
Atmos. Meas. Tech., 17, 4137–4152, 2024
https://doi.org/10.5194/amt-17-4137-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Retrieval and analysis of the composition of an aerosol mixture
through Mie–Raman–fluorescence lidar observations
Igor Veselovskii1, Boris Barchunov1, Qiaoyun Hu2, Philippe Goloub2, Thierry Podvin2, Mikhail Korenskii1,
Gaël Dubois2, William Boissiere2, and Nikita Kasianik1

1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Univ. Lille, CNRS, UMR 8518, Laboratoire d’Optique Atmosphérique (LOA), 59650 Lille, France

Correspondence: Philippe Goloub (philippe.goloub@univ-lille.fr)

Received: 5 February 2024 – Discussion started: 12 February 2024
Revised: 5 May 2024 – Accepted: 16 May 2024 – Published: 15 July 2024

Abstract. In the atmosphere, aerosols can originate from nu-
merous sources, leading to the mixing of different particle
types. This paper introduces an approach to the partitioning
of aerosol mixtures in terms of backscattering coefficients.
The method utilizes data collected from the Mie–Raman–
fluorescence lidar, with the primary input information being
the aerosol backscattering coefficient (β), particle depolar-
ization ratio (δ), and fluorescence capacity (GF). The fluo-
rescence capacity is defined as the ratio of the fluorescence
backscattering coefficient to the particle backscattering coef-
ficient at the laser wavelength. By solving a system of equa-
tions that model these three properties (β, δ and GF), it is
possible to characterize a three-component aerosol mixture.
Specifically, the paper assesses the contributions of smoke,
urban, and dust aerosols to the overall backscattering coeffi-
cient at 532 nm. It is important to note that aerosol properties
(δ and GF) may exhibit variations even within a specified
aerosol type. To estimate the associated uncertainty, we em-
ploy the Monte Carlo technique, which assumes that GF and
δ are random values uniformly distributed within predefined
intervals. In each Monte Carlo run, a solution is obtained.
Rather than relying on a singular solution, an average is com-
puted across the whole set of solutions, and their dispersion
serves as a metric for method uncertainty. This methodol-
ogy was tested using observations conducted at the ATOLL
(ATmospheric Observation at liLLe) observatory, Labora-
toire d’Optique Atmosphérique, University of Lille, France.

1 Introduction

Studying the physicochemical properties of atmospheric
aerosols is crucial for understanding their impact on Earth’s
radiation balance and climate. To simplify the complexity
of aerosol composition, it is essential to classify aerosol
types. Categorization of aerosols into several basic types,
e.g., urban, dust, marine, and biomass burning (Dubovik
et al., 2002), allows the range of variability of observed
aerosol parameters to be covered and the analysis and in-
terpretation of aerosol data to be facilitated. The multi-
wavelength Mie–Raman and HSRL (High Spectral Reso-
lution Lidar) lidar systems provide a unique opportunity
to derive height-resolved particle intensive properties, such
as Ångström exponents, lidar ratios, and depolarization ra-
tios at multiple wavelengths. These properties can be used
as inputs for classification schemes (Burton et al., 2012,
2013; Groß et al., 2013; Mamouri and Ansmann, 2017; Pa-
pagiannopoulos et al., 2018; Nicolae et al., 2018; Hara et
al., 2018; Voudouri et al., 2019; Wang et al., 2021; Mylon-
aki et al., 2021; Wandinger et al., 2023; Floutsi et al., 2024).
However, aerosols in the atmosphere often originate from
multiple sources, leading to the mixing of different particle
types. To understand the impact of different aerosol types
within a mixture, it is necessary to quantify the content of
each type.

In the cases involving mixtures of two aerosol types with
significantly different depolarization ratios, the partitioning
of aerosol backscattering coefficients becomes straightfor-
ward (Sugimoto and Lee, 2006; Tesche et al., 2009; Miffre et
al., 2020). Burton et al. (2014) formulated the mixing rules
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for several aerosol intensive parameters, such as the lidar ra-
tio, backscatter color ratio, and depolarization ratio, and ap-
plied these rules to two-component aerosol mixtures. How-
ever, the partition becomes increasingly challenging when
dealing with more than two types of particles. The limited
number of lidar-measured intensive particle properties spe-
cific to individual aerosol types contributes to this challenge.
Even for a single aerosol type, the measured particle pa-
rameters, such as lidar ratios, demonstrate a wide range of
variability (Floutsi et al., 2023). Distinguishing between ur-
ban and smoke particles poses a particular challenge as these
two types exhibit similar lidar-measured properties (Floutsi
et al., 2023). Therefore, additional independent information
is needed to enhance the characterization of aerosol parame-
ters.

Independent information about aerosol properties can
be obtained through fluorescence lidar measurements (Re-
ichardt et al., 2018, 2023; Veselovskii et al., 2020; Zhang
et al., 2021). The fluorescence lidar allows the fluorescence
backscattering coefficient βF to be evaluated, which is de-
rived from the ratio of fluorescence and nitrogen Raman
backscatters (Veselovskii et al., 2020). The particle intensive
property in fluorescence lidar measurements is the fluores-
cence capacity GF, which is the ratio of βF to the aerosol
backscattering coefficient at the laser wavelength. The fluo-
rescence capacity of smoke is approximately 1 order higher
than that of urban particles, providing a basis for distin-
guishing between these two aerosol types (Veselovskii et
al., 2022). Additionally, recent studies have shown that a
classification scheme relying on two intensive parameters –
the particle depolarization ratio at 532 nm (δ532) and the flu-
orescence capacity, effectively separates four aerosol types:
dust, smoke, pollen, and urban, as demonstrated in the pub-
lication of Veselovskii et al. (2022). It is noteworthy that
the classification scheme in that paper does not discrimi-
nate particles based on their absorption properties, so the
“urban” type encompasses both continental aerosol and an-
thropogenic pollution. Furthermore, maritime aerosol is not
included in the classification at present, as the lidar obser-
vations were performed over Lille, where maritime particles
are not prevalent (though the possibility of its inclusion is
acknowledged).

The algorithm presented in the study of Veselovskii et
al. (2022) showcases the capability to perform aerosol clas-
sification with high spatiotemporal resolution. However, as
mentioned earlier, it is essential to quantify the content of
the mixture. In this study, we extended the approach beyond
classification to partition aerosol mixtures in terms of the
backscattering coefficients of basic aerosol types. To test the
algorithm, we analyzed observations at the ATOLL (ATmo-
spheric Observation at liLLe) at Laboratoire d’Optique At-
mosphérique, University of Lille, between 2020 and 2023,
performed during periods of strong smoke and dust episodes.
We begin by providing a description of the lidar system
(Sect. 2.1), and in Sect. 2.2, a novel approach for mixture

partitioning is presented. In the “Application of the partition
algorithm to lidar observations” section (Sect. 3), we present
three case studies that demonstrate how the algorithm oper-
ates. The paper concludes with a summary of our findings in
the Conclusion section.

2 Experimental setup and approach for aerosol
mixture partitioning

2.1 Lidar system

The Mie–Raman–fluorescence lidar LILAS (LIlle Lidar At-
mosphereS) is equipped with a tripled Nd:YAG laser that
operates at a repetition rate of 20 Hz and has a pulse en-
ergy of approximately 100 mJ at 355 nm. A 40 cm aperture
Newtonian telescope is utilized to collect the backscattered
light, and Licel transient recorders with a range resolution
of 7.5 m are employed to digitize the lidar signals. This con-
figuration allows for simultaneous detection in both analog
and photon counting modes. The objective of the LILAS
system is to detect elastic and Raman backscattering, which
enables the measurement of various properties through the
3β+2α+3δ data configuration. This includes three particle
backscattering coefficients (β355, β532, β1064), two extinction
coefficients (α355, α532), and three particle depolarization ra-
tios (δ355, δ532, δ1064). The particle depolarization ratio, de-
termined as a ratio of cross- and co-polarized components
of the particle backscattering coefficient, was calculated and
calibrated in the same way as described in Freudenthaler et
al. (2009). Additionally, the LILAS system is capable of pro-
filing the laser-induced fluorescence of aerosol particles. This
is achieved using a wideband interference filter with a width
of 44 nm, centered at 466 nm, as suggested by Veselovskii et
al. (2020). Due to the strong sunlight background during day-
time, the fluorescence observations are limited to nighttime
hours.

The calculation of the fluorescence capacity GF can be
performed using backscattering coefficients at any laser
wavelength. In our study, we specifically used β532, as it
is determined using rotational Raman scattering and is con-
sidered to be the most reliable; thus GF =

βF
β532

. To supple-
ment our measurements, additional information about atmo-
spheric properties was obtained from radiosonde measure-
ments conducted at Herstmonceux (UK) and Beauvechain
(Belgium) stations, which are located approximately 160 and
80 km away from the observation site, respectively. The lidar
measurements were primarily conducted vertically. In cases
where observations were made at an angle to the horizon, the
corresponding information has been included in the captions
of the figures.

2.2 Approach for mixture partitioning

The lidar system measures up to nine independent proper-
ties of aerosols. However, our main focus is on the separa-
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tion of the backscatters of individual aerosol types with high
spatiotemporal resolution. To calculate parameters related to
the extinction coefficient, such as the lidar ratio or extinction
Ångström exponent, it is necessary to average lidar profiles
over a substantial spatiotemporal interval. In this study, as
a first step, we use three parameters with high resolution in
both height and temporal domains: the backscattering coeffi-
cient β532, the depolarization ratio δ532, and the fluorescence
capacityGF. Moreover, the calculation process partially can-
cels out the overlap functions, allowing us to derive β532,
δ532, and GF closer to the ground compared to aerosol ex-
tinction. We are considering a scenario where only three ex-
ternally mixed aerosol types occur, such as smoke (s), dust
(d), and urban (u). The aerosol and fluorescence backscatter-
ing coefficients (β532 and βF) are the sum of their respective
contributions.

β532 = β
s
532+β

d
532+β

u
532 (1)

βF = β
s
F+β

d
F +β

u
F (2)

The fluorescence capacities for each aerosol type are

GiF =
βiF

βi532
, (3)

where i = s, d, u. The fractions of β532 for individual aerosol
types are

ηi =
βi532
β532

. (4)

By definition,

ηs+ ηd+ ηu = 1 . (5)

The fluorescence capacity can be expressed as a linear com-
bination of the fluorescence capacities of each aerosol type,
as shown in Eq. (6):

GF = ηsG
s
F+ ηdG

d
F+ ηuG

u
F. (6)

The particle depolarization ratio is a ratio of the cross- and
co-polarized component of the backscattering coefficient:

δ532 =
β⊥532

β
‖

532
. However, for the mixture analysis, the use of the

depolarization potential δ′532 =
δ532

1+δ532
is preferable because

δ′, the same as GF, is a linear combination of the depolariza-
tion potentials of individual particle types (δ′s532, δ′d532, δ′u532),
as outlined by Burton et al. (2014).

δ′532 = ηsδ
′s
532+ ηdδ

′d
532+ ηuδ

′u
532 (7)

Finally, we have a system of three equations, Eqs. (5)–(7),
from which we can determine the relative contributions of
each aerosol type by finding ηs, ηd, and ηu. In our study, we
solve the system (Eqs. 5–7) using the least-squares method

with an additional constraint on the non-negativity of so-
lutions. As mentioned earlier, the particle parameters may
vary within predetermined ranges, even for a specific aerosol
type. However, the exact values of GiF and δ′532 at a specific
height–time pixel are unknown. To address the uncertainty in
ηi , we employ the Monte Carlo technique, assuming that GiF
and δ′532 are random values uniformly distributed within the
predetermined intervals. For each Monte Carlo trial, random
values of GiF and δ′532 are generated. Instead of relying on
a single solution, we conduct a series of Monte Carlo trials
in order to obtain a set of solutions and calculate the aver-
age of this set. The dispersion of these solutions is taken as a
measure of method uncertainty. The number of Monte Carlo
trials was set to 100, and further increase in this number did
not significantly impact either the final average or the dis-
persion of solutions. In our classification scheme, we include
four types of aerosols (smoke, pollen, urban, dust). Neverthe-
less, the system of equations (Eqs. 5–7) consists of only three
equations. Given that it is highly unlikely to have all four
aerosol types coexisting at a single height–time pixel, one of
the four types can be excluded a priori based on a GF–δ532
diagram or other pertinent considerations. Another option is
to exclude one aerosol type at each height–time pixel based
on the lidar data itself, as described below. We will call such
a method automatic type selection (ATS).

For ATS, we solve the system given by Eqs. (5)–(7) for
the triplets (S, P, U), (S, P, D), (S, D, U), and (P, D, U),
where S, D, U, and P denote smoke, dust, urban, and pollen,
respectively. To determine which aerosol types can be ex-
cluded, we use the discrepancy for Eqs. (6) and (7) as a crite-
rion. Specifically, we calculate the difference between the in-
put data (GF–δ532) and the corresponding values obtained by
substituting the solution into the right-hand side of Eqs. (6)
and (7). The aerosol triplet that provides the least discrepancy
is chosen for this single Monte Carlo trial and for the height–
time pixel. This procedure is repeated for every Monte Carlo
trial, and after averaging, the spatiotemporal distributions of
ηs, ηp, ηu, and ηd are evaluated.

3 Application of the partition algorithm to lidar
observations

3.1 Range of particle parameters used in the inversion
scheme

The uncertainty of the partitioning of backscattering coeffi-
cients depends on the range ofGF and δ532 variations in each
aerosol type. To establish this range, we analyzed measure-
ment sessions at the ATOLL for the period of 2020–2023.
Our focus was on observation episodes characterized by sta-
ble atmospheric conditions, where only a single aerosol type
predominated, at least within specific height–time intervals.
Moreover, we took precautions to ensure that the relative hu-
midity in the selected intervals remained below 60 % to min-
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Table 1. Variation ranges of fluorescence capacity and the particle
depolarization ratio for different types of aerosols.

Type GF, 10−4 δ532, %

Smoke 2.5–4.5 2.0–8
Pollen 1–2.5 30–40
Urban 0.2–0.8 2.0–8
Dust 0.05–0.45 25–35

imize the impact of particle hygroscopic growth. The exam-
ple of such an impact is presented in Fig. 6 of Veselovskii
et al. (2024). Based on the obtained results, we summarized
the ranges of parameter variation in Table 1. The ranges are
slightly different from the ones in Table 1 of Veselovskii et
al. (2022) because since that publication, numerous obser-
vations have been performed, providing more material for
analysis. The depolarization ratios δ532 for smoke and urban
particles fall within the range of 2 %–8 %, while for dust, this
range is 25 %–35 %. The depolarization ratio of long trans-
ported dust can be lower, but at this stage, we do not consider
possible modifications of dust properties during transporta-
tion. We attribute lower values of δ532 to the mixing of dust
with pollutants (urban aerosol in our model). It should be
mentioned that the depolarization ratio of smoke in the upper
troposphere can be as high as 20 % (Ohneiser et al., 2020);
however, in the low and middle troposphere, where partition-
ing was performed, we limited δ532 to a value of 8 %.

The fluorescence capacity of smoke is high due to the
presence of organic carbon. In the upper troposphere, GF
can reach 10× 10−4 (Veselovskii et al., 2024), but below
8 km, it mainly falls within the range of (2.5–4.5)×10−4. For
dust and urban particles, the values of fluorescence capaci-
ties are within the intervals of (0.05–0.45)×10−4 and (0.2–
0.8)×10−4, respectively. Determining the ranges of δ532 and
GF for pollen is particularly challenging because, in the north
of France, pollen is commonly mixed with other aerosol
types. Moreover, the depolarization of pollen particles varies
significantly from one type to another (Cao et al., 2010). In
the Lille area, one dominant taxon is birch (Veselovskii et
al., 2021) with a depolarization ratio of δ532 at around 30 %
(Cholleton et al., 2022). In our analysis, the depolarization
ratio is set within the 30 %–40 % interval. The pollen con-
sists of biological materials, and its fluorescence capacity is
higher than that of urban particles. From our measurements,
the variation range of GF for pollen is estimated to be within
(1.0–2.5)×10−4.

Below, we present three examples of applying the de-
scribed approach to measurements performed at the ATOLL
observatory.

3.2 Episode on 27–28 March 2022: three types of
particles are observed within different
spatiotemporal domains

The spatiotemporal distributions of the aerosol backscatter-
ing coefficient β532, the particle depolarization ratio δ532,
and the fluorescence capacity GF on 27–28 March 2022 are
shown in Fig. 1. Relative humidity decreased with height,
ranging from 70 % at 600 m to 55 % at 1800 m. Aerosols
were primarily found below 2500 m, with several distin-
guishable particle types identified. The particle depolariza-
tion ratio increased to 30 % at 2000 m during the 20:00–
22:00 UTC period, indicating the presence of dust. Addi-
tionally, high values of the fluorescence capacity (up to
2.5×10−4) for the 00:00–05:00 UTC period suggest the pres-
ence of smoke.

Figure 2a presents theGF–δ532 diagram for these measure-
ments (Veselovskii et al., 2022). The red boxes represent the
parameter ranges used for aerosol classification, which are
slightly broader than those outlined in Table 1 to account
for mixtures where one type is predominant. Dust, smoke,
and urban particles can be distinguished on the diagram,
together with intervals indicating mixed particle types. Al-
though March is typically a pollen season in Lille, pollen par-
ticles did not significantly contribute to the observed episode.
Utilizing this classification scheme, we assess the spatiotem-
poral distribution of aerosol types in Fig. 2b, following the
methodology outlined in Veselovskii et al. (2022). Regions
predominated by dust, smoke, and urban particles are clearly
identified. A small amount of pollen is observed towards the
end of the session at approximately 700 m height. The grey
color in Fig. 2b represents aerosol mixtures where the parti-
cle type cannot be definitively identified. The aerosol classifi-
cation presented in Fig. 2b finds support in the results of the
HYSPLIT backward trajectory analysis (Stein et al., 2015)
depicted in Fig. 3. Specifically, the air masses below 1000 m
height were transported over Belgium, and the presence of
urban aerosol is expected. Conversely, the air masses above
1500 m were transported over regions with extensive forest
fires in Greece, suggesting a potential mixture of smoke and
dust.

By applying the partition technique described in Sect. 2.2,
we can determine the contribution of each particle type to
the total backscattering coefficient β532.The spatiotemporal
distributions of ηs, ηu, and ηd in Fig. 4 were assessed as-
suming that pollen contribution can be neglected. The algo-
rithm operates smoothly, showing distributions without any
unrealistic high-frequency oscillations. By observing the dis-
tributions, it can be concluded that the smoke plume actually
contains a significant amount of urban aerosol, while the dust
plume does not show the presence of other particle types.

The distributions in Fig. 4 represent the mean values of
ηs, ηu, and ηd. To understand the uncertainty caused by po-
tential variations in particle characteristics, Fig. 5 displays
the vertical profiles of ηs, ηu, and ηd for the period between
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Figure 1. Spatiotemporal distributions of (a) the backscattering coefficient at 532 nm, (b) the particle depolarization ratio at 532 nm, and
(c) the fluorescence capacity during the night of 27–28 March 2022. The depolarization ratio and fluorescence capacity are only calculated
for the values β532> 0.1 Mm−1 sr−1. The measurements were taken at an angle of 45° to the horizon.

Figure 2. (a) The δ532–GF diagram for observations in the height range of 350–2800 m and (b) the spatiotemporal distribution of aerosol
types during the night of 27–28 March 2022.

21:00 and 22:00 UTC, along with the corresponding standard
deviations. Urban particles are predominant below 1000 m
with a deviation from the mean value of roughly 5 %. Above
1500 m, ηu decreases to 0.05, and the uncertainty increases
to 100 %. Conversely, dust can be disregarded below 1000 m
but becomes predominant above 1000 m. Smoke contribution
during the considered time period is low and only becomes
noticeable (ηs∼ 0.15) in the 1250–1500 m range. As men-
tioned earlier, the results in Fig. 4 were obtained without con-
sidering pollen. To assess the potential impact of pollen on
the results, the partition was carried out for four aerosol types
using the ATS approach, as described in Sect. 2.2. The corre-
sponding profiles of ηs,4, ηu,4, and ηd,4 are depicted in Fig. 5
with magenta lines. Notably, the profiles obtained for three
and four aerosol types are similar. Pollen does have some ef-
fect on smoke contribution (ηs decreased from 0.14 to 0.1),
but its influence on dust and urban particle contribution is
negligible.

3.3 Episode on 1–2 October 2023: different types of
aerosol form the layer structure

Observations at ATOLL in 2023 were notable for frequent in-
tensive smoke events. North American wildfire smoke, trans-
ported over the Atlantic, was observed from mid-May until

October. In some autumn episodes, smoke descended from
the troposphere to the ground level. One such episode is
shown in Fig. 6, which presents the spatiotemporal distribu-
tions of β532, δ532, and GF during the night of 1–2 Octo-
ber 2023. During this period, the relative humidity decreased
with height, from 50 % at 500 m to 30 % at 3500 m. Strong
aerosol layers were observed up to 5 km in height, and the
depolarization ratio δ532 exceeded 25 % above 2000 m, in-
dicating the predominance of dust. However, below 1000 m,
a low depolarization ratio (δ532< 8 %) was accompanied by
a high fluorescence capacity of particles (up to 3.0× 10−4),
identifying them as smoke. The GF–δ532 diagram in Fig. 7a
highlights the pixels attributed to dust, smoke, and urban par-
ticles. There are also intervals where these types were mixed.
These regions with mixed aerosols are represented by the
grey color in the distribution of particle types in Fig. 7b. The
results of aerosol classification agree with HYSPLIT back-
ward trajectories analysis. Figure 8 shows the 5 d back tra-
jectories over Lille on 2 October 2023, at 00:00 UTC. The air
masses over the Atlantic, containing North American smoke,
descend from 5000 m to the ground, leading to the predomi-
nance of smoke over Lille at 500 m. The air masses at 1500 m
are transported over the continent and may contain pollu-
tants, whereas the air masses at 2700 m arrive from Africa
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Figure 3. The HYSPLIT 5 d backward trajectories for the air mass over Lille at altitudes 600, 1500, and 2000 m on 28 March 2022 at
02:00 UTC. Red dots depict the regions of forest fires.

Figure 4. Relative contributions of (a) smoke (ηs), (b) urban (ηu), and (c) dust (ηd) particles to the backscattering coefficient β532 during
the night of 27–28 March 2022.

and are loaded with dust. Figure 9 depicts the spatiotem-
poral distributions of ηs, ηu, and ηd, derived under the as-
sumption that only three aerosol types occur. Urban aerosol
is localized primarily between the smoke and dust layers.
Vertical profiles of ηs, ηu, and ηd for the 22:00–23:00 UTC

period are presented in Fig. 10. Smoke predominates be-
low 1000 m, with a smoke contribution (ηs= 0.7 at 750 m)
evaluated with an uncertainty of about 20 %. The contribu-
tion of urban particles within the smoke layer (at 750 m) is
ηu= 0.3, with a corresponding uncertainty of approximately
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Figure 5. Vertical profiles of the relative contributions of smoke (ηs), urban (ηu), and dust (ηd) particles to the backscattering coefficient β532
on 27 March 2022. These profiles are derived under the assumption that only three aerosol types occur. The black lines depict the deviation
of solutions from the mean value (ηi ± σi ). Magenta lines show the relative contributions of smoke, urban, and dust particles (ηs,4, ηs,4, ηs,4)
when four aerosol types (including pollen) are considered.

30 %. Dust predominates above 2000 m (ηd= 0.8), and the
uncertainty of ηd estimation is below 15 %. Although the ex-
istence of pollen in October is quite improbable, for test-
ing purposes, we performed an inversion for four aerosol
types using the ATS method (magenta lines in Fig. 10). The
impact of including pollen is most pronounced for dust at
1750 m, where ηd is about 25 % decreased. However, the val-
ues obtained still fall within the estimated range of uncer-
tainty. From the examples considered, we conclude that the
contributions of three aerosol components to the backscatter-
ing coefficient can be determined through joint fluorescence
and polarization measurements. The volume concentration,
Vi , of the ith aerosol component can be estimated from the
backscattering coefficient using the corresponding lidar ra-
tio, Si532, and the extinction-to-volume conversion factors CiV
(Mamouri and Ansmann, 2017; Ansmann et al., 2019, 2021;
He et al., 2023). Thus, for the ith aerosol component,

Vi = β532× ηi × S
i
532×C

i
V. (8)

The values of the conversion factors at 532 nm, derived from
AERONET observations, along with some reported lidar ra-
tios, are summarized in Table 2. Therefore, the presented
information allows us to quantify the composition of the
aerosol mixture.

3.4 Heat wave over Lille in July 2022

The heat wave in France in July 2022 was attributed to a
high-pressure system known as the Azores High, which usu-
ally sits off Spain but pushed farther north, resulting in el-
evated temperatures and multiple fires. The Sun photometer

and lidar observations at ATOLL consistently recorded an
increase in aerosol content over Lille in the middle of July
2022. Figure 11 displays the aerosol optical depth (AOD) at
500 nm and the Ångström exponent for 380–500 nm wave-
lengths provided by AERONET. Lidar observations were
performed from 16 to 23 July, as shown in the frame in
Fig. 11. Within this interval, the optical depth increased,
reaching its peak on 18 July. The Ångström exponent de-
creased, indicating the presence of dust. Figure 12 shows the
column-integrated particle volume, provided by AERONET,
presented separately for the fine- and coarse-mode particles.
After 16 July, the volume of the coarse mode increased ap-
proximately 4-fold, while the fine mode did not show signif-
icant changes, further supporting the presence of dust parti-
cles. Unfortunately, volume retrievals are not available after
20 July due to the presence of clouds. The methodology out-
lined in Sect. 2.2 was used to analyze the composition of
aerosols during the heat wave.

In Fig. 13, we can see the spatiotemporal distributions of
β532, δ532, andGF for four measurement sessions between 16
and 23 July 2022. On 16–17 July, after midnight, a dust layer
with δ532 exceeding 20 % appeared at a height of 5 km. The
following night (17–18 July), the lower border of the dust
layer descended to 2 km. By the night of 18–19 July, we ob-
served strong aerosol backscattering (above 1.0 Mm−1 sr−1)
from the ground up to a height of 5 km. Dust was primarily
found within two height ranges: 0.75–2.0 and 3.0–5.0 km,
where the particle depolarization ratio δ532 exceeded 20 %.
The aerosol between these dust layers showed high fluores-
cence capacity (above 2.0× 10−4), indicating the presence
of smoke. Unfortunately, we could not make long-term lidar
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Figure 6. Spatiotemporal distributions of (a) the backscattering coefficient at 532 nm, (b) the particle depolarization ratio at 532 nm, and
(c) the fluorescence capacity during the night of 1–2 October 2023. The depolarization ratio and fluorescence capacity are only calculated
for values of β532> 0.1 Mm−1 sr−1.

Figure 7. (a) The δ532–GF diagram and (b) the spatiotemporal distribution of aerosol types during the night of 1–2 October 2023.

observations from 19–21 July due to cloud cover. However,
by the night of 22–23 July, we observed localized aerosols
below 3 km. The values of δ532 and GF were below 10 %
and 1.0× 10−4, respectively, which is typical of urban parti-
cles. The relative humidity during the measurements for 16–
19 July was below 60 % within the height range being con-
sidered. On the night of 22–23 July, the relative humidity
was higher, reaching up to 80 %. In Fig. 14, we provide the
GF–δ532 diagrams for the measurements shown in Fig. 13.
On the night of 16–17 July, the clusters corresponding to
dust and smoke and urban particles are distinct. However,
for 17–19 July, dust was mixed with smoke and urban parti-
cles, resulting in a characteristic pattern on the GF–δ532 dia-
gram (Veselovskii et al., 2022). By the night of 22–23 July,
only one cluster, corresponding to urban aerosol, was ob-
served. The distributions of particle types in Fig. 14 for the
period of 16–19 July contain extended grey regions where
different types of particles are mixed and cannot be identi-
fied. In Fig. 15, we can see the partition technique used to
evaluate the contributions of dust, smoke, and urban aerosol
to β532. From this analysis, we can conclude that on the
night of 16–17 July, the aerosol below 2.5 km was a mix-
ture of smoke and urban particles, and the elevated dust layer
(00:00–03:00 UTC) contained a significant amount of urban
particles (ηu is up to 0.4). On 18–19 July, the aerosol between

the two dust layers, within the height range of 2–3 km, was
also a mixture of smoke and urban particles.

The aerosol classification based on fluorescence and depo-
larization measurements is supported by the analysis of back-
ward trajectories. Figure 16 shows the 5 d backward trajecto-
ries for four measurement sessions from Fig. 15 at altitudes
of 1500, 3000, and 4500 m. On 16–17 July, the dust layer
above 4000 m originates from North Africa, while smoke
at 3000 m is likely transported from North America. The
air masses at 3000 m on 17–18 July are transported from
Africa over regions of wildfires in Spain, indicating a mix-
ture of dust and smoke. Smoke at 3000 m on 18–19 July
again originates from wildfires in Spain, while the source of
the dust layers at 1500 and 4000 m is in Africa. Finally, on
22–23 July, the heat wave was over. The air masses arrive
from the west outside dust and smoke sources, and aerosol in
Fig. 15 within the 1000–3000 m range is identified as urban.

As mentioned, the volume concentration of each com-
ponent can be estimated using Eq. (8). Figure 17 presents
the vertical profiles of volume concentration for smoke, ur-
ban, and dust particles for four measurement sessions from
Fig. 15. In the calculations, we used the mean values of ηs,
ηu, and ηd as well as the mean values of the lidar ratios and
fluorescence capacity from Table 2. The lidar ratios used for
smoke, urban, and dust are 64, 61, and 45 sr, respectively, and
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Figure 8. The HYSPLIT 5 d backward trajectories for the air mass over Lille at altitudes 500, 1500, and 2700 m on 2 October 2023 at
00:00 UTC.

Figure 9. The relative contributions of (a) smoke (ηs), (b) urban (ηu), and (c) dust (ηd) particles to the backscattering coefficient β532 during
the night of 1–2 October 2023.
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Figure 10. Vertical profiles of the relative contributions of smoke (ηs), urban (ηu), and dust (ηd) particles to the backscattering coefficient
β532 on 1 October 2023. The profiles are derived under the assumption that only three aerosol types occur. The black lines depict the deviation
of solutions from the mean value (ηi ± σi ). The magenta lines show the relative contributions of smoke, dust and urban particles (ηs,4, ηu,4,
ηd,4) when four aerosol types (including pollen) are considered.

Table 2. Lidar ratios (Si532) and extinction-to-volume conversion factors (CiV) for different types of aerosol.

Type Lidar ratio Si532, sr CiV, µm3 cm−3 Mm

Urban 53–70a 0.3–0.41b

Smoke (North American, aged) 55–73a, 50–78e 0.13d

Dust (North Africa) 40–50d 0.61–0.64b, 0.67–0.73c, 0.64–0.67f

a Burton et al. (2013). b Mamouri and Ansmann (2017). c Ansmann et al. (2019). d Ansmann et al. (2021). e Hu et
al. (2022). f He et al. (2023).

Figure 11. The aerosol optical depth (AOD) at 500 nm and the
Ångström exponent (AE) provided by AERONET over Lille in July
2022. Magenta box depicts the time period during which lidar ob-
servations in this study were analyzed.

Figure 12. Column-integrated aerosol volume (circles) in July 2022
provided by AERONET. The triangles and squares represent the
volumes of the fine and coarse modes, respectively. Black stars de-
pict the total particle volume derived from lidar observations.

Atmos. Meas. Tech., 17, 4137–4152, 2024 https://doi.org/10.5194/amt-17-4137-2024



I. Veselovskii et al.: Retrieval of the composition of an aerosol mixture 4147

Figure 13. Spatiotemporal distributions of (a–d) the backscattering coefficient β532, (e–h) the particle depolarization ratio δ532, and (i–l) the
fluorescence capacity GF for the nights of 16–17, 17–18, 18–19, and 22–23 July 2022. The depolarization ratio and fluorescence capacity
are only calculated for the values β532> 0.1 Mm−1 sr−1.

Figure 14. (a–d) The δ532–GF diagram and (e–h) the spatiotemporal distribution of aerosol types for the nights of 16–17, 17–18, 18–19,
and 22–23 July 2022. The grey coloring represents an undefined aerosol type.
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Figure 15. The relative contributions of (a–d) smoke, (e–h) urban, and (i–l) dust particles to the backscattering coefficient at 532 nm for the
nights of 16–17, 17–18, 18–19, and 22–23 July 2022.

extinction-to-volume conversion factors are 0.13, 0.35, and
0.7 µm3 cm−3 Mm. The main contributors to the volume are
urban and dust particles, with smoke contributing noticeably
only on 18 and 19 July, but with a volume density still below
5 µm3 cm−3. The volume concentration can be recalculated
to the mass concentration if the particle density is known.
The profiles of mass concentration are shown in Fig. 17 as
dashed lines. In computations we utilized a smoke density
of ρs= 1.15 g cm−3 (Ansmann et al., 2021) and a dust den-
sity of ρd= 2.6 g cm−3 (He et al., 2023). For urban aerosol, a
density of ρu= 1.5 g cm−3 was selected for sulfate particles.

To assess the validity of our volume estimations, we com-
pared our results with AERONET retrievals. For this com-
parison, the volume density profiles of each component
from Fig. 17 were extrapolated to the ground, and the to-
tal column-integrated volume was calculated. The results are
depicted in Fig. 12 by stars, with an additional measurement
on 19 July (22:00–23:00) included. It is evident that the re-
sults provided by AERONET are in reasonable agreement
with the results provided by the lidar.

4 Conclusion

In conclusion, this study introduces an approach to par-
tition aerosol mixtures in terms of backscattering coeffi-

cients, based on fluorescence and polarization lidar measure-
ments. Specifically, we used the particle depolarization ra-
tio at 532 nm and the fluorescence capacity, allowing for the
partitioning of a three-component aerosol mixture at every
height–time pixel. The robustness of this approach is demon-
strated through testing with Mie–Raman–fluorescence lidar
observations at the ATOLL instrumental site, providing valu-
able insights into the composition and dynamics of atmo-
spheric aerosols. One notable advantage of the proposed ap-
proach is its applicability even in conditions of low aerosol
content or for aerosol layers in the upper troposphere, where
deriving profiles of extinction coefficients might be challeng-
ing. Additionally, backscattering coefficients of aerosol com-
ponents can be converted to particle volume densities using
corresponding lidar ratios along with extinction-to-volume
conversion factors. While this conversion provides a rough
volume estimation, considering the variability of the lidar ra-
tios and the conversion factors within a given aerosol type,
a comparison of lidar-derived particle volume during the
heat wave over Lille in July 2022 demonstrates promising
agreement with AERONET retrievals. At this stage, we have
simplified our classification scheme by incorporating four
aerosol types: smoke, dust, pollen, and urban particles. It is
important to note that the use of fluorescence is an efficient
way to distinguish between urban and smoke particles, which
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Figure 16. The HYSPLIT 5 d backward trajectories for the air mass over Lille at altitudes of 1500, 3000, and 4500 m on (a) 17 July 2022 at
03:00 UTC, (b) 17 July 2022 at 23:00 UTC, (c) 18 July 2022 at 22:00 UTC, and (d) 22 July 2022 at 22:00 UTC. Red dots depict the regions
of forest fires.
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Figure 17. Vertical profiles of the volume concentration of smoke, dust, and urban particles derived from ηs, ηu, and ηd presented in Fig. 15,
using the mean values of the lidar ratios and the conversion factors from Table 2. Profiles are shown for the episodes on (a) 17 July, (b) 18 July,
(c) 19 July, and (d) 23 July 2022. Dashed lines depict the mass concentration calculated for the particle densities ρs= 1.15 g cm−3,
ρu= 1.5 g cm−3, and ρd= 2.6 g cm−3.

is a challenge for other methods that do not utilize fluores-
cence. However, we recognize the need to expand our ap-
proach to include additional aerosol types, particularly those
with strong absorption such as polluted urban aerosol. This
expansion will involve incorporating additional particle pa-
rameters, like lidar ratios, and is planned for our future re-
search. It is crucial to acknowledge that the particle hygro-
scopic growth complicates the use of fluorescence capacity,
resulting in increased uncertainty. To address this, we aim to
utilize the additional independent information about aerosol
type provided by the fluorescence spectrum. Importantly, the
fluorescence spectrum is not affected by relative humidity. In
our future research, we plan to further enhance the fluores-
cence capabilities by increasing the number of fluorescence
channels in the lidar.

Data availability. Lidar measurements are available upon request
(philippe.goloub@univ-lille.fr).

Author contributions. IV processed the data and wrote the paper.
BB prepared the program for aerosol mixture partitioning. QH per-
formed meteorological analysis. TP, GD, and WB performed lidar
measurements in Lille. PG supervised the project and helped with
paper preparation. MK and NK participated in algorithms develop-
ment and data analysis.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-

lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge funding from the CaPPA
project funded by the ANR through the PIA under contract
ANR-11-LABX-0005-01, the “Hauts de France” Regional Council
(project ECRIN), and the European Regional Development Fund
(FEDER). ESA/QA4EO program is greatly acknowledged for sup-
porting the observation activity at LOA. The work of Qiaoyun Hu
was supported by the Agence Nationale de Recherche, ANR (ANR-
21-ESRE-0013), through the OBS4CLIM project, and development
of the algorithm was performed in the framework of project 21-17-
00114 of the Russian Science Foundation. This work has also ben-
efited from the support of the research infrastructure ACTRIS-FR,
registered on the Roadmap of the French Ministry of Research.

Financial support. This research has been supported by the Agence
Nationale de la Recherche (grant nos. ANR-21-ESRE-0013 and
ANR-11-LABX-0005-01) and the Russian Science Foundation
(grant no. 21-17-00114). Publisher’s note: the article processing
charges for this publication were not paid by a Russian or Belaru-
sian institution.

Review statement. This paper was edited by Daniel Perez-Ramirez
and reviewed by Sergei Bobrovnikov and two anonymous referees.

Atmos. Meas. Tech., 17, 4137–4152, 2024 https://doi.org/10.5194/amt-17-4137-2024



I. Veselovskii et al.: Retrieval of the composition of an aerosol mixture 4151

References

Ansmann, A., Mamouri, R.-E., Hofer, J., Baars, H., Althausen,
D., and Abdullaev, S. F.: Dust mass, cloud condensation nu-
clei, and ice-nucleating particle profiling with polarization
lidar: updated POLIPHON conversion factors from global
AERONET analysis, Atmos. Meas. Tech., 12, 4849–4865,
https://doi.org/10.5194/amt-12-4849-2019, 2019.

Ansmann, A., Ohneiser, K., Mamouri, R.-E., Knopf, D. A.,
Veselovskii, I., Baars, H., Engelmann, R., Foth, A., Jimenez,
C., Seifert, P., and Barja, B.: Tropospheric and stratospheric
wildfire smoke profiling with lidar: mass, surface area, CCN,
and INP retrieval, Atmos. Chem. Phys., 21, 9779–9807,
https://doi.org/10.5194/acp-21-9779-2021, 2021.

Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R.
R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and
Froyd, K. D.: Aerosol classification using airborne High Spectral
Resolution Lidar measurements – methodology and examples,
Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-
2012, 2012.

Burton, S. P., Ferrare, R. A., Vaughan, M. A., Omar, A. H.,
Rogers, R. R., Hostetler, C. A., and Hair, J. W.: Aerosol
classification from airborne HSRL and comparisons with the
CALIPSO vertical feature mask, Atmos. Meas. Tech., 6, 1397–
1412, https://doi.org/10.5194/amt-6-1397-2013, 2013.

Burton, S. P., Vaughan, M. A., Ferrare, R. A., and Hostetler, C.
A.: Separating mixtures of aerosol types in airborne High Spec-
tral Resolution Lidar data, Atmos. Meas. Tech., 7, 419–436,
https://doi.org/10.5194/amt-7-419-2014, 2014.

Cao, X., Roy, G., and Bernier, R.: Lidar polarization dis-
crimination of bioaerosols, Opt. Eng., 49, 116201,
https://doi.org/10.1117/1.3505877, 2010.

Cholleton, D., Rairoux, P., and Miffre, A.: Laboratory evaluation
of the (355, 532) nm particle depolarization ratio of pure pollen
at 180.0 lidar backscattering angle, Remote Sens., 14, 3767,
https://doi.org/10.3390/rs14153767, 2022.

Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kauf-
man, Y. J., King, M. D., Tanre, D., and Slutsker, I.:
Variability of absorption and optical properties of key
aerosol types observed in worldwide locations, J. At-
mos. Sci., 59, 590–608, https://doi.org/10.1175/1520-
0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002.

Floutsi, A. A., Baars, H., Engelmann, R., Althausen, D., Ansmann,
A., Bohlmann, S., Heese, B., Hofer, J., Kanitz, T., Haarig, M.,
Ohneiser, K., Radenz, M., Seifert, P., Skupin, A., Yin, Z., Abdul-
laev, S. F., Komppula, M., Filioglou, M., Giannakaki, E., Stach-
lewska, I. S., Janicka, L., Bortoli, D., Marinou, E., Amiridis,
V., Gialitaki, A., Mamouri, R.-E., Barja, B., and Wandinger, U.:
DeLiAn – a growing collection of depolarization ratio, lidar ratio
and Ångström exponent for different aerosol types and mixtures
from ground-based lidar observations, Atmos. Meas. Tech., 16,
2353–2379, https://doi.org/10.5194/amt-16-2353-2023, 2023.

Floutsi, A. A., Baars, H., and Wandinger, U.: HETEAC-Flex: an op-
timal estimation method for aerosol typing based on lidar-derived
intensive optical properties, Atmos. Meas. Tech., 17, 693–714,
https://doi.org/10.5194/amt-17-693-2024, 2024.

Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B.,
Tesche, M., and co-authors: Depolarization ratio profiling at
several wavelengths in pure Saharan dust during SAMUM

2006, Tellus B, 61, 165–179, https://doi.org/10.1111/j.1600-
0889.2008.00396.x, 2009.

Groß, S., Esselborn, M., Weinzierl, B., Wirth, M., Fix, A., and Pet-
zold, A.: Aerosol classification by airborne high spectral reso-
lution lidar observations, Atmos. Chem. Phys., 13, 2487–2505,
https://doi.org/10.5194/acp-13-2487-2013, 2013.

Hara, Y., Nishizawa, T., Sugimoto , N., Osada, K., Yumimoto,
K., Uno, I., Kudo, R., and Ishimoto, H.: Retrieval of aerosol
components using multi-wavelength Mie-Raman lidar and com-
parison with ground aerosol sampling, Remote Sens., 10, 937,
https://doi.org/10.3390/rs10060937, 2018.

He, Y., Yin, Z., Ansmann, A., Liu, F., Wang, L., Jing, D., and Shen,
H.: POLIPHON conversion factors for retrieving dust-related
cloud condensation nuclei and ice-nucleating particle concen-
tration profiles at oceanic sites, Atmos. Meas. Tech., 16, 1951–
1970, https://doi.org/10.5194/amt-16-1951-2023, 2023.

Hu, Q., Goloub, P., Veselovskii, I., and Podvin, T.: The characteriza-
tion of long-range transported North American biomass burning
plumes: what can a multi-wavelength Mie–Raman-polarization-
fluorescence lidar provide?, Atmos. Chem. Phys., 22, 5399–
5414, https://doi.org/10.5194/acp-22-5399-2022, 2022.

Mamouri, R.-E. and Ansmann, A.: Potential of polarization/Raman
lidar to separate fine dust, coarse dust, maritime, and anthro-
pogenic aerosol profiles, Atmos. Meas. Tech., 10, 3403–3427,
https://doi.org/10.5194/amt-10-3403-2017, 2017.

Miffre, A., Cholleton, D., and Rairoux, P.: On the use of light po-
larization to investigate the size, shape, and refractive index de-
pendence of backscattering Ångström exponents, Opt. Lett., 45,
1084–1087, https://doi.org/10.1364/OL.385107, 2020.

Mylonaki, M., Giannakaki, E., Papayannis, A., Papanikolaou, C.-
A., Komppula, M., Nicolae, D., Papagiannopoulos, N., Amodeo,
A., Baars, H., and Soupiona, O.: Aerosol type classification
analysis using EARLINET multiwavelength and depolariza-
tion lidar observations, Atmos. Chem. Phys., 21, 2211–2227,
https://doi.org/10.5194/acp-21-2211-2021, 2021.

Nicolae, D., Vasilescu, J., Talianu, C., Binietoglou, I., Nicolae, V.,
Andrei, S., and Antonescu, B.: A neural network aerosol-typing
algorithm based on lidar data, Atmos. Chem. Phys., 18, 14511–
14537, https://doi.org/10.5194/acp-18-14511-2018, 2018.

Ohneiser, K., Ansmann, A., Baars, H., Seifert, P., Barja, B.,
Jimenez, C., Radenz, M., Teisseire, A., Floutsi, A., Haarig, M.,
Foth, A., Chudnovsky, A., Engelmann, R., Zamorano, F., Bühl,
J., and Wandinger, U.: Smoke of extreme Australian bushfires
observed in the stratosphere over Punta Arenas, Chile, in Jan-
uary 2020: optical thickness, lidar ratios, and depolarization ra-
tios at 355 and 532 nm, Atmos. Chem. Phys., 20, 8003–8015,
https://doi.org/10.5194/acp-20-8003-2020, 2020.

Papagiannopoulos, N., Mona, L., Amodeo, A., D’Amico, G., Gumà
Claramunt, P., Pappalardo, G., Alados-Arboledas, L., Guerrero-
Rascado, J. L., Amiridis, V., Kokkalis, P., Apituley, A., Baars, H.,
Schwarz, A., Wandinger, U., Binietoglou, I., Nicolae, D., Bortoli,
D., Comerón, A., Rodríguez-Gómez, A., Sicard, M., Papayannis,
A., and Wiegner, M.: An automatic observation-based aerosol
typing method for EARLINET, Atmos. Chem. Phys., 18, 15879–
15901, https://doi.org/10.5194/acp-18-15879-2018, 2018.

Reichardt, J., Leinweber, R., and Schwebe, A.: Fluorescing aerosols
and clouds: investigations of co-existence, EPJ Web Conf., 176,
05010, https://doi.org/10.1051/epjconf/201817605010, 2018.

https://doi.org/10.5194/amt-17-4137-2024 Atmos. Meas. Tech., 17, 4137–4152, 2024

https://doi.org/10.5194/amt-12-4849-2019
https://doi.org/10.5194/acp-21-9779-2021
https://doi.org/10.5194/amt-5-73-2012
https://doi.org/10.5194/amt-5-73-2012
https://doi.org/10.5194/amt-6-1397-2013
https://doi.org/10.5194/amt-7-419-2014
https://doi.org/10.1117/1.3505877
https://doi.org/10.3390/rs14153767
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
https://doi.org/10.5194/amt-16-2353-2023
https://doi.org/10.5194/amt-17-693-2024
https://doi.org/10.1111/j.1600-0889.2008.00396.x
https://doi.org/10.1111/j.1600-0889.2008.00396.x
https://doi.org/10.5194/acp-13-2487-2013
https://doi.org/10.3390/rs10060937
https://doi.org/10.5194/amt-16-1951-2023
https://doi.org/10.5194/acp-22-5399-2022
https://doi.org/10.5194/amt-10-3403-2017
https://doi.org/10.1364/OL.385107
https://doi.org/10.5194/acp-21-2211-2021
https://doi.org/10.5194/acp-18-14511-2018
https://doi.org/10.5194/acp-20-8003-2020
https://doi.org/10.5194/acp-18-15879-2018
https://doi.org/10.1051/epjconf/201817605010


4152 I. Veselovskii et al.: Retrieval of the composition of an aerosol mixture

Reichardt, J., Behrendt, O., and Lauermann, F.: Spectromet-
ric fluorescence and Raman lidar: absolute calibration of
aerosol fluorescence spectra and fluorescence correction of
humidity measurements, Atmos. Meas. Tech., 16, 1–13,
https://doi.org/10.5194/amt-16-1-2023, 2023.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B.,
Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT atmospheric
transport and dispersion modeling system, B. Am. Meteo-
rol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-
00110.1, 2015.

Sugimoto, N. and Lee, C. H.: Characteristics of dust
aerosols inferred from lidar depolarization measure-
ments at two wavelengths, Appl. Optics, 45, 7468–7474,
https://doi.org/10.1364/AO.45.007468, 2006.

Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann,
R., Freudenthaler, V., and Groß, S.: Vertically resolved sepa-
ration of dust and smoke over Cape Verde using multiwave-
length Raman and polarization lidars during Saharan Min-
eral Dust Experiment 2008, J. Geophys. Res., 114, D13202,
https://doi.org/10.1029/2009JD011862, 2009.

Veselovskii, I., Hu, Q., Goloub, P., Podvin, T., Korenskiy, M., Pu-
jol, O., Dubovik, O., and Lopatin, A.: Combined use of Mie–
Raman and fluorescence lidar observations for improving aerosol
characterization: feasibility experiment, Atmos. Meas. Tech., 13,
6691–6701, https://doi.org/10.5194/amt-13-6691-2020, 2020.

Veselovskii, I., Hu, Q., Goloub, P., Podvin, T., Choël, M., Visez,
N., and Korenskiy, M.: Mie–Raman–fluorescence lidar observa-
tions of aerosols during pollen season in the north of France, At-
mos. Meas. Tech., 14, 4773–4786, https://doi.org/10.5194/amt-
14-4773-2021, 2021.

Veselovskii, I., Hu, Q., Goloub, P., Podvin, T., Barchunov,
B., and Korenskii, M.: Combining Mie–Raman and fluores-
cence observations: a step forward in aerosol classification
with lidar technology, Atmos. Meas. Tech., 15, 4881–4900,
https://doi.org/10.5194/amt-15-4881-2022, 2022.

Veselovskii, I., Hu, Q., Goloub, P., Podvin, T., Boissiere, W., Ko-
renskiy, M., Kasianik, N., Khaykyn, S., and Miri, R.: Deriva-
tion of depolarization ratios of aerosol fluorescence and wa-
ter vapor Raman backscatters from lidar measurements, At-
mos. Meas. Tech., 17, 1023–1036, https://doi.org/10.5194/amt-
17-1023-2024, 2024.

Voudouri, K. A., Siomos, N., Michailidis, K., Papagiannopoulos,
N., Mona, L., Cornacchia, C., Nicolae, D., and Balis, D.: Com-
parison of two automated aerosol typing methods and their
application to an EARLINET station, Atmos. Chem. Phys.,
19, 10961–10980, https://doi.org/10.5194/acp-19-10961-2019,
2019.

Zhang, Y., Sun, Z., Chen, S., Chen, H., Guo, P., Chen,
S., He, J., Wang, J., and Nian, X.: Classification and
source analysis of low-altitude aerosols in Beijing using
fluorescence–Mie polarization lidar, Opt. Commun., 479,
126417, https://doi.org/10.1016/j.optcom.2020.126417, 2021.

Wandinger, U., Floutsi, A. A., Baars, H., Haarig, M., Ansmann,
A., Hünerbein, A., Docter, N., Donovan, D., van Zadelhoff,
G.-J., Mason, S., and Cole, J.: HETEAC – the Hybrid End-
To-End Aerosol Classification model for EarthCARE, Atmos.
Meas. Tech., 16, 2485–2510, https://doi.org/10.5194/amt-16-
2485-2023, 2023.

Wang, N., Shen, X., Xiao, D., Veselovskii, I., Zhao, C., Chen, F.,
Liu, C., Rong, Y., Ke, J., Wang, B., Qi, B., and Liu, D.: Develop-
ment of ZJU high-spectral-resolution lidar for aerosol and cloud:
feature detection and classification, J. Quant. Spectrosc. Ra., 261,
107513, https://doi.org/10.1016/j.jqsrt.2021.107513, 2021.

Atmos. Meas. Tech., 17, 4137–4152, 2024 https://doi.org/10.5194/amt-17-4137-2024

https://doi.org/10.5194/amt-16-1-2023
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1364/AO.45.007468
https://doi.org/10.1029/2009JD011862
https://doi.org/10.5194/amt-13-6691-2020
https://doi.org/10.5194/amt-14-4773-2021
https://doi.org/10.5194/amt-14-4773-2021
https://doi.org/10.5194/amt-15-4881-2022
https://doi.org/10.5194/amt-17-1023-2024
https://doi.org/10.5194/amt-17-1023-2024
https://doi.org/10.5194/acp-19-10961-2019
https://doi.org/10.1016/j.optcom.2020.126417
https://doi.org/10.5194/amt-16-2485-2023
https://doi.org/10.5194/amt-16-2485-2023
https://doi.org/10.1016/j.jqsrt.2021.107513

	Abstract
	Introduction
	Experimental setup and approach for aerosol mixture partitioning
	Lidar system
	Approach for mixture partitioning

	Application of the partition algorithm to lidar observations
	Range of particle parameters used in the inversion scheme
	Episode on 27–28 March 2022: three types of particles are observed within different spatiotemporal domains
	Episode on 1–2 October 2023: different types of aerosol form the layer structure
	Heat wave over Lille in July 2022

	Conclusion
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

