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Abstract. Fugitive methane (CH4) emissions occur in the
whole chain of oil and gas production, including from extrac-
tion, transportation, storage, and distribution. Such emissions
are usually detected and quantified by conducting surveys
as close as possible to the source location. However, these
surveys are labour-intensive, are costly, and fail to not pro-
vide continuous emissions monitoring. The deployment of
permanent sensor networks in the vicinity of industrial CH4
emitting facilities would overcome the limitations of surveys
by providing accurate emission estimates, thanks to continu-
ous sampling of emission plumes. Yet high-precision instru-
ments are too costly to deploy in such networks. Low-cost
sensors using a metal oxide semiconductor (MOS) are pre-
sented as a cheap alternative for such deployments due to
their compact dimensions and to their sensitivity to CH4. In
this study, we demonstrate the ability of two types of MOS
sensors (TGS 2611-C00 and TGS 2611-E00) manufactured
by Figaro® to reconstruct a CH4 signal, as measured by a
high-precision reference gas analyser, during a 7 d controlled
release campaign conducted by TotalEnergies® in autumn
2019 near Pau, France. We propose a baseline voltage cor-
rection linked to atmospheric CH4 background variations per
instrument based on an iterative comparison of neighbour-

ing observations, i.e. data points. Two CH4 mole fraction re-
construction models were compared: multilayer perceptron
(MLP) and second-degree polynomial. Emission estimates
were then computed using an inversion approach based on
the adjoint of a Gaussian dispersion model. Despite obtain-
ing emission estimates comparable with those obtained us-
ing high-precision instruments (average emission rate error
of 25 % and average location error of 9.5 m), the application
of these emission estimates is limited to adequate environ-
mental conditions. Emission estimates are also influenced by
model errors in the inversion process.

1 Introduction

A recent study suggests that in the decade 2008–2017,
methane (CH4) emissions from the production, transporta-
tion, storage, and distribution of fossil fuels (e.g. coal, oil,
and natural gas) accounted for 35 % of global anthropogenic
CH4 emissions (Saunois et al., 2020). These emissions are
typically quantified through emission inventories. Emissions
estimates reported by inventories rely on information from
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activity data (i.e. human activities contributing to emissions
like fuel consumption) and emission factors (i.e coefficients
that relate the activity data to emission rates). Although
generalised emission factors can be used to develop emis-
sion inventories, emission factors can vary between different
sites depending on site-specific technologies and operating
modes, which makes the upscaling of fugitive CH4 emissions
highly uncertain (Alvarez et al., 2018). For instance, esti-
mated emissions from the oil and gas supply chain in the US
in 2015 constrained from ground-based and aircraft measure-
ments were found to be 60 % higher than the Environmental
Protection Agency (EPA) inventory (Alvarez et al., 2018).
More generally, the characterisation of CH4 emissions from
complex processes based on generalised emission factors can
be underestimated when best practices are not followed by
operators (Riddick et al., 2020).

Atmospheric measurements are increasingly used to de-
tect and quantify CH4 leaks from industrial facilities. These
methods primarily involve measuring methane mole fraction
downwind of the facility. Measurements are often interpreted
with local-scale dispersion models using atmospheric inver-
sion methods to infer the CH4 source location and emission
rate; see e.g. Kumar et al. (2022). Current approaches gen-
erally consist of conducting atmospheric surveys of the en-
riched mole fraction plume created by the emitting source.
There are several challenges with this approach: accessibility
to sample downwind emission plumes, labour requirements,
and instrument costs, given that surveys may employ ex-
pensive high-precision research-level CH4 instruments using
techniques such as cavity ring-down spectrometry (CRDS).
Further, downwind surveys do not provide continuous source
monitoring (Travis et al., 2020). The deployment of net-
works of continuous monitoring CH4 sensors around emis-
sion sources is an alternative to surveys, but the costs of each
instrument remain a limitation. Advances in the development
of low-cost sensors facilitates the deployment of dense sen-
sor networks to increase site coverage (Kumar et al., 2015;
Mead et al., 2013). The use over long periods of time of
dense networks of sensors deployed permanently increases
the ability to identify the structures of the observed plumes,
to improve the atmospheric transport modelling parameteri-
sation for the simulation of these plumes, and thus to improve
the accuracy of the quantification of the leaks based on this
modelling.

In recent years, growing interest in low-cost and low-
power sensors for use in relatively dense networks has led
to the study of different kinds of sensors to measure pol-
lutants and trace gases like carbon dioxide (CO2) or CH4.
One of the most common low-cost-sensor technologies for
the detection and quantification of CH4 emissions is metal
oxide semiconductors (MOSs). MOS sensors are composed
of a metal oxide sensing material, incorporating an integrated
heater. A chemical reaction affects the electrical conductivity
of the sensing material in the presence of an electron donor
gas such as CH4 (Örnek and Karlik, 2012). However, MOS

sensor sensitivity is also affected by other environmental pa-
rameters such as temperature and relative humidity (Popoola
et al., 2018); they also present low accuracy and may drift
with time (in the form of a decrease in the conductivity of
the sensing material), requiring periodic re-calibrations (Rid-
dick et al., 2020; Shah et al., 2023, 2024) and the need for a
constant power supply due to the heater material (Shah et al.,
2023).

The Taguchi gas sensor (TGS) is a commercially avail-
able range of MOS sensors manufactured by Figaro®, which
have been widely tested in different environments (includ-
ing under controlled conditions and during field deployment)
due to the CH4 sensitivity of certain TGS models (Eugster
et al., 2020; Eugster and Kling, 2012; Riddick et al., 2020;
Collier-Oxandale et al., 2018; Bastviken et al., 2020; van den
Bossche et al., 2017; Shah et al., 2023, 2024). A standard
technique for calibrating these sensors has involved collo-
cating them with a high-precision instrument used as a ref-
erence, and then applying empirical equations or data-driven
approaches to derive CH4 mole fraction (Eugster et al., 2020;
Eugster and Kling, 2012; Casey et al., 2019; Bastviken et al.,
2020; Collier-Oxandale et al., 2019, 2018). In a previous
work (Rivera Martinez et al., 2021) we studied the pos-
sibility of using artificial neural networks (ANNs) to re-
construct variations in CH4 mole fractions in room air un-
der controlled conditions from three types of Figaro sensors
(TGS 2600, TGS 2611-C00, and TGS 2611-E00). A follow-
ing study (Rivera Martinez et al., 2023a) analysed the poten-
tial to reconstruct CH4 spikes generated on top of ambient
air observations, which corresponded to typical signals from
leaks at industrial sites, employing two types of Figaro sen-
sors (TGS 2611-C00 and TGS 2611-E00). That study made a
comprehensive comparison of the performance of five mod-
els for the reconstruction of CH4 mole fraction.

The next logical step is to test the performance of the same
sensors to reconstruct CH4 mole fraction from real leaks
and to use reconstructed mole fractions to quantify and lo-
calise emission rates. Riddick et al. (2020) quantified CH4
emissions from a gas terminal using a Figaro TGS 2600, de-
ployed 1.5 km from the emission source. To reconstruct CH4
mole fractions from voltage observations, the authors devel-
oped an empirical equation considering the measured volt-
age, temperature, and relative humidity from a nearby mete-
orological station and then applied a Gaussian plume model
to quantify the emission rate using reconstructed CH4 mole
fractions and local wind information. Their estimated aver-
age emissions were 9.6 g CH4 s−1, with a maximum emis-
sion rate of 238 g CH4 s−1, given corresponding CH4 mole
fraction enhancements of between 2 and 5.4 ppm within the
plume. Their Figaro-based emission estimates were not con-
fronted with corresponding emission estimates derived using
a high-precision gas analyser or with independent knowl-
edge of the emission rate. Elsewhere, Riddick et al. (2022)
studied the capabilities to detect and estimate CH4 emissions
of four Figaro TGS 2611-E00 sensors in a fence-line mon-
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itoring setup. Sensors were deployed closer to the emission
source (30 m) and tested over a 48 h period. Reported results
showed detection consistency for emissions above 167 g CH4
h−1 with an enhancement threshold of 2 ppm. However, the
number of sensors used to compute the emission estimates
was not specified, particularly given the spatial distribution
of the sensors and varying wind speed.

In this study, we test the ability of a network of several
Figaro sensors to reconstruct atmospheric CH4 mole fraction
enhancements from a series of controlled releases of known
magnitude and duration to the open atmosphere at a facil-
ity called TADI (see Methods) and to infer the emission rate
of each release by an inverse modelling approach. The accu-
racy of CH4 mole fraction reconstruction is evaluated against
collocated accurate CH4 measurements from high-precision
CRDS instruments. The accuracy of the inverted emission lo-
cations and rates is evaluated against the known (controlled)
location and magnitude using the inversion model of Kumar
et al. (2022).

This study builds upon the research conducted by Rivera
Martinez et al. (2023a) and Kumar et al. (2022), demonstrat-
ing the potential for continuous monitoring of CH4 emis-
sions using cost-effective in situ sensors. Drawing from the
insights derived from these two studies, this study seeks to
address the new challenges associated with the combination
of both types of analysis, i.e reconstruction of CH4 mole
fractions from measured voltage variations and estimation of
emission rates and location from CH4 mole fractions. Firstly,
the challenge arises in the deployment and management of
onsite Figaro sensors, an issue not present in Rivera Mar-
tinez et al. (2023a), as well as extracting CH4 mole fractions
from measurements that are impacted by more complex per-
turbations. For instance, the background air in Rivera Mar-
tinez et al. (2021); Rivera Martinez et al. (2023a) was less
polluted than air from an industrial site such as TADI. More-
over, the environmental conditions, especially in terms of
temperature and water mole fraction, in these previous stud-
ies were smooth and not representative of field conditions as
encountered in this new study. Secondly, the prescriptive pre-
cision and accuracy targets for CH4 reconstructions outlined
in Rivera Martinez et al. (2023a) were established as generic
targets, fitting for a variety of data processing strategies in-
tended to quantify emissions from industrial sites. The spe-
cific observation and modelling strategy implemented in Ku-
mar et al. (2022) to localise and quantify point source emis-
sions carries its own set of precision/accuracy requirements.
In particular, this strategy strongly relies on the characterisa-
tion of gradients across measurement stations of mole frac-
tion averages over time or wind sectors, which makes the
derivation of nominal requirements on the reconstruction of
CH4 spikes or the CH4 time series quite complex. Further-
more, such requirements should be weighed against the mod-
elling uncertainties associated with the corresponding Gaus-
sian plume model inversions. Ideally, the uncertainties re-
lated with CH4 mole fraction data would not significantly

contribute towards the total uncertainty when combined with
uncertainties from the modelling framework. This, however,
does not necessarily mean that they should be much smaller
than the latter. The direct comparison of the results obtained
in this study with CH4 mole fraction data derived from Fi-
garo sensors and those from Kumar et al. (2022) provides
insights into whether this objective is achieved.

Therefore, for 33 controlled releases at the TADI facil-
ity, we employed fixed-point measurements from both high-
precision CRDS instruments and low-cost TGSs. A consid-
erable fraction of the TGS measurements were used for train-
ing models to reconstruct CH4 mole fractions from mea-
sured TGS resistance and other variables. When reconstruct-
ing CH4 mole fractions, we proposed a minimum accuracy
target of 15 % of the amplitude of the largest observed mole
fraction enhancement within a release. This corresponds to
accuracies from 0.3 ppm for a release causing a maximum
enhancement of 2.4 ppm up to 18 ppm for a maximum en-
hancement of 120 ppm. This accuracy is consistent with the
accuracy requirement imposed in our previous study where
we used TGS sensors to reconstruct CH4 spikes created in a
laboratory experiment (Rivera Martinez et al., 2023a). How-
ever, the relevance of this target is implicitly re-assessed
through the use of the reconstructed time series in the in-
version scheme from Kumar et al. (2022).

The plan of the study is as follows. Section 2 presents the
TADI 2019 controlled releases campaign, the logger systems,
the data treatment, the models employed to reconstruct CH4
concentration from TGS data, and the atmospheric inversion
approach. The comparison of the models for the reconstruc-
tion of CH4 and the inversion results for rates and locations
of different releases are analysed in Sect. 3. Results are dis-
cussed in Sect. 4, and conclusions are given in Sect. 5.

2 Methods

2.1 TADI-2019 campaign

In October 2019, TotalEnergies® performed multiple con-
trolled releases at the TotalEnergies Anomaly Detection Ini-
tiative (TADI) facility to investigate the capability of differ-
ent detection and quantification techniques of CH4 emissions
from industrial facilities. The TADI test site is located north-
west of Pau, France, with an approximate area of 200 m2.
It is equipped with infrastructure typical of oil and gas fa-
cilities (pipes, valves, tanks, etc.) to simulate realistic leaks.
The terrain is flat but includes different obstacles that can af-
fect the dispersion of the gases released to the atmosphere.
Our experiment consisted of 41 controlled releases of CH4
and CO2, covering a wide range of emission rates of be-
tween 0.15 and 150 g CH4 s−1, with durations ranging be-
tween 25 and 75 min. We participated in this experiment to
develop and test inverse modelling frameworks within the
TRAcking Carbon Emissions (TRACE, https://web.archive.

https://doi.org/10.5194/amt-17-4257-2024 Atmos. Meas. Tech., 17, 4257–4290, 2024

https://web.archive.org/web/20230824195644/https://trace.lsce.ipsl.fr/


4260 R. Rivera-Martinez et al.: Using metal oxide gas sensors for the estimate of controlled methane releases

Figure 1. Diagram of the experimental setup on top of a satellite
image of the TADI platform (source: © Google Earth). The loca-
tions of the releases are inside the red rectangle (ATEX zone). The
locations of the 16 tripods are presented as black symbols and de-
noted with Tx, where x is the index of the tripod from 1 to 16. The
blue rectangle indicates the tent location. Examples of the sampling
lines connecting the tripods to the tent are shown as dashed lines,
only showing 7 of 16 in total. The white symbol shows the location
of the Meteorological station installed by TotalEnergies®.

org/web/20230824195644/https://trace.lsce.ipsl.fr/, last ac-
cess: 11 March 2023) programme for the estimation of emis-
sion location and rates based on CH4 mole fractions from
high-precision instruments (Kumar et al., 2022). We pre-
sented the inversion results for 26 releases from single point
sources based on two inversion approaches, one relying on
fixed-point measurements and the other one on mobile near-
surface measurements (the latter had already been docu-
mented in Kumar et al., 2021). In both cases, the emission
estimates relied on CH4 mole fractions from high-precision
instruments and on a Gaussian plume model to simulate the
local atmospheric dispersion of CH4. The results from Ku-
mar et al. (2022) for point source emissions yielded an emis-
sion rate error of between 23 % and 30 % and a localisation
error (within a 40 m× 50 m area) of between 8 and 10 m. The
controlled releases were emitted from heights of between
0.1 and 6 m above ground level and inside the 40 m× 50 m
ATEX (ATmospheres EXplosibles) zone of the TADI facility
(see Fig. 1).

2.2 Controlled releases and sampling configuration

A total of 41 controlled releases were conducted over a 7 d
period, between 2 and 10 October 2019. Six releases cor-
responding to low wind speeds (< 0.6 m s−1) were not used
for the inversion as in Kumar et al. (2022), since measure-
ments made in low winds are not suitable for atmospheric

inverse modelling. They could, however, be used in the train-
ing of CH4 mole fraction reconstruction models. The two
largest releases produced high CH4 mole fraction plumes that
affected the amplitude measured by the TGS sensors, such
that it was not possible to distinguish large CH4 spikes from
medium and small spikes from voltage drop measurements
(see Fig. A3), and, hence, they were also removed. There-
fore, our study is focused on 33 from the initial 41 controlled
releases conducted during the campaign. Table A1 details the
releases that were measured by each chamber. The protocol
followed in the selection of releases used for the training and
testing of reconstruction models is explained in Sect. 2.6.

Our atmospheric sampling configuration for measuring
CH4 is shown in Fig. 2. It consisted of placing 16 sampling
lines (of 6.35 diameter) on the ground, with one end of each
line attached to tripods of between 2.75 and 3.50 m high
around the ATEX zone, serving as air inlets, and the other
end of each line connected to a pump flushing at 6 L min−1

(KNF N811 with PTFE diaphragm). The lengths of the sam-
pling lines varied from 10 to 100 m, connecting each air inlet
to the CH4 sensors inside a tent. The pump was connected
upstream of the high-precision instruments (Picarro CRDS
or LGR), a chamber containing a series of TGS CH4 sensors,
and other environmental sensors measuring relative humid-
ity, pressure, and temperature. To maintain the inline pres-
sure at atmospheric pressure, a vent was also connected to
each sampling line (Fig. 2). Table A5 summarises the species
measured and the identifiers of the reference high-precision
instruments. All reference instruments measured H2O to pro-
vide dry gas mole fractions. The analysers’ sampling fre-
quency ranges between 0.3 and 1 Hz. In a previous study
by Yver-Kwok et al. (2015), it was proven that these CRDS
gas analysers ensure high-precision measurements and a low
drift over time, of less than 1 ppb per month, although the
data sheet specifies a drift of 3 ppb per month (Picarro Inc.,
Santa Clara, CA, USA).

On average six sampling lines were active for each release,
with each active line being connected to a high-precision in-
strument and a TGS chamber. The lines were activated de-
pending on wind direction. The strategy behind the distri-
bution of the tripods around the emitting area and for the
inversion was to continuously acquire several measurement
points within the plume generated by each release, in addi-
tion to one or a few measurement points outside the plume (to
characterise the background mole fraction level upon which
plumes enhancements can be assessed) for each release, re-
gardless of the wind conditions (Kumar et al., 2022).

2.3 Low-cost CH4 sensor logger system and
meteorological data

Seven chambers containing TGS sensors were used. Ta-
ble A6 shows the TGS and environmental sensors in each
chamber, as well as the type of chamber. Each chamber
contained at least three TGS units with voltage measure-
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Figure 2. Diagram of the measurement stations and their connection to the sampling lines.

ments sensitive to CH4 and two other sensors measuring
relative humidity/temperature and pressure/temperature. All
sensors were inserted inside an acrylic/glass or steel/glass
chamber with volumes of 100 and 120 mL, respectively.
The logger system design was previously documented on
Rivera Martinez et al. (2021); Rivera Martinez et al. (2023a).
The measurement sensitivity of the TGS signal was deter-
mined by a load resistor connected in series with the sensor
(Figaro®, 2013, 2005); the load resistance was either 5 k�
or 50 k� (see Table A6). An AB Electronics PiPlus ADC
board mounted on a Raspberry Pi 3B+ recorded the voltage
drop across the load resistor, providing observations every
2 s. These voltage data are used for the characterisation and
reconstruction of the CH4 signal. Consistency was observed
between the two TGS 2611-E00 sensors installed in cham-
ber E, and only one sensor of this type is used in this study.

Measurements of environmental parameters from all
chambers other than chamber E had data gaps or recorded
poor data for extended periods, including during releases,
and were therefore not used. This study focuses on re-
constructing CH4 using data from TGS 2611-C00 and
TGS 2611-E00 from chambers A, C, D, E, F, and H.
TGS 2600 data were discarded since this sensor did not re-
spond to most of the CH4 peaks during the releases (see
Fig. A1).

A meteorological station was installed on the TADI plat-
form by TotalEnergies®, with a 3D sonic anemometer at 5 m
above ground level (see Fig. 1), providing 1 min averages
of wind speed (Ur) and wind direction (θ ), and of the stan-
dard deviation of wind speed on the three axes (σu, σv , and
σw). The data of turbulence and meteorological conditions
are used in the dispersion model. Table 1 gathers general in-
formation for each of the 33 controlled releases during which
we have valid TGS measurements: the duration of the re-
lease, the controlled release rate, the average wind speed over

the duration of the release, and their inclusion status for in-
verse modelling.

2.4 Pre-processing of data from the TGS sensors

As well as resampling original observations with a 2 s time
step to a longer 5 s time step, we also corrected the time
offset due to air travelling from the air intakes to the in-
struments and the time delay from synchronisation between
high-precision gas analysers and TGS chambers (between 2
and 3 min). We removed invalid TGS chamber data due to
logging system faults. Finally, a baseline voltage correction
was applied to the data from each sensor considering the en-
tire campaign. Figure 3 illustrates the impact of the baseline
correction, showing an improved agreement between cor-
rected TGS voltage drop measurements for chamber A (for
example) after the pre-processing steps and corresponding
measurements from the reference gas analyser for one re-
lease.

2.5 Reconstruction of spikes in CH4 mole fractions
caused by the releases

The TGS chambers captured different segments of the plume
with variations at high frequencies due to the distribution of
the tripods with regard to the variable wind direction and due
to atmospheric turbulence. The typical signal measured by
the chambers shows a series of voltage enhancements, rang-
ing between ∼ 1 and ∼ 15 min, corresponding to the plume
lying over a slowly varying background signal associated
with remote emissions. The targeted signal is that of the dif-
ference between the spikes and the background CH4 mole
fraction level (Kumar et al., 2022). As an example, Fig. 3
shows 1 min averages of CH4 mole fractions measured by the
reference instruments and the voltage from the TGS 2611-
C00 at six tripods during release no. 25 (Qs= 5 g s−1), show-
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Table 1. Summary of the information for the controlled releases with single CH4 point sources during the TADI 2019 campaign. Rows in
bold font highlight releases with low-wind-speed conditions.

Release Duration Emission rate Average wind speed Used in atmospheric
number (min) (Qs (g s−1)) (Ur (m s−1)) inversions

1 58 CH4: 10 2.76 No
2 32 CH4: 1 3.31 Yes
3 33 CH4: 0.5 3.56 No
4 33 CH4: 5 3.91 No
5 35 CH4: 3, CO2: 85 0.65 Yes
6 39 CH4: 0.5 0.45 No
7 46 CH4: 5.0 0.80 No
8 50 CH4: 0.5 & 0.75 & 0.5∗ 1.41 No
9 38 CH4: 1, C2H6: 0.5 1.46 Yes
10 38 CH4: 0.5 2.17 Yes
11 30 CH4: 0.16 2.39 No
12 46 CH4: 1 0.93 Yes
13 44 CH4: 0.2 0.26 No
14 55 CH4: 0.5 & 1.0∗ 0.07 No
15 61 CH4: 2 3.50 No
16 44 CH4: 2 1.83 No
17 50 CH4: 4 1.45 No
18 48 CH4: 0.3 0.13 No
19 40 CH4: 2.0 0.41 No
20 58 CH4: 2 & 4∗ 0.47 No
21 44 CH4: 1 1.31 Yes
22 33 CH4: 1, C2H6: 0.2 1.11 No
23 50 CH4: 2 1.84 No
24 43 CH4: 150 2.63 No
25 35 CH4: 5 3.12 Yes
26 48 CH4: 0.4 2.73 Yes
27 37 CH4: 0.5 3.12 No
28 45 CH4: 0.5 & 0.5∗ 1.04 No
29 44 CH4: 0.6 1.07 Yes
30 44 CH4: 1 1.51 No
31 24 CH4: 2 1.70 No
32 34 CH4: 4 3.58 Yes
33 45 CH4: 2 2.49 Yes

∗ Multiple source releases.

ing consistency between measurements from the reference
instrument and corresponding voltage drop measurements
from the TGS chambers. Chambers A, C, and D were in the
trajectory of the plume or very close to it, measuring peaks
of up to ∼ 30 ppm. Chambers E and F only captured a single
peak of ∼ 10 ppm, and chamber H captured one large peak
of ∼ 30 ppm. The mean wind speed during this release was
3.12 m s−1, with small wind direction variations of between
270 and 272°.

TGS sensors are known to be sensitive to variations in
humidity (H2O mole fraction) and temperature (T ), affect-
ing mainly the reconstruction of CH4 baseline (i.e. when
sampling background air without CH4 enhancements) and
thus the characterisation of peaks above this baseline (Rivera
Martinez et al., 2021; Rivera Martinez et al., 2023a). Two

approaches can be used to correct for the effect of variable
H2O mole fraction and T on the TGS voltage baseline sig-
nal and separate the voltage spikes from the baseline data in
the time series. The first method consists of using H2O mole
fraction (retrieved from relative humidity, pressure, and tem-
perature) and T to correct the TGS voltage baseline signals.
The second method involves the detection of voltage peaks
associated with CH4 spikes and deriving a baseline with a
linear interpolation on non-peak voltages. Due to logging is-
sues in some chambers, we did not have complete relative
humidity, pressure, and T data, which impeded us in defin-
ing a correction model. Therefore, in this study we employed
the second approach. Figure 4 shows a comparison of the
baseline correction for one release on voltage measurements
of the TGS 2611-C00 and TGS 2611-E00 sensors. A com-
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Figure 3. An example of 1 min averaged CH4 mole fraction (ppm) and voltage drop (V) measurements, respectively, obtained from six
high-precision instruments and one type of TGS sensor (TGS 2611-C00) for release 25 (Qs= 5 g s−1). CH4 measurements from the high-
precision instruments are denoted as “CH4”, and the voltage measurements from TGS sensor are denoted as “2611C”. The top panel shows
the 1 min averaged wind speed (Ur) and wind direction (θ ) measured by the 3D sonic anemometer.

parison of both methods is shown in Fig. A2, justifying our
choice.

To reconstruct CH4 mole fraction from TGS voltage mea-
surements, we calibrated empirical models that derive re-
lationships between TGS voltage and other input variables,
compared to CH4 mole fraction measurements made by the
high-precision gas analysers. The models are first calibrated
(trained) and then evaluated (tested) using two independent
subsets of data. To prevent a difference in the range of magni-
tudes from conditioning the determination of model param-
eters, the input variables are standardised, we applied a ro-
bust transformation consisting in removing the median and
dividing input observations by their 1–99th quantile range.
We selected the two reconstruction models that gave the best
performance in our previous study (Rivera Martinez et al.,
2023a), namely a polynomial regression and a multilayer per-
ceptron (MLP) model. A description of the models and hy-
perparameter values (i.e. tunable parameters that influence
the learning process of the model but not inferred from the
data) are presented in SM. Three configurations of input vari-
ables were tested: (i) only with the TGS 2611-C00, (ii) only
with the TGS 2611-E00, and (iii) with both TGS sensors
sampling simultaneously. The results are shown in Sect. 3.1.
To assess the performance of the reconstruction models to
provide dry CH4 mole fraction enhancements (above the
background) from voltage drop measurements corresponding
to the TGS sensors, we used a normalised root mean square

error (NRMSE) per release, weighted by the inverse of the
maximum peak present in the release, defined as follows:

NRMSE=

√∑
(yi−ŷi)

2

n

hmax
, (1)

where yi are the CH4 mole fraction measurements provided
by the high-precision instrument, ŷi are the reconstructed
CH4 mole fractions, n is the number of observations present
in each release, and hmax is the amplitude of the maximum
mole fraction peak enhancement present in the release after
removing the background. This normalisation allows us to
compare performance across the different releases.

As mentioned, the target signal in this study is CH4 en-
hancements above the atmospheric background. We obtain
this signal by subtracting the raw voltage signal during the
release from an inferred baseline voltage computed using the
peak detection algorithm and a linear interpolation.

We establish that an acceptable notional target error for re-
construction models should be below 15 % of the maximum
spike amplitude during the release period, which translates
to a NRMSE≤ 0.15.
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Figure 4. Comparison of the voltage signal for one release (no. 8) from chamber A before (uncorrected) and after (corrected) the baseline
correction on (b) TGS 2611-C00 and (d) TGS 2611-E00, on which the correction of the offset preserving the amplitude enhancements linked
to CH4 variations is appreciated. Scatter plot of the corrected (orange) and uncorrected (red) signal vs. the reference CH4 observations for
(c) TGS 2611-C00 and (e) TGS 2611-E00. (a) Reference CH4 mole fractions, also corrected using the spike correction algorithm.

2.6 Selection of the training and test subsets for the
reconstruction of CH4 mole fractions as input of
the atmospheric inversion of emissions

Defining an appropriate training data set is important to allow
reconstruction models to derive sufficient information to gen-
eralise (i.e. to extend its performance to data not present in
the training set) and to obtain good mole fraction reconstruc-
tion performance in the testing data set. In addition, the test-
ing data set should be chosen to allow for the evaluation of
model performance under a wide variety of conditions. Re-
garding inverse modelling, in order to provide a meaningful
assessment of the estimation of emission rates and locations,
inversion should be conducted using reconstructed CH4 mole
fractions from outside the training data set to avoid introduc-
ing bias in the evaluations of errors. Furthermore, depend-
ing on the magnitude of emission release rates, atmospheric

turbulence, and locations/distances of the downwind active
tripods from the emission sources, each of the six chambers
could not be used to detect CH4 mole fractions during each
release; therefore, a separate training and test set needs to be
defined for each chamber.

These previous considerations constrain the selection of
the training and testing data sets from each chamber. The
testing data set of the releases for use in inversions was de-
fined based on two criteria: (1) releases which yield recon-
structed CH4 mole fractions from at least three chambers
simultaneously and (2) releases corresponding to the more
favourable wind speed conditions (Ur≥ 1.4 m s−1) for inver-
sions. We determined seven releases that meet these con-
siderations (no. 2, 9, 10, 25, 26, 32, and 33). Because this
testing data set was of insufficient size for all of the cham-
bers, we decided to increase it by using data from four more
releases with low-wind-speed conditions (0.65≤Ur≤ 1.31)
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Table 2. Summary of the releases included in the training data set and testing data set of the CH4 reconstruction models. The mole fractions
modelled for the test set are also used as input of the inversion model to infer the CH4 emission rate and their location.

Chamber Releases in the Releases Number of Number of Percentage of
training set in the releases in the releases in the releases in the

test set training set test set training/test set

A
6, 7, 8, 11, 14, 2, 5, 9,

15 9 62.5 %/37.5 %15, 16, 17, 18, 19, 10, 21, 25,
20, 24, 27, 28, 30 26, 29, 32

C
14, 15, 17, 18, 9, 10, 21,

12 8 60 %/40 %19, 20, 22, 24, 25, 26, 29,
27, 28, 30, 31 32, 33

D 6, 7, 8, 13, 14 5, 9, 12, 25 5 4 55.5 %/44.5 %

E
3, 4, 6, 7, 2, 5, 9,

11 9 55.5 %/44.5 %8, 13, 14, 19, 12, 21, 25,
20, 22, 23 26, 32, 33

F
3, 4, 6, 7, 8, 2, 5, 9,

13 8 62 %/38 %13, 14, 15, 18, 10, 12, 21,
19, 20, 22, 24 25, 29

H
1, 3, 4, 13, 2, 21, 25,

12 7 63 %/37 %14, 18, 19, 20, 26, 29, 32,
23, 24, 28, 30 33

(no. 5, 12, 21, and 29). This selection led to a testing data
set of 40 % of the releases. All remaining data were used as
a training data set. The reconstruction models were trained
and tested only once per chamber, following the distribution
of the releases from Table 2.

2.7 Atmospheric inversion of the release locations and
emission rates

Derivation of release locations and emission rates relies on
an atmospheric inversion framework developed and tested
by Kumar et al. (2022), which is based on measurements
from high-precision instruments. The details of the approach
and implementation for this atmospheric inversion frame-
work are given in this publication, and they are just briefly
summarised here. This framework processes averages of the
time series of the observed CH4 mole fraction enhancements
above the background from the different stations: from either
the high-precision measurements or from the reconstruction
of CH4 mole fraction based on the TGS sensors that is de-
tailed above. For each station, these averages correspond to
temporal averages within two to seven bins of the observa-
tions defined by sectors of wind directions that are of equal
ranges during the release (see below for the practical defi-
nition of the wind sectors). The atmospheric inversion relies
on the simulation of these average CH4 mole fractions using
a Gaussian plume model. It uses the adjoint of this Gaus-
sian plume model to simulate the sensitivity of these aver-
age CH4 mole fraction enhancements above the background

at a measurement location to the emissions at all potential
source locations. This computation implicitly informs about
the numerical operator corresponding to the simulation with
the Gaussian plume model of the average CH4 mole fraction
enhancements above the background per wind sector and sta-
tion as a function of the source location and rate. For each
release, based on these sensitivities, the optimal horizontal
and vertical location and emission rate are derived as the
horizontal and vertical location and rate minimising the root
sum square (RSS) misfits between averages of the observed
and simulated CH4 mole fraction enhancements above the
background. In practice, optimal release location and emis-
sion rates are identified simultaneously, looping on a finite
but large ensemble of potential locations, using an analytical
formulation of the problem to derive the optimal rate and cor-
responding RSS misfits for each potential location and then
identifying the optimal location and rate providing the small-
est RSS misfits. The 40 m× 50 m (horizontally) × 8 m (ver-
tically) volume above the ATEX zone is discretised with a
high-resolution (1 m× 1 m horizontally and 0.5 m vertically)
3D grid to define a finite ensemble of potential locations.
The inversion exploits the change of wind direction during
a release at the different measurement locations and the cor-
responding variations and spatial gradients in average mole
fractions between the different measurement locations inter-
sected by the plumes to triangulate the release location. The
amplitude of mole fraction enhancements directly constrains
the release rate estimate.

https://doi.org/10.5194/amt-17-4257-2024 Atmos. Meas. Tech., 17, 4257–4290, 2024



4266 R. Rivera-Martinez et al.: Using metal oxide gas sensors for the estimate of controlled methane releases

The Gaussian model (in practice, its adjoint) is driven by
averaged wind directions and averaged turbulence parame-
ters derived from 3D sonic anemometer measurements, using
the same bins for these averages as for mole fractions. Those
bins are derived during each release based on the analysis of
1 min averaged wind directions: they correspond to a parti-
tion of the lower to upper range of potential 1 min average
wind directions into wind sectors of equal width in terms of
range of wind directions. The total number of bins during this
initial partition is defined as the rounding integer of the divi-
sion of the release duration (in min) by approximately 7 min.
However, only bins gathering at least four 1 min averages are
retained. The aim is that the mole fraction and meteorolog-
ical averages are representative of a timescale that is long
enough for use in or comparison to the Gaussian model. This
explains why, depending on the releases, the number of bins
ranges between 2 and 7.

In this work, we slightly revise the reference computa-
tions of release location and rate estimates based on mole
fractions from high-precision instruments from Kumar et al.
(2022). Indeed, in order to compare the release location and
rate estimates from such a reference to the results based on
the TGS sensors, we restrain the set of high-precision ob-
servations that are used in the reference computation to the
station and time corresponding to data availability from the
TGS sensors.

3 Results

3.1 Reconstruction of CH4 mole fractions

Due to the diversity of the emission rates across the con-
trolled releases, environmental conditions, the spatial distri-
bution of air inlets, and the selection of the training and test-
ing data sets for each chamber, there is no single release that
can be viewed as representative for the test set across the
chambers. Yet, we chose release no. 25 as an example of the
signal measured across all the chambers. The reconstructed
signal using the MLP model is shown in Fig. 5 and for the
second-order polynomial model in Fig. 6, respectively. For
each chamber we shown the reconstructed CH4 mole frac-
tions estimated using only the type C sensors (red), the type E
sensor (yellow), and both sensors used as inputs for the mod-
els at the same time (green).

We found that both the MLP and second-degree polyno-
mial models had similar performance across the releases, re-
gardless of the chamber used for CH4 mole fraction recon-
struction. For two releases sampled by chamber A (releases
no. 10 and 26; see Figs. A6 and A9 for MLP model and
Figs. A11 and A12 for the polynomial model, respectively),
characterised by amplitudes below 10 ppm, the polynomial
model provides a noisy signal as output regardless of the
configuration of the inputs used. There were, however, some
cases in which the polynomial model outperformed the MLP,

for example, the four releases sampled by chamber D, where
the MLP model produced a systematic underestimation of the
reconstructed CH4 mole fraction on the three configurations
of inputs.

Regarding the two TGS types tested in this work, the
type C sensor used alone produced better reconstructions
than the type E sensor alone, as well as both types used as
simultaneous model input. Type E sensors showed phasing
errors in the form of a slow decay after large spikes and un-
correlated spikes not detected by the reference gas analysers,
for example, during release no. 9 from chamber D (Figs. A5
and A10 for the MLP and the polynomial model, respec-
tively). Simultaneous use of both sensors (type C and E) as
model input produced outputs closer to model outputs trained
with only type C sensor data. MLP models also presented,
for some releases, a saturation of the outputs (releases no. 9,
12, and 25 for chamber D (Figs. A5, A7, and 5) and release
no. 21 for chamber H (Fig. A8)) or a systematic bias (releases
no. 2, 10, and 26; see Figs. A4, A6, and A9). For releases
with peak amplitudes above 40 ppm, a systematic underesti-
mation is observed regardless of the reconstruction model or
the sensor type used as input.

Figure 7 summarises the performance of the reconstruc-
tion on the testing data set using the NRMSE error de-
fined in Eq. (1). All chambers reached our target error
(NRMSE≤ 0.15), except in three cases corresponding to
models using the type E sensor as input (chamber A for poly-
nomial model and MLP and chamber C for MLP). Imposing
a stricter target requirement of NRMSE≤ 0.1, only chamber
H satisfied the target error regardless of the reconstruction
model or the sensor used. Performance is similar when using
the type C sensor as model input regardless of the choice of
model across all the chambers. When using both sensor types
at the same time as model input, the second-degree polyno-
mial provides better reconstruction than the MLP model, es-
pecially for chambers C, D, and H (NRMSE= 0.09, 0.09,
and 0.04 for the polynomial model and 0.11, 0.13, and 0.07
for the MLP). Chamber D, characterised by having limited
training data, produced a systematic lower error when using
the polynomial model than when using the MLP model, re-
gardless of the input variable used.

In summary, the model used in the reconstruction is impor-
tant only for cases where there is limited information avail-
able for model training. We also conclude that type C sensors
alone produced a better reconstruction of CH4 spikes than ei-
ther using type E sensors alone or using both types of sensors
as model input.

3.2 Release rate and location estimates based on the
observations from the TGS sensors

Average CH4 mole fraction enhancements above the back-
ground and of their spatial gradients are displayed for re-
lease no. 25 in Fig. 8. This figure compares the values of
reconstructions from the low-cost sensors using the MLP

Atmos. Meas. Tech., 17, 4257–4290, 2024 https://doi.org/10.5194/amt-17-4257-2024



R. Rivera-Martinez et al.: Using metal oxide gas sensors for the estimate of controlled methane releases 4267

Figure 5. Example of reconstruction of release no. 25 using a MLP model. The left panels show the reconstructed CH4 mole fractions for
each chamber that captured the release; we present the reference signal (black dotted line), the reconstructed CH4 mole fractions when the
model has as input the TGS 2611-C00 sensor (red), the TGS 2611-E00 (yellow), or both types at the same time (green). The right panels
show the 1 : 1 plot of the reference against the output of the model for the three configurations of inputs. Note the difference in the x axis for
chamber F.
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Figure 6. Example of reconstruction of release no. 25 using a polynomial model. Notations are the same as in Fig. 5.
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Figure 7. Comparison of the mean NRMSE of the two types of models trained with the three configurations of the inputs. The second-degree
polynomials are denoted as “Poly” and the multilayer perceptron as “MLP”. The three input configurations are denoted inside parentheses:
“C” when the model’s input was only the TGS 2611-C00, “E” for the TGS 2611-E00, and “CE” when both sensors were used as inputs at
the same time. The colour code of the bars corresponds to the chambers.

model (see Fig. A13 for the values corresponding to the
polynomial model), with corresponding measurements made
by the high-precision gas analyser. It also shows simula-
tions resulting from inversions assimilating either the refer-
ence high-precision data or reconstructed TGS data. Since
the best reconstruction performance was obtained when us-
ing the type C sensor, the inversion results presented here
are based on reconstructions from only this type of sensor.
For release no. 25, used as an example here, the procedure to
define average values per wind sectors resulted in four bins,
with an approximate size of 10°. To simplify the numbering
when mentioning the reference instrument or the TGS, we
refer to the chamber identifier X (REF-X and TGS-X, re-
spectively, with X the name of the chamber). The contour
plot of the cost function is presented in Fig. A15, showing
the controlled release location and the inversion estimated
location when assimilating TGS data.

In general, the observed spatial CH4 mole fraction gradi-
ents between the different stations are similar when consider-
ing the reference gas analyser measurements and the recon-
structed CH4 mole fractions from the TGS, except for few
cases where the reference is better, for example, for release
no. 25 (see Fig. 8). During release no. 25, observed gradients
from TGS-D data underestimate the actual gradients given by
REF-D for θ = 308.3° and overestimate them for θ = 279.2°,
where θ is the average direction of the wind sector.

The modelled average mole fraction enhancements and
thus the modelled gradients assimilating reference data are
very close, in general, to the ones from these reference
data, although some discrepancies can occur, for example,
for release no. 25, for REF-H with θ = 279.2°, REF-C with
θ = 301.4° and θ = 289.1°, and REF-A with θ = 301.4 and
308.3°. For most of the cases, the modelled gradients assim-
ilating the TGS data are closer to those assimilating the ref-

erence data than to the observed TGS data. In addition, the
observed TGS data, for some cases, is closer to the observed
reference one than to the modelled gradients assimilating ei-
ther reference or TGS data, highlighting the higher impact of
the model error on the inversion than the reconstruction error
of CH4 mole fractions.

Figure 9 shows a comparison of emission rate estimates
with corresponding relative error in the estimation of emis-
sion rate and location error across the 11 releases of the test-
ing data set. This figure shows estimates assimilating CH4
mole fractions from the TGS using reconstructions from
the MLP model (see Fig. A14 for results when assimilat-
ing reconstructed mole fraction measurements based on the
second-degree polynomial model).

Regarding the release rate estimates, those from inversions
assimilating the reference mole fractions bear an average er-
ror of 30 %, and those from the inversion assimilating data
from the TGS sensors bear an average error of 25 %. In the
case of the estimation of the release location, the assimila-
tion of the reference data produces a slightly smaller average
localisation error of 7.86 m (σ = 5.47 m) compared to 9.49 m
(σ = 4.58 m) from the assimilation of TGS data. For five re-
leases (no. 2, 10, 12, 25, and 26), the assimilation of refer-
ence data yields a better estimate of the location, and for one
release (no. 21), both inversions yield similar localisation er-
rors.

In general, emission rate estimates (see Fig. 9a) derived
using CH4 mole fraction from reference gas analyser and re-
constructed from TGS data are similar. For three releases
(no. 12, 25, and 32), we observe large errors in the re-
lease rate estimate. Inversion assimilating reconstructed TGS
data or reference gas analyser mole fraction measurements
highly underestimate the rate for release no. 5 (1.41 and
1.34 g CH4 s−1, respectively, with a controlled release rate of
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Figure 8. Observed and modelled average CH4 mole fractions from the reference gas analyser, denoted as “REF”, and TGS 2611-C00
sensors, denoted as “TGS”, corresponding to release no. 25. Reconstructed CH4 measurements were computed using the MLP model. The
index of the air inlets is denoted as T-x, and the average wind direction (θ ) for the binning of wind sectors is shown on the top right of each
panel in red.

Figure 9. Comparison of the emission rate estimate (Qe) (a), of the location error (El) (b), and of the relative error in the emission rate
estimate (c) from the inversions assimilating the reference data (in red) and the reconstruction of the CH4 mole fraction from the TGS
sensors (in orange). The reconstructed CH4 mole fractions used in these inversions are computed with the MLP model.

3.0 g CH4 s−1) and strongly overestimate the rate for release
no. 32 (5.14 and 6.55 g CH4 s−1, respectively, with a con-
trolled release emission rate of 4.0 g CH4 s−1). Modelling us-
ing measurements from the reference gas analyser provides
a slightly better estimation of release locations than the us-
ing reconstructed TGS data. Only for releases no. 29 and 33
does the inversion assimilating reconstructed TGS data pro-
vide slightly better source localisation. Conversely, for re-
leases no. 2, 12, 25, and 26, the location error from the inver-
sion assimilating reconstructed TGS data is almost double
that derived using reference gas analyser measurements. The
errors on the emission rate estimate from both inversions was
smaller than 30 % for most of the releases, except for four
cases, where errors reached 80 % for the inversion assim-
ilating reconstructed TGS data and 65 % for the inversion

assimilating reference gas analyser measurements, respec-
tively. There were two cases, releases no. 26 and 33, when the
inversion assimilating reconstructed TGS measurements pro-
duced a much lower error (2.5 % and 5.3 %, respectively) in
the emission flux quantification than the inversion assimilat-
ing reference gas analyser observations (20.9 % and 22.7 %,
respectively). The fact that the assimilation of the TGS re-
constructed CH4 data can yield better results than when us-
ing accurate CH4 mole fraction measurements made by the
reference instrument highlights the impact of the transport
model error (associated with the simulation of the average
mole fractions with the Gaussian model) in the inversion pro-
cess. These errors dominate the resulting errors in the esti-
mates of the release rate and location when assimilating the
reference data (Kumar et al., 2022). They appear to have a
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weight larger than that of errors in reconstructed mole frac-
tion from TGS data when assimilating these data.

4 Discussion

Baseline voltage correction of TGS sensors, in this study, as-
sumes that the targeted voltage signal measured by the sen-
sors corresponds to a series of high-frequency spikes pro-
duced as a result of the emission plume intermittently inter-
secting the various sensor air inlets, due to atmospheric tur-
bulence and high-frequency wind variations. Our approach
of deriving a baseline voltage signal offers a suitable alter-
native to otherwise correct the TGS observations when little
or insufficient information is available to derive an analyt-
ical baseline voltage correction model (e.g. from measure-
ments of H2O mole fraction and temperature). This approach
is interesting for conditions when environmental parameters
are highly variable or baseline voltage correction models do
not dispose of sufficient observations to derive robust rela-
tionships to correct for the effects of environmental variables
on TGS baseline voltage signal. This case corresponds well
with the measurements presented in this study. However, in
some cases, the plume can intersect the sensor air inlet for
a prolonged duration, resulting in a voltage signal not only
exhibiting high-frequency spikes but also resulting in con-
tinuously varying voltage enhancements above the baseline
voltage level. For those cases, our baseline voltage method
would not be able to distinguish the sensor voltage enhance-
ments corresponding to the CH4 mole fraction enhancements
due to the plume as opposed to the atmospheric background;
we would then need to reconsider the option of deriving a
voltage baseline based on environmental parameters (H2O
mole fraction and T ).

Regarding the type of TGS used in CH4 mole fraction
reconstruction, we obtain best performance (compared to
the reference gas analyser) using only type C sensors as
model input. The fast decay observed for reconstructed CH4
mole fraction measurements after each voltage spike was at-
tributed to the response time of the TGS sensor. The slow
decay observed on type E sensors was probably due to a
filter integrated inside the sensor causing the improvement
of CH4 selectivity. Concerning the reconstruction models,
the polynomial and the MLP models produced similar re-
sults with few differences. This confirms our previous study
(Rivera Martinez et al., 2023a), where we observed that the
performance of CH4 mole fraction reconstruction models
was mainly driven by the type of used sensor rather than the
choice of reconstruction model. In cases with a low informa-
tion content (i.e. only few observed voltage spikes, limited
voltage range, and variability of the spike magnitude, fre-
quency, and duration) in the training data set (e.g. when re-
constructing CH4 mole fraction for chamber D), the second-
degree polynomial model provides more accurate mole frac-
tion estimates than the MLP model. This is probably due to

data distribution within the training data set used by the MLP
model to compute its parameters, not representing the same
range of variations within the testing data set. For spikes with
mole fraction enhancements of under 5 ppm, the MLP model
with the type C sensor signal as input produced a more accu-
rate reconstruction than either using the type E sensor alone
or using both sensor types simultaneously as model inputs.
The combination of both sensors as input produced a recon-
struction of CH4 mole fractions similar to using only one of
the sensors (TGS 2611-C00). This can be explained by the
fact that both of the TGS signals are highly correlated and
do not add more information to the model, as well as the
phase mismatch between both input signals produced by the
filter on the TGS 2611-E00 sensor. The noise in the voltage
signal during some releases, for example, release no. 26 on
chamber A, was not correctly removed during the polynomial
model mole fraction reconstruction. However, for the type C
sensor, the MLP model reduces the voltage signal noise, re-
sulting in a more accurate mole fraction reconstruction.

Regarding the inversion of emission rates and locations
using the Gaussian plume model framework developed by
Kumar et al. (2022), we obtained good estimates and per-
formance with the reconstructed time series of CH4 mole
fraction spikes from voltage measurements of TGS sensors,
and the results are comparable to those obtained when as-
similating corresponding mole fraction measurements from
the reference gas analyser. We observed that the simulated
gradients of the Gaussian model assimilating observations
from the TGS chambers were close to simulated gradients
of the reference inversions (assimilating measurements from
the high-precision gas analyser), even if the observed gradi-
ents were sometimes in a different direction. In most cases
errors from both inversions ranged between 2.5 % and 55 %
except for releases no. 12 and 32, where the error reached
65 % and 63 % for simulated gradients assimilating the ref-
erence data, respectively, and release no. 12, with an 85 %
error for simulated gradients assimilating the TGS data. The
overall inversion performance assimilating TGS data and ref-
erence data is good and consistent. The slightly better aver-
age performance in the release rate estimates using TGS data
(25 % error) than using reference data (30 % error) is not sig-
nificant with regards to the overall variability of the results
and highlights the weight of the model errors associated with
the simulation of the average mole fraction with a Gaussian
model. These results demonstrate that the errors in the re-
lease rate and location estimations from inversions using both
reference and TGS data are dominated by model errors in
the inversion framework. The errors in the reconstruction of
the CH4 mole fraction spikes from the TGS voltage data are
thus sufficiently low for use in the inverse modelling problem
analysed here.

One should note that, as mentioned on Sect. 2.7, in this
study, reference inversions rely on a restrained subset of the
reference data that match the available data from TGS sen-
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sors. Results from Kumar et al. (2022) considering the full
reference data set yielded significantly superior results.

4.1 Detection threshold and differentiation of emission
types

Our methodology requires for emissions to be sustained for
long enough to be captured within each sampling interval.
The principal limitation of our method is the requirement
for at least four 1 min averages, restraining the detection of
short-lived emissions. Another challenge lies in the detec-
tion of emission types, such as vented, combustion, or fugi-
tive emissions. This aspect, which is out of the scope of our
study, would require a detailed study of the characteristics
of each kind of emission, requiring additional tools to distin-
guish their individual particularities.

4.2 Limitations of the inversion framework

The inversion approach applied here, described for a sin-
gle emission source only as required by the controlled re-
lease experiments, can be easily extended to estimate emis-
sions from multiple sources (see Singh et al., 2013). How-
ever, estimating emissions from multiple sources may re-
quire a denser network of sensors to constrain a larger num-
ber of parameters for all sources. However, significant uncer-
tainties may arise in emission estimates when measurements
are taken in very close proximity to the emission sources.
Our methodology requires that emissions be sustained long
enough to be captured within the sampling intervals. The
principal limitation is the requirement for at least four 1 min
averages, restraining the detection of short-lived emissions.
Another challenge lies in the detection of emission types,
such as vented, combustion, or fugitive emissions. This as-
pect, which is out of the scope of our study, would require a
detailed study of the characteristics of each kind of emission,
requiring additional tools to distinguish the particularities of
them.

4.3 Density of sensor network

In our campaign, we deployed seven chambers connected to
air inlets placed on tripods at distances of between 40 and
50 m from the emission source to capture methane plumes
under various conditions. Table 3 details the number of sen-
sors used for emission flux estimations across the controlled
releases. The optimal number of sensors for emission flux
localisation and estimation is complex and is influenced by
varying emission rates, environmental conditions, and setup
configurations. Notably, when examining cases with uni-
form emission rates (1 g CH4 s−1), such as releases no. 12,
2, and 21 (with three, four, and five chambers, respectively),
a configuration of four to five sensors consistently produced
the lowest errors for both sensor types. Yet, release no. 21
demonstrated that even five sensors may not guarantee low

errors if the plume capture is suboptimal due to environmen-
tal factors or sensor placement.

We can contrast our setup with Riddick et al. (2022), who
used four sensors approximately 30 m away from the source,
but without detailing their individual contributions to emis-
sion calculations. The optimal configuration of such a rela-
tively dense network necessitates a thorough investigation,
possibly through simulations of typical emissions and the
strategic addition or removal of sensors to assess their im-
pact. However, a comprehensive analysis of optimal network
configuration was beyond the scope of our study due to the
limited number of data points recorded.

4.4 Computational efficiency of the inversion
framework

Our inversion framework, developed in Python 3.8 utilis-
ing NumPy, pandas, and SciPy libraries, efficiently com-
putes the RSS matrix through vectorised operations and a
nested for loop. This approach achieves an average com-
putation time per release of 0.1 s for the RSS matrix and
1.46 s for full code execution, including data preprocessing
on an eight-core Apple Silicon M1 processor. The frame-
work, which can be further optimised with multiprocess-
ing, is detailed in Table A7, showcasing computational times
across different releases. It effectively estimates emission
rates and source locations on a fine grid (40 m× 50 m× 8 m,
discretised at 1 m× 1 m× 0.5 m), demonstrating practicality
for real-world applications at minimal computational costs.

While our work presents promising results regarding the
use of low-cost MOS sensors for estimating CH4 emission
rates and locations, it is imperative to acknowledge the high
degree of uncertainty associated with continuous emission
monitoring (CM) solutions, as evidenced by the study con-
ducted by Bell et al. (2023). In their study, various CM
technologies were tested against a series of controlled re-
leases, revealing a broad range of true-positive rates, false-
positive rates, and significant errors in the estimation of emis-
sion rates. Bell et al. found considerable variability in the
performance of CM technologies, with mean relative errors
(MREs) ranging from −44 % to +586 % for release rates of
between 0.1 and 1 kg h−1 and MREs ranging between−40 %
and +93 % for release rates above 1 kg h−1. These findings
underscore the current limitations and inconsistent perfor-
mance of CM solutions, even under less complex conditions
than typically encountered in the field. While our study is
encouraging, it represents just one step in the progression of
this approach.

5 Conclusions

Our study demonstrated the capability of metal oxide sensors
to be used with flux algorithms to estimate emission rate and
location during a controlled CH4 release experiment, with
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Table 3. Comparison of the emission rate estimate (Qe), location error (El), and relative error of flux rate estimates for inversions assimilating
reference gas analyser measurements and reconstructed TGS mole fractions using the MLP model.

Release Number of Controlled release Reference TGS

number chambers emission rate Qe El error Qe El error
(g CH4 s−1) (g CH4 s−1) (m) (%) (g CH4 s−1) (m) (%)

2 4 1.0 1.10 5.26 10.8 0.89 12.40 10.1
5 4 3.0 1.34 21.57 55.2 1.41 19.55 52.8
9 5 1.0 0.88 14.29 11.9 1.11 12.78 11.8
10 3 0.5 0.40 9.29 18.9 0.42 10.80 14.8
12 3 1.0 0.34 3.08 65.7 1.84 7.15 84.9
21 5 1.0 0.63 3.61 36.1 0.66 3.61 33.8
25 6 5.0 4.61 4.57 7.8 5.41 10.02 8.2
26 4 0.4 0.31 5.10 20.9 0.39 10.10 2.5
29 4 0.6 0.45 3.40 24.5 0.43 2.34 28.3
32 4 4.0 6.55 10.55 63.8 5.14 10.28 28.6
33 3 2.0 2.45 5.77 22.7 2.10 5.37 5.3

Average error 7.86 30.7 9.49 25.5

σerror 5.47 20.3 4.58 23.6

release rates typical of those expected from gas leaks from
industrial facilities. Our TGS voltage baseline correction al-
gorithm allowed us to identify TGS voltage variations related
to the high-frequency variation of the plume across the dif-
ferent sensor inlets. We compared the performance of two
models, second-degree polynomials and MLP, to reconstruct
CH4 mole fractions from voltage drop measurements dur-
ing the controlled releases for three configurations of data
from TGS units as inputs for the reconstruction algorithm.
The reconstructed CH4 mole fractions were used as input
to an inversion modelling framework for emission localisa-
tion and flux quantification for each release not otherwise
used for model training (i.e. the testing data subset). Results
of inversions assimilating reconstructed TGS mole fraction
were compared with those assimilating corresponding refer-
ence (CRDS) mole fraction measurements.

The reconstruction of CH4 mole fraction from voltage
measurements made during controlled releases showed good
agreement with corresponding measurements made by high-
precision reference gas analysers. The reconstruction was
consistently better using data from the TGS 2611-C00 re-
gardless of the reconstruction model used. Both CH4 mole
fraction reconstruction models satisfied our targeted NRMSE
requirement of lower than 0.15 for all chambers, when
trained with the TGS 2611-C00. Emission rate and source
location estimates using an inversion based on a Gaussian
plume model produced similar results using reconstructed
CH4 mole fraction derived from TGS sensors to those ob-
tained using high-precision measurements, with an average
estimated TGS emission rate error of 25.5 % and a mean
source location error of 9.5 m. In this study, the reconstruc-
tion of the CH4 mole fractions was conducted independently
of inversion modelling. The emission flux estimation error

could probably be reduced with a better understanding of
inverse modelling sensitivity to the misfits from the recon-
struction models. In consequence, a sensitivity study is en-
couraged in future to determine the best approach for the re-
construction TGS-derived methane mole fraction.

Appendix A: Models employed in the reconstruction of
CH4 concentrations from TGS voltage measurements

Second-degree polynomials proven to be robust to derive re-
lationships between TGS voltage signal related to spikes and
CH4 mole fraction (Rivera Martinez et al., 2023a) are defined
by

ŷCH4(x1)= β0+β1x1+β2x
2
1 , (A1)

where ŷCH4 is the predicted CH4 concentration and x1 is the
corrected voltage of the TGS after removing the effects of
the baseline.

Artificial neural networks have been widely used to de-
rive non-linear relationships between predictors and indepen-
dent variables in many applications, as a universal approxi-
mator method (Hornik et al., 1989), and for their generalisa-
tion capabilities (Haykin, 1998). In previous studies (Casey
et al., 2019; Eugster et al., 2020; Rivera Martinez et al., 2021;
Rivera Martinez et al., 2023a), ANNs were employed to de-
rive CH4 mole fractions from TGS observations on differ-
ent sampling configurations (field and laboratory conditions)
with good agreement between the reference observations and
the outputs produced from the models. The simplest archi-
tecture of an ANN is the multi-layer perceptron (MLP), con-
sisting of a series of units (neurons) in fully connected layers.
The inputs of any unit will be the weighted sum of the outputs
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of the previous layer, to which an activation function (ReLU,
tanh, etc.) is applied. As a supervised machine learning ap-
proach, it requires a training basis to learn the relationships,
adjusting the weights of its connections, between the inputs
and outputs using an iterative process known as optimisa-
tion. The problems of MLP models are either the underfit of
data; the production of a high error on the train set which can
be mitigated with a sufficiently large network; or overfitting,
which produces a high test error when they cannot generalise
to new examples. Regularisation terms and early stopping
techniques are helpful to prevent overfitting (Bishop, 1995;
Goodfellow et al., 2016). Here, we have trained the MLP
model using the Adam optimiser (Kingma and Ba, 2014;
Géron, 2019), and the optimal number of units and layers
was determined using a grid search technique (Géron, 2019),
resulting in 50, 10, and 5 units per layer with ReLU as the ac-
tivation function for the hidden units. A regularisation factor
of α= 0.05 and early stopping was used to prevent overfit-
ting.

Figure A1. Comparison of the voltage measurements from three types of TGS included on chamber A. Panel (a) shows the reference CH4
observations measured from the reference instrument. Panel (b) shows the voltage observations from TGS 2611-C00, 2600, and 2611-E00.

Atmos. Meas. Tech., 17, 4257–4290, 2024 https://doi.org/10.5194/amt-17-4257-2024



R. Rivera-Martinez et al.: Using metal oxide gas sensors for the estimate of controlled methane releases 4275

Figure A2. Comparison of the performance in deriving a baseline signal for the TGS 2611-C00 (red) of chamber E between a function
of H2O and temperature (yellow) and a spike detection algorithm (green). The multilinear-model-derived baseline was trained on 6 h of
non-release periods at the start of the first day of the campaign and evaluated on the last 8 h of the same day (shown in the figure). The spike
detection algorithm, an iterative function, does not need any prior training and detects the baseline based on neighbouring observations and
fixed parameters.

Figure A3. Comparison of the response of the TGS 2611-C00 and TGS 2611-E00 sensors with CH4 measurements from the reference
instrument for release no. 2, which contains spikes with high concentration. The spikes observed on the TGS sensors corresponding to
amplitudes from 100 ppm to more than 200 ppm are not distinguishable from spikes with amplitudes lower than 50 ppm.
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Figure A4. Reconstruction of release no. 2 using a MLP model. The left panels show the reconstructed CH4 mole fractions for each chamber
that captured the release; we present the reference signal (black dotted line), the reconstructed CH4 mole fractions when the model has as
input the TGS 2611-C00 sensor (red), the TGS 2611-E00 (yellow), or both types at the same time (green). The right panels show the 1 : 1
plot of the reference against the output of the model for the three configurations of inputs. Note the difference in the x axis for the chambers.
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Figure A5. Reconstruction of release no. 9 using a MLP model. Notations are the same as in Fig. A4. Note the difference in the x axis for
the chambers.
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Figure A6. Reconstruction of release no. 10 using a MLP model. Notations are the same as in Fig. A4. Note the difference in the x axis for
the chambers.
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Figure A7. Reconstruction of release no. 12 using a MLP model. Notations are the same as in Fig. A4. Note the difference in the x axis for
the chambers.
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Figure A8. Reconstruction of release no. 21 using a MLP model. Notations are the same as in Fig. A4. Note the difference in the x axis for
the chambers.

Atmos. Meas. Tech., 17, 4257–4290, 2024 https://doi.org/10.5194/amt-17-4257-2024



R. Rivera-Martinez et al.: Using metal oxide gas sensors for the estimate of controlled methane releases 4281

Figure A9. Reconstruction of release no. 26 using a MLP model. Notations are the same as in Fig. A4. Note the difference in the x axis for
the chambers.
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Figure A10. Reconstruction of release no. 9 using second-degree polynomials. Notations are the same as in Fig. A4. Note the difference in
the x axis for the chambers.
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Figure A11. Reconstruction of release no. 10 using second-degree polynomials. Notations are the same as in Fig. A4. Note the difference in
the x axis for the chambers.
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Figure A12. Reconstruction of release no. 26 using second-degree polynomials. Notations are the same as in Fig. A4. Note the difference in
the x axis for the chambers.
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Figure A13. Observed and modelled average CH4 mole fractions from the reference gas analyser, denoted as “REF”, and TGS 2611-C00
sensors, denoted as “TGS”, corresponding to release no. 25. Reconstructed CH4 measurements were computed using the second-degree
polynomial model. The index of the air inlets is denoted as T-x, and the average wind direction (θ ) for the binning of wind sectors is shown
on the top right of each panel in red.

Figure A14. Comparison of the emission rate estimates (Qe), location error (El), and relative error on the rate estimates for the inversions
assimilating the reference data and the reconstruction of the CH4 from the TGS low-cost sensor based on the polynomial model of second
degree.

Figure A15. Contour plot of the cost function for release no. 25 computed using assimilated gradients from TGS reconstructed data. The
black and white stars shows the location of the actual and estimated location, respectively.
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Table A1. Distribution of the releases by chamber. For each chamber, the releases for which the TGS sensors produced valid measurements
are denoted with “◦” and the invalid ones are denoted with “×”.

Release Chamber Release Chamber

number A C D E F H number A C D E F H

1 – – – × × ◦ 19 ◦ ◦ – ◦ ◦ ◦

2 ◦ – – ◦ ◦ ◦ 20 ◦ ◦ – ◦ ◦ ◦

3 – – – ◦ ◦ ◦ 21 ◦ ◦ – ◦ ◦ ◦

4 – – – ◦ ◦ ◦ 22 – ◦ – ◦ ◦ –
5 ◦ – ◦ ◦ ◦ – 23 – – – ◦ – ◦

6 ◦ – ◦ ◦ ◦ – 24 ◦ ◦ × – ◦ ◦

7 ◦ – ◦ ◦ ◦ – 25 ◦ ◦ ◦ ◦ ◦ ◦

8 ◦ – ◦ ◦ ◦ – 26 ◦ ◦ × ◦ – ◦

9 ◦ ◦ ◦ ◦ ◦ – 27 ◦ ◦ – – – ×

10 ◦ ◦ × × ◦ – 28 ◦ ◦ – – – ◦

11 ◦ × – – – – 29 ◦ ◦ – – ◦ ◦

12 × × ◦ ◦ ◦ – 30 ◦ ◦ – – – ◦

13 – × ◦ ◦ ◦ ◦ 31 – ◦ – – – –
14 ◦ ◦ ◦ ◦ ◦ ◦ 32 ◦ ◦ – ◦ – ◦

15 ◦ ◦ – – ◦ – 33 × ◦ – ◦ – ◦

16 ◦ – – × – –
17 ◦ ◦ – – – ×

18 ◦ ◦ – – ◦ ◦

Table A2. Comparison of the emission rate estimate (Qe), location error (El), and relative error of flux rate estimates for inversions assimi-
lating reference gas analyser measurements and reconstructed TGS mole fractions using the second-degree polynomial model.

Release Number of Controlled release Reference TGS

number chambers emission rate Qe El error Qe El error
(g CH4 s−1) (g CH4 s−1) (m) (%) (g CH4 s−1) (m) (%)

2 4 1.0 1.10 5.26 10.8 1.19 12.40 19.1
5 4 3.0 1.34 21.57 55.2 1.53 19.55 48.8
9 5 1.0 0.88 14.29 11.9 1.03 13.60 2.9
10 3 0.5 0.40 9.29 18.9 0.34 7.74 30.7
12 3 1.0 0.34 3.08 65.7 2.99 9.55 199.2
21 5 1.0 0.63 3.61 36.1 0.64 3.61 35.7
25 6 5.0 4.61 4.57 7.8 6.50 10.02 30.0
26 4 0.4 0.31 5.10 20.9 0.43 10.04 9.1
29 4 0.6 0.45 3.40 24.5 0.41 2.34 30.8
32 4 4.0 6.55 10.55 63.8 5.42 10.28 35.6
33 3 2.0 2.45 5.77 22.7 2.11 5.37 5.5

Average error 7.86 30.7 9.5 40.6

σerror 5.46 20.3 4.6 51.9
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Table A3. Summary of the tripods that were connected to each chamber.

Chamber Tripod number

A 1, 4, 6, 8, 9, 10, 11, 14, 15
C 2, 7, 9, 14, 15, 16
D 2, 3, 9, 10, 11, 12, 13, 16
E 1, 3, 4, 5, 10, 11, 12, 13, 16
F 2, 3, 4, 10, 11, 12, 13, 14, 15
H 4, 5, 6, 7, 12, 13, 14, 15

Table A4. Comparison between TGS sensors included on the low-cost logging systems during the TADI 2019 campaign.

Type Target gas Approximate Comments
price

2600 C2H5OH, C4H10, CO, H2, CH4 USD 15 Designed as a smoke detector.

2611-C00 CH4, C2H5OH, C4H10, CO, H2 USD 20 Designed for CH4 detection. Fast response.

2611-E00 CH4, H2 USD 20 Designed for CH4 detection.
Increased selectivity due to a carbon filter installed
on top of the sensing material.

2602 C7H8, H2S, C2H5OH, NH3, H2 USD 17 High sensitivity to VOC and odour gases.

Table A5. Summary of the species measured by each reference instrument.

Serial number/code Identifier Species measured

CFKADS2286/Picarro 1 Picarro CRDS G2401 CH4, CO2, CO
CFKADS2301/Picarro 2 Picarro CRDS G2401 CH4, CO2, CO
CFKADS2194/Picarro 3 Picarro CRDS G2401 CH4, CO2, CO
CFKADS2131/Picarro 4 Picarro CRDS G2401 CH4, CO2, CO
CFIDS2067/Picarro 5 Picarro CRDS G2201-i isotopic 13CH4, 12CH4, 13CO2, 12CO2
CFIDS2072/Picarro 6 Picarro CRDS G2201-i isotopic 13CH4, 12CH4, 13CO2, 12CO2
LGR MGGA Los Gatos micro-portable greenhouse gas analyser CH4, CO2
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Table A6. Summary of the specifications of the chambers, the tripods to which each chamber was connected, the captured releases, and the
reference instrument collocated with each chamber.

Chamber Figaro TGS Load resistor Other Chamber Tripod No. of measured Reference
sensors (�) sensors type releases instrument

A
2600

50K
DHT22

Acrylic/glass
1, 4, 6

28 Picarro CFKADS22862611-C00 BMP280 8, 9, 10
2611-E00 11, 14, 15

C
2600

50K
SHT75

Acrylic/glass
2, 7, 9

24 Picarro CFIDS20722611-C00 BMP280 14, 15, 16
2611-E00

D
2600

5K
SHT75

Steel/glass
2, 3, 9

14 Picarro CFKADS23012611-C00 BMP280 10, 11, 12
2611-E00 13, 16

E
2600∗

5K
DHT22

Steel/glass
1, 3, 4

24 Picarro CFKADS21312611-C00∗ SHT75 5, 10, 11
2611-E00∗ BMP180 12, 13, 16

F
2600

50K
SHT75

Acrylic/glass
2, 3, 4

25 Picarro CFKADS21942611-C00 BMP280 10, 11, 12
2611-E00 13, 14, 15

H
2600

50K
SHT75

Acrylic/glass
4, 5, 6

22 LGR MGGA2611-C00 BMP180 7, 12, 13
2611-E00 14, 15

∗ Two versions of each type.

Table A7. Computation time in seconds of the RSS matrix and the entire inversion including the preprocessing of the data for each release
in the test set.

Release Number of RSS matrix Data preprocessing
number receptors (s) inversion (s)

2 4 0.148 1.497
5 4 0.099 1.498
9 5 0.092 1.260
10 3 0.034 0.992
12 3 0.073 1.428
21 5 0.094 1.286
25 6 0.146 1.511
26 4 0.156 1.859
29 4 0.152 1.923
32 4 0.094 1.425
33 3 0.086 1.455

Average 0.107 1.467

Code availability. The codes were developed in the frame of the
Chaire Industrielle TRACE ANR-17-CHIN-0004-01. They are ac-
cessible upon request to the corresponding author.

Data availability. The data set was collected in the frame of the
Chaire Industrielle TRACE ANR-17-CHIN-0004-01. It is pub-
licly accessible at this link: https://doi.org/10.5281/zenodo.8399829
(Rivera Martinez et al., 2023b).
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