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Abstract. Mixed-phase clouds are not well represented in
climate and weather forecasting models, due to a lack of the
key processes controlling their life cycle. Developing meth-
ods to study these clouds is therefore essential, despite the
complexity of mixed-phase cloud processes and the diffi-
culty of observing two cloud phases simultaneously. We pro-
pose in this paper a new method to retrieve the microphysical
properties of mixed-phase clouds, ice clouds and supercooled
water clouds using airborne or satellite radar and lidar mea-
surements, called VarPy-mix. This new approach extends an
existing variational method developed for ice cloud retrieval
using lidar, radar and passive radiometers. We assume that
the lidar attenuated backscatter β at 532 nm is more sensitive
to particle concentration and is consequently mainly sensi-
tive to the presence of supercooled water. In addition, radar
reflectivity Z at 95 GHz is sensitive to the size of hydromete-
ors and hence more sensitive to the presence of ice particles.
Consequently, in the mixed phase the supercooled droplets
are retrieved with the lidar signal and the ice particles with
the radar signal, meaning that the retrievals rely strongly on
a priori and error values. This method retrieves simultane-
ously the visible extinction for ice αice and liquid αliq par-
ticles, the ice and liquid water contents IWC and LWC, the
effective radius of ice re,ice and liquid re,liq particles, and the
ice and liquid number concentrations Nice and Nliq. More-
over, total extinction αtot, total water content (TWC) and to-
tal number concentration Ntot can also be estimated. As the
retrieval of ice and liquid is different, it is necessary to cor-

rectly identify each phase of the cloud. To this end, a cloud-
phase classification is used as input to the algorithm and
has been adapted for mixed-phase retrieval. The data used in
this study are from DARDAR-MASK v2.23 products, based
on the Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) and Cloud Profiling Radar (CPR) observations
from the CALIPSO and CloudSat satellites, respectively, be-
longing to the A-Train constellation launched in 2006. Air-
borne in situ measurements performed on 7 April 2007 dur-
ing the Arctic Study of Tropospheric Aerosol, Clouds and
Radiation (ASTAR) campaign and collected under the track
of CloudSat–CALIPSO are compared with the retrievals of
the new algorithm to validate its performance. Visible ex-
tinctions, water contents, effective radii and number concen-
trations derived from in situ measurements and the retrievals
showed similar trends and are globally in good agreement.
The mean percent error between the retrievals and in situ
measurements is 39 % for αliq, 398 % for αice, 49 % for LWC
and 75 % for IWC. It is also important to note that temporal
and spatial collocations are not perfect, with a maximum spa-
tial shift of 1.68 km and a maximum temporal shift of about
10 min between the two platforms. In addition, the sensitiv-
ity of remote sensing and that of in situ measurements is not
the same, and in situ measurement uncertainties are between
25 % and 60 %.
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1 Introduction

The current situation concerning climate change strongly im-
pacts our society (IPCC, 2022), which leads to an interest in
climate and weather forecasting. Clouds cover about 67 % of
Earth’s atmosphere (King et al., 2013) and play an important
role in Earth’s water cycle and its radiation budget (Stephens,
2005). However, climate and weather prediction models still
have a lack of knowledge in some situations and scenarios
where clouds, especially mixed-phase clouds, remain one of
the main sources of uncertainty, due to the complexity of the
related processes. Mixed-phase clouds occur at all latitudes,
more significantly at middle and high latitudes (Choi et al.,
2010; Shupe, 2011), and are a coexisting mixture of three
phases of water: ice particles, supercooled droplets and wa-
ter vapor at temperatures between−40 and 0 °C. This coexis-
tence implies complex formation processes, such as primary
ice nucleation (Meyers et al., 1992), secondary ice produc-
tion (Field et al., 2017; Kanji et al., 2017) and ice deposi-
tion (Meyers et al., 1992), and growing processes, such as
the Wegener–Bergeron–Findeisen process (Wegener, 1911;
Bergeron, 1935; Findeisen, 1938), water vapor deposition
(Song and Lamb, 1994), aggregation (Hobbs et al., 1974)
and riming (Hallett and Mossop, 1974). Since liquid and ice
particles influence shortwave and longwave radiation differ-
ently (Matus and L’Ecuyer, 2017), the proportions of liq-
uid and ice particles significantly affect the radiative prop-
erties of mixed-phase clouds, altering the radiative balance
of Earth’s atmospheric system. Moreover, all these processes
are difficult to represent in numerical models (Morrison et al.,
2008, 2012), and mixed-phase clouds that are not well rep-
resented in models can introduce significant biases such as
a misrepresentation of the cloudy state (Pithan et al., 2014).
For that reason it is crucial to have information on mixed-
phase cloud microphysics in order to reduce the uncertainties
in climate and weather prediction.

The localization and lifetime of the mixed phase in a cloud
differ according to the type of cloud and can make cloud ob-
servation challenging. The difference in water vapor satura-
tion over ice and liquid makes the mixed phase condensa-
tionally unstable and only exists for a limited time (Korolev
et al., 2017). One way of observing these clouds is to use
active remote sensing instruments. They can be on board an
aircraft or a satellite, allowing us to probe clouds on a large
scale with vertical profiles seen from above. They are there-
fore useful in detecting the mixed-phase layer at cloud top,
which is typically the case in Arctic boundary layer clouds
(Gayet et al., 2009; Mioche et al., 2017). Each instrument has
its own characteristics and a specific sensitivity that depends
notably on the instrument’s wavelength. On one hand, lidar
measures the attenuated backscatter β [m−1 sr−1], which cor-
responds to the energy backscattered by the targets and is af-
fected by the atmospheric transmission. At a wavelength be-
tween 355 and 1064 nm, lidar attenuated backscatter is more
sensitive to the concentration of hydrometeors and can detect

small cloud particles and aerosols. However, this signal can
be attenuated or extinguished by a region with high particle
concentration and cannot give information below this cloud
layer. On the other hand, radar measures the reflectivity Z
[mm6 m−3] typically at 35 or 95 GHz for cloud radars. At
these wavelengths radar reflectivity is more sensitive to par-
ticle size, and the signal can penetrate thick clouds (Delanoë
et al., 2013; Cazenave et al., 2019). Consequently, in mixed-
phase clouds lidar is more sensitive to highly concentrated
liquid droplets and gives a strong backscatter signal. On the
other hand, radar reflectivity of liquid droplets is weaker than
that of ice particles. As a result, the two instruments comple-
ment each other. These measurements can therefore be used
in algorithms to retrieve microphysical cloud properties such
as the visible extinction α, the ice and liquid water contents
(IWC and LWC, respectively), and the total number concen-
tration Ntot.

Lidar–radar synergistic methods were first proposed by
Intrieri et al. (1993), Donovan and van Lammeren (2001),
Tinel et al. (2005), and Mitrescu et al. (2005) to retrieve ice
cloud properties where both instruments overlap. Algorithms
such as Varcloud (Delanoë and Hogan, 2008) and 2C-ICE
(Deng et al., 2010) were later developed to retrieve ice cloud
properties all along the instruments’ profiles using the Cloud
Profiling Radar (CPR) on board CloudSat (Stephens et al.,
2002), the Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) on board CALIPSO (Winker et al., 2003)
and also radiometric information for Varcloud. For the Earth-
CARE mission (Illingworth et al., 2015) the unified synergis-
tic retrieval algorithm CAPTIVATE (Mason et al., 2022) uses
the Atmospheric Lidar (ATLID), CPR and multi-spectral im-
ager (MSI) data to retrieve cloud, precipitation and aerosol
properties.

The variational method Varcloud, developed by Delanoë
and Hogan (2008), aims to retrieve ice cloud properties us-
ing radar, lidar and radiometric data synergy. Since its ini-
tial development, this algorithm has been improved with
new parameterization for ice cloud retrieval (Ceccaldi, 2014;
Cazenave et al., 2019), allowing more flexibility. As a re-
sult, it can process data from different airborne or spaceborne
instruments’ platforms. In the mixed phase, the algorithm
only retrieves ice properties with the radar signal. The algo-
rithm’s current version is called VarPy-ice in this paper and
is described in detail in Cazenave (2019, pp. 107–113). Our
method, VarPy-mix, aims to retrieve simultaneously ice, su-
percooled water and mixed-phase cloud properties with lidar
and radar synergy, based on VarPy-ice to retrieve ice clouds.
Each cloud phase is not processed in the same way. The ice
clouds are retrieved with both instruments, while the mixed-
phase retrieval is divided into two parts: the ice particles are
retrieved with the radar signal and the supercooled water with
the lidar signal. Besides this, supercooled water clouds are
retrieved with the lidar signal only. Therefore, the retrieval
relies strongly on a priori and error values. Additionally,
this flexible algorithm can be applied on several lidar–radar
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platforms, airborne or spaceborne. As a starting point, these
changes were developed with CloudSat and CALIPSO in-
struments’ datasets. These data have large, robust and proven
classification algorithmic statistics, as well as existing cases
of collocation with in situ measurements.

In Sect. 2 we describe the general points of both versions
of VarPy before going into the details of the new-version
structure. In addition, the processed cloud phases are pre-
sented along with an adaptation of the cloud-phase classifi-
cation dedicated to the mixed phase and supercooled water.
Section 3 presents a case of mixed phase at the top of an ice
cloud for which microphysical properties are retrieved us-
ing VarPy-mix and compared with in situ measurements. In
Sect. 4 we conclude the paper and provide an outlook on fu-
ture work.

2 Methodology

2.1 Variational method

2.1.1 Description of VarPy

The radar reflectivity Z [mm6 m−3] and the lidar attenu-
ated backscatter β [m−1 sr−1] are linked to the cloud micro-
physical vertical structure. For example, the water content is
strongly correlated with the reflectivity (Atlas, 1954), and the
lidar backscatter is related to the cloud extinction α. We can
relate this situation to an inverse problem given by

Y = f (X)+ ε. (1)

The vector Y is the observation vector composed of the
measured radar reflectivity Zobs and the lidar attenuated
backscatter βobs. The vector X is composed of the quanti-
ties that describe the system, e.g., some cloud microphys-
ical properties. The function f is the “forward function”
(Rodgers, 2000, p. 14) and in our case represents the lidar
and the radar forward models. These models and measure-
ments are associated with specific uncertainties that can be
presented by the error vector ε. According to the values of
the vector X (hereafter called the “state vector”), the forward
models predict reflectivity and backscatter values, notedZfwd
and βfwd, respectively. These forward-modeled values are af-
terwards compared with the measurements. The difference
between Y and the predicted values is used to update the
state vector via the Gauss–Newton method. New values of
Zfwd and βfwd are computed with the forward models and
lookup table (LUT, detailed in Sect. 2.1.2) until convergence
occurs according to a χ2 test. The solution is defined by the
state vector at the last iteration when the solution converges.
These values are used in combination with an LUT to retrieve
the desired microphysical properties. Figure 1 summarizes
the whole structure of the variational scheme.

The two main inputs of VarPy are the observation vector
Y (box 2 in Fig. 1; Eq. 2) and the initialized state vector X0

Table 1. The a priori and first-guess values for each variable of the
state vector.

Variable Value

aln(S) 3.18
bln(S) −0.0086
ABF 22.234435
BBF −0.090736
γBF 0.61
AHC 21.94
BHC −0.095
γHC 0.67
ln(αice) −7
ln(N∗0,liq) 30
ln(αliq) −5

(box 1 in Fig. 1), given by Eq. (5) with first-guess values from
Table 1, as explained in Sect. 2.1.2. The natural logarithm is
applied to the variables of X and Y to avoid the unphysical
possibility of retrieving negative values. Both vectors are de-
fined for one measurement profile and as a function of the
distance from the instrument. Radar and lidar do not have
the same number of values per profile (hereafter also called
“gate”): there are q values of ln(Zobs) for a profile and p val-
ues for ln(βobs). Then the observation vector Y is defined for
a single profile as follows:

Y =



ln(Zobs,0)
...

ln(Zobs,q)

ln(βobs,0)
...

ln(βobs,p)


. (2)

To retrieve ice properties, the state vector is composed of
the visible extinction α [m−1]; the extinction-to-backscatter
ratio S [sr]; and N ′, which is related to the normalized num-
ber concentration parameter N∗0 [m−4] via the following re-
lationship:

N ′ =
N∗0
αγ
, (3)

where γ is an empirically determined coefficient normalizing
N ′ (Delanoë and Hogan, 2010; Delanoë et al., 2014). Values
for this coefficient are shown in Table 1. For n measurement
gates, the state vector is composed of n values of ln(α). How-
ever, N ′ is not retrieved for each gate. A cubic-spline basis
function interpolates theN ′ profile with a number concentra-
tion parameter spacing factor ηN set to 4 and decreases the
number ofN ′ values tom such that smooth variation in range
is guaranteed (Hogan, 2007; Delanoë and Hogan, 2008). This
improves computing efficiency by reducing calculation time.
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Figure 1. The sequence of operations executed by the VarPy retrieval method.

The lidar ratio is assumed to be a function of tempera-
ture T [°C], adapted from Platt et al. (2002) and derived
using lidar–radar data from previous versions of DARDAR
(Cazenave et al., 2019). Consequently, the lidar ratio S is
not represented in the state vector for each gate but by the
two coefficients aln(S) and bln(S), which are the slope and
the intercept coefficients from the temperature-dependent re-
lationship (Eq. 4). As a result, for this configuration of the
state vector, the dimension of the lidar ratio S is given by
k = 2. For VarPy-ice the average retrieved lidar ratio equals
35± 10 sr for a temperature range from −60 to −20 °C
(Cazenave et al., 2019):

ln(S)= aln(S)+ bln(S) · T . (4)

Thus, for VarPy-ice the state vector to retrieve a profile of
n gates is as follows:

Xice =



ln(N ′0)
...

ln(N ′m)

aln(S)
bln(S)

ln(α0)
...

ln(αn)


. (5)

The update of the state vector (box 8 in Fig. 1) is given by

Xk+1 =Xk +H−1
·

(
JT
·R−1

· (Y osb−Y fwd)

−B−1
· (Xk −Xa)−T ·Xk

)
, (6)

with J the Jacobian matrix that contains the partial derivative
of ln(Zfwd) and ln(βfwd) with respect to each element of the

state vector (box 5 in Fig. 1), H the Hessian matrix given by
Eq. (7), R the error covariance matrix of the observations, B
the error covariance matrix of the a priori values (explained
in Sect. 2.2.1), and T the “Twomey–Tikhonov” matrix (box
7 in Fig. 1; Rodgers, 2000) used to smooth the extinction
profile:

H= JT
·R−1

· J+B−1
+T. (7)

Each measurement is limited by the instrument’s perfor-
mance and the signal-to-noise ratio. This is notably the case
for the lidar and can affect the retrieval of the extinction
(Hogan et al., 2006). To limit the impact of measurement
noise, a Twomey–Tikhonov matrix T can be used to penalize
the second derivative of the state vector variables’ profiles,
especially the extinction. T is a square matrix and is defined
at dimension 6 by

T= κ ×


1 −2 1 0 0 0
−2 5 −4 1 0 0

1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 5 −2
0 0 0 1 −2 1

 , (8)

where κ is a coefficient that sets the smoothness degree of
T. The dimensions of the final matrix T used by the algo-
rithm correspond to those of the state vector depending on
the version of VarPy. As we only want to smooth the extinc-
tion profile, the values of T corresponding to the lidar ratio S
and the number concentration parameter N ′ are set to 0.

The Jacobian matrix is a product of the forward models
(box 5 in Fig. 1), and its composition depends on the struc-
ture of the state vector. For VarPy-ice this matrix is given by
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Eq. (9) with a dimension of (p+ q)× (m+ 2+ n):

J=



∂β0
∂N ′0

. . .
∂β0
∂N ′m

∂β0
∂aln(S)

∂β0
∂bln(S)

∂β0
∂α0

. . .
∂β0
∂αn

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

∂βp

∂N ′0
. . .

∂βp
∂N ′m

∂βp
∂aln(S)

∂βp
∂bln(S)

∂βp
∂α0

. . .
∂βp
∂αn

∂Z0
∂N ′0

. . .
∂Z0
∂N ′m

∂Z0
∂aln(S)

∂Z0
∂bln(S)

∂Z0
∂α0

. . .
∂Z0
∂αn

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

∂Zq

∂N ′0
. . .

∂Zq
∂N ′m

∂Zq
∂aln(S)

∂Zq
∂bln(S)

∂Zq
∂α0

. . .
∂Zq
∂αn


. (9)

For better readability, the indices fwd of Z and β are not dis-
played and the natural logarithms of Z, β, N∗0 and α are not
written.

2.1.2 State vector parameterization

During the iterative process, the state vector variables are
used by the forward models (radar and lidar) to compute the
radar reflectivity Zfwd and the lidar backscatter βfwd. The
lidar forward model differs from the radar forward model
because an additional step is required to obtain βfwd with
the equivalent area radius ra and the multiscatter code from
Hogan (2006) (box 5 in Fig. 1). To obtain Zfwd and ra, the
ratio α

N∗0
derived from the state vector is linked to these vari-

ables via a one-dimensional LUT (box 4 in Fig. 1), which is
also used to retrieve cloud microphysical properties (box 9
in Fig. 1) such as the effective radius re and the ice wa-
ter content IWC. The ice cloud properties can be retrieved
with two types of LUT. The “Heymsfield Composite” (HC)
LUT uses the transition matrix (T-matrix) method and the
mass–size relationship from Heymsfield et al. (2010). The
“Brown and Francis modified” (BF) LUT is based on a com-
bination of Brown and Francis (1995) and Mitchell (1996)
mass–size relationships. These LUTs are used for DARDAR-
CLOUD v3.00 and v3.10 products (Delanoë, 2023a, b), and
more details about them can be found in Delanoë et al. (2014)
and Cazenave (2019). For both VarPy-ice and VarPy-mix,
both LUTs can be used to retrieve the ice properties, and one
must be selected beforehand. Regarding the retrieval of the
liquid part of the mixed-phase and supercooled water clouds,
an LUT has been created and more details can be found in
Sect. 2.2.2.

The LUT setting also involves defining the a priori and
first-guess values of the state vector. The first-guess val-
ues are used to initialize the state vector for the forward
models before the first iteration, corresponding to X0. The
a priori values are important for regions where only one
instrument is available, and this constrains the scheme to-
wards temperature-dependent empirical relationships. We
have postulated in Sect. 2.1.1 that the lidar ratio is given by a
temperature-dependent relationship (Eq. 4), and a priori and
first-guess values are listed in Table 1. For the number con-
centration parameter ln(N ′), the a priori and first-guess val-
ues are also given as a function of the temperature T :

ln(N ′)= (A+B · T ). (10)

Table 1 lists the values of A and B used for each mass–
size relationship (BF and HC). The coefficient γ linking N∗0
to α and N ′ differs according to the mass–size relationship,
and the values are also given in Table 1. The a priori and
first-guess values for the extinction are constant values.

2.1.3 Definition of VarPy versions

Before going into the details of the adaptations made in
VarPy-mix to retrieve supercooled water and mixed-phase
clouds, we describe in this section the main assumptions
about the instruments used for VarPy-ice and VarPy-mix.

VarPy-ice retrieves ice properties from radar and lidar
measurements, including ice from mixed-phase layers. Since
the lidar signal is more sensitive to liquid droplets than ice
particles, it cannot be used in VarPy-ice to retrieve ice prop-
erties of mixed phase. Therefore, every lidar gate below the
mixed-phase layer cannot be used due to the attenuation
of the liquid droplets in the lidar signal. Consequently, the
mixed phase and the ice cloud below are not retrieved via
lidar–radar synergy but only with the radar signal and the
state vector a priori values.

The main hypothesis for the VarPy-mix version is to con-
sider the ice and liquid parts of the mixed phase separately
and retrieve the liquid part with the lidar signal and the ice
part with the radar signal. This hypothesis is based on the
sensitivity of the instruments as explained in Sect. 1. The aim
of this version of the algorithm is to be able to retrieve sev-
eral cloud phases using the same variational method but with
a structure and parameterization that are adapted to super-
cooled water and the mixed phase. A large part of VarPy-ice
has been preserved to maintain the strengths of the method
and the consistency of the results.

2.2 New configuration of the state vector to retrieve ice
and supercooled water simultaneously

For the new version of the algorithm, the state vector needs
to be adapted to also retrieve supercooled water properties.
The special case of the mixed phase has to be taken into ac-
count. The supercooled water and the ice particle properties
are retrieved separately for the mixed phase. The state vec-
tor is consequently divided into two parts: one part of the
variables retrieves ice properties, and the other part retrieves
liquid properties. The ice particles of the mixed phase are in-
cluded in the ice part, and the supercooled droplets are in the
liquid part. The composition of the state vector differs from
the previous version and will be described in the following
paragraphs.

As the liquid droplet concentration does not depend on
the air temperature like for ice particles, the temperature-
dependent concentration parameter N ′ is not required to re-
trieve liquid cloud properties. For this, we decided to use N∗0
in the state vector, instead of N ′. It can be noted that the
VarPy-ice algorithm also has the ability to retrieve ice prop-
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erties using the normalized number concentration parame-
ter N∗0 . This enables the VarPy-mix retrieval to be compared
with the VarPy-ice retrieval to avoid any inconsistencies. We
include this variable for each state vector part, so there is
N∗0,ice for the ice part and N∗0,liq for the liquid part. Choosing
N∗0 allows us to keep the a priori and first-guess values for the
ice with the following temperature-dependent relationship:

ln(N∗0,ice)= (A+B · T )+ γ · lnαice. (11)

This relation is based on Eq. (10) to calculate N ′ a priori
and first-guess values. To keep the old scheme benefits, the
cubic-spline basis function interpolates theN∗0,ice values with
a spacing factor ηN set to 4. It is unusable for the liquid group
since supercooled layers are thin and correspond to too few
gates.

The extinction α is still part of the state vector. Like for
N∗0,ice and N∗0,liq, the extinction is divided into two variables:
αice for the ice properties and αliq for the liquid ones. Both
variables are defined for each gate of a profile. Regarding the
lidar ratio S, we keep the same configuration in the state vec-
tor with the two coefficients aln(S) and bln(S). Table 2 lists the
values of the lidar ratio at different wavelengths and accord-
ing to particle size or type. As a result, we make the assump-
tion that the lidar ratio is constant for liquid droplets (Pinnick
et al., 1983). Consequently, the lidar ratio is defined only for
ice gates in the state vector, and its value is fixed at 18.6 sr
for supercooled water (pure or in mixed phase) at 532 nm.

For the number of ice gates ni , the number of liquid gates
nl and mi defined in the same way as m depending on the
spacing parameter ηN , we end up with the new state vector
given by Eq. (12):

Xmix =



ln
(
N∗0,ice,0

)
...

ln
(
N∗0,ice,mi

)
aln(S)
bln(S)

ln
(
αice,0

)
...

ln
(
αice,ni

)
ln
(
N∗0,liq,0

)
...

ln
(
N∗0,liq,nl

)
ln
(
αliq,0

)
...

ln
(
αliq,nl

)



. (12)

For VarPy-ice, a single Twomey–Tikhonov matrix of the
dimensions (m+k+n)× (m+k+n) is applied for the entire
extinction profile. However, the extinction values of liquid

droplets are different from ice particles, and it is therefore
unsuitable to use a single Twomey–Tikhonov matrix on a
profile with simultaneously ice and supercooled water. As we
want to smooth the extinction profile for both ice and liquid
parts, we decided to smooth them out separately and not to
use a single Twomey–Tikhonov matrix to smooth out an en-
tire profile. Consequently, for VarPy-mix a method has been
developed to separate different sections of a profile accord-
ing to the smoothing to be applied. The separation is made
between ice, liquid and where there is clear sky. Then one
Twomey–Tikhonov matrix is applied to each section. The di-
mensions of the final matrix are (mi+k+ni+2×nl)× (mi+
k+ ni + 2× nl). The smoothness coefficient κ is set to 100
for VarPy-ice, and this parameterization is kept for the ice
part of VarPy-mix, whereas the coefficient applied to the liq-
uid water is different and set to 10 since the thickness of the
detected liquid layer is smaller than that of the ice layer.

2.2.1 The a priori error covariance matrix

Generally, radar and lidar signals do not both cover the entire
vertical cloud profile simultaneously. In many cases of ice
clouds, lidar in the downward direction first detects the top
of the cloud, while radar only detects deeper cloud regions
down to the ground. The lidar signal will not detect the lower
layers of the cloud if it gets attenuated or extinguished. To en-
sure that the results tend towards physical values in regions
where a single instrument is available, state vector a priori
parameterization and errors are used. The a priori errors are
defined by the a priori error covariance matrix B and express
the strength level of the constraint of the a priori errors. This
matrix is composed of the error variances of the state vector
a priori σ 2. In the simplest case where no information prop-
agates between gates, this matrix is diagonal.

To overcome the limitation of single-instrument retrieval,
the matrix B can be used to spread information in height. Ad-
ditional off-diagonal elements can be added to propagate in-
formation from synergistic regions to single-instrument ones.
In VarPy-ice (Hogan, 2007; Delanoë and Hogan, 2008) the
off-diagonal terms of B corresponding to N ′ are given by

Bi,j = Bi,i × e
−
|zj−zi |

z0 , (13)

where z0 is the decorrelation distance, a parameter set to
600 m for VarPy (initially set to 1 km for Varcloud). This
value is set for CloudSat–CALIPSO and can be adapted to
the resolution of the data used.

In the VarPy-mix version the structure of B has been
adapted to the composition of the new state vector. In order
to keep the same configuration as VarPy-ice, the off-diagonal
terms are calculated forN∗0,ice only. As a result, B remains di-
agonal regarding the other variables. The a priori error vari-
ance values for both VarPy-ice and VarPy-mix are listed in
Table 3 and are assumed to be constant with height.

In addition, the dimensions of the matrices U and M, used
for the calculation of the error covariance matrix of the state
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Table 2. Lidar ratio S for liquid droplets depending on cloud type, particle size and lidar wavelength.

Source Particle or cloud type Wavelength λ [nm] Lidar ratio S [sr]

Pinnick et al. (1983) Spherical water droplets 1064 18.2
632 17.7

O’Connor et al. (2004) Median equivolumetric diameter 905 18.8± 0.8
between 8 and 20 µm 532 18.6± 1.0

355 18.9± 0.4

Hogan et al. (2003) Mie theory and distributions with median 905 18.75
volume diameters between 5 and 50 µm

Table 3. The a priori error variances used in VarPy for the a priori
error covariance matrix B.

Variable Value

σln(N ′) 1
σln(N∗0,ice)

1
σaln(S) 0.1
σbln(S) 0.0001
σln(αice) 5
σln(N∗0,liq)

1

σln(αliq) 5

vector Sx (refer to Appendix A of Delanoë and Hogan, 2008,
for more information), have been adapted to the number of
variables in Xmix and their dimensions.

2.2.2 Normalized droplet size distribution for liquid
lookup table

For VarPy-ice and VarPy-mix, ice properties are retrieved us-
ing dedicated LUTs, which are created using the particle size
distribution of ice particles (Delanoë et al., 2014). However,
the particle size distribution differs between ice particles and
liquid droplets, meaning that LUTs dedicated to the retrieval
of ice properties cannot be used to retrieve liquid properties.
The solution is to define a droplet size distribution (DSD) for
liquid droplets to create an LUT dedicated to the retrieval of
liquid properties. Regarding the literature, there are two types
of distribution: the gamma distribution (Miles et al., 2000)
and the log-normal distribution (Frisch et al., 1995; Fielding
et al., 2015). For this study we use the following log-normal
relationship defined by Frisch et al. (1995):

n(r)=
Nliq

σ
√

2π
e
−
(ln(r)−ln(r0))

2

2σ2 , (14)

where n(r) is the number concentration at a given cloud
droplet radius r [µm], Nliq is the total number of liquid
droplets per unit volume [m−3], r0 is the modal radius [µm]
and σ is the geometric standard deviation. The kth moment

〈rk〉 of this distribution can be expressed as follows:

〈rk〉 =
1
Nliq

∞∫
0

n(r)rk dr. (15)

It permits us to relate the following variables to Dm [m]
(proportionally to the ratio between the fourth moment and
the third moment):

– the reflectivity Z [mm6 m−3], which is proportional to
the sixth moment of the DSD;

– the extinction α [m−1], which is proportional to the sec-
ond moment;

– the liquid water content LWC [kg m−3], which is pro-
portional to the third moment;

– the effective radius re [m], which is proportional to the
ratio between the third moment and the second moment;

– the equivalent area radius ra [m], which is equivalent to
re for droplets;

– the total number of liquid droplets per unit volume Nliq
[m−3].

Those quantities are then normalized by N∗0 [m−4], which
can also be expressed as a function ofDm using the moments
of the distribution (proportionally to the ratio between the
third moment to the fifth power and the fourth moment to the
fourth power). The LUT ends up being composed of Z

N∗0
, α
N∗0

,
LWC
N∗0

, Nliq
N∗0

, ra and re as a function of Dm. As with ice LUT,
the liquid one is used in two steps of the algorithm with the
ratio ln(αliq)

ln(N∗0,liq)
from the state vector values. This ratio is used

to retrieve the corresponding value in LUT, by interpolation,
first, at each iteration, to predict lnZfwd, lnβfwd (via lnra and
the fast multiple-scattering model of Hogan, 2006) and the
Jacobian terms with the forward models. Then, with the final
state vector, the ratio ln(αliq)

ln(N∗0,liq)
permits us to obtain LWC, re,liq

and Nliq (box 9 in Fig. 1).
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As explained in Sect. 2.1.1, two LUTs are available to re-
trieve ice properties. They are both implemented in VarPy-
mix to retrieve the ice part of the mixed phase. Further-
more, they are defined in terms of the mean volume-weighted
melted-equivalent diameter, which makes them very similar
to the liquid LUT for small radii. This ensures scientific con-
sistency and algorithm flexibility.

2.2.3 Jacobians

The Jacobian depends on the state vector composition and is
different between VarPy-ice and VarPy-mix. The structure of
the Jacobian J for VarPy-mix is shown by Eq. (16).

For better readability the indices fwd of Z and β are not
displayed; the ice and liq indices of N∗0 and α are replaced by
the i and l indices, respectively; and the natural logarithms of
Z, β, N∗0 and α are omitted. As with the state vector, we can
divide the Jacobian into two parts: the derivatives of lnZ and
lnβ with respect to lnN∗0,ice, aln(S), bln(S) and lnαice for the
ice part (blue background color in Eq. 16) and the derivatives
of lnZ and lnβ with respect to lnN∗0,liq and lnαliq for the
liquid part (red background color). For the mixed phase both
liquid and ice parts are used. However, each part is retrieved
with only one instrument. Indeed, the radar is not used to
retrieve the supercooled water either in pure liquid clouds
or in mixed-phase clouds; therefore, ∂ ln(Zj )

∂ ln(N∗0,liq,k)
and ∂ ln(Zj )

∂ ln(αliq,k)

are zero for any values of j and k. The lidar is used to retrieve
ice cloud properties but not the ice part of the mixed phase.
Then, ∂ ln(βj )

∂ ln(N∗0,ice,k)
and ∂ ln(βj )

∂ ln(αice,k)
are zero for any values of j

and k corresponding to mixed-phase gates.

2.3 Cloud-phase classification

Ice particles and liquid droplets are processed differently,
meaning that hydrometeor identification is an important al-
gorithm input and more significantly regarding the mixed
phase. The retrieval of cloud properties requires us to dis-
tinguish the different hydrometeors detected by the instru-
ments – here the radar and the lidar. Therefore, according to
the sensitivity of each instrument, a hydrometeor classifica-
tion is established for each instrument. Lidar classification
distinguishes aerosols and cloud phases, while radar classi-
fication identifies precipitation and clouds. Thus, combining
the lidar and radar classifications results in a more detailed
cloud-phase classification. These three classifications are ad-
ditional inputs to the algorithm (box 3 in Fig. 1).

DARDAR-MASK v2.23 (Delanoë and Hogan, 2010) is a
target categorization made by the combination of the 2B-
GEOPROF CloudSat radar mask, the CALIPSO vertical li-
dar feature mask CAL-LID-L2-VFM and CALIPSO L1 mea-
surements with a multi-threshold decision tree (Ceccaldi
et al., 2013; Cazenave et al., 2019). VarPy algorithms use
it in order to select the gates to process and how to process
them. Table 4 shows the 18 classes of the DARDAR-MASK

Table 4. DARDAR-MASK v2.23 classes. The phases currently pro-
cessed in VarPy-mix are those indicated in bold.

Number Class

−2 Presence of liquid unknown
−1 Surface and subsurface
0 Clear sky
1 Ice clouds
2 Spherical or 2D ice
3 Supercooled water
4 Supercooled water and ice
5 Cold rain
6 Aerosol
7 Warm rain
8 Stratospheric clouds
9 Highly concentrated ice particles
10 Top of convective towers
11 Liquid clouds
12 Warm rain and liquid clouds
13 Cold rain and liquid clouds
14 Rain maybe mixed with liquid
15 Multiple scattering due to supercooled water

v2.23 classification. The classes are not all processed. Cur-
rently, the algorithm processes the “ice clouds”, the “spher-
ical or 2D ice”, the “supercooled water”, the “supercooled
water and ice”, the “highly concentrated ice particles”, the
“top of convective towers”, and the “multiple scattering due
to supercooled water” classes (highlighted in bold in Ta-
ble 4). For VarPy-ice these classes form a single group to
process. On the other hand, two groups of classes have been
defined for VarPy-mix. Table 5 presents the composition
of these groups. The group “ice” is composed of the fol-
lowing classes: “ice clouds”, “spherical or 2D ice”, “super-
cooled water and ice”, “highly concentrated ice particles”,
and “top of convective towers”. The “supercooled water”,
“supercooled water and ice” and “multiple scattering due to
supercooled water” classes define the “liquid” group. This
distinction is necessary to process the different phases of the
clouds separately. Nevertheless, the “supercooled water and
ice” class (called hereafter “mixed phase”) has the particular-
ity of being processed in both the ice and the liquid groups.
In the current versions of VarPy an intermediate classifica-
tion, called the processed cloud-phase classification, is cre-
ated with these groups. For the case used for this paper, the
processed cloud-phase classification is presented in Fig. 2c.

Supercooled water layers are detected and identified using
the lidar signal. In order to distinguish between the classes
“supercooled water” and “supercooled water and ice”, the
radar signal is used. On one hand, if the radar detects ice, the
cloud-phase classification identifies the area as “supercooled
water and ice”. On the other hand, where the radar does not
detect particles (no radar signal) and the lidar backscatter is
strong, it is categorized as “supercooled water” and the fol-
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Table 5. Cloud phases processed by VarPy-ice and VarPy-mix. Single group for VarPy-ice and two groups (ice and liquid) for VarPy-mix.

Number Class VarPy-ice VarPy-mix

Group “ice” Group “liquid”

1 Ice clouds X X
2 Spherical or 2D ice X X
3 Supercooled water X
4 Supercooled water and ice X X X
9 Highly concentrated ice particles X X
10 Top of convective towers X X
15 Multiple scattering due to supercooled water X

lowing gates are usually “multiple scattering due to super-
cooled water”. For these gates, retrievals are based only on
lidar measurements and a priori values.

To minimize misclassification, some adaptations of the
cloud-phase classification have been implemented. The first
step is to avoid isolated gates that bias the retrieval. A
method has been created to erode isolated supercooled water
and mixed-phase gates. For supercooled water and multiple-
scattering phases, these gates are replaced by clear sky in the
cloud-phase classification and the same correction is made
for the lidar classification. On the other hand, for the mixed
phase only the cloud-phase classification is modified, and the
gates are replaced by ice gates. Afterwards, the next step
is to correct some misclassification of the mixed phase. A
strong lidar backscatter signal (β532 > 2.10−5 m−1 sr−1; De-
lanoë and Hogan, 2010) can be a detection of warm water,
the top of convective towers, highly concentrated ice parti-
cles or supercooled water. For CALIOP, DARDAR-MASK
uses a decision tree to classify the mixed phase and differ-
entiates it from highly concentrated ice particles for a tem-
perature range from −40 to 0 °C (Ceccaldi et al., 2013). In
some cases highly concentrated ice particle areas are incor-
rectly classified as mixed phase and need to be corrected for
VarPy. These gates are then replaced by highly concentrated
ice particles in the cloud-phase classification.

2.4 Summary of the methodology

In the previous subsections we described the principle and
structure of the VarPy-mix method. Here we summarize the
five main points of the method:

1. The radar reflectivity and the lidar backscatter measure-
ments are the algorithm inputs. Their combination pro-
vides a cloud-phase classification. This information is
essential, as supercooled droplets and ice particles are
not processed the same way in our approach. We im-
prove, correct and extend the classification to super-
cooled water (either pure or in the mixed phase).

2. The state vector is composed of variables linked to both
the measurements and the microphysical properties to
be retrieved. We propose a state vector structure that al-
lows us to simultaneously retrieve both ice particle and
supercooled water droplet properties (either pure or in
the mixed phase).

3. We assume that the lidar ratio of liquid water is constant
with a value of 18.6 sr.

4. Based on radar and lidar sensitivity, the ice part of the
mixed phase is retrieved with the radar signal and the
liquid part with the lidar signal. Consequently, this in-
fluences the Jacobian structure, which is calculated by
the radar and lidar forward models.

5. The parameterization (errors, a priori values, first-guess
values, LUT, smoothing parameters, etc.) to retrieve ice
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microphysical properties comes from VarPy-ice. For su-
percooled water properties a new parameterization is
applied, and a new LUT is created based on a log-
normal distribution.

3 Example of retrieval and comparison with collocated
in situ measurements

During the Arctic Study of Tropospheric Aerosol, Clouds
and Radiation (ASTAR; Gayet et al., 2009; Ehrlich et al.,
2009) campaign, four legs coming from the same flight were
performed on 7 April 2007 over the ocean near the Svalbard
archipelago. The case presented in this study is one of the
rare CloudSat–CALIPSO transects with collocated airborne
in situ measurements of mixed-phase clouds. The in situ data
from three probes are compared in this study to VarPy-mix
retrievals. This comparison is possible because cloud de-
tection and phase identification between DARDAR-MASK
and in situ observations are in overall good agreement. In-
deed, Mioche and Jourdan (2018) show that 91 % of clear-
sky events and 86 % of the cloudy gates of DARDAR-MASK
match the polar nephelometer in situ probe from samples col-
lected during the ASTAR 2007 and POLARCAT 2008 (see
the special issue on POLARCAT in Atmospheric Chemistry
and Physics) campaigns. The polar nephelometer can also be
used to estimate the cloud phase observed (ice, liquid water
and mixed phase) thanks to thresholds on the asymmetry pa-
rameter g (Jourdan et al., 2010). Using the polar nephelome-
ter as a reference, Mioche and Jourdan (2018) show that 61 %
of DARDAR-MASK classification corresponding to the ice
phase matches the polar nephelometer data, with 67 % for
the liquid phase and 24 % for the mixed phase. This iden-
tification difference may be due to the temporal and spatial
difference between satellite and in situ observations or to the
detection limit of supercooled water by lidar due to attenua-
tion.

3.1 Remote sensing and in situ measurements

For this comparison, the radar and lidar measurements, and
the classifications, come from the DARDAR-MASK v2.23
product (Cazenave et al., 2019). The selected latitude range
is shown in Fig. 2, which presents the profiles of the li-
dar backscatter measurements (Fig. 2a), the radar reflectivity
(Fig. 2b), the processed cloud-phase classification (Fig. 2c)
and the instrument flag to know which instrument is used for
the retrieval (Fig. 2d). The strong lidar backscatter signal at
the top of the cloud means that there is a large quantity of
small particles like supercooled water droplets. As the radar
also detects particles in this part of the cloud, this means
that there are also ice particles. The processed cloud-phase
classification thus shows the presence of an ice cloud with
a mixed-phase layer at the top. As presented in Fig. 2d, the
mixed phase is retrieved with both radar and lidar, and the

ice cloud below is mainly retrieved with radar only, as the
lidar is strongly attenuated and extinguished due to the su-
percooled water of the mixed phase. As a result, the base of
the supercooled liquid layer within the mixed-phased cloud
cannot be determined unequivocally.

The three in situ instruments on board the Polar 2 aircraft
were a cloud particle imager (CPI; Lawson et al., 1998), a
forward-scattering spectrometer probe (FSSP-100; Dye and
Baumgardner, 1984; Gayet et al., 2007) and a polar neph-
elometer (PN; Gayet et al., 1997). As the aircraft was not fly-
ing exactly along the satellites’ trajectories, nor at the same
time, the collocation is quite challenging. Among the four
legs, the third one is temporarily the closest to the satellites’
overpass with less than 10 min delay (shown on the top x axis
in Fig. 2a and b). We focus this study on this leg to compare
VarPy-mix retrievals to the in situ measurements. The alti-
tude of the aircraft is shown by the magenta line in Fig. 2,
where each point corresponds to a 30 s averaged probe mea-
surement and the magenta arrow indicates the direction of
the flight. As the aircraft flew above the cloud before going
inside the cloud and passing through the mixed-phase layer
twice, we have thus a vertical description of the cloud, and
the comparison with VarPy-mix retrieval is more complete.

The size range sensitivity of each probe is presented in
Fig. 3. We assume here that the CPI provides information on
ice particles, while the FSSP provides information on liquid
water. We cannot exclude the possibility that the FSSP also
detects secondary ice particles (Costa et al., 2017) or could be
more likely contaminated by ice crystals shattered on the in-
strument tips. However, Costa et al. (2017) showed that sec-
ondary ice particles are not frequent in Arctic mixed-phase
clouds. The temperature range at which clouds were probed
(between −21 and −14 °C) does not point towards possible
secondary ice production mechanisms (above −10 °C). Ad-
ditionally, Febvre et al. (2012) showed that when ice crystals
are measured by the FSSP, the asymmetry parameter mea-
sured by the PN decreases compared with what would be
expected for water droplets only. In our case study the asym-
metry parameter g is mostly greater than 0.84 in the upper
cloud layer, which is indicative of a layer composed quasi-
exclusively of water droplets. Consequently, we are quite
confident that the presence of small ice crystals does not sig-
nificantly impact the results.

For this study, we derive the ice cloud extinction αCPI, the
ice water content IWCCPI, the ice effective radius re,CPI and
the ice number concentration NCPI from the CPI. The mass–
size relationship to calculate IWCCPI is given by Eq. (17)
(model B for 0.2 kg m−2 in Leinonen and Szyrmer, 2015). It
corresponds to moderate riming and gives the best agreement
over the whole flight:

m= 0.033×D1.94. (17)

The liquid cloud extinction αFSSP, liquid water content
LWCFSSP, liquid effective radius re,FSSP and liquid number
concentration NFSSP are provided by the FSSP. Both re,CPI
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Figure 2. Selected profiles of CALIPSO attenuated backscatter (a), CloudSat reflectivity (b), processed cloud-phase classification (c) and
instrument synergy (d). The trajectory and direction of Polar 2 are shown by the magenta line and arrow, respectively.

Figure 3. CPI, FSSP and PN range sensitivities.

and re,FSSP are calculated according to the following formula
(Foot, 1988):

re =
3
2

WC
ρα

, (18)

where re is the ice (re,CPI) or liquid (re,FSSP) effective radius,
WC is the ice (IWCCPI) or liquid (LWCFSSP) water content,
ρ is the density of ice (917 kg m−3) or water (1000 kg m−3),
and α is the ice (αCPI) or liquid (αFSSP) extinction.

By summing extinctions, water contents and concentra-
tions from both instruments, the total extinction αCPI+FSSP,
the total water content TWCCPI+FSSP and the total number
concentrationNCPI+FSSP can be obtained. In addition, the PN
provides the total extinction αPN. These in situ measurements
are shown in Figs. 4–7 and are detailed in the comparison
in Sect. 3.3. The uncertainties in extinctions, water contents,
number concentrations and asymmetry parameters are pre-
sented in Table 6 (Mioche et al., 2017).

3.2 VarPy-mix retrievals

The cloud-phase classification has been adapted by eroding
isolated supercooled gates. In this study we chose to retrieve
ice properties with the HC LUT. This implies that the AHC,
BHC and γHC values are used for the a priori and first-guess
values of ln(N∗0,ice). For the liquid LUT, the only parameter
of the size distribution that can vary is the geometric standard
deviation σ . Fielding et al. (2014, 2015) set this value to σ =

Table 6. Uncertainties in cloud properties derived from CPI, FSSP
and PN probes from Mioche et al. (2017).

Property CPI FSSP PN

Extinction α 55 % 35 % 25 %
Water content (IWC or LWC) 60 % 20 % –
Number concentration N 50 % 10 % –
Asymmetry parameter g – – 4 %

0.3± 0.1 and Frisch et al. (1995) to σ = 0.35. We chose here
to set the geometric standard deviation to σ = 0.3.

First, the liquid and ice extinctions retrieved by VarPy-mix
are shown by the curtain in Fig. 4a and b, respectively, and
are used to access more liquid and ice properties via LUTs.
Figure 5a and b show LWC and IWC, Fig. 6a and b show
re,liq and re,ice, and Fig. 7a and b showNliq andNice. For each
microphysical property, the ice and liquid parts are retrieved
according to the classification. For the ice cloud between 0.5
and 1 km, only the ice properties are available. Ice and liquid
properties are both retrieved for the mixed-phase gates.

Table 7 presents the mean values in all selected pixels
of all retrieved properties. These values allow us to observe
trends for each variable. The extinction of the liquid droplets
is stronger than that of the ice particles by a factor of 7. The
same trends are observed between LWC and IWC with aver-
age values 30 % larger for LWC. The ice particles are larger
than the liquid droplets by a factor of 5 for the mean values.
The liquid number concentration is much higher than the ice
number concentration by a factor of 103. All retrieved vari-
ables can be compared with in situ measurements. For ex-
tinctions, water contents and concentrations, it is possible to
sum the ice and liquid variables to obtain the total extinction
αtot (curtain in Fig. 4c), the total water content TWC (curtain
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Figure 4. Panels (a)–(c) represent the liquid (a), ice (b) and total (c) extinctions from VarPy-mix retrievals (curtain) and in situ probes (dots)
regarding the latitude and the height. Panels (d)–(f) represent the liquid (d), ice (e) and total (f) extinctions from VarPy-mix retrievals and
in situ probes regarding the latitude. The error bars of in situ measurements (uncertainties from Table 6) are displayed in (d)–(f). The yellow
and purple shading represents the latitude range where mixed-phase retrievals are compared with in situ measurements.

Figure 5. Same as Fig. 4 but for LWC, IWC and total water content (TWC).
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Figure 6. Same as Fig. 4 but for re,liq and re,ice.

Figure 7. Same as Fig. 4 but for Nliq, Nice and Ntot.

in Fig. 5c) and the total number concentration Ntot (curtain
in Fig. 7c).

3.3 Comparison

The retrieved total extinction of the mixed-phase layer is
higher than that of the ice layer due to the presence of super-
cooled droplets. The extinctions from the CPI and FSSP have
been summed in order to compare the sum with the total ex-
tinction of VarPy-mix and the one from the PN. These results

are presented in Fig. 4c by the dots and share the same color
scale as the VarPy-mix curtain. Above the cloud, where there
is clear sky for VarPy-mix (coming from radar and lidar mea-
surements and classifications), the PN detects no particles
and the CPI+FSSP total extinction is very low (10−8 m−1

for the FSSP). Inside the cloud we can observe the same trend
between the VarPy-mix retrieval and the probe results, both
of which are different mainly between the ice-only area and
the mixed-phase layer.
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Table 7. Mean values of retrieved properties.

Property Mean value

αice 1.03× 10−3 m−1

αliq 7.28× 10−3 m−1

αtot 4.91× 10−3 m−1

IWC 5.32× 10−2 g m−3

LWC 6.89× 10−2 g m−3

TWC 8.99× 10−2 g m−3

re,ice 75.2 µm
re,liq 13.5 µm
Nice 2.01× 10−2 cm−3

Nliq 3.73× 101 cm−3

Ntot 1.99× 101 cm−3

In order to provide a more detailed comparison, we keep
only the gates from VarPy-mix that are closest to the in situ
measurements. Figure 4f displays by dots and lines the total
extinction from the probes and from VarPy-mix. The points
corresponding to the mixed-phase layer are highlighted in
all panels by yellow and purple shading, and the others cor-
respond to the ice cloud. Between 77.52 and 77.64° N in
Fig. 4f, there are no data for VarPy-mix because these points
correspond to a ground clutter (ocean) area for the radar.
The extinction for the mixed phase is higher than for the
ice cloud, and this trend is observed for all results. In gen-
eral, VarPy-mix total extinction is lower than total extinction
from probes, especially in regions where cloud-phase classi-
fication is defined as ice. In these regions the FSSP detects
liquid droplets, whereas the CALIOP signal cannot be used
because of the attenuation (extinguished). This may explain
why αVarPy is lower than αCPI+FSSP.

In the mixed-phase layer, IWC and LWC are both retrieved
by VarPy-mix and can be compared with in situ data from the
CPI and the FSSP, respectively. The TWC is also used in this
comparison. The results are shown in Fig. 5. In both regions
of mixed-phase measurements, the LWC retrieved by VarPy-
mix is between 2×10−2 and 2×10−1 g m−3 and agrees well
with the FSSP. Regarding IWC, both CPI and VarPy-mix re-
trieve similar trends in these regions. In the region below, due
to the extinction of the lidar signal, only ice properties are re-
trieved by VarPy, but the FSSP also detects liquid in this re-
gion, which impacts the comparison with the TWC. For that
reason we only compare in this region the IWC retrieved by
VarPy-mix with the IWC from CPI, which are close to each
other (40 % mean percent error). The region between 77.52
and 77.64° N cannot be compared for the same reason as for
the extinction.

The same comparison between VarPy-mix retrievals and
in situ measurements can be done for effective radii and con-
centrations, as is illustrated in Figs. 6 and 7, respectively.
We can see in Fig. 6a and c that the liquid effective radius
retrieved by VarPy-mix is higher than that from the FSSP.

On the other hand, the ice effective radius from VarPy-mix
is very close to the CPI effective radius in the mixed-phase
layer indicated by the yellow shading (Fig. 6b and e). How-
ever, the values retrieved by VarPy-mix are much lower for
the mixed-phase region indicated by the purple shading. In
this region the CPI gives ice effective radii between 200 and
600 µm, while VarPy-mix retrieves values of around 70 µm.
This difference may be due to the mass–size relationships
applied, which differ between VarPy-mix and in situ data.
Regarding the concentrations (Fig. 7), VarPy-mix retrieved
fewer concentrated liquid particles than the FSSP and fol-
lows the same trend. For ice number concentration the values
are lower for VarPy-mix in the mixed-phase layer indicated
by the yellow shading and higher in the one indicated by the
purple shading. In Fig. 7f the same trend as for the total ex-
tinction is obtained with higher values in the mixed-phase
layer and very low values below it. The explanations are the
same as for the extinction.

For all variables the mean absolute error (the mean of the
absolute difference between each value of VarPy-mix and
the in situ value) and the mean percent error regarding the
in situ value (the mean of the absolute difference between
each value of VarPy-mix and the in situ value divided by the
in situ value and expressed as a percentage) are calculated
and presented in Table 8. The liquid extinction retrieved by
VarPy-mix differs from that in situ by 39 %, which is similar
to in situ uncertainties (35 %), and is the closest to the in situ
measurements. On the contrary, the mean percent error of
ice extinction is 398 %. This can be explained by the large
difference around 77.75° N, shown by the purple shading in
Fig. 4e. The uncertainties in the in situ probes (Table 6) also
need to be taken into account.

The comparison between VarPy-mix retrieval and the
in situ measurements is limited for many reasons. First, the
collocation in space is not perfect, which can lead to biases
and restrict this study to one case. The Polar 2 aircraft flew
almost exactly under the CloudSat and CALIPSO trajecto-
ries during the third leg by crossing them around 77.6° N. If
we do not consider the measurement points above the clouds,
the maximum spatial shifts are 1.68 km around 77.44° N and
1.34 km around 77.78° N. The temporal shift is also the best
for the third leg with less than 10 min between the two plat-
forms. Nevertheless, the sampling volumes of the probes are
much smaller than those of the remote sensing instruments.
Moreover, the vertical (60 m) and horizontal (1.4 km) reso-
lutions of VarPy-mix products are larger than those of the
probe sampling volume.

Another source of bias comes from the partial synergy of
the VarPy-mix version in the mixed phase. Indeed, the re-
trieval relies more strongly on the a priori values than when
both instruments are used to retrieve ice cloud properties
(Delanoë et al., 2013). In addition, the ice cloud is mainly
retrieved with radar only and therefore with a priori values,
which are temperature-dependent. Furthermore, the main ad-
vantage of VarPy is the ability to retrieve full cloud profiles.
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Table 8. Mean absolute error and mean percent error regarding in situ measurements for each property.

Property Mean value Mean value Mean absolute error Mean percent error
for VarPy-mix for in situ meas.
selected gates

αice 8.1× 10−4 m−1 6.8× 10−4 m−1 7.2× 10−4 m−1 398 %
αliq 6.7× 10−3 m−1 3.3× 10−3 m−1 4.3× 10−3 m−1 39 %
αtot (CPI+FSSP) 4.2× 10−3 m−1 4.1× 10−3 m−1 3.4× 10−3 m−1 50 %
αtot (PN) 4.2× 10−3 m−1 6.2× 10−3 m−1 4.2× 10−3 m−1 56 %
IWC 2.9× 10−2 g m−3 3.4× 10−2 g m−3 5.0× 10−2 g m−3 75 %
LWC 2.6× 10−2 g m−3 5.2× 10−2 g m−3 1.4× 10−2 g m−3 49 %
TWC 3.0× 10−2 g m−3 6.0× 10−2 g m−3 4.7× 10−2 g m−3 39 %
re,ice 69.7 µm 177.5 µm 128.2 µm 54 %
re,liq 12.2 µm 5.56 µm 6.40 µm 122 %
Nice 3.40× 10−2 cm−3 2.02× 10−2 cm−3 3.24× 10−2 cm−3 280 %
Nliq 1.73× 101 cm−3 2.59× 101 cm−3 6.10× 101 cm−3 77 %
Ntot 8.69 cm−3 3.59× 101 cm−3 4.51× 101 cm−3 89 %

4 Summary and discussion

In this paper we propose a method to retrieve microphysical
properties of ice, supercooled water and mixed-phase clouds
simultaneously, called VarPy-mix. This variational method
can use radar reflectivity at 35 or 95 GHz and lidar backscat-
ter at 532 nm from spaceborne or satellite platforms to get
vertical profiles of extinctions, ice and liquid water con-
tents, effective radii, and number concentrations. Radar and
lidar have different sensitivities to hydrometeors due to their
wavelengths, and therefore this difference is used to retrieve
the mixed phase. On one hand, lidar is very sensitive to small
and highly concentrated particles such as liquid droplets. On
the other hand, radar is sensitive to the particle size, mean-
ing that the signal is stronger for ice particles than for liquid
droplets. Consequently, ice clouds are retrieved with both in-
struments, while the mixed-phase retrieval is divided into two
parts: the ice particles are retrieved with the radar signal and
the supercooled water with the lidar signal. Therefore, the
retrieval relies strongly on a priori and error values.

VarPy-mix is based on the algorithm Varcloud (Delanoë
and Hogan, 2008), which retrieves ice cloud properties with
radar, lidar and radiometric data. The variational method is
the same, but the structure of the algorithm has been adapted
to deal with supercooled water and mixed-phase clouds. The
main modification comes from the state vector composition,
which is divided into two parts, allowing ice and liquid to
be processed separately as required. All matrices related to
the state vector have been adapted to it. Moreover, a new
lookup table dedicated to liquid properties has been created.
Based on a log-normal droplet size distribution, it is used to
retrieve supercooled water clouds and the liquid part of the
mixed phase. For the ice clouds and the ice part of mixed-
phase clouds, two lookup tables are implemented: one uses
the T-matrix and the mass–size relationship from Heyms-

field et al. (2010), and the second one is a combination of
the mass–size relationships described by Brown and Francis
(1995) and Mitchell (1996). It is important to know the phase
of the cloud in order to process each gate appropriately. For
this, an intermediate classification has been implemented. It
distinguishes between ice clouds, supercooled water and the
mixed phase. Adaptations have been made to this classifica-
tion to improve the retrieval (reduce biases) and be consistent
with the measurements.

The retrieved properties can be divided into two parts, with
ice properties on one side and those of the liquid on the other.
The results are vertical profiles of

– ice and liquid extinctions, αice and αliq [m−1], which
can be used to estimate total extinction αtot;

– ice and liquid water contents, IWC and LWC [kg m−3],
which can be used to estimate total water content TWC;

– ice and liquid number concentrations, Nice and Nliq
[m−3], which can be used to estimate total number con-
centration Ntot;

– ice and liquid effective radius, re,ice and re,liq [m].

The case presented in this study is a mixed-phase layer on top
of an ice boundary layer cloud at high latitudes. Therefore,
ice and liquid properties are retrieved on top of the cloud
and then ice properties for the ice cloud below. By compar-
ing with in situ measurements from the ASTAR campaign,
we can see that the cloud microphysical properties retrieved
with VarPy-mix follow trends similar to those of in situ
measurements and that the retrieval produces correct results.
However, this comparison shows some limitations. First, the
lower part of the cloud is missing, which compromises part
of the comparison. In fact, the lidar is attenuated by the liq-
uid droplets of the mixed-phase layer and extinguished after
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it. The radar does not detect down to the ocean because of
the clutter and therefore cannot see the cloud base. Second,
the spatial and temporal shifts between the aircraft and the
satellites need to be taken into account, which are less than
1.7 km and 10 min, respectively, for the chosen case. More-
over, the sampling volume is not the same between in situ
probes and CloudSat–CALIPSO (60 m vertical resolution).
This makes it difficult to compare precisely a VarPy-mix gate
with an in situ measurement. Third, the ice cloud retrieval is
mainly done with the radar signal only, and each part of the
mixed phase is also retrieved with a single instrument. The
retrieval in this case relies strongly on a priori values and
the lookup table, which includes some bias in the compari-
son with in situ measurements. A fully synergistic retrieval
would be much more reliable, with both instruments retriev-
ing each part of the mixed phase. Another possible improve-
ment would be to optimize the a priori and first-guess val-
ues for liquid with in situ statistics. Moreover, it is important
to note that the relationships used to retrieve properties dif-
fer between VarPy-mix and in situ measurements (e.g., the
mass–size relationship to retrieve water contents). This has
a particular impact on the comparison between ice effective
radii. Finally, this study focuses on only one case of mixed
phase at high latitude, above the ocean, which does not al-
low us to know how the algorithm would retrieve the mixed
phase and the supercooled water globally.

In this study VarPy-mix is used to retrieve cloud properties
with CloudSat and CALIPSO data. Nevertheless, it can also
be applied to observations from other platforms. The French
RALI airborne platform with the RASTA radar (95 GHz) and
LNG lidar (multi-wavelength: 355, 532 and 1064 nm; high
spectral resolution (HSR) at 355 nm) offers more possibili-
ties for comparison with in situ measurements. During the
RALI-THINICE campaign that took place in August 2022
near the Svalbard archipelago, the ATR42 from SAFIRE flew
over and inside several mixed-phase cases, with RALI and
in situ probes. VarPy-mix will be applied on RALI data, and
some comparison with in situ measurements can be done to
evaluate, validate and improve VarPy-mix parameterization.
The same can be applied on other campaigns like HALO-
(AC)3 (Wendisch et al., 2024), which took place in March
and April 2022 in the Arctic near the Svalbard archipelago.
During this campaign the HALO platform, consisting of
the radar MIRA (35 GHz) and the lidar WALES (532 and
1064 nm and HSR at 532 nm) flew over mixed-phase clouds.
Some collocation with aircraft performing in situ measure-
ments was conducted during this campaign. More informa-
tion on both campaigns can be found on their respective web-
sites (RALI-THINICE, 2022; HALO-AC3, 2022). In addi-
tion, VarPy-mix could use data from the EarthCARE satellite
platform, which was successfully launched on 28 May 2024
and includes cloud profiling radar (CPR) at 94 GHz and at-
mospheric lidar (ATLID) at 355 nm with HSR.
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