-
ditions along trajectories, suggesting that RH is a more robust
way to estimate TEBC than APT. We recommend the follow-
ing alternatives to APT when estimating aerosol scavenging:

(1) the 90th percentile of RH along trajectories, (2) the frac-
tion of hours along trajectories with either water vapor mix-
ing ratios > 15 g kg−1 or RH > 95 %, and (3) precipitation
intensity along trajectories at least 48 h along and filtered for
grid cells with precipitation > 0.2 mm h−1. Future scaveng-
ing parameterizations should consider these meteorological
variables along air mass histories. This method can be re-
peated for different regions to identify region-specific factors
influencing wet scavenging.

1 Introduction

Although wet scavenging is one of the dominant removal
mechanisms for atmospheric aerosol particles (Seinfeld and
Pandis, 2016; Textor et al., 2006), it remains a large source
of uncertainty in global-scale models (Watson-Parris et
al., 2019; Liu and Matsui, 2021; Moteki et al., 2019; Hodzic
et al., 2016). This uncertainty hampers the ability of global-
scale models to capture the life cycle (i.e., sources, trans-
formations, and sinks) (Hou et al., 2018), spatial extent
(Moteki et al., 2019), and vertical profile (Watson-Parris et
al., 2019; Liu and Matsui, 2021; Frey et al., 2021; Kipling et
al., 2016) of aerosol particles. Inaccurate representations of
these aerosol features contribute to uncertainties in estimates
of aerosol radiative effects (Samset et al., 2013; Marinescu
et al., 2017) and aerosol loadings over climate-sensitive re-
gions (Liu and Matsui, 2021; Mahmood et al., 2016; Shen et
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al., 2017), with further implications for the remote sensing of
aerosol abundance downwind of precipitating or cloudy ar-
eas. Advancing knowledge of wet scavenging processes can
help reduce the largest uncertainty in human forcing of the
climate system, which involves aerosol–cloud interactions
(e.g., Bellouin et al., 2020).

Wet scavenging occurs either below- or in-cloud. Below-
cloud scavenging occurs when aerosol particles are col-
lected by precipitation (Croft et al., 2009) and is most im-
portant between the surface and 1 km above ground level
(a.g.l.) (Grythe et al., 2017). The efficiency of below-cloud
scavenging depends on raindrop size distributions (Wang et
al., 2010), aerosol composition (Lu and Fung, 2018; Gry-
the et al., 2017), the amount of in-cloud condensed water
(Luo et al., 2019), and precipitation characteristics (i.e., fre-
quency, intensity, amount, and type). To calculate the fraction
of aerosol scavenged below-cloud, models typically rely on
an empirically derived below-cloud scavenging coefficient,
which is a function of aerosol size (Feng, 2007; Croft et
al., 2009) and composition (Lin et al., 2021). Semi-empirical
model parameterizations of below-cloud scavenging have
been shown to improve simulated surface concentrations
(Luo et al., 2019); however, agreement between models and
observations is highly sensitive to the specific below-cloud
scavenging scheme used (Lu and Fung, 2018). Below-cloud
scavenging rates in models also remain significantly under-
estimated compared to observations (Kim et al., 2021; Ryu
and Min, 2022; Xu et al., 2019).

Wang et al. (2010) determined that the below-cloud scav-
enging coefficient is influenced by (1) raindrop particle col-
lection efficiency, (2) raindrop size distribution, and (3) rain-
drop terminal velocity. These factors were associated with
differences in particle concentrations by a factor of 2 for
sub-10 nm particles and a factor of > 10 for particles larger
than 3 µm; however, their combined uncertainty was insuf-
ficient to explain the discrepancy between theoretical and
field measurements of the below-cloud scavenging coeffi-
cient. Wang et al. (2011) demonstrated that this discrepancy
can be largely explained by the vertical turbulence as it deter-
mines which particles are subjected to impaction scavenging.
This impact was most pronounced for submicron particles
under weak precipitation intensities.

Given these uncertainties, Wang et al. (2014a) developed
a new semi-empirical, size-resolved parameterization based
on an percentile logarithmic power-law relationship between
the below-cloud scavenging coefficient and particle size that
is applicable to both rain and snow across different particle
sizes and precipitation intensities. Based on the size-resolved
parameterization of Wang et al. (2014a), a bulk or modal pa-
rameterization for fine (PM2.5), coarse (PM2.5−10), and giant
particles (PM10+) was presented by Wang et al. (2014b).

In-cloud scavenging occurs via nucleation (i.e., activation
of aerosol particles into cloud droplets; Jensen and Charl-
son, 1984) or impaction (i.e., collision of interstitial aerosol
particles with existing cloud droplets; Kipling et al., 2016;

Flossmann et al., 1985) and is followed either by (1) precip-
itation that reaches the surface, removing the particle from
the atmosphere (Radke et al., 1980), or (2) evaporation of
cloud droplets or precipitation, returning the scavenged par-
ticle to the free atmosphere (Mitra et al., 1992). Model im-
provements in in-cloud scavenging include using a continu-
ous rather than binary cloud fraction (Ryu and Min, 2022; Xu
and Randall, 1996), accounting for cloud water phase (Gry-
the et al., 2017; Liu and Matsui, 2021), and accurately simu-
lating cloud supersaturation (Moteki et al., 2019). Although
in-cloud scavenging is generally thought to be more efficient
at removing accumulation-mode aerosol particles (Watson-
Parris et al., 2019; Choi et al., 2020), other studies argue
that there are instances wherein below-cloud scavenging be-
comes more important at regulating aerosol burdens (Kim
et al., 2021; Ryu and Min, 2022; Xu et al., 2019). Uncer-
tainties related to wet scavenging are further exacerbated by
the divergent role of clouds, which can be a sink or source
of aerosol particles depending on environmental factors and
cloud characteristics (Ryu et al., 2022).

One avenue for improving the estimation of wet scaveng-
ing, particularly in observational studies, is to identify an
effective meteorological indicator of wet scavenging. Pre-
vious studies used precipitation amount (Feng, 2007; An-
dronache, 2003), while more recent studies accounted for air
mass history using the National Oceanic and Atmospheric
Administration (NOAA) Hybrid Single-Particle Lagrangian
Integrated Trajectory Model (Rolph et al., 2017; Stein et
al., 2015) to calculate accumulated precipitation along tra-
jectories (APT) (e.g., Kanaya et al., 2016, 2020). However,
APT can be problematic as an indicator of wet scavenging
because APT is an accumulated quantity and does not con-
sider specific characteristics of precipitation relevant to scav-
enging such as intensity and frequency (Hou et al., 2018;
Y. Wang et al., 2021a, b; Hilario et al., 2022). APT as an
indicator of wet scavenging also relies on the correct de-
tection of precipitation and retrievals of amounts, which are
challenging during both light (Nadeem et al., 2022; Kidd
et al., 2021) and intense precipitation events (H. Chen et
al., 2020; Gupta et al., 2020) and even show disagreements
between different satellite precipitation products (SPPs) and
reanalyses (Cannon et al., 2017; Jiang et al., 2021; Alexander
et al., 2020; S. Chen et al., 2020; Barrett et al., 2020). Fur-
thermore, precipitation from SPPs such as the Precipitation
Estimation from Remotely Sensed Information using Artifi-
cial Neural Networks – Climate Data Record (PERSIANN-
CDR) (Ashouri et al., 2015; Nguyen et al., 2018) and the
Integrated Multi-satellitE Retrievals for the Global Precipi-
tation Measurement (GPM) mission (IMERG) (Huffman et
al., 2020) refers to total column precipitation that has been
validated mainly with surface measurements (Sapiano and
Arkin, 2009; Nicholson et al., 2019; J. Wang et al., 2021) and
consequently may not detect precipitation that evaporates be-
fore reaching the surface (e.g., virga) (Wang et al., 2018).
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Given the uncertainties of estimating wet scavenging from
precipitation, we present a flexible, computationally inexpen-
sive method to identify alternative meteorological variables
that can be used to better estimate wet scavenging. We com-
bine curve fitting and k-fold cross-validation to evaluate an
array of meteorological variables from aircraft, satellite, and
reanalysis data to answer the following.

1. What meteorological variables can estimate wet scav-
enging trends better than APT? Since precipitation fre-
quency has been shown to exert significant control over
aerosol scavenging (Y. Wang et al., 2021a), we hy-
pothesize that predictors that account for the frequency
of scavenging-conducive conditions (e.g., frequency of
high relative humidity – RH – conditions along trajecto-
ries) will be able to capture wet scavenging trends better
than APT.

2. How can APT be filtered or changed to better estimate
wet scavenging? We hypothesize that considering pre-
cipitation intensity and/or trajectory altitude thresholds
when calculating APT will improve its ability to esti-
mate wet scavenging. We also hypothesize that calcu-
lating APT using SPPs will perform better than APT
from reanalysis.

The presented method may be repeated over different re-
gions to identify region-specific wet scavenging indicators.
This can inform scavenging parameterization development
for models by providing guidance on what meteorological
variables are needed to properly capture wet scavenging pro-
cesses over a specific region. Future studies can also use the
best-performing variables identified in this study as alterna-
tives to APT when estimating the extent of wet scavenging.

2 Data and methods

2.1 Aircraft data

Much of the methodology and instrumentation in this study
are detailed elsewhere (Hilario et al., 2021) but are summa-
rized here. We utilize aircraft measurements from NASA’s
Cloud, Aerosol, and Monsoon Processes-Philippines Ex-
periment (CAMP2Ex; 24 August to 5 October 2019) over
the tropical western Pacific (5–20◦ N, 117–127◦ E) (Reid et
al., 2023), which hosts a dynamic transport environment rich
in aerosol sources and cloud–precipitation systems.

Black carbon (BC)-equivalent concentrations (particle di-
ameters: 100–700 nm; units: µgm−3) were measured with a
single-particle soot photometer (SP2) (Moteki and Kondo,
2007, 2010) with an uncertainty of 15 % (Slowik et al., 2007)
and lower detection limit of 10 ng m−3 verified by filter-
blank measurements as well as observations in the clean free
troposphere. To eliminate in-cloud sampling artifacts such as
droplet shattering on the inlet (Murphy et al., 2004), we use
only data collected outside of clouds. All BC concentrations

are reported at standard temperature and pressure (273 K,
1013 hPa). Carbon monoxide (CO; ppm) was measured us-
ing a dried-airstream near-infrared cavity ring-down absorp-
tion spectrometer (G2401-m; Picarro, Inc.), with an uncer-
tainty of 2 % and precision of 0.005 ppm. As an in situ (i.e.,
at the aircraft’s position) contrast to moisture-based variables
along trajectories, relative humidity (RHW, DLH) was derived
from absolute water vapor concentrations that were retrieved
by a diode laser hygrometer (DLH) (Livingston et al., 2008)
on the aircraft.

2.2 Calculation of enhancement ratios

To relate wet scavenging to meteorological conditions during
transport, previous studies calculated enhancement (1) ra-
tios of BC and CO (1BC/1CO; Hilario et al., 2021; Kanaya
et al., 2016; Oshima et al., 2012), which can then be used
to quantify the transport efficiency of BC (TEBC) (Kanaya
et al., 2016, 2020; Oshima et al., 2012), as discussed more
in Sect. 2.5. By using the enhancement above a local back-
ground, 1BC/1CO accounts for background concentrations
of BC and CO at a receptor site

((
1BC
1CO

)
receptor

)
and is better

able to detect a transported air mass containing BC and CO
above local background levels. This ratio can be used as an
indicator of wet scavenging because BC is relatively chem-
ically inert and is mainly removed from the atmosphere via
wet scavenging (Moteki et al., 2012). While CO is also rel-
atively chemically inert, CO has a lifetime between 30 and
90 d (Seinfeld and Pandis, 2016) that is mainly controlled by
photochemistry rather than wet scavenging due to its low sol-
ubility.

Enhancements were defined as the difference between
species concentrations and the lowest 5th percentile species
concentration for all CAMP2Ex data for every 5 K potential
temperature bin (Koike et al., 2003; Matsui et al., 2011). As
CAMP2Ex spanned the late southwest monsoon and early
monsoon transition, background concentrations (i.e., lowest
5th percentile) were calculated for each monsoon phase using
20 September 2019 to divide the two monsoon phases. Only
data with 1CO > 0.02 ppm were included to reduce uncer-
tainties caused by low denominator values in the 1BC/1CO
ratio (Kleinman et al., 2007; Kondo et al., 2011; Matsui et
al., 2011). When calculating transport efficiency (Sect. 2.5),
we converted 1CO (from the receptor) from parts per million
(ppm) to micrograms per cubic meter (µgm−3) using the am-
bient pressure and temperature measured by the aircraft such
that 1BC/1CO would be unitless.

As 1BC/1CO is expected to vary by source region,
Fig. S1a in the Supplement shows source-resolved distribu-
tions of 1BC/1CO (unitless) based on source regions iden-
tified by Hilario et al. (2021), which classified backward tra-
jectories into source regions using bounding boxes over ma-
jor source regions established in previous literature. In addi-
tion to passing over source region bounding boxes, the source
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classification also considered (1) trajectory altitude, specif-
ically whether or not the trajectory was below 2 km a.g.l.
which conservatively approximates climatological boundary
layer heights over the region (Chien et al., 2019), as well
as (2) trajectory residence time within each bounding box
(minimum residence time: 6 h). As described in Hilario et
al. (2021), 1BC/1CO is higher for air masses coming from
East Asia or the Maritime Continent (Fig. S1a), which sug-
gests a low degree of aerosol scavenging during transport,
while lower 1BC/1CO ratios are seen for air from peninsu-
lar Southeast Asia, indicating that scavenging had occurred.
More information on major transport patterns affecting BC
and CO during CAMP2Ex is provided in Appendix A.

2.3 Trajectory modeling

Trajectory modeling is a computationally inexpensive tool
for characterizing transport processes (Kanaya et al., 2016;
Oshima et al., 2012; Moteki et al., 2012) and has been used
in synergy with aircraft data (Hilario et al., 2021; Dadashazar
et al., 2021). In this study, we use trajectories to account
for meteorological conditions during air parcel transport that
are expected to impact the scavenged aerosol fraction. Back-
ward trajectories were spawned every minute along the air-
craft flight path and run for 72 h using the NOAA HYS-
PLIT model. Meteorological input data for the HYSPLIT
model were from the National Centers for Environmental
Prediction (NCEP) Global Forecast System reanalysis (GFS;
0.25◦× 0.25◦). Figure S1b shows the distribution of trans-
port times from different source regions (Sect. 2.2) to the
CAMP2Ex aircraft. Generally, transit times are below 72 h,
indicated by 25th and 75th percentiles less than 72 h, sug-
gesting that 72 h is sufficient to capture long-range transport
from major source regions into the tropical western Pacific.

2.4 Emission inventory

To calculate the BC/CO emission ratio over each trajectory
(ERBC/CO), we used data from the Copernicus Atmosphere
Monitoring Service (CAMS) Global Anthropogenic Emis-
sions (CAMS-GLOB-ANT) inventory version 5.3 (Soulie et
al., 2023), which is based on the Emissions Database for
Global Atmospheric Research (EDGAR) inventory from the
European Joint Center (Crippa et al., 2018) and the Commu-
nity Emissions Data System (CEDS) from the Joint Global
Research Institute (Hoesly et al., 2018). CAMS-GLOB-ANT
has a horizontal resolution of 0.1× 0.1◦ at monthly reso-
lution. CAMS-GLOB-ANT accounts for 17 emission sec-
tors, including shipping from CAMS-GLOB-SHIP v3.1, and
emissions are reported in units of mass flux (kg m−2 s−1).
More information on CAMS global and regional emissions
can be found in Granier et al. (2019).

2.5 Calculation of transport efficiencies

The TEBC (unitless) was calculated for each trajectory using
Eq. (1):

TE=

(
1BC
1CO

)
receptor

ERBC/CO
, (1)

where
(

1BC
1CO

)
receptor

is the enhancement ratio calculated

from the aircraft data (Sect. 2.2) and ERBC/CO is the
weighted-average emission ratio of BC/CO along each
72 h trajectory, inverse-weighted by altitude and calculated
using emissions from the CAMS-GLOB-ANT inventory
(Sect. 2.4). When calculating ERBC/CO for each trajectory,
we applied a weighting function (Fig. S2a) to assign higher
weights to lower altitudes such that the resulting ERBC/CO
will be mainly determined by times when trajectory altitude
is low, reflecting the higher likelihood of entraining surface
emissions when the trajectory is close to the surface. An ex-
ample of the weighting function as a function of trajectory al-
titude is shown in Fig. S2b wherein weighting decreases with
increasing trajectory altitude. As the ERBC/CO calculation in-
cluded the entire 72 h length of the trajectory, our method of
computing ERBC/CO is not restricted only to source regions
(e.g., East Asia) but also accounts for potential entrainment
of BC or CO over the open ocean, where sources such as
shipping could contribute BC (Lack and Corbett, 2012) and
CO (Jalkanen et al., 2012). We note that ERBC/CO is not re-
quired to be an enhancement ratio because the purpose of the
enhancement ratio is to account for local background con-
centrations over the receptor region (Sect. 2.2).

We found that TEBC and 1BC/1CO are strongly corre-
lated (R2

= 0.90); however, TEBC has the added advantage
of accounting for surface emissions of BC and CO that could
have been entrained into transported air mass. 1BC/1CO
is assumed to be influenced by two main factors: (1) source
emissions of BC and CO along the trajectory path and (2) re-
moval of BC via wet scavenging. By setting TEBC as our pre-
dictand, we account for emissions encountered during long-
range transport (ERBC/CO) such that TEBC is expected to
vary mainly via sinks (i.e., wet scavenging).

To show the variation of ERBC/CO and TEBC with differ-
ent source regions, Fig. S1 shows source-resolved ERBC/CO
(Fig. S1c) and TEBC (Fig. S1d). Air masses from East Asia
show the smallest range in ERBC/CO, while air masses from
the Maritime Continent and peninsular Southeast Asia have
largely similar distributions. Lower values of ERBC/CO in air
masses from the Maritime Continent are related to smoke
from agricultural burning that coincided with the CAMP2Ex
period (Ge et al., 2014). Previous emission factor measure-
ments showed that these fires tended to be smoldering rather
than flaming, emitting CO but notably lower BC (Stockwell
et al., 2015). While some variation is indeed present between
source regions, the distributions of ERBC/CO are generally
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similar with modes between 0.22 and 0.26, which may ex-
plain the strong correlation between TEBC and 1BC/1CO.

2.6 Data for predictor variables

Several meteorological variables (i.e., predictors) considered
in this work were calculated from GFS reanalysis collocated
along each trajectory. Though reanalysis is relatively coarse
and not cloud-resolving, reanalysis variables (e.g., RH) may
still be useful in detecting the presence of mesoscale to
synoptic-scale cloud fields. As precipitation is expected to
be accompanied by elevated RH or water vapor mixing ratio
(MR), these reanalysis-derived variables could serve as ef-
fective scavenging indicators in cases in which precipitation
may be missed or misestimated.

In addition to APT from GFS, we calculated APT from
two SPPs: PERSIANN-CDR (0.25◦× 0.25◦, daily reso-
lution) (Ashouri et al., 2015; Nguyen et al., 2018) and
IMERG Final v6 (0.1◦× 0.1◦, 30 min resolution) (Huffman
et al., 2020). We converted precipitation from these products
to hourly amounts to match trajectory time steps prior to fur-
ther calculation.

Besides APT, we also calculated precipitation amount
(PA; mm h−1), frequency (PF), and intensity (PI; mm h−1),
which are well-established in the literature for characteriz-
ing precipitation, particularly in diurnal cycle analyses (e.g.,
Zhang et al., 2017; Hilario et al., 2020). Applying these quan-
tities to precipitation along trajectories, PA is APT divided by
the total number of hours along the trajectory (i.e., trajectory
length) to obtain an average hourly precipitation rate, PF is
the fraction of hours along the trajectory where the grid cell
precipitation is above 0 mm h−1, and PI is the ratio of PA to
PF. Table 1 shows notation used to explain each type of pre-
dictor and its variations.

2.7 Curve fitting and k-fold cross-validation

To quantify relationships between TEBC and each predic-
tor as well as its uncertainty, we performed k-fold cross-
validation (k = 10) parallelized using the Python package
Jug version 2.2.2 (Coelho, 2017). To create k distinct par-
titions of the data, we utilized stratified random sampling
wherein random sampling was performed for each 5th per-
centile block of the predictor such that the sampling probabil-
ity better reflects the distribution of predictor values, which
is important for skewed distributions such as precipitation
amount, and the resulting k partitions capture the behavior
of TEBC across the full spectrum of predictor values. By
randomly sampling each percentile block for k distinct par-
titions, this sampling method improves the chances of cap-
turing intra-block variability in TEBC by collecting the most
samples where the highest data coverage exists. The random
nature of the sampling also allows for the consideration of
extreme values in the curve fitting, with a sampling proba-
bility proportional to the frequency of these extreme values.

As an example, Fig. 1a–b show the emphasis of the strati-
fied random sampling method on high-density areas of the
scatterplot of RHq90 and TEBC, denoted by dense percentile
blocks (dashed gray lines). For extremely skewed distribu-
tions such as APT, several of the lower-value percentiles
exhibited non-unique values (e.g., zero). In the case of re-
peated percentile values, these percentile-based groups were
merged. We imposed a minimum of six distinct percentile
blocks to ensure robust curve fitting.

An iterative train–test split procedure using these parti-
tions was then performed using k−1 partitions as the training
set and the remaining partition as the testing set (Fig. 1a). For
each iteration of the k-fold cross-validation, nonlinear least-
squares curve fitting was applied to the training set (i.e., nine
partitions for a total k of 10) to determine coefficients for
the equation (e.g., general exponential; discussed below) fit-
ted onto the scatterplot of TEBC and the predictor. We used
these coefficients and the testing set (i.e., the remaining par-
tition) as inputs for the curve-fitting equation and calculated
a predicted curve of TEBC and the predictor. To assess this
predicted curve, we applied stratified random sampling to the
testing set and took the median TEBC per 5th percentile block
to create observed curves of TEBC as a function of the predic-
tor that could be compared to the predicted curve (Fig. 1b).
Because decreases in TEBC are expected to be mainly from
wet scavenging, the overall trend or median curve may be
treated as a reasonable indicator of wet scavenging effects
on TEBC related to changes in the predictor value.

Using a linear regression of predicted and observed me-
dian TEBC per 5th percentile block of the predictor (Fig. 1c),
we calculated statistics (e.g., slope, R) to describe how well
the predictor can predict TEBC. Specifically, the performance
of a predictor refers to how well TEBC derived from the
predictor matches observed TEBC. We also computed statis-
tics comparing predicted and observed TEBC for individual
points (Fig. 1d) rather than medians to assess how much
variability in TEBC is captured by the predicted curves. The
population in Fig. 1d visually follows the 1-to-1 line, indi-
cating good performance of the model; however, the best-
fit line on individual points was greatly affected by outlier
points of high observed TEBC that led to poor agreement be-
tween the best-fit and 1-to-1 lines when the actual agreement
was much better (visually). This suggests that the median-
based statistics (Fig. 1c) are more robust to outliers and
present a fairer evaluation of model predictions. Note that the
individual-point statistics (Fig. 1d) resulted in correlations
and slopes further from ideal values compared to the median-
based statistics. This is expected as individual TEBC data
points exhibit large variability due to the influence of factors
other than wet scavenging; however, a comparison of our re-
sults when using individual-point or the median-based statis-
tics shows that they agree quite well qualitatively, with the
relative ranking of predictors largely unchanged between the
two types of statistics. In other words, the top predictors per-
formed well whether we used median-based or individual-

https://doi.org/10.5194/amt-17-37-2024 Atmos. Meas. Tech., 17, 37–55, 2024



42 M. R. A. Hilario et al.: Assessing indicators of aerosol wet scavenging

Table 1. Examples of notation used in this study.

Predictor Description Variations

fRH95 Fraction of hours along trajectories fRH85, fRH90
where GFS relative humidity
(RH) > 95 %

fMR15 Fraction of hours along trajectories fMR17
where GFS water vapor mixing ratio
(MR) > 15 g kg−1 dry air

RHq95 95th percentile of RH along trajectories RHq50, RHq85, RHq90, RHq100, RHmean

RHw, DLH RH over water measured by DLH –
on board the aircraft

APTPCP>0.2 mm, 48H, GFS,<1500 m Accumulated precipitation calculated along Trajectory duration: 12, 24, 48, 72 h
48 h trajectories where GFS precipitation Precipitation product: GFS, IMERG, PERSIANN-CDR
is above 0.2 mm and trajectory altitude Maximum altitude filter: no filter, < 1500 m
is below 1500 m Minimum precipitation filter: no filter, > 0.2 mm

Other precipitation variables: PA, PF, PI

Figure 1. An example of the curve-fitting procedure on TEBC with RHq95 as the predictor fitted with a Gaussian function. (a) Training (gray
dots) and testing sets (orange dots) for the 10th iteration of the k-fold cross-validation procedure selected using stratified random sampling.
Percentile blocks of each x-axis variable are denoted by vertical gray lines with observed (black) and predicted curves (blue) also plotted
for all 10 iterations. (b) Same as panel (a) but only showing observed (black) and predicted curves (blue) for all 10 iterations to highlight
variations between the k iterations. (c) Scatterplot comparing RHq95-predicted 1BC/1CO and observed median TEBC per 5th percentile
block of the predictor. Note that panel (c) is simply the linear regression of the observed and predicted curves in panel (b). (d) Same as
panel (c) but comparing RHq95-predicted and observed TEBC for individual points. In panels (c)–(d), only training set data are used, y axes
are the same, the best-fit line is shown as a black line, and the 1 : 1 line is the dashed red line.
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point statistics, implying that the conclusions reached using
our method are qualitatively insensitive to this choice. For
simplicity, reported statistics in this study refer to median-
based statistics unless otherwise specified.

To determine if a predictor tended to overestimate or un-
derestimate TEBC, we calculated a weighted area difference
(WAD) using Eq. (1):

WAD=
∑

Ni · xi∑
Ni

, (2)

where xi is the difference between observed and predicted
TEBC for the ith percentile block and Ni is the number of
data points in that percentile block. A positive (negative)
WAD indicates an overestimate (underestimate) of observed
TEBC.

To account for differing relationships between TEBC and
each predictor, we applied curve fitting to the scatterplot
of each predictor and TEBC using multiple nonlinear equa-
tions (Table 2) and chose the equation that produced the
highest Pearson correlation (R) between observed and pre-
dicted TEBC for that predictor. We considered equations
from two previous studies (Kanaya et al., 2016; Oshima et
al., 2012) and two generalized equations (Gaussian, general
exponential) to capture other types of relationships (Table 2).
The inclusion of the latter two are to account for a wider
range of possible relationships between predictors and TEBC,
such as the case of a predictor capturing TEBC trends well
but not having an inversely proportional relationship with
1BC/1CO. The case of a non-inversely proportional rela-
tionship with TEBC is still interesting because a strong rela-
tionship implies that the variable could be used to estimate
TEBC even if their relationship is nonmonotonic. The final
assigned equations led to similar root mean squared error
(RMSE) across predictors (Fig. S3), suggesting it is fair to
compare different predictors.

When selecting which equation to use (among those in Ta-
ble 2) for fitting between the predictor and TEBC, we opted
for the equation that resulted in the highest R between ob-
served and predicted TEBC (e.g., Fig. 1c). The basis of this
choice on R was because our objective is to identify predic-
tors that can at least capture trends in TEBC. After selecting
which equation to use per predictor, the subsequent compar-
ison (Sect. 3) of the performance of different predictors con-
siders other statistical metrics such as slope, intercept, and
WAD. For some combinations of predictors and equations,
the curve fitting did not successfully converge (< 4 % of all
combinations and k-fold iterations). In these cases, we did
not include the predictor–equation combination in our analy-
sis. However, curve fitting on the predictor may still converge
when using a different equation. In such a scenario, the pre-
dictor becomes part of our analysis.

Sensitivity testing with the k value showed no significant
effect on the general conclusions of the study when k was
changed between 5 and 20 (not shown). We opted for k = 10
based on previous work evaluating different accuracy esti-

mation methods which showed that k = 10 is sufficient to
estimate performance metrics (e.g., R2) while minimizing
computational expense (Breiman and Spector, 1992; Kohavi,
1995).

Although there is no physical process built into this pro-
cedure, the strength of the method is its repeatability in dif-
ferent environments or regions with minimal changes to the
overall procedure. As it requires no physical model to be run
besides the trajectory calculations, the method is also rela-
tively computationally inexpensive. Future work wanting a
more physical basis may apply our method as a diagnostic
tool to identify and narrow down a list of meteorological vari-
ables that may be relevant to wet scavenging and continue
their analysis with a physical model using the narrowed list
of variables to analyze.

3 Results and discussion

3.1 Overall statistical performance

Figures 2, 3, and S3 show performance comparisons of dif-
ferent predictors derived from linear regressions of observed
and predicted TEBC. Hereafter, the performance of a predic-
tor in this study refers to a predictor’s ability to predict ob-
served TEBC based on curve fitting (Sect. 2.7; Fig. 1c). To
simplify these figures, only the top eight predictors per panel
(by R) are colored to focus our discussion on predictors that
were able to predict TEBC. Table S1 provides the equation
and coefficients used for the top eight predictors per panel of
Fig. 2.

Using APT-based predictors (Fig. 2a) led to moderate R

between predicted and observed TEBC but slopes far below
the ideal value of 1, which, in addition to positive intercepts
and WAD (Fig. S3a), indicate that APT-based predictors tend
to underestimate TEBC when APT is high.

In comparison, predictors in Fig. 2b are based on RH (e.g.,
fRH95, RHq90) or MR (i.e., fMR15) and predicted TEBC much
better in terms of trends (high R) and magnitude (slopes
close to 1), suggesting that these predictors (Fig. 2b) could be
better at estimating TEBC than APT (Fig. 2a). One possibility
for this is that APT is an accumulated value that does not ac-
count for frequency or intensity, both of which have been ar-
gued to be important for regulating aerosol scavenging (Hou
et al., 2018; Y. Wang et al., 2021b). To explore this possibil-
ity further, we calculated PA, PF, and PI for each trajectory
(Fig. 2c–e). Among these three, PF (Fig. 2d) and PI (Fig. 2e)
resulted in the best slopes and R, with PI showing slightly
better slopes and R than PF. In comparison, PA performed
poorly, similar to APT, which is expected as both are related
to summed precipitation amount. Comparing the PI variables
with the highest R (i.e., colored points in Fig. 2e), the ma-
jority of these good-performing PI variables were filtered
for heavier or more intense precipitation (i.e., > 0.2 mm).
This filtering for heavier precipitation was done by includ-
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Table 2. Curve-fitting equations considered where x is the predictor variable and y is the observed 1BC/1CO, while a, b, c, and d are
best-fit parameters determined via least-squares regression.

Name Equation Source

Gaussian y = a · exp
(
−

(x−b)2

2·c2

)
+ d –

General exponential y = a · exp(−b · x)+ c –

Oshima y = b− a · log10(x) Oshima et al. (2012)

Kanaya y = c · exp
(
−a · xb

)
Kanaya et al. (2016)

Figure 2. Slope and Pearson correlation (R) values derived from linear regressions of observed (x) and predicted (y) TEBC with error bars
representing the 25th and 75th percentile values derived from k-fold cross-validation (k = 10) using stratified random sampling (Sect. 2.7).
Ideal values are denoted by the dashed red lines such that a better predictor would fall closer to the intersection of the two lines. The top
eight predictors per group (panel) are colored non-gray, while the rest of the predictors are plotted in gray to show the relative performance
of all predictors. Note that PERSIANN-CDR has been abbreviated to P-CDR (b–c). Panels share the same x- and y-axis limits.
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Figure 3. Same as Fig. 2 but comparing intercept and weighted area difference (WAD, Sect. 2.7).

ing only grid cells with precipitation > 0.2 mm when calcu-
lating PI. A similarly good performance was observed for
PF variables that also filtered for more intense precipitation.
These results suggest that PI (and to a lesser degree PF) must
be accounted for when predicting aerosol scavenging over
the tropical western Pacific. This further implies that even
though precipitation may be occurring, it may not be effi-
ciently scavenging aerosol.

Comparing which precipitation products are among the
top predictors (by R), most good-performing precipitation-
based predictors used SPP-based precipitation such as
IMERG or PERSIANN-CDR (Fig. 2c–e). This suggests that
GFS-derived precipitation variables are not as able to cap-
ture observed TEBC trends. The poor performance of GFS-
derived precipitation is reflective of past studies showing dis-
agreements in precipitation characteristics between satellites

and reanalyses (Cannon et al., 2017; Jiang et al., 2021) and
even divergent precipitation trends and amounts among indi-
vidual reanalysis products (Alexander et al., 2020; S. Chen
et al., 2020; Barrett et al., 2020). Our results corroborate
previous work that precipitation from GFS reanalysis is not
a reliable predictor of aerosol scavenging compared to pre-
cipitation from SPPs. Future studies relating precipitation to
aerosol scavenging are recommended to instead rely on in
situ or satellite-retrieved precipitation rather than precipita-
tion from reanalysis.

Predictors based on quantiles of RH (e.g., RHq90) (Fig. 2b)
perform quite well, with high R and slope (Fig. 2e) as well as
intercept and WAD consistently close to 0 regardless of quan-
tile (Fig. 3b). RHq90 performs slightly better in terms of R

than other RH thresholds (Fig. 2b); however, this difference
is minor as shown by the overlapping 25th–75th percentile
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error bars between the different RH quantiles. The similar
performance between different RH quantiles suggests consis-
tency in their ability to predict TEBC trends (high R; Fig. 2b)
while doing reasonably better than other types of predic-
tors when estimating TEBC magnitudes across the spectrum
of predictor values (intercepts closer to 0, slopes closer to
1). Maximum RH along trajectories was used by Kanaya et
al. (2016) in their analysis of 1BC/1CO scavenging to de-
tect the role of clouds in BC removal. Our findings suggest
that top quantiles of RH, including its maximum, are good
choices for estimating TEBC.

Compared to variables directly linked to precipitation (PA,
PF, PI, APT), the slopes from RH quantiles are noticeably
closer to the ideal value of 1 (Fig. 2b), while their inter-
cepts are closer to the ideal value of 0 (Fig. 2b), meaning
TEBC predicted by RH quantiles more closely matches the
observed TEBC than TEBC predicted by precipitation. We hy-
pothesize that the better performance of RH-related predic-
tors over those more directly related to precipitation (e.g.,
APT) may be explained by instances of precipitation that
are missed (or misestimated) by SPP retrievals that are in-
directly detected by reanalysis as high humidity conditions.
This possibility is supported by previous literature show-
ing the tendency of SPPs to misestimate light (Nadeem et
al., 2022; Kidd et al., 2021) or intense precipitation (H. Chen
et al., 2020; Gupta et al., 2020); however, we cannot rule out
the possibility of the hygroscopic growth, in-cloud activation
(high RH), and subsequent removal of BC during transport.
Thus, our hypothesis of RH from reanalysis capturing missed
precipitation from SPPs requires further investigation in fu-
ture work.

Of all the fractional predictors considered in this study,
fMR15 and fRH95 perform the best (Fig. 2b). fMR15 and
fRH95 reflect the frequency of occurrence of scavenging-
conducive conditions during transport. A high frequency of
high MR or RH may indicate that air masses passed through
large areas of clouds and/or precipitation during long-range
transport. fRH95 has a median slope of 0.99 (Fig. 2b), a 25th–
75th percentile range in slope of 0.92–1.02 (Fig. 2b), and a
median intercept of 0.01 (Fig. 3b), indicating that fRH95 can
be used to capture TEBC trends and magnitudes for a wide
range of TEBC. The good performance of fMR15 and fRH95
suggests that the frequency of scavenging-conducive condi-
tions may be a more reliable indicator of aerosol scavenging
than precipitation amount (e.g., APT, PA).

3.2 Nonlinear sensitivity of TEBC to meteorological
variables

Although the predictors in Figs. 2–3 exhibit the highest R of
all predictors considered in this study, their slopes are gen-
erally below 1 (Fig. 2), while their intercepts and WAD are
generally positive (Fig. 3). The combination of these statis-
tics implies that predictions of TEBC using our method tend
to overestimate observed TEBC across the spectrum of pre-

dictor values (indicated by WAD > 0) with maximum over-
estimations occurring when observed TEBC is low (indicated
by slopes < 1 and intercepts > 0). This points to a nonlinear
sensitivity of TEBC to these predictors as the degree of scav-
enging increases. Dadashazar et al. (2021) observed a simi-
lar nonlinear response to APT by a ratio of particulate matter
below 2.5 µm to CO (1PM2.5/1CO), where 1PM2.5/1CO
was most responsive to APT when APT was below 5 mm and
less sensitive to APT when APT exceeded 5 mm.

Investigating this sensitivity further, Fig. 4 shows that PF-
predicted TEBC does not capture the trends of observed TEBC
for highly scavenged air masses. In other words, PF loses its
predictive power as the degree of scavenging increases, im-
plying that PF is most important for the scavenging of fresher
air masses (high TEBC). This nonlinear sensitivity of TEBC
to PF hints at the possibility that other meteorological vari-
ables may become important for further scavenging of highly
scavenged air (low TEBC). In contrast to predictors directly
related to precipitation (Fig. 4d–f), the predicted curves of
RHq95 (Fig. 4a), fRH95 (Fig. 4b), and fMR15 (Fig. 4c) visibly
track the trends of observed TEBC with approximately half
the difference between predicted and observed TEBC when
TEBC is low. The capability of RHq95, fRH95, and fMR15
to predict TEBC across a wider range of values is further
reflected by generally lower intercepts and WAD (Fig. 3)
than precipitation-related predictors, which suggests promis-
ing alternative indicators of aerosol scavenging. However, we
also note that such differences could arise partly from the
limitations of curve fitting, wherein fitted curves naturally
capture gradual changes (e.g., Fig. 4b) better than sharp ones
(e.g., Fig. 4d).

3.3 Applying filters to improve the predictive power of
precipitation-related variables

In this section, we examine the predictive power of
precipitation-related variables when applying the follow-
ing filters: (1) precipitation intensity, (2) trajectory altitude,
(3) data product, and (4) trajectory length, with the objec-
tive of identifying what factors are important when relating
precipitation along trajectories to TEBC. Filtering for precip-
itation intensity isolates the contribution of higher precipi-
tation intensities towards a precipitation-related predictor’s
ability to predict TEBC. Intense precipitation has been shown
to be more efficient at scavenging aerosol particles (Zhao et
al., 2020) and may be important when estimating aerosol
scavenging. Filtering for trajectory altitude (i.e., consider-
ing precipitation only when the trajectory altitude is below
1.5 km a.g.l.) tests the hypothesis that air masses within the
boundary layer will be most susceptible to wet scavenging.
Grythe et al. (2017) demonstrated that below-cloud scaveng-
ing (i.e., impaction by precipitation) accounted for the ma-
jority of scavenging events below 1 km. We selected 1.5 km
based on previous work on the marine boundary layer over
the tropical western Pacific (Chien et al., 2019). We repeated
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Figure 4. Median values of observed (black) and predicted TEBC (blue) as a function of selected predictors for 10 iterations during k-fold
cross-validation. Pearson correlations are annotated as 25th, 50th, and 75th percentiles from k-fold iterations (k = 10) calculated in two
ways: comparing predicted and observed median TEBC per 5th percentile block of the predictor (R) and comparing predicted and observed
TEBC for individual points (Rindiv). Panels share the same y-axis limits. Percentile blocks for each x-axis variable are denoted by vertical
gray lines.

the analysis for three precipitation products (one reanalysis
and two SPPs) to capture variability in our results due to the
choice of data product, which has been shown to be important
for precipitation (Alexander et al., 2020). Finally, we tested
the effect of trajectory length on the performance of APT as
a predictor of TEBC. We performed these sensitivity tests on
APT (Fig. 5), PI (Fig. S4), PF (Fig. S5), and PA (Fig. S6).

In general, we found that applying altitude and/or precip-
itation filters negatively affected the performance of APT
(Fig. 5b–d), PF (Fig. S5b–d, except for PERSIANN-CDR),
and PA (Fig. S6b–d), leading to lower R between predicted
and observed TEBC compared to the case without any filters
(Fig. 5a). Two exceptions were PF from PERSIANN-CDR
(colored yellow in Fig. S5), which could be used to estimate
TEBC if we applied both an altitude filter (< 1500 m) and
a precipitation intensity filter (> 0.2 mm h−1) over longer
back-trajectory times (> 48 h) (Fig. S5d), and PI, which
could be used to estimate TEBC when filtering for precipita-
tion intensities (> 0.2 mm h−1) and along trajectories longer
than 48 h (Fig. S4b). The better performance of PI across
multiple SPPs (Fig. S4) is an encouraging sign that this im-
provement is robust and points to the contribution of higher
precipitation intensities towards total scavenging.

Figure 5. Pearson correlations (R) between observed TEBC and
TEBC predicted by accumulated precipitation along trajectories
(APT) for different trajectory lengths and precipitation data prod-
ucts. Each panel refers to a combination of altitude and precipitation
intensity filters. Panels share the same x- and y-axis limits.
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Applying a filter for trajectory altitude prior to calculating
APT also did not lead to large improvements in R (Fig. 5c).
This was surprising because, when using total column pre-
cipitation from SPPs, a maximum altitude filter should re-
duce errors from cases in which precipitation occurs be-
low the air mass and no scavenging occurs. Since the SPPs
used in this study have been validated using surface mea-
surements (Sapiano and Arkin, 2009; Nicholson et al., 2019;
J. Wang et al., 2021), precipitation from SPPs should be re-
flective of precipitation that reaches the surface, implying a
susceptibility of these SPPs to errors related to virga (Wang
et al., 2018). However, Wang et al. (2018) also showed that
virga occurrence over the tropical western Pacific is infre-
quent. An alternative explanation for the poor performance
of altitude-filtered APT is uncertainties related to trajectory
altitude (Harris et al., 2005) such that an air parcel may have
actually been traveling at a lower altitude than its modeled
trajectory and undergone more scavenging than predicted us-
ing APT. An examination of trajectory altitudes (Fig. S7) re-
vealed that filtering for trajectory altitudes below 1.5 km ex-
cluded the majority (∼ 70 %) of precipitating grid cells en-
countered by trajectories, which likely negatively impacted
the predictive ability of altitude-filtered predictors.

Longer trajectories resulted in slightly higher R between
observed and predicted TEBC using APT from PERSIANN-
CDR or IMERG (Fig. 5a–b); however, this difference is not
large, as shown by overlapping 25th–75th percentile error
bars. Interestingly, this increase in R for longer trajecto-
ries was more evident when filtering for precipitation in-
tensities > 0.2 mm h−1 when calculating APT (Fig. 5b) or
PI (Fig. S4b), but not when applying this intensity filter to
PF (Fig. S3b) or PA (Fig. S4b). Further interpretation likely
requires a physical model in future work to explain why
the performance of intense precipitation (Fig. 5b) benefits
from a longer trajectory more than total precipitation does
(Fig. 5a).

4 Limitations

4.1 TEBC as a wet scavenging proxy

In this study, we treat TEBC as a proxy for wet scavenging
(i.e., predictand) and base our conclusions on which variables
(i.e., predictors) best predict TEBC. Dilution or entrainment
during transport is expected to influence the 1BC/1CO
ratio and therefore TEBC. While the use of the CAMS-
GLOB-ANT emission inventory (Sect. 2.4) when calculating
ERBC/CO (Sect. 2.5) reduces this uncertainty by accounting
for potential surface influence during transport close to the
surface, the resolutions of both the trajectory meteorological
input (0.25× 0.25◦) and the emission inventory (0.1× 0.1◦)
remain limiting factors. Thus, our analysis assumes that wet
scavenging is the main driver of changes in TEBC and chem-
ical transport modeling in future work is needed to quantify

the effect of mixing on TEBC. Consequently, this method is
expected to work well in outflow regions such as the tropical
western Pacific and not well where additional BC and/or CO
are likely to be after initial emission or wet scavenging has
occurred (e.g., continental region).

4.2 Method does not discriminate between in- and
below-cloud scavenging

The conclusions of our study are based on the relative abil-
ity of different variables to predict TEBC, our proxy for wet
scavenging. This approach does not isolate individual pro-
cesses that are usually parameterized by global circulation
models (e.g., impaction, nucleation) (Croft et al., 2009, 2010;
Ryu and Min, 2022) and does not discriminate between in-
cloud or below-cloud scavenging. However, through our pro-
posed framework, we can still gain qualitative insights into
which meteorological variables are relevant for estimating
aerosol scavenging, which can inform future studies as well
as developments in model parameterization.

4.3 Single-predictor method

The method presented here assesses the one-to-one relation-
ship between a single predictor and TEBC repeated individ-
ually for several predictors. We expect that using a combi-
nation of predictors may lead to better predictions of TEBC
while providing a more physical picture of relative contri-
butions of different meteorological variables to wet scav-
enging. Future work may utilize multiple linear regression
or more sophisticated methods such as machine learning to
consider different combinations of predictors with the objec-
tive of identifying a combination that predicts TEBC well and
extracting further information on what physical mechanisms
may be relevant for the removal of TEBC based on relative
coefficients or weightings of different predictors.

4.4 Curve fitting

The results can depend on the curve-fitting function used.
Different variables are expected to have different relation-
ships with TEBC. Thus, considering only one function for
curve fitting favors variables that have a specific relationship
with TEBC. To reduce this bias, we applied four different
curve-fitting functions (Table 2) to each predictor based on
two equations from previous studies (Kanaya et al., 2016;
Oshima et al., 2012) and two equations of generalized form
that accounted for possible relationships between TEBC and
each predictor. We then chose the curve-fitting function that
produced the highest R between observed and predicted
TEBC. However, we note that this does not completely re-
move the bias as specific functions were still selected.
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4.5 Trajectory modeling

Vertical motion through convection, entrainment, and de-
trainment processes is a known uncertainty in trajectory
modeling, which increases with trajectory length (Harris et
al., 2005). The spatial and temporal resolutions of the mete-
orological input used for the HYSPLIT model are also lim-
iting factors as meteorology along HYSPLIT trajectories do
not account for sub-time-step or sub-grid processes.

5 Conclusions

We present a method to identify meteorological indicators of
aerosol scavenging using a combination of aircraft, satellite,
and reanalysis data coupled with HYSPLIT backward tra-
jectories. We apply this method to the CAMP2Ex field cam-
paign over the tropical western Pacific, which hosts a wide
range of cloud fractions and precipitation characteristics as
well as an environment characterized by long-range transport
of aerosol and trace gas species. We evaluate which meteo-
rological variables can be used to predict TEBC (i.e., predic-
tors). The main conclusions of the study are the following.

1. Although APT has been utilized in several studies as
an indicator of aerosol scavenging, we demonstrate that
APT does poorly when predicting TEBC (e.g., weak
correlations, underestimates TEBC). Furthermore, the
application of altitude or precipitation intensity filters
negatively impacts the performance of APT in predict-
ing TEBC. Since APT is an accumulated precipitation
amount over the whole trajectory, APT does not account
for other precipitation characteristics such as intensity
or frequency, which have been shown to be relevant for
aerosol scavenging. This shortcoming may explain the
overall poor relative performance of APT in predicting
TEBC.

2. Predictors based on specific quantiles of RH (e.g.,
RHq90) also perform quite well in predicting both TEBC
trends and magnitudes (intercepts close to zero, WAD
close to zero, slopes close to 1, R close to 1). We find
only minor differences in the performance depending
on the exact quantile used, suggesting that the RH dis-
tribution during transport is a robust way to estimate
TEBC. We hypothesize the outperformance of RH quan-
tiles over predictors more directly related to precipita-
tion (e.g., APT) to be due to missed precipitation in SPP
retrievals that was indirectly represented in reanalysis as
high humidity conditions; however, further work is re-
quired to explore this possibility.

3. Frequency-related predictors such as fMR15 and fRH95
perform better than APT in predicting TEBC trends
(higher R) and magnitudes (slopes closer to 1). fMR15
and fRH95 represent the frequencies along 72 h trajec-
tories of MR exceeding 15 g kg−1 and RH exceeding

95 %, respectively. The abilities of fMR15 and fRH95 to
predict TEBC suggests that the frequency of humid con-
ditions should be considered when estimating aerosol
scavenging.

4. To investigate which precipitation characteristics are
most relevant for predicting TEBC, we quantify PA, PF,
and PI along trajectories and find that PI is the most ef-
fective at estimating TEBC when we calculate PI over
longer trajectories (> 48 h) and only include grid cells
with precipitation > 0.2 mm h−1 in our calculation. This
points to the contribution of intense precipitation and
the importance of accounting for air mass history when
estimating aerosol scavenging.

5. We find that precipitation from SPPs (IMERG,
PERSIANN-CDR) is generally better at predicting
TEBC (higher R) than precipitation from reanalysis
(GFS). This is corroborated by previous studies that
found larger misestimates of precipitation by reanaly-
sis than by SPPs. Because of our results and those of
past studies, we recommend relying on in situ or SPP
precipitation rather than precipitation from reanalysis,
particularly when relating precipitation to aerosol scav-
enging.

Given these findings, we recommend the following alterna-
tives to APT when estimating aerosol scavenging: (1) RH
quantiles (e.g., 90th percentile of RH along trajectories),
(2) fMR15 or fRH95, and (3) PI from SPPs filtered for grid
cells with precipitation > 0.2 mm h−1. These variables were
found to be able to predict TEBC more accurately than APT;
thus, future scavenging parameterizations should consider
these meteorological variables along air mass histories.

Future work is encouraged to apply this method over a va-
riety of environments (e.g., using other data from other field
campaigns), utilize machine learning to assess what com-
binations of meteorological variables are relevant for pre-
dicting aerosol scavenging, and apply this method to other
regions to determine if there are regional differences in in-
dicators of aerosol scavenging. Furthermore, CAMP2Ex in-
cluded a rich dataset on cloud water composition (Crosbie
et al., 2022; Stahl et al., 2021) that can be explored, as in
past work for other regions (MacDonald et al., 2018), to gain
additional insights into aerosol wet scavenging processes.

Appendix A: Describing the transport of BC and CO
during CAMP2Ex

During the CAMP2Ex field campaign, BC and CO originated
from several sources. Long-range transport patterns during
the campaign and associated air mass composition are de-
scribed in Hilario et al. (2021), but here we present a sum-
mary of their findings related to the transport of BC and
CO. The CAMP2Ex field campaign overlapped with the end
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of the southwest monsoon and the beginning of the mon-
soon transition (Reid et al., 2023). Because of this, a synop-
tic shift occurred during the campaign (Hilario et al., 2021;
their Figs. 2–3) that allowed for the sampling of transported
air masses from different source regions such as East Asia
and the Maritime Continent. Hilario et al. (2021) identified
four major source regions for long-range transport: East Asia
(e.g., China, Korea), the Maritime Continent (e.g., Indonesia,
Malaysia), peninsular Southeast Asia (e.g., Vietnam), and
the western Pacific (i.e., ocean). The presence of long-range
transport was detected throughout the whole campaign (their
Fig. S2).

The Maritime Continent during the campaign was un-
dergoing its burning season, which is well-established in
the literature to lead to high aerosol loadings that can be
transported over large distances (Xian et al., 2013). Hilario
et al. (2021) showed that air masses from the Maritime
Continent and East Asia were transported under relatively
dry conditions, which in this study manifested as higher
1BC/1CO (Fig. S1a) and TEBC (Fig. S1d), and were as-
sociated with southwesterly monsoon flow and the passage
of typhoons, respectively. These conditions were conducive
to long-range transport and led to the sampling of higher
concentrations of BC and CO in air from East Asia (BC:
87.29 ng m−3; CO: 0.16 ppm) and the Maritime Continent
(BC: 71.81 ng m−3; CO: 0.18 ppm) than in air from penin-
sular Southeast Asia (BC: 24.90 ng m−3; CO: 0.10 ppm) or
the western Pacific (BC: 1.03 ng m−3; CO: 0.08 ppm). We
note that Hilario et al. (2021a) kept CO in units of parts
per million, while we converted CO to mass concentration
units such that 1BC/1CO would be unitless. Hilario et
al. (2021a) demonstrated that the scavenging of air from
peninsular Southeast Asia was related to convective lofting
as air from peninsular Southeast Asia sampled in the free
troposphere (> 1.5 km) had much lower aerosol concentra-
tions than air from the region sampled in the boundary layer
(< 1.5 km) (their Fig. S6). These findings point to the active
role of scavenging in determining aerosol loadings in trans-
ported air masses during CAMP2Ex.
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