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Abstract. The increase in greenhouse gas concentrations,
particularly CO2, has significant implications for global cli-
mate patterns and various aspects of human life. Spaceborne
remote sensing satellites play a crucial role in high-resolution
monitoring of atmospheric CO2. However, the next genera-
tion of greenhouse gas monitoring satellites is expected to
face challenges, particularly in terms of computational ef-
ficiency in atmospheric CO2 retrieval and analysis. To ad-
dress these challenges, this study focuses on improving the
speed of retrieving the column-averaged dry-air mole frac-
tion of carbon dioxide (XCO2) using spectral data from the
Orbiting Carbon Observatory-2 (OCO-2) satellite while still
maintaining retrieval accuracy. A novel approach based on
neural network (NN) models is proposed to tackle the non-
linear inversion problems associated with XCO2 retrievals.
The study employs a data-driven supervised learning method
and explores two distinct training strategies. Firstly, training
is conducted using experimental data obtained from the in-
version of the operational optimization model, which is re-
leased as the OCO-2 satellite products. Secondly, training is
performed using a simulated dataset generated by an accu-
rate forward calculation model. The inversion performance
and prediction performance of the machine learning model
for XCO2 are compared, analyzed, and discussed for the ob-
served region over east Asia. The results demonstrate that the
model trained on simulated data accurately predicts XCO2 in

the target area. Furthermore, when compared to OCO-2 satel-
lite product data, the developed XCO2 retrieval model not
only achieves rapid predictions (< 1 ms) with good accuracy
(1.8 ppm or approximately 0.45 %) but also effectively cap-
tures sudden increases in XCO2 plumes near industrial emis-
sion sources. The accuracy of the machine learning model
retrieval results is validated against reliable data from Total
Carbon Column Observing Network (TCCON) sites, demon-
strating its ability to effectively capture CO2 seasonal varia-
tions and annual growth trends.

1 Introduction

Since the Industrial Revolution, human activities have re-
leased large amounts of greenhouse gases, primarily carbon
dioxide, into the atmosphere. This continual increase in emis-
sions has led to global warming and has disrupted human
societies and ecosystems (Zehr, 2015). Accurately estimat-
ing atmospheric carbon fluxes is critical for implementing ef-
fective emission reduction strategies at national and regional
levels. However, precise carbon flux estimates require assim-
ilating carbon dioxide concentration data across regions us-
ing measurements of atmospheric column-averaged dry air-
mole fraction of carbon dioxide (XCO2; Jin et al., 2021).
Direct measurement methods like balloons or aircraft have
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challenges obtaining global-scale data. Currently, the main
monitoring approach uses spectrometers to record spectra
in CO2 absorption bands, followed by inversion algorithms
to derive XCO2. The two primary monitoring methods are
ground-based monitoring stations and satellite remote sens-
ing.

The Total Carbon Column Observing Network (TCCON)
provides ground-based monitoring of atmospheric carbon
dioxide through a global network of high-precision Fourier
transform spectrometers (Wunch et al., 2011, 2015). How-
ever, TCCON sites are sparsely distributed and cannot be de-
ployed in regions with unfavorable geography or harsh cli-
mates. Consequently, the network lacks the extensive spa-
tial coverage required for comprehensive global carbon mon-
itoring and carbon cycle analysis. Nevertheless, the ultra-
high spectral resolution of TCCON spectrometers enables
highly accurate retrievals of XCO2. Under clear-sky condi-
tions, TCCON precision can reach 0.1 % (< 0.4 ppm). Under
relatively clear conditions with minimal clouds and aerosols,
precision remains within 0.25 % (< 1 ppm; Messerschmidt
et al., 2011). Due to such high precision and accuracy, TC-
CON data are invaluable for validating satellite-based XCO2
products (Cogan et al., 2012; Wunch et al., 2017; Liang et al.,
2017) and comparing them to carbon cycle models. However,
the spatial limitations of the network underscore the need for
satellite remote sensing to provide regular global measure-
ments of atmospheric carbon dioxide.

High-spectral-resolution greenhouse gas monitoring satel-
lites employ spectrometers in orbit to measure solar radi-
ation spectra after interaction with the Earth’s atmosphere
and ground surface (Meng et al., 2022). Unlike ground
monitoring, satellite remote sensing offers broader spatial
coverage and more flexible temporal observation globally.
Consequently, satellite remote sensing has become vital for
greenhouse gas monitoring worldwide. Notable ongoing pas-
sive CO2 observation missions include China’s TanSat (Liu
et al., 2018), Japan’s Greenhouse Gases Observing Satel-
lite (GOSAT, 2009) and GOSAT-2 (2018) (Hamazaki et al.,
2005; Kuze et al., 2009; Imasu et al., 2023), and the United
States’ OCO-2 (2014) and OCO-3 (2018; Crisp et al., 2017;
Eldering et al., 2019). Upcoming missions are France’s Mi-
croCarb by CNES (Cansot et al., 2023), ESA’s CO2M (Sierk
et al., 2021), and GOSAT-GW (Matsunaga and Tanimoto,
2022). The next-generation greenhouse gas monitoring satel-
lites mainly address the challenge of improving the spatial
and temporal resolutions of observations. However, single
satellites still have resolution, coverage, and meteorologi-
cal limitations for regional emission monitoring. Enhancing
satellite sensor performance alone cannot produce datasets
sufficient for monitoring carbon sources and sinks. Improv-
ing the accuracy and efficiency of satellite data inversion is
also crucial. Integrating data from multiple satellites into a
coordinated system is necessary to fully capture dynamic
changes in regional carbon sources and sinks. Developing
new high-precision, high-throughput inversion methods to

efficiently derive accurate greenhouse gas concentration dis-
tributions from satellite data is a key challenge needing at-
tention.

The mainstream inversion algorithms (O’Dell et al., 2012;
Crisp et al., 2012; Yoshida et al., 2013) for retrieving green-
house gas concentrations from high-spectral-resolution satel-
lite measurements are based on nonlinear Bayesian opti-
mization theory (Rodgers, 2000) and full physics models. In
essence, these algorithms operate by iteratively adjusting es-
timated gas concentration profiles and other atmospheric and
surface parameters in a radiative forward model to minimize
the mismatch between simulated and observed spectra. More
specifically, the inversion process starts with the a priori at-
mospheric state, including trace gas concentration profiles as
functions of pressure/altitude. Radiative-transfer equations
are then solved to simulate the top-of-atmosphere radiance
spectrum observed by the satellite for this atmospheric state.
The simulated spectrum is compared to the actual observed
spectrum, calculating the difference, covariance, and cost
function. The input gas profiles and model parameters are
iteratively adjusted to reduce the cost function over multi-
ple rounds of radiative-transfer simulations. Once simulated
spectra closely match observations, the model state is out-
put as the retrieved concentration profile. However, executing
these complex optimizations requires computationally ex-
pensive interpolation of high-spectral-resolution gas absorp-
tion reference data and solving the radiative-transfer equa-
tions in each iteration. Running the radiative forward model
repeatedly for every adjusted atmospheric state also leads
to slow overall inversion. Consequently, optimization-based
retrievals struggle to match increasing satellite observation
volumes and throughput needs. This inherent inefficiency
has become a major obstacle to operational greenhouse gas
monitoring using current and planned high-resolution spec-
trometers. While rigorous, standard nonlinear optimization
retrievals lack the speed and scalability required for high-
precision real-time or near-real-time satellite-based green-
house gas mapping. Overcoming this bottleneck necessitates
new inversion approaches that can ingest high-resolution
spectral data and retrieve concentrations with both accuracy
and computational efficiency.

In recent years, machine learning has demonstrated excep-
tional performance across various research fields, with the
discovery of potential nonlinear relationships between data
as one of its fundamental and crucial applications. Regarding
the important applications of carbon dioxide (CO2) retrieval,
Carvalho et al. (2010) attempted to retrieve the vertical CO2
profiles using spectral data from SCIAMACHY’s 6 channels
(1000–1700 nm). The overall precision and bias of the re-
trieved results were estimated to be approximately 1.0 % and
less than 3.0 %, respectively. Gribanov et al. (2010) devel-
oped a two-hidden-layer multilayer perceptron (MLP) model
to retrieve CO2 vertical concentrations by reflected solar ra-
diation measured by the GOSAT Thermal and Near infrared
Sensor for carbon Observation – Fourier Transform Spec-
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trometer (TANSO-FTS) sensor, achieving an inversion accu-
racy better than 1 ppm for CO2 column-averaged values and
better than 4 ppm for surface CO2 concentrations for the test
samples. In the study conducted by Zhao et al. (2022), a two-
step machine learning approach was developed for retriev-
ing atmospheric XCO2 using spectral data from the GOSAT
weak-CO2 band. They established a direct one-dimensional
line-by-line forward model to simulate GOSAT’s observed
spectra within the 6180–6280 cm−1 spectral interval, form-
ing the foundation for training their machine learning model.
The retrieval model operates by initially obtaining the at-
mospheric spectral optical thickness, followed by extracting
XCO2 from these optical thickness spectra. As a proof-of-
concept, the method was tested in Australia under clear-sky
conditions using GOSAT’s spectra, demonstrating an accu-
racy of approximately 3 ppm for XCO2 retrieval. The study
also discussed potential enhancements to further refine the
accuracy of this retrieval method. Keely et al. (2023) em-
ployed the machine learning method of Extreme Gradient
Boosting (Chen and Guestrin, 2016) to develop a nonlin-
ear bias correction approach for the OCO-2 version 10 prod-
uct, significantly reducing systematic errors in CO2 measure-
ments and improving data quality, with an increase in sound-
ing throughput by 14 %. David et al. (2021) and Bréon et
al. (2022) attempted to establish correlations between XCO2
in the European Centre for Medium-Range Weather Fore-
casts CAMS (Copernicus Atmosphere Monitoring Service)
database and OCO-2 satellite monitoring spectra using mul-
tilayer perceptron artificial neural network models. However,
their recent research (Bacour et al., 2023) indicates that when
the test dataset extends beyond the time range covered by the
training dataset, the predicted results show a slight bias, ap-
proximately 2.5 ppmyr−1. Practical deployment of machine
learning techniques for remote sensing demands additional
research into the generalization performance of models on
new observational data distributions beyond those encoun-
tered during training.

In the present paper, a proof-of-concept study demon-
strates a novel machine learning strategy to accurately and
efficiently retrieve atmospheric XCO2 values from OCO-
2 satellite spectral measurements. The model rapidly re-
trieves XCO2 directly from OCO-2 spectral data, eliminat-
ing the need for repetitive radiative-transfer simulations re-
quired by traditional nonlinear optimization retrieval algo-
rithms. Additionally, the model enables the prediction of fu-
ture XCO2 values. The method was validated by comparing
the retrieved XCO2 against OCO-2 satellite version 10r prod-
ucts and ground-based TCCON measurements, confirming
the accuracy of our efficient spectral-inversion approach. The
model also successfully demonstrated its ability to detect lo-
cal plume features, indicating its potential utility in monitor-
ing and analyzing specific emission sources. A major innova-
tion in the present study is using accurate radiative-transfer
simulations to generate the training data rather than relying
solely on experimental data products. This simulation-based

training approach could help overcome limitations in existing
experimental data. Additionally, our neural network model
achieves XCO2 retrieval speeds orders of magnitude faster
than traditional methods, reducing computation time from
multiple seconds to less than 1 ms. This dramatic improve-
ment in retrieval efficiency could enable real-time processing
of the massive data volumes expected from next-generation
greenhouse gas monitoring satellites. Importantly, our model
achieves a precision of less than 1.8 ppm, competitive with
the current state of the art in retrieval accuracy. We also
demonstrate the ability to accurately capture temporal varia-
tions and trends in XCO2 by validating against reliable TC-
CON ground-based data. This level of verifiable performance
is an important ability. This provides an effective solution for
rapid inversion of large-scale high-spectral-resolution remote
sensing data in the future.

2 The machine-learning-based XCO2 retrieval model

2.1 Targeted area and data screening

This proof-of-concept study aims to develop and validate
an accurate and efficient machine-learning-based XCO2 re-
trieval model applied to the long OCO-2 time series for the
east Asian region. Currently, similar global XCO2 retrieval
models rely on computationally intensive physical models.
Our goal is to demonstrate a more efficient data-driven ap-
proach using MLP neural networks.

Before developing the machine-learning-based fast-
retrieval model, we implemented several preprocessing steps
on the OCO-2 observational dataset (OCO-2 Science Team
et al., 2020a) for the target east Asian area spanning be-
tween 20–45° N and 110–145° E, as shown in Fig. 1. Specif-
ically, we filtered the data both spatially and temporally
to focus only on observations within the geographic re-
gion and time period of interest (2016–2021). Additionally,
we filtered the data to only include nadir mode observa-
tions marked as “good” based on the quality flag indicator
(“xco2_quality_flag” = 0 in OCO-2 Lite v10r files; OCO-2
Science Team et al., 2020b), as these represent the highest
quality OCO-2 measurements.

Several TCCON ground stations located in this region
(e.g., Hefei, Saga, Tsukuba, Xianghe, Anmyeondo, and
Rikubetsu), as shown in Fig. 1, provide valuable ground-
truth XCO2 data for validating the MLP model predictions.
If the model can accurately reproduce the TCCON observa-
tions from corresponding OCO-2 measurements, it suggests
that the model has learned meaningful relationships between
the satellite data and underlying CO2 concentrations.

Furthermore, the successful demonstration of accurate
XCO2 retrieval over east Asia is a first step toward expand-
ing this approach globally. The model could be retrained or
supplemented with additional regional data to extend cov-
erage. By combining reliable regional MLP models, global
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Figure 1. The target area for the east Asia region, distribution of
observation points (from OCO-2 L2 std v10r files) of OCO-2 nadir
mode in January 2016, and the distribution of TCCON sites in this
area.

Table 1. A detailed list of the input parameters for the MLP-XCO2
model.

Input elements Variables Number

Spectral information WCO2 525
SCO2 755
Bad pixel mask 1280

Geographical information Solar zenith 1
Relative azimuth 1

Others Year 1
Pressure 1

Total 2564

XCO2 maps could be retrieved. This “jigsaw puzzle” strat-
egy would further validate the feasibility of global-scale
machine-learning-based XCO2 retrievals from satellite ob-
servations.

2.2 The artificial neural network architecture

This study introduces a multilayer perceptron (MLP) neural
network model for estimating XCO2 from OCO-2 satellite
observations. Inspired by David et al. (2021) and Bréon et al.
(2022), the MLP-XCO2 model input layer is designed based
on the measurement principles of OCO-2 and atmospheric
radiative-transfer effects on the observed spectra; the artifi-
cial neural networks architecture is shown in Fig. 2. Specif-
ically, the MLP model input layer consists of spectral infor-
mation, surface pressure, the corresponding year, and geo-
graphical observation information, as summarized in Table 1
and explained below.

2.2.1 Spectral information

The OCO-2 satellite instrument measures high-resolution
spectra in three spectral bands centered around 0.76, 1.6,
and 2.0 µm, referred to as the O2-A, weak CO2 (WCO2),
and strong CO2 (SCO2) bands, respectively (OCO-2 Sci-
ence Team et al., 2019). However, only the WCO2 and SCO2
bands are used as inputs for current XCO2 retrievals. The
O2-A band is excluded as it lacks significant information
needed to directly estimate XCO2 based on radiative-transfer
principles. Instead, the O2-A band is primarily used in
OCO-2’s operational full-physics algorithm for rapid cloud
and aerosol screening prior to CO2 retrieval (O’Dell et al.,
2012), effectively excluding observational cases that poten-
tially lead to poor retrieval quality, thus saving substantial
computational costs. Each OCO-2 spectral band is sampled
by 1024 detector pixels. However, over time some detectors
have degraded or become unstable in the space environment,
resulting in pixels being flagged as “bad samples” in qual-
ity filters (Marchetti et al., 2019). To maximize high-quality
training data, additional preprocessing is performed on the
WCO2 and SCO2 bands. Initially, the beginning and ending
spectral ranges corresponding to the most degraded detectors
are removed. The remaining spectra are resampled into 525
and 755 wavelength points for the WCO2 and SCO2 bands,
respectively (spectral points in wavelength are detailed in
Table 2). To enhance the CO2 absorption line information,
each input spectrum is normalized by dividing the mean ra-
diance within a nearby spectrally transparent window lack-
ing absorption features (1.6056–1.6059 µm using 10 points
for WCO2; 2.0602–2.0607 µm using 15 points for SCO2).
Additionally, as shown in Fig. 3, we noticed that some iso-
lated pixels within the main CO2 absorption bands still con-
sistently exhibited poor radiance quality. To address this is-
sue, a “bad sample filter” was implemented, which utilizes
a binary record from the OCO-2 L1B database (0 indicates
spectra derived from good-quality pixels, and 1 indicates pix-
els with defects or derived from poor-quality interpolations).
The settings of this filter are determined solely by the his-
toric records and the version of the bad-pixel map, ensur-
ing refined data quality and consistency across different ver-
sions of the map. To further address bad samples resulting
from natural degradation, we have implemented a dropout
layer between the initial and the first intermediate MLP layer,
thus enhancing the model generalizability with the remaining
spectral inputs.

2.2.2 Geographical information

The model is designed to accept two key observation geome-
try angles that are determined by the relative positions of the
Sun, the satellite, and the ground observation point. These in-
clude the solar zenith angle and relative azimuth angle. The
solar zenith angle (SZA) features prominently as a cosine
term in the radiative-transfer equation that defines the atmo-
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Figure 2. Schematic diagram of the MLP-XCO2 model. The input layer includes two interpolated radiance values of WCO2 and SCO2 band
filtered through a bad pixel filter, geographical observation information, surface pressure, and the corresponding year. A dropout layer with
a 0.1 dropout rate is added between the input layer and the first hidden layer.

Table 2. Wavelength spacing of the input spectra.

Band Spectral range (µm) Spectral points (µm)

WCO2 1.5990–1.6151 λ1 = 1.5990, λi+1 = λi + 10−4(6.10− 3.60λi), i = 1–524
SCO2 2.0478–2.0779 λ1 = 2.0478, λi+1 = λi + 10−4(7.58− 3.48λi), i = 1–754

spheric radiative processes. Thus, SZA is pre-converted to
its cosine form for model input. The relative azimuth angle
is a comprehensive angle that jointly combines the solar az-
imuth angle and the satellite azimuth angle. It is important
to emphasize that the satellite zenith angle is not used in this
study. Our current research is based on the nadir mode of the
OCO-2 satellite observation. In the nadir observing mode,
the satellite zenith angle is assumed to be nearly perpendicu-
lar to the Earth’s surface, theoretically approaching 0°.

2.2.3 Other parameters

In addition to the primary inputs, two other parameters play
critical roles in the MLP-XCO2 model: the surface pressure
and the corresponding year (2016, 2017, etc.). In traditional
retrieval algorithms based on iterative optimization, accurate
surface pressure and a reliable prior CO2 profile are crucial.
The importance of this has been highlighted by the averaging
kernel utilized in the OCO-2 retrieval algorithm (Nguyen et
al., 2014), which indicates a higher sensitivity near the sur-
face compared to the stratosphere. To prevent the retrieval of
unrealistic CO2 profiles, the prior covariance matrix imposes
significantly stricter constraints in the stratosphere than in the
troposphere (O’Dell et al., 2012). In cases where the prior
CO2 profile is inadequate, it can lead to poor results, with
minimal or even opposite updates in the stratospheric CO2

profile during the inversion process (Iwasaki et al., 2019).
Additionally, in order to achieve the best agreement between
observed and estimated spectra, the retrieval process may
inaccurately estimate tropospheric CO2 profiles. To tackle
these challenges, our investigation suggests that incorporat-
ing additional information such as the year can offer valu-
able context for XCO2 retrieval. This conservative approach
provides a simple means to enhance prior CO2 information
without directly specifying XCO2 prior values.

3 Satellite-product-data-based machine learning model

We first developed the MLP-XCO2 model using the OCO-2
v10r product dataset. The primary goal was to optimize the
hyperparameters of the MLP-XCO2 network. On one hand,
we aimed to confirm whether the “slow bias” shown in Ba-
cour et al. (2023) is a universal issue across machine learning
models with similar architecture. On the other hand, by fixing
the hyperparameters of the MLP-XCO2 network structure,
we sought to develop a comparable model using simulated
data. In theory, MLP models using identical hyperparame-
ters should possess the same fitting and generalization abil-
ities. By first presenting results from a model trained solely
on satellite product data, we can demonstrate the limitations
of these satellite-data-based models. This then motivates the
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Figure 3. Visualization of the OCO-2 satellite data quality across
interpolated wavelength grid indices. The map illustrates the bad-
sample list extracted from OCO-2 Level 1B files for all test cases.
On the horizontal axis, sample numbers range from 0 to 194 150,
while the vertical axis represents various wavelength grid indices
ranging from 0 to 1280. Red coloration indicates problematic data
pixels.

development of new machine learning strategies to overcome
these limitations, as discussed in later sections.

Following the target areas and data screening methods dis-
cussed previously, observational data and lists of bad pixels
were obtained from the OCO-2 v10r L1B database. Addi-
tionally, retrieved surface pressure and XCO2 data were ob-
tained from the L2 std database. Specifically, we obtained
data from March, June, September, and December spanning
the years 2016 to 2020. This time frame was chosen to pro-
vide a comprehensive training and testing set for our analy-
sis. In total, the dataset encompassed 194 150 samples col-
lected over this 5-year period. The year-wise distribution of
the samples is as follows: 38 626 samples from 2016, 39 850
from 2017, 35 945 from 2018, 36 452 from 2019, and 43 277
from 2020.

After completing the data collection, we proceeded to con-
struct the MLP-XCO2 model. To balance model complexity
and performance, the MLP-XCO2 architecture (Fig. 2) com-
prises five hidden layers, with 1000, 500, 300, 100, and 20
nodes, respectively. All hidden layers also use Rectified Lin-
ear Unit (ReLU) activation functions. The output layer con-
tains a single node to predict XCO2 values, with a linear ac-
tivation function. Upon developing the MLP-XCO2 model
architecture as described in this section, we independently
trained two versions of the MLP-XCO2 model, each based on
the aforementioned model structure but with different train-
ing and testing datasets.

3.1 Historical data training

The first MLP-XCO2 model based on OCO-2 product data
was trained using historical XCO2 data collected from 2016
to 2018. The test set for this model comprised product data
from the years 2019 and 2020. This setup allowed us to as-
sess the model’s predictive performance using a straightfor-
ward historical data approach.

3.2 Skipped-year training

The second version of the model was trained using data from
the years 2016, 2018, and 2020. The test set for this MLP-
XCO2 model included the skipped years 2017 and 2019. This
unique approach enabled a clearer and more direct compari-
son of the potential limitations of relying solely on historical
data for future predictions.

Figure 4 presents the results for the two trained MLP-
XCO2 models on their respective 10 % out-of-sample testing
datasets. Panel (a) illustrates the predictions of the histori-
cal data training model from the 2016–2018 data, and panel
(b) shows similar predictions for the skipped-year training
model. Both models achieve high accuracy on these test-
ing datasets, with a root mean square error (RMSE) close to
1 ppm and an R-squared score (R2) larger than 0.9. These
results demonstrate the robust interpolation capabilities of
both models within their respective training periods, indicat-
ing their effectiveness in handling known observed scenarios.

Figure 5 evaluates the generalization capabilities of each
MLP-XCO2 model on testing sets comprising years not in-
cluded in their respective training datasets. These test sets
represent periods outside the range of years used for train-
ing. Here, we observed a noticeable positive bias solely in
the predictions from the historical data training model. In
contrast, the skipped-year training model did not exhibit this
bias. Performance remains highly accurate for these out-of-
range points, further validating the model’s robustness for
XCO2 prediction within skipped years.

Globally, the average XCO2 in the atmosphere shows a
stable annual increase, with an observed rise of approxi-
mately 2–3 ppmyr−1. However, despite the inclusion of the
corresponding year in the input layer as a high-correlation
parameter, there remains a limitation in capturing the po-
tential rising trend of the atmospheric CO2. This highlights
the limitations of models trained solely on historical satellite
data, motivating the development of new techniques to incor-
porate external information about temporal CO2 dynamics.

4 Simulation-data-based machine learning model

In the previous section, the MLP-XCO2 model showed ex-
cellent interpolation within the training data range but ex-
hibited bias when predicting outside this period. To elimi-
nate this bias, we propose using an accurate forward model
to simulate representative training data that cover future at-
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Figure 4. Comparison of 10 % out-of-sample XCO2 testing cases predicted by the MLP-XCO2 model versus results retrieved by the OCO-2
v10r product. Panel (a) is the historical data training model, while panel (b) is the skipped-year training model. The solid red lines in the
figure correspond to perfect agreement, and shaded areas around the solid red lines represent ±1 % of XCO2 deviations.

mospheric conditions. If we can pre-generate atmospheric
profiles that capture possible future states, and simulate the
corresponding spectral radiance using an accurate forward
model, the MLP-XCO2 model can pre-learn future satellite
observations. This could prevent incremental annual bias and
enable accurate XCO2 prediction. The effectiveness of this
approach depends on the forward model accuracy and rep-
resentativeness of the simulated atmospheres (Zhao et al.,
2022).

It is therefore critical to select an appropriate radiative-
transfer forward model with proven reliability in simulating
spectral radiance under varying atmospheric conditions. The
model must precisely capture the relationship between trace
gas concentrations, meteorological states, and the resulting
spectral signatures. With accurate simulations, the machine
learning model can generalize robustly to future atmospheric
scenarios. The representative training data should span the
expected range of atmospheric variability in XCO2 and inter-
fering species like water vapor. A broad sampling of the state
space is key for the model to learn a robust mapping to XCO2
across multiple atmospheric regimes. The following sections
describe our approach for accurate spectral radiative-transfer
simulations and possible (realistic) atmospheric profile gen-
eration.

4.1 Forward model

In this study, we developed a forward radiative-transfer cal-
culation model using the ReFRACtor (Reusable Framework
for Retrieval of Atmospheric Composition) software (Mc-
Duffie et al., 2020). ReFRACtor is an extensible framework
for multi-instrument atmospheric radiative transfer and re-
trieval, originally derived from the operational OCO-2 re-
trieval program. Although ReFRACtor contains both radia-
tive transfer and retrieval capabilities, we only used the
radiative-transfer component. Specifically, we configured

ReFRACtor to simulate top-of-atmosphere radiance spectra
that would be observed by OCO-2. These simulated observa-
tions were then used to generate a large training dataset for
our machine learning model, MLP-XCO2.

The OCO-2 satellite primarily observes the radiative spec-
tra in the shortwave infrared (SWIR) band. Over the range
of SWIR, the impact of thermal emission can be ignored
when simulating the spectra (Crisp et al., 2021). To simulate
OCO-2’s observed spectra in the WCO2 band around 1.6 µm
and the SCO2 band around 2.06 µm, the ReFRACtor model
numerically solves Eq. (1) of the radiative-transfer equation
(RTE; Modest and Mazumder, 2021):

µ
dI (τ,µ,φ)

dτ
=−I (τ,µ,φ)+ J (τ,µ,φ), (1)

where Iη is the observed spectra, µ is the cosine of the ob-
servation zenith angle (e.g., µ= cosθ ), τ is the vertical op-
tical depth that can be column-integrated from the molecular
absorption coefficients and optical path, φ is the azimuthal
angle relative to the observation point for the satellite and
the sun, and J represents the scattering components and in-
homogeneous source term describing both single-scattering
and multiple-scattering contributions. The term J in RTE can
be expressed as Eq. (2):

J (τ,µ,φ)

=
ω

4π

1∫
−1

2π∫
0

P(τ,µ,φ;µ′,φ′)I (τ,µ′,φ′)dµ′dφ′

+
ω

4π
P (τ,µ,φ;µ′,φ′)I0 exp(−τ/µ0) , (2)

where ω is the single-scattering albedo, P is the scattering-
phase function, µ′ and φ′ are the cosine and azimuth angle of
the incident direction angle in each direction,µ0 is the cosine
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Figure 5. Comparison of XCO2 results predicted by the MLP-XCO2 model versus results retrieved by the OCO-2 v10r product on test sets
consisting of years not included in the training periods. Panels (a-1) and (a-2) are the historical data training model using the 2019 and 2020
test sets, respectively. Panels (b-1) and (b-2) are the skipped-year training model using the 2017 and 2019 test sets, respectively. The solid
red lines in the figure correspond to perfect agreement, and shaded areas around the solid red lines represent ±1 % of XCO2 deviations.

of the solar zenith, and I0 is the solar intensity at the top of
the atmosphere.

The ReFRACtor model uses a hybrid model to solve RTE.
Specifically, the radiative-transfer software Linearized Dis-
crete Ordinate Radiative Transfer (LIDORT; Spurr, 2008)
is applied for the scalar and Jacobian computation. Concur-
rently, a two-order scattering model (Natraj and Spurr, 2007)
is utilized for the additional radiance correction. Within this
framework, the ReFRACtor model comprehensively consid-
ers five types of scatter particles for each sounding: two types
of clouds, two types of tropospheric aerosols, and one type of
stratospheric aerosol. The single-scattering optical properties
for each cloud and aerosol particle, including cross-section,
single-scattering albedo, and scattering-phase matrix, have
been pre-computed and tabulated for the forward calcula-
tions. Furthermore, the model determines surface reflectance
as a quadratic spectral albedo for each band, which is de-
rived from the bidirectional reflectance distribution function
(BRDF).

An essential step in developing the forward calculation
model is referencing the pre-computed lookup table of H2O

and CO2 to obtain the required spectral absorption coeffi-
cients. In this study, the ABSCO v5.1 database (absorption
coefficient table; Payne et al., 2020) was applied for this pur-
pose. Additionally, we identified and corrected an overesti-
mation of the solar continuum in ReFRACtor compared to
the OCO-2 Level 2 algorithm (Crisp et al., 2021). Without
this correction, there would have been an approximately 3 %
overestimation in the 1.6 µm band and 6.5 % in the 2.06 µm
band. By reducing the solar continuum, our forward model
aligned better with the OCO-2 spectral measurements. These
configurations of the absorption coefficients and solar con-
tinuum were essential to accurately simulate OCO-2 spectra
for generating training data across a variety of observation
conditions.

To assess the performance of the forward model, we se-
lected four distinct global locations in the year 2017. The
goal was to replicate the OCO-2-observed spectra for both
the WCO2 1.6 µm absorption band and the SCO2 2.06 µm ab-
sorption band at the four locations. By accessing the OCO-
2 L2 std database, we acquired atmospheric conditions and
pertinent geographical data (including spectral albedo, sur-
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Figure 6. Comparisons of the OCO-2 observed spectra with the simulated ones from the modified ReFRACtor forward calculation model in
the WCO2 band. The lower subpanel shows the relative error between the spectrum observed by the OCO-2 satellite and that simulated by
the forward calculation model. Panels (a)–(d) correspond to test samples from four different regions. The input vectors for the ReFRACtor
model were derived from OCO-2 L2std retrieved results.

face pressure, and observation angles) specific to these cho-
sen locations. The outcomes of our simulations for these four
locations are visually depicted in Figs. 6 and 7, respectively,
for the two bands, with accompanying residual plots dis-
played in the lower subpanels. It is worth noting that the sim-
ulated results exhibit a high level of agreement with the ob-
served OCO-2 spectra; the relative error remains under 1 %,
underlining the robustness of the established forward model.
The remarkable agreement between the observed and simu-
lated spectra indicates the excellent performance of the for-
ward radiative-transfer model. This performance is particu-
larly evident in accurately replicating the satellite observa-
tions from OCO-2. As a result, this forward model serves as
a reliable tool for the development of machine learning mod-
els trained using simulated spectral data.

4.2 Training data generation

To optimize the training of the MLP-XCO2 model, it is es-
sential that the input training vectors cover a wide range of
realistic variations. Although the idea of randomizing all in-

put parameters to enhance diversity might appear attractive,
simulating satellite spectra involves managing a multitude
of interdependent variables. In addition to the CO2 vertical
profile, factors such as surface pressure, temperature profile,
water vapor, aerosols, and observation geometry must be ac-
curately represented. Randomizing all of these parameters
would require an impractical amount of data and could re-
sult in combinations that have no real-world relevance. For
example, the four viewing angles determined by the Sun, ob-
servation point, and the OCO-2 satellite have fixed combina-
tions during the satellite’s regular operation. Therefore, ran-
domly selecting angle combinations lacks practical signifi-
cance. To ensure that the training data cover valid variations,
we conducted an analysis of historical OCO-2 retrievals. This
analysis revealed consistent seasonal patterns and year-to-
year trends in most parameters. This supports the idea of se-
lecting representative samples from statistical distributions
rather than relying on complete randomization. By carefully
considering the relationships between parameters and the re-
alities of satellite observations, we can create a reasonably
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Figure 7. Comparisons of the OCO-2 observed spectra with the simulated ones from the corrected ReFRACtor forward calculation model
in the SCO2 band. The lower subpanel shows the relative error between the spectrum observed by the OCO-2 satellite and that simulated by
the forward calculation model. Panels (a)–(d) correspond to test samples from four different regions. The input vectors for the ReFRACtor
model were derived from OCO-2 L2std retrieved results.

sized training dataset that effectively captures the range of
expected predictions.

Generation of the vertical CO2 profile is especially critical
among all input parameters. This dataset theoretically deter-
mines the generalization domain of the MLP-XCO2 model.
In the forward model based on the ReFRACtor model, the
atmospheric CO2 profile is segmented into 20 sub-layers by
pressure. By statistically analyzing the OCO-2-retrieved CO2
profiles in the target east Asia area in 2016–2018, the box-
plots for atmospheric CO2 concentration in each sub-layer
are shown in Fig. 8a, and the historic XCO2 results from
the OCO-2 product data are shown in Fig. 8b. From the up-
per atmosphere down to the ground surface, the variability
in CO2 concentrations gradually increases. This challenges
the model’s ability to standardize the atmospheric CO2 pro-
files, particularly closer to the Earth’s surface. Fortunately,
a consistent year-on-year rise in CO2 concentrations in each
sub-layer has been observed over time. Consequently, in our

research, we have proposed a method for generating subse-
quent CO2 atmospheric profiles. We incrementally increase
the CO2 concentration by 2.5 ppm annually, starting from the
2016 OCO-2 retrieved CO2 vertical profile. This approach
ensures that we encompass a range of plausible atmospheric
CO2 distributions with realistic shapes, enabling the genera-
tion of simulated spectra for the designated training years.

In addition to the CO2 profile, Fig. 9 illustrates the year-to-
year trends of various observed parameters essential for the
forward calculation model in the east Asian region. Although
they display seasonal variations, these parameters consis-
tently exhibit annually cyclic patterns. Given that the OCO-2
satellite conducts global observations in cycles of approxi-
mately half a month (15–16 d), this study employed obser-
vation parameters and a priori data for atmospheric profiles,
except for CO2, from the year 2016 as a reference. These ref-
erence data were repetitively utilized to generate simulations
in subsequent years. Regarding the quadratic spectral albedo,
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Figure 8. Panel (a) is the boxplot of the vertical distribution of CO2 profiles (from OCO-2 L2std files) retrieved by the OCO-2 satellite over
east Asia in nadir mode from 2016 to 2018. The horizontal axis represents the atmospheric layers from layer 1 (top of the atmosphere) to
layer 20 (near surface). The upper and lower bounds of each whisker show the maximum and minimum CO2 concentrations recorded within
that layer for each year. Panel (b) is the scatter plot of historic XCO2 results retrieved by the OCO-2 inversion program (from L2std files).

the constant term in the training data samples is uniformly set
to 1 (to be normalized before being processed by the neural
network). The slope and the quadratic coefficient are stochas-
tically sampled within the range of values corresponding to
the retrieval results based on the OCO-2 L2 products.

Based on 60 000 uniformly sampled observation data
points exclusively from the OCO-2 satellite throughout 2016,
we randomly separated the dataset into six sets of 10 000 data
points each. Each set represents CO2 profiles from 2016 to
the end of 2021, with the yearly increase of 2.5 ppm added
to the original data reflecting projected future profiles. The
forward model was used to generate the corresponding sim-
ulated spectra for each set. These simulated samples served
as the foundational dataset for training the new MLP-XCO2
machine learning model. It is important to note that this
new model relies solely on the data recorded by the OCO-
2 satellite in 2016 as its reference. However, it is essential
to acknowledge that real-world observations by the OCO-
2 satellite involve parameters that are not predetermined in
future simulations, such as the empirical orthogonal func-
tion (EOF) parameters, the signal-to-noise ratio (SNR), bad-
sample lists, and the degradation of grating pixels. Therefore,
our new model is trained not only on the 60 000 simulated
data points but also on the 2016 historical data. According
to the data selection criteria outlined in Sect. 2.1, we identi-
fied a total of 38 626 sets of historical data in 2016, compris-
ing spectral measurements from OCO-2 and the correspond-
ing XCO2 products. These historical experimental datasets
are integrated with the simulated data, enriching the train-
ing datasets. These dual combination and data augmentation
techniques ensure that the model is well-equipped to handle
both potential future atmospheric conditions and the current
realities of instrument and spectral measurement capabilities.
By doing so, we provide a more comprehensive training strat-
egy that captures both anticipated future scenarios to accu-

rately and efficiently perform XCO2 retrieval for the “future”
years from 2017 to the end of 2020.

5 Results and discussions

5.1 Comparison with the OCO-2 satellite product data

To evaluate the retrieval capability of the MLP-XCO2 model
trained on a combined dataset of simulated data and histor-
ical 2016 OCO-2 satellite data, the neural network architec-
ture and hyperparameters were intentionally kept identical
to the previous model trained solely on actual OCO-2 satel-
lite product data. Keeping these factors constant isolates the
training data source as the only major difference between the
models. This enables a direct, apples-to-apples comparison
of how the training data affect model performance.

Figure 10a shows the retrieval results on the 10 % out-of-
sample testing data that was excluded from model training.
Setting aside this test subset is a standard technique for eval-
uating model performance on new examples. The accurate
predictions of the MLP-XCO2 model for the test data sug-
gest that the model has learned generalizable patterns not
overfit to the training data. Figure 10b shows the compari-
son of the retrieval results of the MLP-XCO2 model to real
OCO-2 satellite spectral observations in 2016. Figure 11 dis-
plays XCO2 predictions from 2017 to 2020 using test data
consistent with Figs. 4 and 5. As the simulated training data
were generated based on 2016 OCO-2 measurements, test-
ing on 2017–2020 data evaluates the model’s ability to make
predictions beyond the time frame of the training data. The
scatter plots demonstrate that the MLP-XCO2 model trained
on simulated data can accurately and stably predict the an-
nual XCO2 growth trend, maintaining an RMSE less than
1.8 ppm (0.45 %). Compared to models trained relying solely
on historical satellite product data, the key advantage is the
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Figure 9. Scatter plots of atmospheric parameters required for forward calculation models (excluding CO2 profiles) from 2016 to 2020,
sourced from the OCO-2 L2 product. Panel (a) is the surface pressure, (b) is the surface temperature, (c) is the near-surface water vapor
concentration, (d) is the solar zenith, (e) is the Sun–Earth distance, and (f) is the Earth–satellite relative velocity.

ability to make reasonable forecasts of future atmospheric
XCO2 levels.

Table 3 offers a detailed spatiotemporal comparison of the
results presented in Fig. 11, enhancing our understanding of
the MLP-XCO2 model’s performance across distinct subre-
gions within east Asia. This table specifically focuses on a
finer spatial segmentation within the broad east Asian lon-
gitude and latitude range, dividing it into four subregions.
These are defined based on the geographical demarcation of
35° N and 130° E, categorized as the northeast (NE), north-

west (NW), southeast (SE), and southwest (SW) regions. The
results demonstrate that regardless of the distribution of sam-
ple sizes across these subregions and their varied topograph-
ical characteristics (land or ocean), the model maintains a
consistent and stable performance in each subregion. Fur-
thermore, the error metrics for these individual subregions
align closely with the overall regional errors, indicating a
uniformity in the model’s predictive accuracy and reliability
across different spatial scales within east Asia.
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Figure 10. Comparison of XCO2 results predicted by the MLP-XCO2 model from the 10 % of test data not involved in training. Panel (a)
shows the predicted XCO2 values for the test data that are derived from the simulated dataset, and panel (b) shows the test data that are
derived from OCO-2 2016 L2 XCO2 data.

Figure 11. Comparison of XCO2 results predicted by the MLP-XCO2 model versus results retrieved by the OCO-2 v10r product in 2017–
2020. Panels (a)–(d) display the predictions of the MLP-XCO2 model from 2017 to 2020, respectively.

Considering these results, by generating possible realistic
future prior information for the atmospheric conditions and
using an accurate forward model to simulate the correspond-
ing spectra, the approach avoids inherent biases when extrap-
olating beyond the distribution of the training data. Rather

than simply extending trends, the model is constrained by
fundamental physical relationships to interpolate within real-
istic bounds. This transforms the prediction task into a well-
posed interpolation problem instead of an unconstrained ex-
trapolation. The simulated data provide a physical regulariza-
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Table 3. Spatiotemporal comparison of XCO2 predicted by MLP-XCO2 model results versus results retrieved by OCO-2 across four subre-
gions. These subregions are delineated based on the geographical demarcation of 35° N and 130° E as the northeast (NE), northwest (NW),
southeast (SE), and southwest (SW) regions.

Year Full (number / ME / RMSE) NE NW SE SW

2016 38 626 / 0.043 / 0.656 2714 /−0.037 / 0.600 26 111 / 0.053 / 0.664 451 / 0.010 / 0.583 9350 / 0.041 / 0.651
2017 39 850 / 0.358 / 1.563 1235 / 0.752 / 1.494 30 774 / 0.392 / 1.594 244 / 0.701 / 1.537 7597 / 0.147 / 1.443
2018 35 945 / 0.114 / 1.497 1854 /−0.073 / 1.356 27 288 / 0.145 / 1.483 745 / 0.525 / 1.398 6058 /−0.015 / 1.609
2019 36 452 /−0.242 / 1.732 1777 /−0.642 / 1.552 26 082 /−0.427 / 1.863 304 / 0.345 / 1.432 8289 / 0.405 / 1.296
2020 43 277 /−0.268 / 1.679 1841 / 0.111 / 1.586 34 971 /−0.461 / 1.696 270 /−0.413 / 1.917 6195 / 0.712 / 1.595

Figure 12. Geographical map of XCO2 predictions by the MLP-XCO2 model compared to the OCO-2 v10r product results. The potential
plume enhancements and the large power plants (marked by red triangles) were screened in nadir mode OCO-2 observations as reported in
the work of Li et al. (2023).

tion that makes the model’s outputs scientifically sound. By
training on synthetic data spanning potential future scenar-
ios, the model learns robust representations not tightly cou-
pled to specifics of the training data time period. This enables
high-fidelity inversion and prediction of XCO2 even for fu-
ture time periods beyond available measurements.

5.2 Detecting plume features from the OCO-2
observations

In a further effort to deeply analyze the ability of our MLP-
XCO2 model to capture key XCO2 information from spectral
data, we focused on plume detection at sites of potentially
high emissions, such as thermal power plants, in our target
regions from 2017 to 2020. Utilizing the data in the work
of Li et al. (2023), we sourced test samples from multiple in-
stances of XCO2 enhancements detected by the OCO-2 satel-
lite in nadir mode observations. These samples were located
in close proximity to known large power plants, providing

an ideal scenario for assessing retrieval accuracy in detecting
localized emission sources.

Figure 12 presents a geographical map that highlights
XCO2 predictions in the test samples from the MLP-XCO2
model and compares them with results retrieved by the OCO-
2 v10r product. This map clearly marks power plants with
red triangles, establishing a visual link between industrial
emission sources and observed points where elevated XCO2
levels are detected. Figure 13 further explores this relation-
ship by presenting a longitude-based comparison of XCO2
results. This figure plots the same data points from Fig. 12
against their corresponding longitude coordinates. This ar-
rangement facilitates a direct and intuitive comparison of the
trends in XCO2 enhancements captured by our model and
reported by the OCO-2 product.

In both figures, it is visually evident that observation
points near power plants show sudden increases in XCO2
values aligning with the trend from the OCO-2 v10r prod-
uct. This trend is particularly pronounced when compared to
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Figure 13. Longitude-based scatter comparison of XCO2 predicted by the MLP-XCO2 model versus results retrieved by the OCO-2 v10r
product. The potential plume enhancements were screened in nadir mode OCO-2 observations as reported in the work of Li et al. (2023).
ME represents the mean value of XCO2 within the longitude range shown in the figure.

Table 4. Spatiotemporal screening conditions for TCCON sites and OCO-2 satellite nadir mode observations.

TCCON site Local time Observed location Sample number Reference

Tsukuba 12:48–12:58 36.05° N± 0.5°, 140.12° E± 0.5° 2078 Morino et al. (2022b)
Saga 13:30–13:40 33.24° N± 0.5°, 130.29° E± 0.5° 87 Shiomi et al. (2022)
Hefei 13:20–13:30 31.90° N± 0.5°, 117.17° E± 0.5° 984 Liu et al. (2022)
Xianghe 13:15–13:25 39.80° N± 0.2°, 116.96° E± 0.2° 2770 Zhou et al. (2022)
Rikubetsu 13:20–13:30 43.46° N± 0.2°, 143.77° E± 0.2° 723 Morino et al. (2022a)

points farther away from these emission sources. Consider-
ing that these samples are nearly identical in terms of ob-
servation angles and times, such consistency is a powerful
confirmation of our model’s ability to retrieve genuine atmo-
spheric XCO2 from OCO-2 spectral data.

5.3 Comparison with the TCCON data

A comparison of the retrieved results from the OCO-2 satel-
lite showed that the RMSE of our developed MLP-XCO2
model was around 2 ppm. In other words, our results could
be worse than or better than the OCO-2 satellite, requir-
ing further comparison with ground-based measurements. To
further validate the accuracy of the MLP-XCO2 model, we
compared the XCO2 retrievals from the OCO-2 v10r nadir
mode products, the MLP-XCO2 model outputs, and ground-
based measurements from five TCCON sites within the study
region (Fig. 1). As summarized in Table 4, spatiotemporal
screening was applied to the TCCON and OCO-2 data to
obtain comparable observations. The five TCCON sites in-
cluded were Tsukuba (Morino et al., 2022b), Saga (Shiomi
et al., 2022), Hefei (Liu et al., 2022), Xianghe (Zhou et
al., 2022), and Rikubetsu (Morino et al., 2022a). The An-
myeondo site was excluded from this analysis as the XCO2
data were not updated in the TCCON GGG2020 database
and were only available until early 2018 in the GGG2014
database.

Figure 14a-1–e-1 presents time series comparisons of
XCO2 retrievals from the different TCCON sites, the MLP-
XCO2 model, and OCO-2 nadir observations. Figure 14a-

2–e-2 displays the boxplots of the differences between the
MLP-XCO2 model results, OCO-2 products, and TCCON
site data. The plots at each of the five TCCON sites demon-
strate that the simulated data-trained MLP-XCO2 model ac-
curately predicts XCO2 from the OCO-2 spectra. The model
successfully captures seasonal variations and the long-term
XCO2 growth trend over the 4-year study period. The reliable
performance over time and across multiple TCCON sites fur-
ther validates the conclusion that the model has learned gen-
eralizable representations of carbon cycle processes rather
than overfitting to specifics of the simulated training data.
Using realistic future simulations for training, the model pro-
vides robust and unbiased XCO2 retrievals across a range of
atmospheric conditions.

5.4 Retrieval efficiency

In this study, the ReFRACtor forward model required 12.16 s
per simulation case (two absorption bands) using an AMD
Ryzen-7 5800X computer. The OCO-2 retrieval based on
Bayesian optimization typically needs over three iterations
to converge, requiring at least 36.48 s per retrieval. In con-
trast, the MLP-XCO2 model demonstrated remarkable ef-
ficiency on the same hardware. It required just 1.14 s to-
tal to retrieve XCO2 from 6642 OCO-2 test spectra across
all five TCCON sites, averaging 0.17 ms per sample with
an RTX 3080Ti GPU. This rapid inversion drastically re-
duces processing times compared to traditional methods.
While machine learning models need significant upfront time
for training data generation and hyperparameter tuning, the
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Figure 14. Comparisons of XCO2 results from 2017 to 2020 across five TCCON sites. Panels (a-1)–(e-1) show the time series comparisons
of XCO2 retrievals from the different TCCON sites, the MLP-XCO2 model, and OCO-2 L2Lite nadir observations for the Tsukuba, Saga,
Hefei, Xianghe, and Rikubetsu sites, with data screening conditions as defined in Table 4. Panels (a-2)–(e-2) present the boxplots depicting
the differences (1XCO2) between the MLP-XCO2 model and OCO-2 products in comparison to the TCCON results for each year. The
boxes show the middle half of the data, from the 25th to 75th percentiles. The median (50 %) is represented by the line within each box. The
whiskers encompass the central 90 % of the data, extending from the 5th to 95th percentiles.

prediction is extremely fast once deployed. This enables
near-real-time processing ideal for operational satellite data
streams. Furthermore, the precision and efficiency of neural
networks make them well-suited to meet future demands of
high-resolution global greenhouse gas monitoring, enabling
millisecond-scale XCO2 retrievals suitable for large-scale
satellite analysis.

6 Conclusions

This proof-of-concept study aims to use the efficient regres-
sion inversion capability of the machine learning method to
develop machine learning models based on simulated atmo-
spheric radiative-transfer data for efficient inversion of satel-
lite observed spectra to retrieve XCO2. This helps overcome
the low efficiency in traditional optimization-based iterative
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algorithms for XCO2 retrievals. In the present study, XCO2
inversion models using both satellite-product-based data and
simulation-based data were developed, trained, and tested.
Long time series inversion and prediction of OCO-2 obser-
vations over east Asia were also performed using the devel-
oped models. The results were compared with OCO-2 and
TCCON retrievals, showing that the simulation-data-based
machine learning models can effectively eliminate lagging
biases while achieving millisecond-level (< 1 ms) inversion
efficiency, good accuracy (less than 1.8 ppm), local emission
source capture, and long-term prediction stability. It should
be noted that our current MLP-XCO2 model does not pro-
vide direct uncertainty estimates; estimating prediction inter-
vals is an important next step for future improvements. Addi-
tionally, to provide good prior information while preventing
the model from potentially focusing solely on interpolation
rather than learning about actual CO2 increases within spec-
tra, the results of our investigation suggest that integrating
additional contextual information, such as the year, can offer
valuable context for XCO2 retrieval. However, the underly-
ing mechanisms behind this improvement may require fur-
ther investigation.

Code availability. The ReFRACtor model and its OCO retrieval
implementation can be accessed from the GitHub ReFRACtor
repository (https://doi.org/10.5281/zenodo.4019567, McDuffie et
al., 2020). The code and models used in this study have been
uploaded to GitHub and can be accessed at https://github.com/
TaoRen-Rad/XCO2_retrieval (Xie and Ren, 2024).

Data availability. The OCO-2 products (including OCO-2 L1B,
Met, L2 std, and L2Lite files) are available from the Goddard Earth
Sciences Data and Information Services Center (https://disc.gsfc.
nasa.gov/datasets/, EarthData, 2023). The TCCON site products are
available from TCCON DATA ACHIEVE (https://tccondata.org/,
TCCON DATA ACHIEVE, 2023). For access to the dataset, please
send requests to Tao Ren (tao.ren@sjtu.edu.cn).

Author contributions. FX and TR designed the study. FX made up-
dates and modifications to the ReFRACtor forward model, devel-
oped the machine learning code, and carried out the tests and analy-
sis of the results under the supervision of TR. FX and TR prepared
the manuscript. All authors reviewed the final paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-

ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We gratefully acknowledge the TCCON Data
Archive hosted by CaltechDATA at https://tccondata.org (last ac-
cess: 25 October 2023), as they provided the TCCON data for our
study. Our thanks also go to the OCO-2 Science Team for the OCO-
2 project. We appreciate our colleagues for their feedback and our
affiliated institutions for their unwavering support.

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China (grant nos. 52276077
and 52120105009).

Review statement. This paper was edited by Abhishek Chatterjee
and reviewed by Steffen Mauceri and one anonymous referee.

References

Bacour, C., Bréon, F.-M., and Chevallier, F.: On the challenge
posed by the estimation of XCO2 from OCO-2 observations in
near-real time based on artificial neural network, IWGGMS-19,
Paris, France, 4–6 July 2023, https://iwggms19.com/wp-content/
uploads/2023/05/ID_097_cedric_bacour.pdf (last access: 25 Oc-
tober 2023), 2023.

Bréon, F.-M., David, L., Chatelanaz, P., and Chevallier, F.: On
the potential of a neural-network-based approach for estimat-
ing XCO2 from OCO-2 measurements, Atmos. Meas. Tech., 15,
5219–5234, https://doi.org/10.5194/amt-15-5219-2022, 2022.

Cansot, E., Pistre, L., Castelnau, M., Landiech, P., Georges,
L., Gaeremynck, Y., and Bernard, P.: MicroCarb instrument,
overview and first results, in: International Conference on Space
Optics – ICSO 2022, edited by: Minoglou, K., Karafolas, N.,
and Cugny, B., International Society for Optics and Photonics,
Dubrovnik, Croatia, 3–7 October 2022, SPIE, 12777, 1277734,
https://doi.org/10.1117/12.2690330, 2023.

Carvalho, A. R., Ramos, F. M., and Carvalho, J. C.: Retrieval of
carbon dioxide vertical concentration profiles from satellite data
using artificial neural networks, Trends in Computational and
Applied Mathematics, 11, 205–216, https://tcam.sbmac.org.br/
tema/article/view/90 (last access: 25 October 2023), 2010.

Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting
system, in: Proceedings of the 22nd ACM Sigkdd Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 785–794, San Francisco, CA, USA, 13–17 August 2016,
https://doi.org/10.1145/2939672.2939785, 2016.

Cogan, A., Boesch, H., Parker, R., Feng, L., Palmer, P., Blavier,
J.-F., Deutscher, N. M., Macatangay, R., Notholt, J., Roehl,
C., Warneke, T., and Wunch, D.: Atmospheric carbon diox-
ide retrieved from the Greenhouse gases Observing SATellite
(GOSAT): comparison with ground-based TCCON observations
and GEOS-Chem model calculations, J. Geophys. Res.-Atmos.,
117, D21301, https://doi.org/10.1029/2012JD018087, 2012.

Crisp, D., Fisher, B. M., O’Dell, C., Frankenberg, C., Basilio, R.,
Bösch, H., Brown, L. R., Castano, R., Connor, B., Deutscher,

https://doi.org/10.5194/amt-17-3949-2024 Atmos. Meas. Tech., 17, 3949–3967, 2024

https://doi.org/10.5281/zenodo.4019567
https://github.com/TaoRen-Rad/XCO2_retrieval
https://github.com/TaoRen-Rad/XCO2_retrieval
https://disc.gsfc.nasa.gov/datasets/
https://disc.gsfc.nasa.gov/datasets/
https://tccondata.org/
https://tccondata.org
https://iwggms19.com/wp-content/uploads/2023/05/ID_097_cedric_bacour.pdf
https://iwggms19.com/wp-content/uploads/2023/05/ID_097_cedric_bacour.pdf
https://doi.org/10.5194/amt-15-5219-2022
https://doi.org/10.1117/12.2690330
https://tcam.sbmac.org.br/tema/article/view/90
https://tcam.sbmac.org.br/tema/article/view/90
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1029/2012JD018087


3966 F. Xie et al.: Fast retrieval of XCO2 over east Asia based on OCO-2 spectral measurements

N. M., Eldering, A., Griffith, D., Gunson, M., Kuze, A., Man-
drake, L., McDuffie, J., Messerschmidt, J., Miller, C. E., Morino,
I., Natraj, V., Notholt, J., O’Brien, D. M., Oyafuso, F., Polonsky,
I., Robinson, J., Salawitch, R., Sherlock, V., Smyth, M., Suto,
H., Taylor, T. E., Thompson, D. R., Wennberg, P. O., Wunch, D.,
and Yung, Y. L.: The ACOS CO2 retrieval algorithm – Part II:
Global XCO2 data characterization, Atmos. Meas. Tech., 5, 687–
707, https://doi.org/10.5194/amt-5-687-2012, 2012.

Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A.
M., Oyafuso, F. A., Frankenberg, C., O’Dell, C. W., Bruegge, C.
J., Doran, G. B., Eldering, A., Fisher, B. M., Fu, D., Gunson, M.
R., Mandrake, L., Osterman, G. B., Schwandner, F. M., Sun, K.,
Taylor, T. E., Wennberg, P. O., and Wunch, D.: The on-orbit per-
formance of the Orbiting Carbon Observatory-2 (OCO-2) instru-
ment and its radiometrically calibrated products, Atmos. Meas.
Tech., 10, 59–81, https://doi.org/10.5194/amt-10-59-2017, 2017.

Crisp, D., O’Dell, C., Eldering, A., Fisher, B., Oyafuso, F.,
Payne, V., Drouin, B., Toon, G., Laughner, J., Somkuti, P., Mc-
Garragh, G., Merrelli, A., Nelson, R., Gunson, M., Franken-
berg, C., Osterman, G., Boesch, H., Brown, L., Castano, R.,
Christi, M., Connor, B., McDuffie, J., Miller, C., Natraj, V.,
O’Brien, D., Polonski, I., Smyth, M., Thompson, D., and
Granat, R.: Orbiting carbon observatory (OCO)-2 level 2 full
physics algorithm theoretical basis document Version 3.0 – Rev
1, https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/
OCO_L2_ATBD.pdf (last access: 25 October 2023), 2021.

David, L., Bréon, F.-M., and Chevallier, F.: XCO2 estimates from
the OCO-2 measurements using a neural network approach, At-
mos. Meas. Tech., 14, 117–132, https://doi.org/10.5194/amt-14-
117-2021, 2021.

Eldering, A., Taylor, T. E., O’Dell, C. W., and Pavlick, R.:
The OCO-3 mission: measurement objectives and expected
performance based on 1 year of simulated data, Atmos.
Meas. Tech., 12, 2341–2370, https://doi.org/10.5194/amt-12-
2341-2019, 2019.

Gribanov, K., Imasu, R., and Zakharov, V.: Neural networks for
CO2 profile retrieval from the data of GOSAT/TANSO-
FTS, Atmospheric and Oceanic Optics, 23, 42–47,
https://doi.org/10.1134/S1024856010010094, 2010.

Hamazaki, T., Kaneko, Y., Kuze, A., and Kondo, K.: Fourier
transform spectrometer for greenhouse gases observing satel-
lite (GOSAT), in: Enabling sensor and platform technolo-
gies for spaceborne remote sensing, Honolulu, Hawai’i,
United States, 8–12 November 2004, SPIE, 73–80, 5659,
https://doi.org/10.1117/12.581198, 2005.

Imasu, R., Matsunaga, T., Nakajima, M., Yoshida, Y., Shiomi,
K., Morino, I., Saitoh, N., Niwa, Y., Someya, Y., Oishi, Y.,
Hashimoto, M., Noda, H., Hikosaka, K., Uchino, O., Maksyu-
tov, S., Takagi, H., Ishida, H., Nakajima, T. Y., Nakajima, T.,
and Shi, C.:Greenhouse gases Observing SATellite 2 (GOSAT-
2): mission overview, Progress in Earth and Planetary Science,
10, 33, https://doi.org/10.1186/s40645-023-00562-2, 2023.

Iwasaki, C., Imasu, R., Bril, A., Oshchepkov, S., Yoshida, Y.,
Yokota, T., Zakharov, V., Gribanov, K., and Rokotyan, N.:
Optimization of the Photon Path Length Probability Density
Function-Simultaneous (PPDF-S) Method and Evaluation of
CO2 Retrieval Performance Under Dense Aerosol Conditions,
Sensors, 19, 1262, https://doi.org/10.3390/s19051262, 2019.

Jin, Z., Tian, X., Han, R., Fu, Y., Li, X., Mao, H., Chen,
C., and GAO, J.: Tan-Tracker global daily NEE and
ocean carbon fluxes for 2015–2019 (TT2021 dataset),
https://doi.org/10.11888/Meteoro.tpdc.271317, 2021.

Keely, W. R., Mauceri, S., Crowell, S., and O’Dell, C. W.: A nonlin-
ear data-driven approach to bias correction of XCO2 for NASA’s
OCO-2 ACOS version 10, Atmos. Meas. Tech., 16, 5725–5748,
https://doi.org/10.5194/amt-16-5725-2023, 2023.

Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and
near infrared sensor for carbon observation Fourier-transform
spectrometer on the Greenhouse Gases Observing Satellite for
greenhouse gases monitoring, Appl. Optics, 48, 6716–6733,
https://doi.org/10.1364/AO.48.006716, 2009.

Li, Y., Jiang, F., Jia, M., Feng, S., Lai, Y., Ding, J., He,
W., Wang, H., Wu, M., Wang, J., Shen, F., and Zhang,
L.: Improved estimation of CO2 emissions from thermal
power plants based on OCO-2 XCO2 retrieval using in-
line plume simulation, Sci. Total Environ., 913, 169586,
https://doi.org/10.1016/j.scitotenv.2023.169586, 2023.

Liang, A., Gong, W., Han, G., and Xiang, C.: Compar-
ison of satellite-observed XCO2 from GOSAT, OCO-2,
and ground-based TCCON, Remote Sens.-Basel, 9, 1033,
https://doi.org/10.3390/rs9101033, 2017.

Liu, C., Wang, W., Sun, Y., and Shan, C.: TCCON data from
Hefei, China, Release GGG2020R0, CaltechDATA [data set],
https://doi.org/10.14291/tccon.ggg2020.hefei01.R0, 2022.

Liu, Y., Wang, J., Yao, L., Chen, X., Cai, Z., Yang, D., Yin,
Z., Gu, S., Tian, L., Lu, N., and Lyu, D.: The TanSat mis-
sion: preliminary global observations, Sci. Bull., 63, 1200–1207,
https://doi.org/10.1016/j.scib.2018.08.004, 2018.

Marchetti, Y., Rosenberg, R., and Crisp, D.: Classification of
anomalous pixels in the focal plane arrays of Orbiting Carbon
Observatory-2 and-3 via machine learning, Remote Sens.-Basel,
11, 2901, https://doi.org/10.3390/rs11242901, 2019.

Matsunaga, T. and Tanimoto, H.: Greenhouse gas observation by
TANSO-3 onboard GOSAT-GW, in: Sensors, Systems, and Next-
Generation Satellites XXVI, SPIE, 12264, 86–90, 5–8 Septem-
ber 2022, Berlin, Germany, https://doi.org/10.1117/12.2639221,
2022.

McDuffie, J., Bowman, K., Hobbs, Jo., Natraj, V., Sarkissian, E.,
Mike, M. T., and Val, S.: Reusable Framework for Retrieval of
Atmospheric Composition (ReFRACtor) (Version 1.09), Zenodo
[code], https://doi.org/10.5281/zenodo.4019567, 2020.

Meng, G., Wen, Y., Zhang, M., Gu, Y., Xiong, W., Wang, Z., and
Niu, S.: The status and development proposal of carbon sources
and sinks monitoring satellite system, Carbon Neutrality, 1, 32,
https://doi.org/10.1007/s43979-022-00033-5, 2022.

Messerschmidt, J., Geibel, M. C., Blumenstock, T., Chen, H.,
Deutscher, N. M., Engel, A., Feist, D. G., Gerbig, C., Gisi,
M., Hase, F., Katrynski, K., Kolle, O., Lavrič, J. V., Notholt,
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