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Abstract. Understanding the boundary-layer height and its
dynamics is crucial for a wide array of applications spanning
various fields. Accurate identification of the boundary-layer
top contributes to improved air quality predictions, pollu-
tant transport assessments, and enhanced numerical weather
prediction through parameterization and assimilation tech-
niques. Despite its significance, defining and observing the
boundary-layer top remain challenging. Existing methods of
estimating the boundary-layer height encompass radiosonde-
based methods, radar-based retrievals, and more. As emerg-
ing boundary-layer observation platforms emerge, it is useful
to reevaluate the efficacy of existing boundary-layer-top de-
tection methods and explore new ones.

This study introduces a fuzzy logic algorithm that lever-
ages the synergy of multiple remote sensing boundary-layer
profiling instruments: a Doppler lidar, infrared spectrometer,
and microwave radiometer. By harnessing the distinct ad-
vantages of each sensing platform, the proposed method en-
ables accurate boundary-layer height estimation both during
daytime and nocturnal conditions. The algorithm is bench-
marked against radiosonde-derived boundary-layer-top esti-
mates obtained from balloon launches across diverse loca-
tions in Wisconsin, Oklahoma, and Louisiana during sum-
mer and fall. The findings reveal notable similarities be-
tween the results produced by the proposed fuzzy logic al-
gorithm and traditional radiosonde-based approaches. How-
ever, this study delves into the nuanced differences in their
behavior, providing insightful analyses about the underly-
ing causes of the observed discrepancies. While developed
with the three instruments mentioned above, the fuzzy logic
boundary-layer-top detection algorithm, called BLISS-FL,

could be adapted for other wind and thermodynamic profil-
ers. BLISS-FL is released publicly, fostering collaboration
and advancement within the research community.

1 Introduction

The atmospheric or planetary boundary layer (BL) is often
defined as the layer of the atmosphere directly influenced
by Earth’s surface. This is the portion of the atmosphere
where the bulk of human socioeconomic activity takes place,
yet it is also one of the least routinely observed portions
of the atmosphere. Given the depth of the atmosphere and
common obfuscation by clouds (e.g., McGrath-Spangler and
Denning, 2013), satellite-based observing of the BL remains
difficult and uncertain. Commonly and consistently available
observations include surface meteorological conditions and
weather radar observations, which both may provide indirect
inferences about BL conditions. The only widely available
direct observations of the BL in the United States are ra-
diosondes, which are typically only launched twice per day at
00:00 and 12:00 UTC (European nations, for example, have
developed a diverse network of lower-atmospheric sensors;
see, e.g., Cimini et al., 2020; Rüfenacht et al., 2021). Opera-
tional radiosonde sites are spaced at best hundreds of kilo-
meters apart (Melnikov et al., 2011), which is insufficient
for representing conditions on mesoscales to BL scales. This
lack of observation in the BL has been coined a “data gap”
(Bell et al., 2020), and several community reports and sur-
veys have long called for improvement (National Research
Council, 2009, 2010; National Academies of Sciences, Engi-
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neering, and Medicine, 2018a, b) to serve the diverse socioe-
conomic needs of modern society.

The BL evolves on a diurnal cycle, as shown in Fig. 1. As
the sun rises (depicted as occurring shortly after 12:00 UTC
in Fig. 1) the Earth’s surface is warmed, which through heat
(and moisture) fluxes leads to turbulence processes that mix
the atmosphere above the surface. As these processes con-
tinue and grow, the well-mixed region above the surface be-
comes deeper, developing the BL. The entrainment zone sep-
arates the BL from the free atmosphere and is characterized
by transfer of mass and momentum across this boundary. The
BL height continues to increase throughout the day as the
convective mixed layer grows (barring disruption by other
forcing such as an air mass change or strong advection) until
the sun begins to set (depicted as occurring near 01:30 UTC
in Fig. 1). The evening transition is characterized by the de-
cay of the previous day’s turbulent mixing. As mixing slowly
shuts down and the surface loses heat to the atmosphere, the
surface typically becomes cooler than the atmosphere above
it, setting up a shallow surface-based inversion. This marks
the beginning of the nocturnal BL or nocturnal surface layer.
Above this layer, the residual layer retains characteristics of
the previous day’s boundary layer and is topped with the cap-
ping inversion (remnants of the entrainment zone). In condi-
tions that allow for continued cooling, the nocturnal surface
layer grows until the sun rises again, repeating the process on
another day.

Knowledge of the BL height and its evolution is central
to many high-impact applications. These include air qual-
ity transport and dispersion forecasts (e.g., Dabberdt et al.,
2004), fire weather monitoring and evolution (e.g., Clements
et al., 2007), and the initiation of deep moist convection (e.g.,
Browning, 2007). Additionally, as numerical weather predic-
tion models play an increasingly large role in the forecast
process, real-world BL height observations are crucial for
constraining planetary BL parameterization schemes (e.g.,
Cohen et al., 2015), which can have a pronounced effect on
subsequent convection forecasts (e.g., Crook, 1996; Stensrud
and Weiss, 2002; Cohen et al., 2017) but have been shown
to often exhibit large errors compared to observations (e.g.,
Grimsdell and Angevine, 1998). Recently, Tangborn et al.
(2021) found the accuracy of the temperature and wind fields
in the simulated afternoon convective BL to be improved
compared to radiosonde observations when assimilating ob-
servations of BL height.

A variety of observation platforms are used to measure
BL processes. For example, Doppler radar at various wave-
lengths (Gal-Chen and Kropfli, 1984; Minda et al., 2010;
Banghoff et al., 2018; Duncan et al., 2019), radar wind pro-
filers (e.g., Ecklund et al., 1988; Rogers et al., 1993), mi-
crowave radiometers (e.g., Troitsky et al., 1993; Djalalova et
al., 2022) and interferometers (e.g., Feltz et al., 1998; Knute-
son et al., 2004; Turner and Löhnert, 2014), lidar-based in-
struments (e.g., Grund et al., 2001; Froidevaux et al., 2013;
Spuler et al., 2021), spaceborne platforms (e.g., McGrath-

Spangler and Denning, 2012), instrumented towers (e.g., Fer-
nando et al., 2019), and both piloted (e.g., Hane et al., 1993)
and unpiloted (Segales et al., 2020) aircraft are all com-
mon tools used to understand the BL and its structure and
processes. Myriad methods exist specifically for deducing
BL height. Estimation based on data from balloon-borne ra-
diosondes is one widely used method (Seidel et al., 2010).
Seemingly straightforward, this method has drawbacks such
as poor spatial resolution, as discussed previously, and dis-
crepancies between the exact profile techniques used to find
the BL height. Ceilometers are often integrated into Au-
tomated Surface Observing System (ASOS; NOAA et al.,
1998) stations in addition to common deployment for re-
search purposes (e.g., Uzan et al., 2016). Aerosol backscat-
ter as measured by ceilometers can be used in various tech-
niques – some provided by instrument manufacturers, some
developed by operators – to estimate BL height (Caicedo et
al., 2017). Even within one manufacturer-provided method,
BL height estimates can be ambiguous and require addi-
tional analysis, as Caicedo et al. (2017) found with the CL31
ceilometer. Radar wind profilers can provide multiple prod-
ucts from a single platform, which have been combined in
fuzzy logic algorithms to estimate BL height (Bianco and
Wilczak, 2002, 2008). This approach demonstrates how com-
bining multiple measurements including those of processes
indirectly related to BL height may be useful in an estima-
tion technique. However, radar wind profilers typically do
not have very high temporal resolution and are not as small
in form factor as some other BL observation platforms such
as lidars.

Bonin et al. (2018) proposed a fuzzy logic algorithm for
determining BL height from Doppler lidar data and found
promising results using data from the Indianapolis Flux Ex-
periment (INFLUX; Davis et al., 2017). As an aside, Bonin et
al. (2018) use the term mixing-layer height or mixing height,
not BL height. Their terminology choice makes sense as their
analysis and algorithm are limited to only lidar data and thus
only evaluate mechanical mixing processes in the bound-
ary layer. However, we use the term BL height throughout
this work, expecting that it is inclusive of (but not limited
to) mixing processes. The approach laid out by Bonin et
al. (2018) is advantageous in that it combines multiple es-
timates of BL height, provides a measure of uncertainty for
each estimate, and is adaptable to users’ individual needs and
cases. However, no thermodynamic information is incorpo-
rated. In a review of BL height detection approaches, Kot-
thaus et al. (2023) specifically described the potential ben-
efits of instrument synergy for a variety of applications. We
hypothesize that, similar to the suggestions made in Kotthaus
et al. (2023), the capability and applicability of a BL height
estimation method (in the present case, a fuzzy logic algo-
rithm) could be expanded by incorporating multiple instru-
ment data streams.

In recent decades several integrated platforms and sites
have been developed, which combine BL thermodynamic
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Figure 1. A conceptual diagram of the diurnal BL cycle, as often adapted from Stull (1988), overlaid on observed vertical velocity (a) and
temperature (b).

and kinematic profiling capabilities such as the Department
of Energy Atmospheric Radiation Measurement Southern
Great Plains site (Sisterson et al., 2016) and multiple mobile
facilities (e.g., Karan and Knupp, 2006; Knupp et al., 2009;
Wingo and Knupp, 2015; Wagner et al., 2019). A team of
scientists at The University of Oklahoma (OU) and NOAA’s
National Severe Storms Laboratory (NSSL) developed and
continue to operate the Collaborative Lower Atmospheric
Mobile Profiling Systems (CLAMPS1 and CLAMPS2).
Designed as sibling platforms, OU-NSSL CLAMPS1 and
NOAA-NSSL CLAMPS2 combine a Doppler lidar (DL), at-
mospheric emitted radiance interferometer (AERI), and mi-
crowave radiometer (MWR) into a single facility (see Ta-
ble 1) capable of profiling temperature, moisture, horizon-
tal wind, and vertical velocity with vertical resolution on
the order of tens of meters and temporal resolution on the
order of seconds to minutes (depending on the quantity of
interest). Such integrated platforms provide a unique op-
portunity to explore multi-instrument value-added products.
In the case of CLAMPS, these value-added products have
the benefit of high temporal resolution, which can be crit-
ical for some applications. Recognizing the variability and
strengths and weaknesses of various remote sensing BL
height detection methods, we propose using the instruments

on board CLAMPS together in a fuzzy logic approach for
BL height estimation including thermodynamic BL profiles,
which should allow this approach to operate in the overnight
hours in at least some conditions. Herein, we expand from
the work of Bonin et al. (2018) and introduce a new multi-
instrument BL height detection algorithm.

2 Fuzzy logic algorithm

Fuzzy logic methods are used to discern and classify signals
based on some known characteristics (Mendel, 1995). Fuzzy
logic is unlike Boolean logic in that is allows for degrees of
“truth” as opposed to the binary “true” or “false”. The fuzzy
logic process relates input variables to an output character-
istic via so-called membership functions, which vary from
zero (which indicates the input variable is not a member of
a given class) to 1 (which indicates the input variable is a
member of a given class). By taking a weighted mean, the
membership values of all input variables are aggregated and
then defuzzified to determine the desired characteristic of the
measurement.

Fuzzy logic methods were applied in many ways within
atmospheric science before the work of Bonin et al. (2018).

https://doi.org/10.5194/amt-17-4087-2024 Atmos. Meas. Tech., 17, 4087–4107, 2024



4090 E. N. Smith and J. T. Carlin: A multi-instrument fuzzy logic boundary-layer-top detection algorithm

Table 1. The three core instruments on board each CLAMPS facility are listed. For each instrument the listing includes the manufacturer,
instrument model, and any additional notes (in italics) about specific instrument properties or history.

CLAMPS1 CLAMPS2

Doppler lidar AERI MWR Doppler lidar AERI MWR
Halo Streamline ABB AERIv4 RPG HATPRO G4 Halo Streamline XR+ ABB AERIv4 2021–current: RGP HATPRO G5
Upgraded laser (XR equiv.) 38 m s−1Nyquist 2020: None Installed
38 m s−1Nyquist 2016–2019: Radiometrics MP3000A

These approaches have been popular amongst radar scien-
tists and developers, where it has been applied for identifi-
cation of non-precipitation echoes and radar artifacts (Gour-
ley et al., 2007; Mahale et al., 2014), hydrometeor classifi-
cation methods (Vivekanandan et al., 1999; Liu and Chan-
drasekar, 2000; Park et al., 2009), and detection of pre-
cipitation modes (Yang et al., 2013). Applying the method
to Doppler lidar measurements was a novel component of
the Bonin et al. (2018) work. Our proposed algorithm uses
fuzzy logic to combine high-resolution boundary-layer pro-
filer observations from multiple instruments toward the goal
of multi-method or multi-instrument synergy as described by
Kotthaus et al. (2023).

We now describe and demonstrate our newly developed al-
gorithm using CLAMPS1 observations collected in Norman,
Oklahoma, on 25 June 2020, shown in Fig. 2. Much of the
initial framework closely follows that of Bonin et al. (2018,
hereafter B18), with any deviations from or expansions upon
B18 highlighted. The fuzzy logic algorithm takes a two-
step approach: a first-generation BL height estimate and a
second-generation BL height estimate. In the first-generation
step, only measurements of BL mixing processes (i.e., mea-
surements that show mixing is ongoing) are included. Given
the instruments available on CLAMPS, these measurements
include turbulence information from the DL. The second-
generation estimate additionally includes indicators of mix-
ing processes (i.e., measurements that show that mixing has
occurred). For example, a well-mixed potential temperature
profile from the CLAMPS thermodynamic profilers would
indicate BL mixing has occurred.

In the first-generation step, vertical velocity variance, w′2
(Fig. 2a, a1), as computed from the DL vertical stare observa-
tions, and the high-frequency vertical velocity variance, w′2HF
(Fig. 2b), are included as the indicator variables. The method
for computing w′2HF is detailed in B18. It is computed in the
same manner as w′2, except a high-pass filter is applied us-
ing a frequency of 0.0167 Hz as a threshold (i.e., periods less
than 1 min) before evaluating the variance only at the remain-
ing high frequencies. We apply it here to control for any po-
tential contribution to vertical velocity variance signals due
to non-turbulent motions such as waves, drainage flows, and
sub-mesoscale motions (Bonin et al., 2017). B18 include
several other variables from the more complex Doppler li-
dar scan patterns available in their dataset; we include only

w′2 and w′2HF as indicators. The membership functions are
defined as half-trapezoids following B18, where parameters
x1 and x2 are the values at which the function increases
above zero and reaches a maximum of 1, respectively. For
w′2, x1 = 0.02 and x2= 0.08 m2 s−2. For w′2HF, x1 = 0.0025
and x2= 0.01 m2 s−2. In the fuzzification step, data are re-
gridded via interpolation onto a common 10 m by 10 min grid
and evaluated via the membership function, becoming a stan-
dard shaped field of values from zero to 1 reflecting degree of
membership in the BL. Both input variables are given equal
weights of 1.

At this stage the algorithm design deviates from the design
of B18. Since the first-generation estimate depends only on
measures of mixing, it relies only on mechanically induced
turbulence and mixing to determine BL height. Buoyancy-
driven processes also play a role in BL development and
are often a dominant process at night when stable bound-
ary layers are more common. In later steps the BL height
estimate from the first-generation step is used as a type of
constraint on the second-generation step. Thus if there is a
complete failure to detect a BL height (presumably in situa-
tions in which the BL depth is driven by buoyancy instead of
mechanically driven processes) in the first-generation step,
the second-generation step is unable to recover. In order to
capitalize on the availability of thermodynamic profiles and
to improve the capability and robustness of our algorithm
during nocturnal hours when the mechanical mixing that
backscatter-based instruments (e.g., Doppler lidar) observe
can be absent or limited to the residual layer (Schween et al.,
2014), the first-generation step also includes temperature in-
version height (Fig. 2c) as an input variable (note: this is not
a measure of mixing). To limit the effect of this additional
input beyond periods where buoyancy-driven processes are
more likely to dominate mechanical generation of mixing
(e.g., nocturnal stable periods), a time-dependent weighting
function is defined based on the local sunrise and sunset time
(Fig. 2d). This weighting function allows the inversion height
to have an effect on the algorithm during the overnight hours
with sloped increasing and decreasing weights during the
evening and morning transitions, respectively. The member-
ship function in this case is stepwise and thus not authenti-
cally a fuzzified field. All levels above and below the inver-
sion height are assigned membership values of zero and 1,
respectively.
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Figure 2. Time–height cross-sections showing the diurnal evolution of CLAMPS1 observations collected on 25 June 2020 in Norman,
Oklahoma, which are used in the fuzzy logic algorithm to produce the aggregate fields and BL height estimates shown in Fig. 3. Panels (a)–
(c) show the variables used in the first-generation step of the fuzzy logic algorithm (a: vertical velocity variance, b: high-frequency vertical
velocity variance, c: temperature inversion height), with the weighting given to panel (c) shown in panel (d) based on sunrise and sunset time,
while panels (e)–(j) show the variables used in the second-generation step of the fuzzy logic algorithm (e: backscatter intensity, f: backscatter
intensity variance, g: u wind, h: v wind, i: temperature, j: water vapor mixing ratio). Panel (a) includes a subsetted window (a1) between
00:00 and 12:00 UTC with a finer color scale to show overnight values of vertical velocity variance. Each observed field is labeled with units
(if applicable) on its respective panel color bar.
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Now that all the first-generation variables are in place, they
are aggregated together by taking a weighted mean. Recall
that w′2 and w′2HF are both assigned a weight of 1. The in-
version height has a time-variable weight ranging from zero
during the day to 2 during the night. The result is one aggre-
gate field representing the degree of membership in the BL
based on these input variables. For our example case (Fig. 2),
the first-generation aggregate is shown in Fig. 3a.

The top of the boundary layer is defined as the first level
where the aggregate value is less than or equal to 0.5, fol-
lowing B18. Using only the first layer where this condition is
met guarantees the identified level is connected to the surface
and not an elevated layer. Using the above-described defi-
nitions and constraints, the first-generation estimates of the
boundary-layer top are compiled. These values will be used
in the second-generation step as constraints within the fuzzy
membership functions.

In the second-generation step, profiles of signal-to-noise
ratio (SNR) (Fig. 2f), SNR variance (Fig. 2e), u-component
wind (Fig. 2g), and v-component wind (Fig. 2h) from the
Doppler lidar are all used, consistent with B18. This algo-
rithm also includes information from CLAMPS thermody-
namic retrievals in the form of potential temperature (Fig. 2i)
and water vapor profiles (Fig. 2j). For all of these profiles,
this algorithm dynamically defines the membership function
for each profile (each time an observation is available) using
the same approach as B18; all profiles are passed through
a discrete Haar (Haar, 1910) wavelet transform to detect
gradients, and membership is defined based on those gradi-
ents. The use of Haar wavelets to identify gradients in lidar
backscatter is not new (e.g., Cohn and Angevine, 2000; Davis
et al., 2000; Brooks, 2003); we extend the approach to ther-
modynamic profiles here.

For each profile considered, a discrete Haar wavelet trans-
form is applied to the profile at each time. The sensitivity of
the Haar wavelet dilation was examined and determined to
be low in this application; a default value of 100 m was used
here. In the case of u- and v-component profiles, the trans-
form is applied to each profile separately, and then the vector
magnitude of the wavelet transform is used in the member-
ship function computation process to follow, following B18.
In all cases, after the transform is applied the five peaks of
greatest magnitude are identified. The height of each of those
peaks is evaluated against the height of the first-generation
boundary-layer-top estimate. Only peaks within 25 % of that
estimate are retained (i.e., the aforementioned constraint).
The membership function is then defined based on the re-
maining peaks:

M(z)=


1, z ≤ zmin

1−
∫ z
zmin

P(z)dz∫ zmax
zmin

P(z)dz
, zmin < z ≤ zmax

0, z > zmax

, (1)

whereM is the membership function, P is the profile of peak
magnitudes, and z is height above the surface. Since only se-

lect peaks are retained, P is nonzero only at the heights of
retained peaks. In this notation, zmin and zmax are the heights
where the lowest and highest peaks occur, respectively. If no
peaks are identified, then no membership function is gener-
ated for the given input and it is not included in the aggre-
gate at that time. This method of defining the membership
function is considered dynamic since it is repeated for each
unique profile, allowing it to change as a function of time.

The second-generation aggregate is produced like the first
– by employing a weighted mean. As mentioned previously,
the membership values from the first-generation step are in-
cluded in this mean with a weight of 1 (except the inver-
sion height; the time-varying weight still applies). Second-
generation variables are all given a weight of 2. Again, the
first level where the aggregate value is less than or equal
to 0.5 is used as the threshold to define the boundary-layer
top. The complete fuzzy-logic-based BL-top detection algo-
rithm is summarized in flowchart form in Fig. 4. The second-
generation estimate of boundary-layer top is the final esti-
mate and is shown for the example case in Fig. 3b.

Since all data were fuzzified onto a common 10 min by
10 m grid, fuzzy logic boundary-layer-top estimates are pro-
vided every 10 min. Given that we know the BL grows and
decays as a physical process, we can use information about
the points surrounding a given point to both smooth extreme
variability in the estimate (which could arise as artifacts of
observation or algorithm limitations) and provide a mea-
sure of that variability for users. A centered triangle window
method (with a width of 1 h) is applied to the 10 min esti-
mates of BL height. Using triangle weighting, a weighted
mean is used to smooth the BL height estimates in time. To
preserve information about variability, all samples within the
centered window are included to compute a standard devia-
tion representative of that mean. The centered triangle win-
dow slides from sample to sample, retaining the 10 min reso-
lution of the provided dataset. The provided output also pro-
vides data on a centered hourly time axis for a more simple
comparison to standard observation platforms such as radar
wind profilers, ceilometers, and radiosondes, which are more
often available precisely on the hour.

In the case shown in Fig. 2 (and in the CLAMPS datasets
described next in Sect. 3), care was taken to understand how
the instruments operated, as well as any quality assurance
applied to the data during their initial collection and pro-
duction, and to determine if any additional quality assurance
was needed before providing the data to the fuzzy logic algo-
rithm. The CLAMPS platform happens to be a highly auto-
mated system which applies a high level of quality assurance
automatically, reducing (but not removing) user needs to fur-
ther quality-assure CLAMPS datasets. This may not always
be the case, and users must understand the potential impacts
data quality may or may not have when providing inputs to
any algorithm. In the case of our fuzzy logic approach, the
physically based definition of membership functions limits in
the first-generation step and the BL height-range constraint
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Figure 3. Fuzzy logic aggregate fields from the first-generation (a) and second-generation (b) steps of the algorithm. BL height estimates are
traced on top of the color-fill aggregate values. Circles show BL height estimates which are computed every 10 min, while the curve shows
the smoothed estimate after passing through a triangle weighting function.

in the second-generation step both provide some safeguard
against entirely artificial or problematic data, but ultimately
users must consider the data quality provided to the algo-
rithm when weighing the quality of BL height estimates.

3 Data

To understand the potential value of our algorithm com-
bining high-resolution boundary-layer profiler observations
from multiple instruments, it is critical that we examine
the algorithm’s output in comparison to reference data. Ra-
diosonde observations are a commonly available and known
source of data that can be used to estimate BL height, though
not without uncertainty (Seidel et al., 2010; Kotthaus et al.,
2023). This uncertainty is explored in order to provide a ref-
erence dataset for comparison to the proposed fuzzy logic
algorithm for BL height. Three observation periods during
which CLAMPS observations and radiosonde data are avail-
able concurrently are used.

3.1 CHEESEHEAD (2019)

The Chequamegon Heterogeneous Ecosystem Energy-
balance Study Enabled by a High-density Extensive Array of
Detectors (CHEESEHEAD) experiment was conducted near

Falls Park, Wisconsin, in midsummer to early fall 2019 (But-
terworth et al., 2021). Primarily sponsored by the National
Science Foundation, additional support from NOAA enabled
the concurrent deployment of CLAMPS1 and CLAMPS2
at Lakeland and Prentice airports, respectively, for approx-
imately 5 weeks of data collection. CHEESEHEAD also in-
cluded radiosonde launches near the WLEF-TV 400 m very
tall tower site, which was approximately 45 km away from
both CLAMPS locations (north of Prentice, west of Lake-
land). The analysis presented in this work will focus on
CHEESEHEAD observations collected from 19 September
to 10 October 2019.

The CLAMPS1 (located at Lakeland Airport; 45.92° N,
89.73° W) DL collected plan position indicator (PPI) scans at
70° elevation every 20 min and remained in a zenith-pointing
mode otherwise. The DL provides range-resolved, line-of-
sight measurements of radial velocity, intensity (signal-to-
noise ratio (SNR)+ 1), and attenuated backscatter. In the
case of PPI scans meant for velocity azimuthal display
(VAD) analysis, these data are post-processed to produce
profiles of horizontal wind speed and direction. The zenith-
pointing scans are used for vertical velocity information and
are post-processed to provide turbulence information such as
vertical velocity variance. The DL was configured to provide
profiles with 18 m vertical spacing. The CLAMPS1 MWR
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Figure 4. A flowchart visualization of the fuzzy logic algorithm steps used to detect boundary-layer height using multiple instruments on
board the CLAMPS platform.

and AERI were both deployed, and thermodynamic profiles
as retrieved by the TROPoe physically based algorithm (pre-
vious versions known as AERIoe; Turner and Löhnert, 2014)
were made available every 10 min. For different user needs
and use cases we provided retrievals using only AERI data,

only MWR data, and combining the data from both the AERI
and the MWR in the TROPoe retrieval algorithm. In this
study we use the combined AERI+MWR thermodynamic
retrievals.
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The CLAMPS2 facility (located at Prentice Airport;
45.54° N, 90.28° W) operated similarly, but the DL collected
PPIs at 60° elevation every 5 min. The onboard MWR was
deployed similarly, but CLAMPS2’s AERI was damaged in
transit and did not operate for CHEESEHEAD. As such,
CLAMPS2 retrievals are limited to MWR only. For the
analysis presented herein, we chose to exclude CLAMPS2
CHEESEHEAD data from this analysis in order to remove
any potential differences resulting from data sources, as it
would have otherwise been the only non-AERI-based ther-
modynamic data source.

3.2 NWC/RIL (2020)

By summer 2020, planned CLAMPS field missions were
canceled due to the 2019 global SARS-CoV pandemic. Un-
der the uncertainty of when those missions may resume or
be rescheduled, a local deployment was organized between
the National Weather Center (NWC) and Radar Innovation
Lab (RIL) properties in Norman, OK, to evaluate instru-
ment readiness (near 35.1816° N, 97.4398° W). This deploy-
ment included the CLAMPS1 platform, which operated from
4 June–8 August 2020. This deployment location is within a
short walk of the Norman, Oklahoma, National Weather Ser-
vice upper-air release point. The DL conducted 70° elevation
PPI scans, providing horizontal wind profiles every 5 min,
and operated in vertical stare mode at all other times. The
thermodynamic retrieval algorithm included both AERI and
MWR observations; profiles are available every 10 min.

3.3 PBLTops (2020)

As part of an experiment seeking to develop this method
and validate the dual-polarization radar-based boundary-
layer detection method proposed in Banghoff et al. (2018),
both CLAMPS platforms were deployed and continuously
collected data from 21 August 2020 until 24 Septem-
ber 2020. During this period, CLAMPS2 remained sta-
tionary at The University of Oklahoma’s North Campus
(35.237° N, 97.463° W), 6.7 km north-northwest of the Nor-
man, Oklahoma, National Weather Service (OUN) upper-
air release point. In contrast, CLAMPS1 was deployed
at the Kessler Atmospheric and Ecological Field Station
(KAEFS; 34.984° N, 97.516° W), 29.6 km south-southwest
of the CLAMPS2 site, from 21 August until 3 September
2020; for the remainder of the period, CLAMPS1 was de-
ployed at the Shreveport National Weather Service Office
in Shreveport, Louisiana (SHV; 32.452° N, 93.842° W), with
collocated radiosonde launches. For both CLAMPS plat-
forms, the DL conducted 70° elevation PPI scans, provid-
ing horizontal wind profiles every 10 min, and operated in
vertical stare mode at all other times. The thermodynamic
retrieval algorithm included both AERI and MWR observa-
tions with profiles available every 10 min.

3.4 Radiosonde observations

Research radiosondes from the CHEESEHEAD campaign
(Vaisala research-grade radiosondes processed by the Na-
tional Center for Atmospheric Research; NCAR/EOL In-
Situ Sensing Facility and University of Wisconsin-Madison
SSEC, 2019) and operational National Weather Service ra-
diosondes at OUN from the NWC/RIL and PBLTops cam-
paigns make up the high-resolution radiosonde dataset.
These soundings have a mean vertical resolution of approx-
imately 5 m in the lowest 3 km and the exact launch time
recorded. Operational radiosondes are typically launched
only twice per day for 00:00 and 12:00 UTC observations. In
cases of forecast need, special radiosondes are occasionally
launched at other times, usually at a 6-hourly interval. During
CHEESEHEAD, radiosondes were nominally launched once
daily at 18:00 UTC. During two intensive periods the launch
frequency increased to four times daily. CLAMPS was only
deployed during one of those periods which occurred from
23 to 28 September 2019. To prevent erroneous BL height es-
timates due to minor localized fluctuations in the vertical pro-
files (particularly for gradient-based calculations), the sound-
ings were interpolated to a fixed grid with a 20 m vertical
spacing and smoothed using a third-order Savitzky–Golay
filter (Savitzky and Golay, 1964). Using all the CHEESE-
HEAD radiosondes – since they have constant vertical spac-
ing already – all BL height estimation methods (discussed
below) and the median of the estimates were compared on
the original radiosonde vertical grid and with 100, 300, and
500 m smoothing windows applied (Fig. 5). Overall, BL
height estimates all collapse to the diagonal of the scatterplot,
indicating one-to-one agreement of most data points. The
100 m window points are mostly obscured by overlapping
with other points – they are only noticeable by the careful
comparison of shades of other markers. There is some scatter
where smoothing allows for a deeper BL height estimate, but
there are no clear clusters or patterns between 100, 300, and
500 m smoothing windows. While there are some instances
where the BL height estimate from a particular sounding pro-
file with a particular estimation method applied to it can be
noticeably altered, the median estimates were generally un-
changed. Since these comparisons of smoothed BL height
estimates showed weak to no sensitivity to smoothing win-
dow size, the data in this study are smoothed using a 300 m
window.

At SHV during PBLTops and whenever high-resolution
data were otherwise unavailable, coarse-vertical-resolution,
publicly available radiosonde observations were used in-
stead. These radiosondes are provided with data recorded
at mandatory and significant pressure levels. According to
Schwartz and Govett (1992) these levels are determined for
a variety of reasons, including but not limited to consistency
between existing database conventions at the time of align-
ment. The resulting vertical resolution varies with height
with an average spacing of 300 m; in the lower levels spacing
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Table 2. Methods used to determine BL height from observed radiosonde data. Adapted from Seidel et al. (2010).

Number Type Variable Method Reference

1 parcel θv Height where θv profile equal to θv,sfc Holzworth (1964)
2 methods θv Height where θv profile equal to (θv,sfc+ 0.6 K) Coniglio et al. (2013)

3 gradient θ Height with maximum θ gradient Oke (1988), Stull (1988)
4 methods qv Height with minimum qv gradient Ao et al. (2008)
5 RH Height with minimum RH gradient Seidel et al. (2010)

6 inversion T Top of surface-based temperature inversion Bradley et al. (1993)
7 methods T Bottom of elevated temperature inversion Seidel et al. (2010)

Figure 5. CHEESEHEAD sounding BL height estimates at the
original vertical resolution compared with those from when 100,
300, and 500 m Savitzky–Golay smoothing is applied. The marker
styles reference the BL height estimation technique, where an
X marker indicates the median of all methods, and numbered mark-
ers reference the methods as they are listed in Table 2.

is on the order of tens of meters, and in the upper levels spac-
ing is on the order of several hundred meters. No smooth-
ing was performed for the coarse soundings. Because exact
launch times were not available for the coarse soundings, a
launch time 1 h before the nominal time was assumed as per
National Weather Service manual documentation of observa-
tion procedures (e.g., soundings denoted as 12:00 UTC were
assigned a launch time of 11:00 UTC; National Weather Ser-
vice, 2010).

Radiosondes were used to estimate BL height as a compar-
ison for the fuzzy logic algorithm output. Numerous methods
for estimating the BL height from radiosonde data have been
proposed. BL height is a parameter which tends to be de-
fined based on the application and data availability at hand.
A one-size-fits-all definition has not been agreed upon in the

meteorological community, its sub-communities, or tangen-
tial communities. Here, we utilize an ensemble of seven BL
detection methods following Seidel et al. (2010). Our rea-
soning here is twofold. On one hand, it is useful to know if
the fuzzy logic algorithm tends to match some methods more
than others. This may mean the algorithm is more applicable
in some settings or some important information is missing.
On the other hand, and perhaps most interestingly, having
an ensemble of estimates of BL height estimates provides a
pseudo-measure of spread or uncertainty in the radiosonde
estimation process itself. Large disparities between the given
methods may suggest a more complex BL structure, increas-
ing the level of difficulty for automated BL height detection.

The first of the seven radiosonde-based methods described
in Seidel et al. (2010), also known as the “parcel method”,
finds the height at which the profile of virtual potential tem-
perature θv becomes equal to the surface value. The sec-
ond method extends this by adding 0.6 K to the surface θv
value to prevent erroneously shallow BL estimates during the
evening transition (Coniglio et al., 2013). The third, fourth,
and fifth methods find the height of the maximum gradient
of potential temperature θ , minimum gradient of water vapor
mixing ratio qv, and minimum gradient of relative humid-
ity, respectively. The last two methods are inversion-based
and find the top of any surface-based temperature inversion
and the bottom of the lowest elevated temperature inversion
layer, respectively. These methods are summarized in Ta-
ble 2. To achieve an overall singular estimate of BL height
from each sounding, the median of all available estimates is
taken. To understand variability across the methods, the 25th
and 75th percentile BL height estimate values are retained
from the suite of methods. This approach was chosen as an
outlier-resistant way to gather information about the variabil-
ity among radiosonde-based BL height estimation methods.

Seidel et al. (2010) found that while coarse data can be
sufficient to detect BL height, the use of high-resolution data
can change the estimate in statistically significant ways. A
comparison of the medians of radiosonde-derived BL heights
in cases where high-resolution and coarse data were both
available is shown in Fig. 6. This comparison initially ap-
pears to support the Seidel et al. (2010) findings. While many
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of the afternoon and early evening soundings are close to
the one-to-one line, several of the morning soundings fall
to the right and below the one-to-one line, suggesting the
high-resolution-based estimates are lower than the coarse
estimates. The “error” (more accurately, uncertainty) bars,
which represent the spread (i.e., interquartile range) of BL
heights detected by the seven methods, also appear to cover
a wider range for the high-resolution soundings. However,
if we further examine the comparison by looking at indi-
vidual methods separately (Fig. 7), we find slightly differ-
ent results than those in Seidel et al. (2010). Their results
showed that methods computed from the surface up, such as
the parcel- and inversion-based methods, were most sensi-
tive to profile resolution, while Fig. 7 suggests that gradient-
based methods are most sensitive in our dataset. Analyzing
the methods separately highlights that using high-resolution
sounding data tends to lead to lower median BL height,
but the ranges and interquartile range values do not change
much between coarse- and high-resolution datasets. To be
certain, we conducted 10 000 bootstrap resampling analyses
for each method to evaluate if the median and interquartile
range values were significantly different between high- and
coarse-resolution datasets. We found with 95 % confidence
that there were no statistically significant differences. There
is no indication from this analysis that using high-resolution
data necessarily yields more accurate BL height values, and
often users have access only to data that we have classified
here as coarse-resolution (i.e., publicly available and acces-
sible National Weather Service radiosonde datasets). Our in-
tention with this analysis is to understand and consider pos-
sible implications of including different-resolution sound-
ing datasets. Moving forward, we use high-resolution sound-
ing data when they are available. If they are not available a
coarse-resolution radiosonde profile is used instead.

4 BL height estimate comparisons

Now we aim to understand how the fuzzy logic algorithm
applied to CLAMPS data performs by comparing the result-
ing BL height estimates to BL height estimates from avail-
able radiosonde data. We use all the periods described in
Sect. 3, always using high-resolution radiosonde profiles un-
less they are not available (e.g., some OUN launches during
NWC/RIL and PBLTops; all SHV launches). All instances
when a radiosonde value and fuzzy logic BL estimate are
available at the same time (within ± 30 min) and place are
shown together in Fig. 8. In Sect. 3.4, examination of the
methods summarized in Seidel et al. (2010) highlights po-
tential variability in BL height estimation based on radioson-
des. In Fig. 9, the comparison from Fig. 8 is repeated for each
method independently. Root mean square error (RMSE), cor-
relation (r), and bias (computed for all values and computed
only for instances when the BL height is 1 km or greater) are
also shown. Upon visual inspection of the different methods,

Figure 6. Comparison of BL heights derived from coarse, publicly
available National Weather Service radiosonde data and BL heights
derived via identical methods using the full-resolution radiosonde
data not available on public archives. Points are color-coded based
on nominal launch hour. Error bars (gray) represent the spread of
BL heights derived from all methods described in the text as deter-
mined from the 25th and 75th percentiles.

Figure 7. Box-and-whisker diagrams comparing radiosonde-based
BL height estimates from coarse-resolution (dark shades) and high-
resolution (light shades) datasets. Each box plot pair represents one
radiosonde-based BL height estimation method (or, on the far left,
the median of all methods). Only radiosonde profiles for which we
had both coarse- and high-resolution data are included in this anal-
ysis. The cross-bars mark median values.

the comparisons between BL heights from radiosondes and
BL height estimates from the fuzzy logic algorithm applied
to CLAMPS observations take on different characteristics.
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Figure 8. Comparison of CLAMPS-derived BL heights and median
radiosonde-derived BL heights. Error bars (gray) indicate the range
of BL heights detected within ± 30 min and the full range of BL
heights from each method for the CLAMPS and radiosonde data,
respectively.

For example, the modified parcel method (Fig. 9b) shows
most BL height comparisons (not occurring at 12:00 UTC)
collapsing toward the one-to-one line, indicating agreement
between the approaches about the BL height. The correlation
value when comparing fuzzy logic BL height to radiosonde-
based BL height using the modified parcel method is the
highest of all methods at 0.835. Conversely, using the ele-
vated inversion method (Fig. 9g) in the comparison results in
radiosonde-based BL height estimates nearly always being
higher than those derived from the fuzzy logic algorithm ap-
plied to CLAMPS observations. In this instance, the correla-
tion value is the lowest of all methods at 0.338. Selecting any
one of these methods for deriving BL height from radioson-
des could impact our understanding of the performance of
the fuzzy logic algorithm applied to CLAMPS observations,
since it would define the baseline against which the algorithm
is compared. No one method is necessarily known to be more
accurate than the others. In the absence of a well-justified or
well-known definition of the top of the boundary layer that
can be applied here, we proceed hereafter using the median
of all methods (i.e., Fig. 8). We retain information about the
range of BL height estimates produced by all the methods in
the form of the interquartile range of BL height values. This
approach allows us to have an outlier-resistant way to mea-
sure large variability across the radiosonde-based methods,
which can suggest uncertainty in the radiosonde-based BL
height estimate.

From the bulk comparison shown in Fig. 8, a few things
become immediately apparent. The fuzzy logic method ap-
plied to CLAMPS observations is more likely to estimate
a lower BL height than radiosondes. This is especially true

in the afternoon hours, which correspond to 18:00 and
21:00 UTC for the areas where these observations were col-
lected. No 21:00 UTC BL height comparisons (shown in yel-
low in Fig. 8) fall on or below the one-to-one line. The ma-
jority of 18:00 UTC and most 00:00 UTC BL height com-
parisons also trend above the one-to-one line, suggesting the
fuzzy logic method applied to CLAMPS observations esti-
mates a shallower BL. Earlier hours (06:00 and 12:00 UTC)
do not demonstrate as much of a signal. While radiosondes
generally cannot capture the temporal evolution of the BL
in the same way remote sensors can, during the CHEESE-
HEAD campaign there is a window during which more fre-
quent radiosonde releases are available. This period provides
an opportunity to examine the fuzzy logic algorithm’s behav-
ior compared to radiosondes as a function of time in a dif-
ferent way. A series of fuzzy logic outputs following Fig. 3
for 4 d spanning 24–27 September 2023 is shown in Fig. 10.
While there are differences on each day, these comparisons
generally agree with what Fig. 8 shows: BL height estimates
from soundings in earlier hours, in this case launches close
to 12:00 and 14:00 UTC, agree more with the fuzzy logic
estimates than afternoon sounding BL height estimates (i.e.,
launches from 18:00 and 21:00 UTC).

In Fig. 8, every available radiosonde–CLAMPS BL height
estimate pair is compared without consideration of the at-
mospheric conditions at the time of the observation. In or-
der to better understand the potential causes of discrepancies
between the radiosonde and CLAMPS-based BL height es-
timates and ensure a robust comparison, each matched pair
was manually interrogated for inclusion or exclusion in a
similar approach as in Banghoff et al. (2018). In our case,
criteria for exclusion were developed to describe instances in
which discrepancies between CLAMPS and radiosonde BL
heights may not necessarily reflect the intrinsic performance
of the proposed algorithm. These criteria were as follows:

1. ambiguous cases where the BL height was unable to
be confidently determined from the radiosonde data as
multiple methods failed to identify BL height at all or
identified levels that upon visual inspection were likely
related to other structures (e.g., residual layer, clouds);

2. cases where CLAMPS observations were not able to be
collected over a deep enough layer to capture the likely
full depth of the BL (primarily DL observations due to
a lack of scatterers);

3. cases where the BL top (e.g., entrainment layer or
capping inversion) was deep and the radiosonde and
CLAMPS methods identified different parts of this tran-
sition region; and

4. cases with complex and/or non-canonical BL structures
(e.g., multiple inversions, low-level cloud layers).

To identify cases for exclusion, both authors independently
evaluated each time-matched CLAMPS and radiosonde pro-
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Figure 9. As in Fig. 8, but for each of the seven individual BL height detection methods shown in Table 2. Root mean square error (RMSE),
R2, and bias (computed for all values and computed only for cases when the BL height is 1 km or greater) for each of the methods are shown
in the table.
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Figure 10. Fuzzy logic second-generation aggregates are shown based on CLAMPS1 observations from 4 d spanning 24–27 September 2019
during the CHEESEHEAD campaign. Soundings launched four times daily are overlaid on the aggregates, where the circle shows the median
sounding BL height based on all sounding methods and the bars represent the interquartile range of BL heights from all sounding methods.

file to determine whether one or more of these criteria were
met without respect to how their BL height estimates com-
pared, then discussed and reconciled any differences. These
criteria were used to successively exclude data pairs and get
a better sense of algorithm performance. As each criterion
was applied successively, more pairs were removed from the
comparison dataset as summarized in Table 3. Starting with
168 data pairs, 104 remained after all criteria were applied.
The same set of statistics that were examined in the method
comparison (r , bias, RMSE) is computed for each succes-
sively reduced dataset and shown in Table 3.

Figure 11 shows comparisons of BL depth from CLAMPS
and radiosondes for each sequential exclusion. Removing the
cases where the BL height was ambiguous in the radiosonde
data according to criterion (1) does not make much visual
impact on the comparison (Fig. 11a). The pairs that are ex-
cluded follow no obvious pattern. They likely should not be
expected to; cases where defining the BL height was ambigu-
ous should lead to the CLAMPS-based method both over-
and underestimating BL height compared to the radiosonde
estimates without any physically defined trend. The same is
not true for cases where the BL is too deep for the CLAMPS
platforms to collect measurements over its full depth (crite-
rion (2); Fig. 11b). These pairs are primarily found on the up-
per left side of the comparison diagram, meaning CLAMPS-
based methods are underestimating these pairs. These cases
occur in conditions where the CLAMPS observing systems
simply cannot observe to a high-enough level above the sur-
face. The algorithm’s first step relies most heavily on DL-
observed variables. If the BL is quite deep or for a variety
of reasons (e.g., recent precipitation or other air mass char-
acteristics) the scatterer load is low, the DL will not be able

to reach levels above the surface where the BL height may
reside. It is also true that the effective resolution of the ther-
modynamic profiles available from the platforms on board
CLAMPS decays with increasing height above the surface.
An exceptionally deep BL is simply difficult for the instru-
ments on board to sample, and therefore the algorithm will
also not be able to retrieve those BL height values well. With
these pairs removed the comparison overall improves. Mov-
ing to a more quantitative comparison made available to us
via statistics computed in Table 3, we see that the statistics
generally improve when criterion (1) is applied. The r value
modestly increases, while bias and RMSE both improve by
32.4 and 85.9 m, respectively. The percent bias also shows a
decrease. When criterion (2) is additionally applied the im-
provements are more apparent. The r value increases further
to 0.846. The bias and RMSE value improvements are the
largest when this criterion is applied compared to any of the
other criteria; the bias improves by 80.7 m and RMSE by
108.6 m. Percent bias also improves most drastically in this
case. The pairs removed by criterion (2) are concentrated at
greater BL height values, likely resulting in large improve-
ments to statistics like bias. On the other hand, removals
based on criterion (1) did not appear to follow any pattern,
so improvements were distributed, resulting in more subtle
impacts on the statistics.

Compared to Fig. 11b, Fig. 11c, which excludes criteria
(1)–(3) including cases where the radiosonde and CLAMPS-
based methods identified different parts of the BL top, shows
fewer pairs in the area just above the one-to-one line. This
suggests that when the two methods detect different parts of
the BL top, the CLAMPS-based method is more likely to find
a BL height closer to the surface. This makes sense as the
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Table 3. Values computed for r , bias, and RMSE based on comparisons between the proposed fuzzy logic algorithm BL height estimates
and radiosonde-based BL height estimates. The data source provides information about the campaign period and which CLAMPS platform
collected observations which were then passed through the fuzzy logic algorithm.

Data source Exclude none Criterion 1 Criteria 1+ 2 Criteria 1+ 2+ 3 Criteria 1+ 2+ 3+ 4 (all)

CHEESEHEAD (C1) 28 26 19 19 17
PBLTops/OUN+NWC/RIL (C1) 73 65 49 44 43
PBLTops/OUN (C2) 21 20 17 12 12
PBLTops/SHV (C1) 47 42 40 34 32
Exclusion percentage 0 10.2 27 34 37.8
r 0.804 0.827 0.846 0.839 0.841
Bias (m) −294.2 −261.8 −181.1 −160 −168.6
Bias (%) −36.4 −33.5 −29.9 −32.9 −34.8
RMSE (m) 512.8 464.9 356.3 334.9 338.4

Afternoon/ Overnight/
evening morning

Count 37 67
r 0.618 0.525
Bias (m) −217.7 −111.7
Bias (%) −20.8 −42.5
RMSE (m) 450.1 256.6

fuzzy logic algorithm is a bottom-up algorithm that searches
for the first point above the surface where the membership
value crosses a threshold. As discussed previously, there is
variability among chosen methods in how BL height is esti-
mated from radiosonde data, and this is a scenario in which
that variability can be important. Finally, Fig. 11d shows
the comparison with all exclusion criteria applied (now ad-
ditionally excluding complex BL structures). Compared to
Fig. 11c, there are not obvious differences. The additional
exclusions occur both above and below the one-to-one line.
As for the ambiguous BL cases, this makes some sense as
complex BL structures should not be expected to follow spe-
cific patterns, and we see the CLAMPS-based method both
over- and underpredict BL height for these cases.

With all the exclusions applied, we can use the final set of
remaining pairs shown in Fig. 11d as the so-called best cases
for comparing the fuzzy logic algorithm to radiosonde-based
BL heights. Differences in this comparison can be more di-
rectly attributed to characteristics of the proposed CLAMPS
algorithm, or in other words these cases are those where the
BL conditions are well-enough understood and represented
by both sets of observation platforms for the comparison
to be made. Many of the comparison pairs fall close to the
one-to-one line, suggesting fairly good agreement between
the fuzzy logic and radiosonde-based BL heights. When the
pairs are not close to the one-one-line they tend to be above
it, which indicates that in some cases the fuzzy logic algo-
rithm applied to CLAMPS observations still leads to an un-
derestimation of BL height compared to radiosonde-based
BL heights. In this best-case comparison, we still see that the
overnight and morning pairs (i.e., 06:00 and 12:00 UTC) are
clustered together in the lower left side of Fig. 11b, which
makes it difficult to examine patterns more closely. To bet-

ter understand how the fuzzy logic algorithm compares to
the radiosonde-based BL height estimates, we broke the best-
case pairs with all exclusions applied into overnight–morning
pairs (i.e., between 02:00 and 15:00 UTC) and afternoon–
evening pairs (i.e., between 15:00 and 02:00 UTC the fol-
lowing day). Again, r , bias, percent bias, and RMSE are
computed, but now for these subgrouped pairs based on
time of day (values are reported in Table 3). The overnight–
morning group (of the best case pairs) is a larger group
than the afternoon–evening group. The r value is lower in
the overnight–morning group, while both bias and RMSE
appear to be improved compared to the afternoon–evening
group. This is misleading, however, as a bias of 100 m in the
overnight or morning hours is much more impactful than dur-
ing the afternoon hours when the BL is fully developed and
much deeper. Percent bias may be more informative, since it
is expressed in terms of a percentage of the absolute value
of the reference value (in this case, the radiosonde BL height
estimates are the reference values). The morning percent bias
(−42.5 %) is roughly twice the afternoon bias (−20.8 %), re-
flecting the difference in relative scale between the morning
and afternoon BL. In any case, these subgroups show differ-
ent results than the full best-case pairs group, suggesting that
the time of day has an impact on the comparison between the
radiosonde-based estimates and the fuzzy logic algorithm.
With more frequent and regularly available radiosondes, this
analysis could lead to a deeper understanding of the impact
that time of day has on the performance of the fuzzy logic
algorithm itself.
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Figure 11. As in Fig. 8, but with the exclusion of pairs to which criterion (1) applies (a) and successive exclusion of pairs to which criteria (1)
and (2) apply (b), to which criteria (1)–(3) apply (c), and to which all criteria (1–4) apply (d).

5 Summary and outlook

In this work, we present a fuzzy logic approach for esti-
mating BL height that incorporates kinematic and thermo-
dynamic observation data streams into a multi-instrument
value-added product. This algorithm expands from the work
of Bonin et al. (2018), specifically by including thermody-
namic profiles. The fuzzy logic algorithm follows a two-
step process to produce BL height estimates using various
input observations from the kinematic and thermodynamic
observing platforms on board the CLAMPS facilities. Out-
put is produced every 10 min along with standard deviations
from an hour-wide centered sliding window. While this al-
gorithm was developed for use with the CLAMPS platforms
(i.e., a Doppler lidar, infrared spectrometer, and microwave
radiometer), it could be applied to or adapted for similarly
instrumented facilities such as but not limited to the Depart-
ment of Energy’s Atmospheric Radiation Measurement pro-
filing facilities.

To characterize and understand how the presented algo-
rithm performs, it is compared with radiosonde data collected
from three periods: the CHEESEHEAD project in Wisconsin
during the fall of 2019, the NWC/RIL deployment in Ok-
lahoma during summer 2020, and the PBLTops project in
Oklahoma and Louisiana during summer and fall 2020. To
make sure these comparisons are well suited, various im-
pacts of radiosonde data resolution are examined (i.e., im-
pacts of vertical spacing on gradient calculations and high-
resolution versus coarse-resolution comparisons). This anal-
ysis does not aim to present the most correct method for com-
puting BL height from radiosondes, but it shows the differ-
ences between methods and possible variability that can be
introduced when including sounding datasets with different
resolutions.

Comparisons are conducted in two ways, the first of which
is a bulk comparison of all instances when a radiosonde-
based estimate and fuzzy logic estimate of BL height are
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available at the same time (within ± 30 min) and place.
Through this analysis we show that the fuzzy logic algorithm
often results in lower BL height estimates than radiosonde-
based methods (especially in the afternoon hours). When
examining this comparison more closely, we find sensitiv-
ity to the exact BL height estimation method applied to ra-
diosonde data as expected. As was the case for the analysis
of radiosonde data resolution, we do not intend to offer any
one radiosonde-based BL height estimation method as pre-
ferred. In our application, using the median provides a basis
for comparison, and the 25th and 75th percentile BL height
estimate values are retained from the suite of methods as an
outlier-resistant measure of variability. However, this sensi-
tivity to BL height estimation method (and potentially to the
resolution of radiosonde data, as noted above) presents a non-
trivial complicating factor for any use case. It is also a factor
worth considering for comparing findings across past studies.

Comparisons are again conducted, but this time consid-
eration is given to the atmospheric conditions at the time
of the matched radiosonde–CLAMPS profile observation
with the intention of understanding and eliminating extrinsic
causes for discrepancies between the radiosonde-based BL
estimates and results from the fuzzy logic algorithm. Each
radiosonde–CLAMPS observation pair was manually inter-
rogated and either included or excluded. Criteria for exclu-
sion can be summarized as follows: (1) ambiguous, (2) BL
too deep for CLAMPS observation capability, (3) deep BL
top (e.g., deep capping inversion or entrainment layer), and
(4) complex and/or non-canonical. The exclusions are ap-
plied successively, eventually leading to a final subset of best
cases in which the BL conditions are well-enough understood
and represented by both sets of observation platforms for a
robust comparison to be made between the fuzzy logic algo-
rithm and radiosonde-based BL height estimates. This com-
parison suggests fairly strong agreement between the tech-
niques, but still with a maintained pattern of the fuzzy logic
algorithm applied to CLAMPS observations underestimat-
ing BL height compared to the median of radiosonde-based
methods. Given the instrumentation types included in the al-
gorithm development and evaluation (Doppler lidar, infrared
spectrometer, microwave radiometer), we speculate that even
in the best-case comparisons, remote-sensing-based observa-
tions are simply more inclined to detect the lowest possible
indication of BL height (especially in cases where the BL top
itself may be a layer with appreciable depth). These types of
instruments are also more likely to lose measurement capa-
bility and resolution with distance from the surface. These
reasons could combine to result in systematically lower esti-
mates of BL height than those provided by in situ platforms
like radiosondes.

Unlike some similar algorithms, this approach has the ca-
pability to utilize thermodynamic observation information
and kinematic observation information to provide BL height
estimates throughout the diurnal cycle. Specific analysis is
focused on the early morning and late overnight periods.

While some statistics included suggest perhaps even minor
improvement compared to the daytime group, this may be a
misleading result. For example, a bias of 100 m means some-
thing different when the BL height is O(100 m), which is
common in the overnight and morning hours, compared to
O(1000 m) BL height values in a fully developed daytime
and afternoon BL. More data are needed in this comparison
to understand the role time of day plays in how the fuzzy
logic algorithm behaves. More data could provide the oppor-
tunity to build time-dependent samples or to develop tem-
poral normalization approaches to control for this important
sensitivity.

There are various techniques for observing the lower at-
mosphere, which individually offer an incomplete picture of
the processes that characterize the BL. Methods of BL char-
acterization, including BL height, can be subjective. These
sources of ambiguity in understanding the BL can be ad-
dressed through synergistic combination of observation tech-
niques. Kotthaus et al. (2023) describe the potential for in-
strument synergy to advance methodologies and products
and to provide value in process studies and applications.
Specifically, they identify the potential of using multiple ob-
serving platforms to extend detection capabilities beyond
those of individual platforms, suggested assessment of un-
certainty among techniques, and employment of advanced
retrieval techniques (e.g., fuzzy logic). The fuzzy logic algo-
rithm presented in this work combines Doppler lidar, infrared
spectrometer, and microwave radiometer observations to pro-
duce relatively high-resolution BL height estimates with an
assessment of uncertainty or variability. In the last 5 years,
there has been a flurry of renewed interest in BL height
retrieval capabilities of the NWS NEXRAD network (e.g.,
Banghoff et al., 2018; Comer et al., 2023; Della Porta, 2024;
Loeffler and Davies, 2024; Stensrud et al., 2024; Stouffer et
al., 2024). Algorithms such as the one described in this study,
which produce an independent reference dataset of the full
diurnal evolution of PBL height to compare against, will pro-
vide important context for validating these novel BL height
monitoring methods. To this end, a follow-on study to the
present work explores using BL height estimates from this
fuzzy logic algorithm applied to CLAMPS observations to
gain insight into radar-based boundary-layer height estimates
in ways that temporally limited radiosonde profiles cannot.
While in its first testing iteration, the fuzzy logic algorithm
has already been deployed in research comparing BL height
methods across research-grade tools during the CHEESE-
HEAD project (Duncan et al., 2022). It is currently in use
for ongoing research related to several recent field programs
and deployments on which CLAMPS has been deployed
such as the TRacking Aerosol Convection interactions Ex-
peRiment (TRACER) and the American WAKE experimeNt
(AWAKEN). The algorithm has been de facto integrated into
the suite of tools frequent CLAMPS users implement in their
own research, and there are plans to explore implementing it
as part of the data system workflow as a value-added product
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for standard CLAMPS operations. To facilitate further ap-
plications and use cases the fuzzy logic BL height detection
algorithm implementation has been made available on a dedi-
cated GitHub repository, BLISS-FL (Boundary-Layer height
Inferred through multi Sensor Synergy-Fuzzy Logic; see the
“Code and data availability” statement for access informa-
tion). In the spirit of open science, making the algorithm
available encourages collaboration, adaptation, and exten-
sion for ongoing algorithm refinement and enhancement. We
invite readers to engage with the algorithm, contribute to its
development, and apply it to diverse problems and datasets.

Code and data availability. Observations used in
this work are available in Zenodo repositories
(https://doi.org/10.5281/zenodo.12636990, Klein et al., 2020;
https://doi.org/10.5281/zenodo.12636936, Smith et al., 2019;
https://doi.org/10.5281/zenodo.12636930, Smith et al., 2020)
in addition to the main CLAMPS archive hosted on the NSSL
THREDDS server at https://data.nssl.noaa.gov/thredds/catalog/
FRDD/CLAMPS.html (last access: 3 May 2023). The fuzzy
logic algorithm project is hosted in a GitHub repository at
https://github.com/OAR-atmospheric-observations/bliss-fl (last
access: 3 May 2023; https://doi.org/10.5281/zenodo.12641260,
Smith, 2024).
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