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Abstract. Biogenic volatile organic compounds (BVOCs), as
a crucial component that impacts atmospheric chemistry and
ecological interactions with various organisms, play a signif-
icant role in the atmosphere–ecosystem relationship. How-
ever, traditional field observation methods are challenging
for accurately estimating BVOC emissions in forest ecosys-
tems with high biodiversity, leading to significant uncertainty
in quantifying these compounds. To address this issue, this
research proposes a workflow utilizing drone-mounted li-
dar and photogrammetry technologies for identifying plant
species to obtain accurate BVOC emission data. By applying
this workflow to a typical subtropical forest plot, the follow-
ing findings were made: the drone-mounted lidar and pho-
togrammetry modules effectively segmented trees and ac-
quired single wood structures and images of each tree. Image
recognition technology enabled relatively accurate identifica-
tion of tree species, with the highest-frequency family being
Euphorbiaceae. The largest cumulative isoprene emissions in
the study plot were from the Myrtaceae family, while those
of monoterpenes were from the Rubiaceae family. To fully
leverage the estimation results of BVOC emissions directly
from individual tree levels, it may be necessary for commu-
nities to establish more comprehensive tree species emission
databases and models.

1 Introduction

Biogenic volatile organic compounds (BVOCs) are the
medium of communication for plants to realize their wide
ecological functions (Laothawornkitkul et al., 2009). BVOCs
are involved in plant growth, reproduction, and defense
(Peñuelas and Staudt, 2010). Plants respond to the feeding of
herbivores by emitting BVOCs to attract potential predators
or as repellents (Kegge and Pierik, 2010). The communica-
tion process between plants is also based on BVOCs (Šim-
praga et al., 2016). For example, gnawed plants will emit
BVOCs to induce the production of defensive substances in
non-attack objects (Dicke and Baldwin, 2010). In addition,
BVOCs components are also used by plants to attract pollina-
tors to bloom (Loreto et al., 2014). For the plants themselves,
under heat waves or high ozone concentrations, BVOCs seem
to reduce oxidative stress and other stresses caused by the
complex non-biological urban environment (Ghirardo et al.,
2016; Chen et al., 2018).

At the same time, BVOCs are emitted into the atmosphere
from vegetation and have significant impacts on other organ-
isms and atmospheric chemistry and physics (Peñuelas and
Staudt, 2010). BVOCs account for 90 % of VOCs in atmo-
spheric chemistry research, which were considered the fuel
to drive atmospheric chemical processes and the key compo-
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nent of the atmosphere (Heald and Kroll, 2020). The atmo-
spheric chemical activity of BVOC species is very sprightly,
and its lifetime usually ranges from only a few minutes to a
few hours (Mellouki et al., 2015; Canaval et al., 2020). The
contribution of BVOC emissions to global secondary organic
aerosol (SOA) generation is about 90 %, which is the main
source of global atmospheric SOA (Henze et al., 2008). At
the same time, BVOCs contributed about 10 %–30 % of the
surface ozone in urban areas (Ran et al., 2011; Tsimpidi et
al., 2012; Wu et al., 2020; Chen et al., 2022).

However, there is considerable uncertainty in the estima-
tion of BVOCs (about 90 %–120 %), which constrains our
understanding of the atmospheric environment and ecologi-
cal effects of BVOCs (Situ et al., 2014; Wang et al., 2021).
Especially for the forest ecosystem with the highest biodi-
versity, forest vegetation is considered to be the main con-
tributor of BVOC emissions, accounting for more than 70 %
of global BVOC emissions, but the uncertainty of estimation
of BVOC emissions from forest vegetation is the most sig-
nificant (Hartley et al., 2017). This uncertainty arises from
two aspects: the lack of field observations and the simplifi-
cation of numerical simulations. There are different meth-
ods for measuring BVOC emissions on various scales. At
the leaf and plant scale, scholars have used confined-chamber
and various improved confined-chamber methods (open-top
chamber, free-air concentration enrichment, etc.) to conduct
a large number of outstanding observational studies on the
BVOC emissions of leaves, branches, and the whole tree
and create different BVOC databases of single-tree BVOC
component emissions (Isidorov et al., 1990; Komenda and
Koppmann, 2002; Baghi et al., 2012; Curtis et al., 2014). Ex-
isting potential BVOC emission databases include seBVOC
(Steinbrecher et al., 2009), the tree BVOC index (Simpson
and McPherson, 2011), MEGAN (Guenther et al., 2012),
and other general inventories (e.g., http://itreetools.org/, last
access: 27 June 2024; http://www.es.lancs.ac.uk/cnhgroup/,
last access: 27 June 2024). These studies mainly quantify the
emission rate of BVOCs from specific tree species, which
can help understand the processes and factors that affect the
emissions of BVOCs. At the forest landscape and canopy
scale, flux towers are generally established at specific forest
sites to observe the BVOC emissions of the entire vegetation
canopy (Sarkar et al., 2020). This method is relatively reli-
able and widely used and can estimate the vegetation canopy
emission flux within a range of several hundred meters from
the flux tower. The closed-chamber method and flux tower
observation results can indirectly calculate the BVOC emis-
sion flux at ecological scales with low biodiversity, but for
ecosystems with high biodiversity, such as tropical-rainforest
areas, this method is difficult for defining the characteristics
of all species.

In order to bypass the detailed investigation of ecosystem
species, the academic community used aerial surveys and
satellite remote sensing methods for indirect inversion of the
emission flux of BVOCs at the ecosystem and regional scales

(Batista et al., 2019). However, its inversion accuracy is rela-
tively low, and there are still significant errors. Similarly, due
to the chemical composition of BVOCs and the diversity of
their emitting tree species, as well as the influence of many
environmental factors on the emission process of BVOCs, ac-
curately simulating BVOC emissions using numerical mod-
els faces significant challenges. Existing numerical models
(for example, BEIS, Biogenic Emission Inventory System;
g95, the first global model used to estimate BVOC emissions;
MEGAN; BEM, boundary element method) mainly use land
use, leaf biomass, emission factors, and meteorological ele-
ments to estimate BVOCs emitted by vegetation (Wang et al.,
2016; Chen et al., 2022). And the key source of uncertainty
in its estimation comes from the inaccuracy of the numerical
model on the parameterization and characterization of land
use types, forest tree species composition, and leaf biomass.
Recent studies have found significant spatial heterogeneity of
BVOCs at the sub-forest scale (e.g., hundreds of meters on
mountain slopes) (Li et al., 2021). Due to differences in the
distribution of forest tree species, their BVOC emissions are
more complex than commonly assumed in biosphere emis-
sion models. Overall, for the calculation of BVOC emissions,
accurately characterizing the spatial distribution of emission
factors is a scientific challenge that needs to be overcome to
accurately quantify the spatial distribution of BVOC emis-
sions.

In recent years, consumer-grade unoccupied aerial vehicle
(UAV) platforms, lidar measurement technology, and com-
puter image recognition technology have developed rapidly.
UAVs equipped with measuring instruments for rapid sam-
ple observation technology has gradually matured, and their
positioning accuracy can reach the centimeter level. Even
in areas such as forest protection areas, it is possible to set
up routes to carry out surveys based on suitable forest gaps.
UAVs equipped with sensors to measure atmospheric com-
ponents have also begun to emerge (Villa et al., 2016). Many
scholars have installed sensors in drone-based platforms for
the low-cost and flexible measurement of VOC, black car-
bon (BC), ozone, aerosol particles, etc. (Brosy et al., 2017;
Rüdiger et al., 2018; Shakhatreh et al., 2019; Li et al., 2021;
Wu et al., 2021). And the camera carried by the drone can
also obtain very high-resolution images and even multispec-
tral images (Nebiker et al., 2008; Villa et al., 2016; Dash
et al., 2017). At the same time, the miniaturization of lidar
measurement technology has also made it possible for instru-
ments to be carried by UAVs (Zhao et al., 2016). As the most
accurate surveying instrument to date, lidar can characterize
the canopy structure of each tree in the measurement range
by obtaining point clouds compared to existing measurement
methods (Li et al., 2012; Jin et al., 2021). The characteriza-
tion of the forest community structure and morphological and
physiological forest traits has been greatly enriched by com-
bined laser scanning and imaging spectroscopy (Schneider et
al., 2017).
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The recognition of plant species has undergone rapid
development with computer image recognition technology
(Fassnacht et al., 2016; Cheng et al., 2023). Usually, ma-
chine learning and deep learning methods are used to call
plant image libraries to train machine vision interpretation
learning models and then violently interpret high-resolution
multispectral remote sensing images and laser point clouds
to obtain accurate plant populations and species result (Syl-
vain et al., 2019). At present, there are several vegetation
species classifiers that have been applied: logistic regression,
linear discriminant analysis, random forest, support vector
machine, k-nearest neighbor (kNN), and 2D or 3D convo-
lutional neural network (CNN) (Michałowska and Rapiński,
2021). With the maturity of various technologies and recog-
nition training databases, various communities have created
a batch of open-source, shared, and API-callable (applica-
tion programming interface) recognition apps or platforms
for the public. The users only need to upload photos to get
the recognized result, and the accuracy is quite good. Open-
source recognition tools for lidar results have also been de-
veloped rapidly. The accuracy of species classification meth-
ods based on structural features based on lidar height, inten-
sity, and a combination of height and intensity parameters
can reach from 87 % to 92 % (You et al., 2020). Many pub-
lications have proven that the combination of lidar data and
multispectral or hyperspectral images produces a higher ac-
curacy of species classification compared to lidar data alone
(Michałowska and Rapiński, 2021).

Therefore, the intent of this research is to establish a
technical framework based on the lidar and photogramme-
try carried by drones and image recognition technologies
from the community to identify plant species to obtain ac-
curate BVOC emissions. It is expected that the combination
of the accurate lidar characterization technology of the for-
est canopy, the ascendant accurate identification technology
of tree species, and the tree species emission factor database
obtained from long-term surveys could create a new way to
accurately quantify biogenic emissions.

2 Methods

2.1 Description of the workflow

The entire workflow includes the following aspects (as
shown in Fig. 1): first, the selection of drones equipped with
lidar and high-resolution cameras and, second, the interpre-
tation of photogrammetry results. The third step is to give the
images of each tree to API-callable plant species identifica-
tion platforms and then establish a match between the inter-
preted tree species and the single-tree-species BVOC emis-
sion factor database. The fourth step is to calculate the BVOC
emissions of the study area based on the match results and
emission factors.

2.2 Study area

The location of the study area is the coniferous–broadleaved
mixed forest of the Dinghushan Forest Ecosystem Re-
search Station of the Chinese Ecosystem Research Network
(CERN). The Dinghushan station is located in south sub-
tropical zone and belongs to a subtropical–tropical monsoon
climate zone, with an obvious winter and summer climate.
The average annual temperature is 20.9 °C, the average an-
nual rainfall is 1900 mm, the annual sun radiation is about
4665 MJm−2 yr−1, the average annual sunshine amount is
1433 h, the average annual evaporation amount is 1115 mm,
and the average relative humidity over many years is 82 %.
The position is near the northern return line and its elevation
is 300–350 m, while the slope is about 25–30° and the slope
direction is south. Its soil is lateritic red soil, and the soil layer
depth is about 30 to 90 cm. This plot has a long-term on-site
survey of tree species, which facilitates the comparison of
test results. There are 260 families, 864 genera, 1740 species,
and 349 species of cultivated plants in the Dinghushan for-
est. At the same time, Li et al. (2021) used drones equipped
with online mass spectrometers at the Dinghushan station to
observe the composition of VOCs. Their results are expected
to be compared to explore the influence of tree species on the
spatial heterogeneity of VOCs.

2.3 Flight equipment and instruments

The main UAV platform used in this technical framework
is DJI® Matrice 600 Pro, which is a universal platform that
can carry various sensors. We equipped the GreenValley® Li-
Air V lidar scanning system on this platform, which includes
a set of integrated navigation systems composed of a global
navigation satellite system (GNSS), an inertial measurement
unit (IMU), and attitude calculation software.

At the same time, we simultaneously used a DJI® Phantom
3 Professional UAV to get visible-light images. Its camera
model is an FC300X (RGB), and the camera image sensor
(CMOS) is 1/2.3 in. (6.16×4.62 mm), with an effective pixel
count of 12.4 million (12.76 million total pixels). Accord-
ing to the image attribute information, the camera parameters
used in this work are an aperture value of f/2.8, maximum
aperture of 2, exposure time of 1/1250 s, ISO speed of 100,
and focal length of 4 mm.

The DJI® pilot software is employed to design the flight
route and guide the flight of the UAVs. The flight mode of
the two planes is designed for the same flight route so that
a consistent measurement area can be obtained. It is worth
noting that in forest areas, due to the dense layers of trees,
there are significant risks during takeoff and landing, so it is
usually necessary to find a suitable landing location. We usu-
ally choose the location at the “forest gap”, which is usually
a tomb, ridge, or other natural bare ground. At the beginning
of the takeoff phase, we manually operated the UAV to avoid
trees near the forest gap to reduce the risk of a crash while
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Figure 1. Schematic workflow of this study.

completing inertial guidance for the IMU. After the takeoff
reaches the specified height, it changes to automatic flight (as
shown in Fig. 2).

2.4 Lidar-based tree segmentation and canopy
structure calculation

The study specifically uses GreenValley® LiDAR360 and
Esri® ArcGIS software to carry out this part of the work.
First, the laser point cloud results are coordinated and
spliced, and then the noise is removed when it surpasses
5 times the standard deviation. After this the improved pro-
gressive triangulated irregular network (TIN) densification
(IPTD) algorithm is used to separate the ground points (Zhao
et al., 2016). On this basis, a digital elevation model is gen-
erated based on the inverse distance weight (IDW) method
(Ismail et al., 2016).

The processing of obtaining single-tree features based on
lidar is based on the layer-stacking algorithm (Ayrey et al.,
2017). According to the layer height of different trees, the
position of the seed point in the laser point cloud is deter-
mined for segmentation, and then the boundary of each tree
is obtained. The principle of this algorithm is to first obtain
the seed points of each single tree and then find its water-
shed (Li et al., 2012). On this basis, the default calculation
module of LiDAR360 is used to obtain the structural charac-
teristic parameters of tree canopy, such as the canopy height
and crown radius (Ma et al., 2017). At the same time, we fuse
and concatenate the airborne visible-light image into image
raster data. Based on the individual tree boundary, the results
of the visible-light raster data segmentation through the over-

Table 1. The specific parameter settings for airborne image data
processing.

Parameter Value Unit

Ground sample distance 7.2 cm
Overlap in flight direction 85 % –
Side overlap 60 % –
Area covered 0.372 km2

Mean absolute geolocation variance 0.0138–0.0361 cm
Mean point density 42.6 pointsm−2

lay analysis of ArcGIS are used to obtain the raster of each
individual tree. The specific parameter settings for airborne
image data processing are shown in Table 1. After that, the
raster of individual trees is given to different apps to obtain
the plant species identification results.

2.5 Vegetation identification

With the continuous improvement of a new generation of
plant recognition algorithms based on deep learning meth-
ods, a variety of plant recognition apps and platforms con-
tinue to appear (Irimia et al., 2020; Otter et al., 2021). They
can all import and identify plant images from mobile phones
or communicate via an application programming interface
(API) with public researchers. There are also quite a lot of
open-source deep-learning-trained models and datasets, al-
lowing for researchers to submit visible-light images and
obtain recognition results (Ma et al., 2019; Zhanhui et al.,
2020).
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Figure 2. Flight route of this study.

The apps and platforms shown in Table 2 were used in
this study to identify the visible-light image after point cloud
segmentation. They are usually trained based on a certain na-
tional or international plant classification picture database.
For example, AiPlants® is based on the database of the Plant
Photo Bank of China (PPBC) (Zhanhui et al., 2020). With the
rise of cloud computing services, individual calling methods
on various platforms have arisen, such as the Aliyun® gen-
eral image recognition service (GIRS), Amazon® Rekogni-
tion service, and Baidu® PaddlePaddle platform. And their
identification results can be obtained using a simple script
submission (Jin, 2017). However, due to differences in their
respective training sets, the accuracy of plant recognition
varies among different apps. It is currently unclear whether
the reliability, accuracy, and portability of these simple re-
trieval methods can support their application in investigating
plant emissions. In this study, a simple method of recognition
and judgment was adopted to ensure our recognition accu-
racy. We perform a conditional judgment on all results, and
if one piece of input data obtains the same recognition result
on two or more platforms, the recognition result is accepted.

2.6 BVOC emission factor and emission calculation

In this study, calculations are based on the database of de-
tailed BVOC emission factors (EFs) for tree species provided
by MEGAN3.2, which contains a set of EF libraries with
more than 40 000 tree species (Guenther et al., 2018). When
the tree species determined based on Sect. 2.5 is clear, the
corresponding BVOC EF can be obtained by lookup in the
table.

For the types of trees that are not contained in the EF li-
brary, we obtain the BVOC emission factor of the tree species
based on the literature survey method (Chen et al., 2022;
Mu et al., 2022). For tree species that cannot be found even
through literature research, we choose to replace them with

plants from the same family. Because there are quite a few
types of BVOCs obtained by observation experiments, they
are generally dominated by isoprenes and monoterpenes (Li
et al., 2021). Therefore, our study is also characterized by
the distribution of emissions using a genus-specific average
emission factor.

Since the images we use to identify tree species are sin-
gularly temporal, we only attempt to calculate the maximum
and minimum emissions of the forest in the sample plot. The
calculation method is based on the emission factors corre-
sponding to the species of each tree multiplied by its biomass
and the area occupied by its crown diameter.

3 Results

3.1 The morphological composition of the vegetation

Based on the point cloud results measured by lidar, more
accurate arboreal morphological characteristics can be ob-
tained. Then we split the individual trees, and the point
clouds of each individual tree are shown in Fig. 3. It can be
seen that due to the influence of terrain, the point cloud at
the edge has a much lower density than the point cloud in the
center, which may cause higher uncertainty in the segmenta-
tion of the single forest in this area.

After the statistics of single-tree segmentation, there are
1291 trees in the sample plot. The overall distribution of mor-
phological parameters and the corresponding relationship be-
tween the tree height and crown diameter of each tree are
shown in Fig. 4. It can be seen that the tree height in the sam-
ple plot obtained by the measurement follows the GaussAmp
skew distribution. Its distribution range spans from 2 to 30 m,
and its average is 14.9 m. At the same time, its crown ra-
dius presents a lognormal distribution, and its average value
is about 4 m.

https://doi.org/10.5194/amt-17-4065-2024 Atmos. Meas. Tech., 17, 4065–4079, 2024



4070 X. Duan et al.: Estimation of BVOC emissions in forest ecosystems

Table 2. List of plant species identification apps and platforms.

Name Source Reference

AiPlants http://hbl.nongbangzhu.cn/ (last access: 27 June 2024) Zhanhui et al. (2020)
Aliyun GIRS https://vision.aliyun.com/ (last access: 27 June 2024) Jin (2017)
Baidu EasyDL (PaddlePaddle) https://cloud.baidu.com/ (last access: 27 June 2024) Ma et al. (2019)
Leafsnap http://leafsnap.com/ (last access: 27 June 2024) Kumar et al. (2012)
Pl@ntNet https://identify.plantnet.org/ (last access: 27 June 2024) Joly et al. (2016)
PlantSnap https://www.plantsnap.com/ (last access: 27 June 2024) Otter et al. (2021)
tree-detection-evo https://github.com/jaeeolma/tree-detection-evo/ (last access: 27 June 2024) Mäyrä et al. (2021)

Figure 3. Point cloud of each individual tree obtained based on the layer-stacking algorithm excluding topographic.

3.2 The composition of vegetation species

The plant identification apps were called to identify the tree
species based on the segmentation results. The spatial dis-
tribution and frequency of tree species are shown in Fig. 5
and Table 3. It can be seen from its spatial distribution that
different tree species appear to be scattered and gathered.
Among them, the three most frequent tree species are Aidia
canthioides (Champ. ex Benth.) Masam., Macaranga samp-
sonii Hance, and Blastus cochinchinensis Lour., while the
highest-frequency family is Euphorbiaceae. The ratio of the
top three species is about 12 %, 11 %, and 6 %. Other iden-
tified tree species are also shown in Table 3. Combined with
their canopy morphology distribution, it can be seen that
the plot presents significant coniferous–broadleaved mixed-
forest characteristics, and coniferous or broadleaved trees oc-
cupy the position of the dominant tree species. Meanwhile, it
still can be see from Fig. 5 that lots of trees could not recog-
nized.

3.3 The BVOC emission at the family and individual
scale

The emissions we obtained for isoprenes and monoterpenes
for each family are shown in Table 4. It can be seen that in
the study area of Dinghu Mountain, the largest cumulative
isoprene emissions were from the Myrtaceae family (max-
imum of 18.7 µgCm−2 h−1), followed by the Salicaceae
family (maximum of 3.8 µgCm−2 h−1), while for monoter-
penes their cumulative emissions were largest in the Rubi-
aceae family (maximum of 3.9 µgCm−2 h−1), followed by
the Theaceae family (maximum of 2.8 µgCm−2 h−1). How-
ever, it is worth noting that since we cannot confirm the leaf
type, leaf age, and corresponding phenological period of each
tree, we only calculated the maximum and minimum possi-
ble emissions based on their standard emission factors and
biomass.

At the same time, the spatial distribution of individual
plant emissions from Fig. 6 shows that there are clusters of
BVOC-emitting plants in the study area, which are caused
by the aggregation of plants of the same family. The clusters
of isoprene- and terpene-emitting plants are homogeneous,
while there are some non-BVOC-emitting plants between the
different clusters, which may be related to their ecological-
competition strategy (Fitzky et al., 2019). According to the
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Figure 4. The distribution of tree height and crown radius: (a) overall distribution and (b) each tree.

Figure 5. The spatial distribution of tree species.
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Table 3. Specific species composition information of the vegetation identification result.

Families Genera Species Count Mean Mean crown
height radius

(m) (m)

Actinidiaceae Saurauia Saurauia tristyla DC. 3 7.4 0.9
Aquifoliaceae Ilex Ilex cochinchinensis (Lour.) Loes. 1 17.2 6.7
Araliaceae Schefflera Schefflera heptaphylla (Linnaeus) Frodin 5 10.1 2.9
Arecaceae Caryota Caryota maxima Blume ex Martius 2 13.7 2.7
Burseraceae Canarium Canarium album (Lour.) Rauesch. 6 19.8 4.5
Cannabaceae Gironniera Gironniera subaequalis Planch. 19 18.0 5.6
Celastraceae Euonymus Euonymus laxiflorus Champ. ex Benth. 2 15.1 3.7
Ebenaceae Diospyros Diospyros eriantha Champ. ex Benth. 3 10.9 2.1
Ericaceae Craibiodendron Craibiodendron scleranthum (Dop) Judd. 2 10.6 1.6

Euphorbiaceae Macaranga Macaranga sampsonii Hance 67 12.5 1.9

Macaranga andamanica Kurz 4 9.4 0.3

Mallotus Mallotus paniculatus (Lam.) Muell. Arg. 22 12.3 2.7

Fabaceae Ormosia Ormosia glaberrima Y. C. Wu 20 17.8 5.4
Archidendron Archidendron lucidum (Benth) I. C. Nielsen 6 18.2 7.6

Fagaceae Castanopsis Castanopsis chinensis (Sprengel) Hance 6 15.9 5.0
Juglandaceae Engelhardtia Engelhardia roxburghiana Wall. 3 11.1 2.8

Lauraceae Cryptocarya Cryptocarya concinna Hance 17 18.2 7.2

Cryptocarya chinensis (Hance) Hemsl. 9 11.2 0.8

Lindera Lindera chunii Merr. 5 17.7 5.8
Machilus Machilus chinensis (Champ. ex Benth.) Hemsl. 3 12.6 3.6
Neolitsea Neolitsea cambodiana Lec. 1 15.1 5.5

Malvaceae Pterospermum Pterospermum lanceifolium Roxburgh 19 12.0 2.4

Pterospermum heterophyllum Hance 4 15.2 3.6

Melastomataceae Blastus Blastus cochinchinensis Lour. 35 18.9 6.8
Memecylon Memecylon ligustrifolium Champ. 2 6.2 1.9

Moraceae Ficus Ficus esquiroliana Levl. 9 18.1 5.7

Ficus nervosa Heyne ex Roth 2 5.6 1.8

Myrtaceae Syzygium Syzygium rehderianum Merr. et Perry 29 15.6 3.7

Syzygium acuminatissimum (Blume) Candolle 10 15.3 5.5

Syzygium levinei Merr. et Perry 2 9.3 2.8

Syzygium championii (Benth.) Merr. et Perry 1 18.1 4.8

Pandaceae Microdesmis Microdesmis caseariifolia Planch. 6 14.0 3.2

Phyllanthaceae Aporosa Aporosa yunnanensis (Pax and K. Hoffmann) F. P. Metcalf 34 13.2 2.8

Bridelia Bridelia balansae Tutcher 4 13.2 3.8

Polygalaceae Xanthophyllum Xanthophyllum hainanense Hu 15 16.9 3.8

Primulaceae Ardisia Ardisia quinquegona Bl. 13 16.2 4.1

Ardisia waitakii C. M. Hu 3 15.2 6.3

Rhizophoraceae Carallia Carallia brachiata (Lour.) Merr. 2 15.4 3.1
Rosaceae Pygeum Pygeum topengii Merr. 7 13.2 4.9

Atmos. Meas. Tech., 17, 4065–4079, 2024 https://doi.org/10.5194/amt-17-4065-2024



X. Duan et al.: Estimation of BVOC emissions in forest ecosystems 4073

Table 3. Continued.

Families Genera Species Count Mean Mean crown
height radius

(m) (m)

Rubiaceae Aidia Aidia canthioides (Champ. ex Benth.) Masam. 68 17.1 5.6
Lasianthus Lasianthus chinensis (Champ.) Benth. 6 13.0 2.8
Peponidium Canthium horridum Bl. Bijdr. 5 11.7 1.0
Psychotria Psychotria rubra (Lour.) Poir. 5 14.1 2.1
Canthium Canthium dicoccum (Gaertn.) Teysmann et Binnedijk 3 12.6 2.7

Rutaceae Acronychia Acronychia pedunculata (L.) Miq. 2 17.2 4.0
Sabiaceae Meliosma Meliosma rigida Sieb. et Zucc. 3 9.2 2.8
Salicaceae Casearia Casearia glomerata Roxb. 2 13.9 0.8
Sapindaceae Mischocarpus Mischocarpus pentapetalus (Roxb.) Radlk 24 11.8 1.2
Sapotaceae Sarcosperma Sarcosperma laurinum (Benth.) Hook. f. 8 16.9 3.7
Theaceae Schima Schima superba Gardn. et Champ. 3 7.8 0.7
Thymelaeaceae Aquilaria Aquilaria sinensis (Lour.) Spreng. 2 17.2 7.8

Table 4. The maximum and minimum emissions from different families in the study area (unit: µgCm−2 h−1).

Families Isoprene Monoterpenes Count of trees

Minimum Maximum Minimum Maximum

Actinidiaceae 0.0 0.0 0.0 0.0 3
Aquifoliaceae 0.0 0.0 0.0 0.0 1
Araliaceae 0.0 0.0 0.0 0.0 5
Arecaceae 1.6 1.6 0.0 0.0 2
Burseraceae 0.1 2.9 0.0 0.0 6
Cannabaceae 0.0 0.0 0.0 0.0 19
Celastraceae 0.0 0.0 0.0 0.0 2
Ebenaceae 0.0 0.0 0.0 0.1 3
Ericaceae 0.0 0.0 0.0 0.0 2
Euphorbiaceae 0.6 0.9 0.1 0.1 93
Fabaceae 0.8 0.8 0.2 0.2 26
Fagaceae 0.0 0.0 0.0 0.0 6
Juglandaceae 0.0 0.0 0.0 0.0 3
Lauraceae 2.2 2.8 2.4 2.6 35
Malvaceae 0.0 0.0 0.0 0.0 23
Melastomataceae 0.0 0.0 0.0 0.0 37
Moraceae 0.1 0.4 0.0 0.0 11
Myrtaceae 0.7 18.7 0.0 0.8 42
Pandaceae 0.0 0.0 0.0 0.0 6
Phyllanthaceae 0.0 0.0 0.0 0.5 38
Polygalaceae 0.0 0.0 0.0 0.0 15
Primulaceae 0.0 0.0 0.0 0.1 16
Rhizophoraceae 0.0 0.0 0.0 0.0 2
Rosaceae 0.0 0.0 0.0 0.0 7
Rubiaceae 0.0 0.3 0.0 3.9 87
Rutaceae 0.0 0.0 0.0 0.1 2
Sabiaceae 0.0 0.0 0.0 0.0 3
Salicaceae 0.7 3.8 0.0 0.0 2
Sapindaceae 0.0 2.9 0.0 0.7 24
Sapotaceae 0.0 1.8 0.0 0.0 8
Theaceae 0.0 0.0 2.8 2.8 3
Thymelaeaceae 0.0 0.0 0.0 0.0 2

Total 7.0 37.1 5.8 12.1 534
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forest competition theory, the emissions of BVOCs are re-
lated to its competitive pressure, relative size, and area over-
lap rate (Contreras et al., 2011). On the other hand, the strate-
gies adopted by different species are different. The intra-
specific competition and inter-specific competition play a
specific role through different biopheromones, which are all
BVOCs (Šimpraga et al., 2019). In addition, it is noteworthy
from Fig. 6 that the number of plants not discriminated in the
study area is quite large, implying that this is an important
source of uncertainty in the estimation of BVOC emissions
in this method.

4 Discussion

4.1 The uncertainty sources of this method

4.1.1 Flight route design and acquisition process of
aerial survey data

During the field flight using this workflow, we found that the
height of the flight and the pixel area occupied by each tree in
the resulting visible-light image is the decisive link that de-
termines whether the image recognition tool can effectively
identify the plant species in the image. In a practice flight, we
designed different flight altitude routes, namely 60, 120, and
200 m, in order to find a suitable flight altitude. We checked
and found that for the images obtained at a flying altitude
of 120 m or more, the number of pixels per tree obtained af-
ter being cut and paired by a single tree in the lidar point
cloud is less (about 200×300 pixels). The description of tree
leaf characteristics is very unclear and presents mosaic-like
characteristics, which makes it impossible to accurately iden-
tify hidden plant species in different image recognition tools
and which also makes the calculation of BVOC emissions
hard. Especially due to the fact that the images obtained from
drone flight surveys are all orthophoto images, their expres-
sion in canopy morphology features is missing.

At the same time, the vegetation below the forest canopy
also emits a considerable number of BVOCs. Although air-
borne lidar can detect their presence through leaf gaps,
visible-light images cannot obtain their information due to
canopy occlusion, making it an important source of under-
estimation of BVOC emissions for this method. It may be
possible to try using lateral aerial photography or airborne
multi-band enhanced penetrating lidar technology to achieve
detection and modeling recognition of understory plants.

4.1.2 Single-tree segmentation and recognition process
of images

The single-tree segmentation technique used in this study is
based on the layer-stacking algorithm. This single-tree seg-
mentation process first obtains the seed points of each tree
and then determines the boundaries between each individ-
ual tree through its watershed (Li et al., 2012). This method

may result in undetected or incorrectly detected trees, de-
pending on the density of the laser point cloud per unit
area. In this study, the density of laser point clouds was
42.6 pointsm−2, which, although very high, may still result
in some small saplings not being correctly identified. In fu-
ture research, techniques such as ground-based lidar segmen-
tation and coarse-to-fine algorithms can be combined to im-
prove its accuracy (Zhao et al., 2023).

It also can be seen that the recognition accuracy of these
apps is not as high as it claims for the visible-light images ob-
tained by drones. Among them, platforms trained by satellite
images give quite accurate results of tree species recognition.
EasyDL gave back “unrecognizable” feedback for quite a lot
of individual tree images, while AiPlants and Leafsnap gave
incorrect classification and recognition results, such as suc-
culents and garden plants. This result may related to the fact
that the apps did not train on image inputs with correct tree
species tags during the collection and training of the general
image datasets.

In general, for the refined calculation of vegetation VOC
emission factors, the platform based on deep learning train-
ing from remote sensing images can provide faster and
more reliable tree species identification results than tra-
ditional methods. However, these recognition platforms
still require more accurate and large-scale training datasets
to support their classification accuracy. Although various
crowdsourcing-based apps are widely used, most of the veg-
etation tree species information uploaded by users is con-
centrated in garden tree species or common tree species, and
more sample images are needed for rare tree species. Due
to the differences of functions and selected training datasets
of different platforms, it is difficult to quantify the range of
uncertainty of this process. With the development of open-
source databases and open-source training sets, further un-
certainty source control of this process can be promoted.

4.1.3 The estimation process of BVOC emissions

Although this study integrated MEGAN’s emission tree
species information and literature obtained information as in-
put calculations, MEGAN mainly consists of common tree
species at the global scale. Therefore, the emission factors of
various tree species used in this study mainly came from the
Mu et al. (2022) database of measured results. This has made
it quite difficult to measure over a hundred species of trees in
southern China, allowing for the discovery of emission fac-
tor information for most of the tree species in the sample plot
of this study. But this situation indicates that there are sev-
eral technical issues in selecting the BVOC emission factor
library when applying this framework. Firstly, there is still
a considerable number of cases in this study where the tree
species analyzed is not within the range of the MEGAN EF
database. Secondly, the emissions of BVOCs from trees are
subject to various photochemical and hydrothermal condi-
tions, but, currently, various databases are unable to provide a
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Figure 6. The individualized spatial distribution of the isoprene and monoterpene emission factor.
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Table 5. Measurements and simulations of isoprene and monoterpene emissions or concentrations using different methods at the same site.
REA: relaxed eddy accumulation, GC–MS: gas chromatography–mass spectrometry .

Methods Isoprene Monoterpene Reference

This study 7.0–37.1 µgCm−2 h−1 5.8–12.1 µgCm−2 h−1 –
MEGAN 0.1–10 µgCm−2 h−1 0.1–10 µgCm−2 h−1 Guenther et al. (2012)
REA techniques 0.11 mgCm−2 h−1 0.24 mgCm−2 h−1 Gao et al. (2011)
REA techniques 0.215 mgCm−2 h−1 0.313 mgCm−2 h−1 Situ et al. (2013)

GC–MS 0.12 ± 0.80 ppbv 0.32 ± 0.16 ppbv (α-pinene) Tang et al. (2007)
GC–MS 0.76 ± 0.50 ppbv 0.33 ± 0.18 ppbv (α-pinene) Wu et al. (2016)
UAV-based VOC sampler 0.047 ± 0.040 ppbv 0.084 ± 0.104 ppbv (α-pinene) Li et al. (2021)

detailed characterization of the impact of these environmen-
tal factors at the tree species level. Thirdly, different BVOC
emission factor databases have a different emphasis on the
emission parameters of BVOC components for the same tree
species. The shortcomings above limit our further application
and migration of this method to other forests. However, this
method can quickly obtain an independent set of upper and
lower limits of BVOC emissions for its sample plot, which
is helpful for conducting model validation work based on the
sample plot. It is recommended that community peers refer
to our workflow and combine it with their local tree species
emission factor library to further BVOC emission estimation.

Meanwhile, it is important for the academic community
to understand that existing BVOC computational emission
models such as MEGAN have already taken into account var-
ious meteorological conditions, leaf growth, and other fac-
tors relatively completely. However, the definition of vegeta-
tion itself often depends on the definition of land use types
in the coupled regional models. For example, in the com-
monly used WRF-Chem (Weather Research and Forecast-
ing) model, vegetation types are usually classified using the
MODIS 20 or USGS 24 classification systems, which still
use a combination of coniferous forests, broadleaved forests,
mixed forests, evergreen forests, and deciduous forests for
forest classification. This means that there is a need for fur-
ther improvement in the characterization of emissions from
different tree species. Therefore, future regional estimation
of BVOCs can be carried out by combining the method
framework obtained in this study with the coupling of BVOC
computational emission models.

4.2 The differences in BVOC emission from other
methods and potential impact

We compared the BVOC results obtained in this study with
the emission results obtained by different methods in the
Dinghu Mountain sample plot, as shown in Table 5. It can
be seen that there are many different research methods (in-
cluding remote sensing inversion, model calculation, un-
derstory sampling observation, UAV-mounted sensor obser-
vation), and the magnitude of the BVOC emissions from

Dinghu Mountain varies greatly. The results obtained from
this study indicate that a more accurate description of forest
biodiversity can make the calculated results more consistent
with those obtained from direct observations in the forest
canopy. At the same time, it has been found that in previ-
ous model estimations based on simple plant functional type
(PFT) methods to estimate biomass, the emissions of BVOCs
may be underestimated to a considerable extent. This poses
new requirements for the estimation and parameterization of
BVOC emissions; that is, when simulating the emissions of
BVOCs, the biodiversity of the forest in the region should
be considered and not only vegetation factors from purely
canopy physical size indicators such as leaf area index (LAI)
and crown diameter.

5 Conclusions

This research has established a workflow for identifying
plant species based on lidar, photogrammetry, and image
recognition technologies carried by drones to obtain accu-
rate BVOC emissions. The intention of this research is to
combine the newly developed rapid survey method of plant
species with the calculation of BVOC emissions and discuss
the main uncertainty sources of the BVOC emissions ob-
tained in this method. The current limitation of this study
is that although lidar can capture the multi-layer structure of
tree crowns, visible light is difficult to identify other vegeta-
tion below trees, such as shrubs and herbs, which can result
in a certain loss of BVOC emissions.

The implication of this study is that, with the advance-
ment of novel technologies in computer science, the obsta-
cle of tree species identification, which previously impeded
the estimation of BVOC emissions, will gradually be ad-
dressed through large-scale image recognition technology.
However, open-source and standardized image recognition
techniques, along with the BVOC emission factor library for
tree species, have emerged as new bottlenecks, necessitating
the relevant research community to contemplate how to share
corresponding data and technologies more openly.
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