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Abstract. The Global Navigation Satellite System (GNSS)
is a key asset for tropospheric monitoring. Currently, GNSS
meteorology relies primarily on geodetic-grade stations.
However, such stations are too costly to be densely deployed,
which limits the contribution of GNSS to tropospheric moni-
toring. In 2016, Google released the raw GNSS measurement
application programming interface for smartphones running
on Android version 7.0 and higher. Given that nowadays
there are billions of Android smartphones worldwide, uti-
lizing those devices for atmospheric monitoring represents a
remarkable scientific opportunity. In this study, smartphone
GNSS data collected in Germany as part of the Application
of Machine Learning Technology for GNSS IoT Data Fu-
sion (CAMALIOT) crowdsourcing campaign in 2022 were
utilized to investigate this idea. Approximately 20 000 raw
GNSS observation files were collected there during the cam-
paign. First, a dedicated data processing pipeline was es-
tablished that consists of two major parts: machine learning
(ML)-based data selection and ionosphere-free precise point
positioning (PPP)-based zenith total delay (ZTD) estimation.
The proposed method was validated with a dedicated smart-
phone data collection experiment conducted on the rooftop
of the ETH campus. The results confirmed that ZTD esti-
mates of millimeter-level precision could be achieved with
smartphone data collected in an open-sky environment. The
impacts of observation time span and utilization of multi-
GNSS observations on ZTD estimation were also investi-
gated. Subsequently, the crowdsourced data from Germany

were processed by PPP with the ionospheric delays interpo-
lated using observations from surrounding satellite position-
ing service of the German National Survey (SAPOS) GNSS
stations. The ZTDs derived from ERA5 and an ML-based
ZTD product served as benchmarks. The results revealed that
an accuracy of better than 10 mm can be achieved by uti-
lizing selected high-quality crowdsourced smartphone data.
This study demonstrates high-precision ZTD determination
with crowdsourced smartphone GNSS data and reveals suc-
cess factors and current limitations.

1 Introduction

The Global Navigation Satellite System (GNSS) provides
the capability to continuously monitor the troposphere with
high precision, regardless of weather conditions (Hofmann-
Wellenhof et al., 2012). One of the primary meteorological
parameters derived from GNSS observations is zenith to-
tal delay (ZTD), which can be further converted to precip-
itable water vapor (PWV). Since water vapor is a highly dy-
namic meteorological variable exhibiting significant spatial
and temporal variations, it necessitates regular measurement
with dedicated sensors. However, the current meteorologi-
cal observing system lacks sufficiently dense measurements.
Hence, the increased utilization of GNSS observations can
make substantial contributions to both meteorology and cli-
matology studies (Bevis et al., 1992).
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Currently, GNSS meteorology mainly relies on the data
obtained from geodetic-grade receivers of global or re-
gional networks, such as the widely recognized International
GNSS Service (IGS) network and the European EUMET-
NET EIG GNSS Water Vapour Programme (E-GVAP) net-
work (Guerova et al., 2016). Typically, ZTDs derived from
those geodetic-grade stations exhibit an accuracy of sev-
eral millimeters (Li et al., 2015). These precise ZTD es-
timates can be further assimilated into numerical weather
models (NWMs), thereby enhancing the accuracy of weather
forecasting (Guerova et al., 2016). However, geodetic-grade
GNSS receivers are costly and cannot be densely deployed,
especially in less developed regions, which limits their con-
tribution to meteorology research.

The potential of utilizing cost-effective GNSS devices for
tropospheric monitoring has been discussed in many publi-
cations. Single-frequency GNSS receivers offer an alterna-
tive solution in this regard. Wang et al. (2019) examined the
performance of single-frequency GNSS stations for relative
ZTD estimation and found that they could achieve a pre-
cision comparable to that derived from dual-frequency sta-
tions. Krietemeyer et al. (2018) adopted the Satellite-specific
Epoch-differenced Ionospheric Delay (SEID) method (Deng
et al., 2009) to recover the second-frequency observations
for single-frequency receivers and achieved a ZTD esti-
mation accuracy of 4 mm using precise point positioning
(PPP). Stępniak and Paziewski (2022) evaluated ZTDs de-
rived from u-blox receivers and reported millimeter-level
agreement with those derived from geodetic-grade GNSS re-
ceivers. They also highlighted the crucial role of GNSS an-
tennas in achieving high-precision ZTD retrieval and sug-
gested that the utilization of a geodetic-grade antenna could
further improve the results.

Given that there are around 3 billion Android smartphones
being used worldwide (Cranz, 2021), they represent a source
of ubiquitous low-cost GNSS devices. Raw GNSS data from
smartphones have become accessible from 2016 onward af-
ter Google released the corresponding Application Program-
ming Interface (API) for the Android 7.0 operating system
(Banville and Van Diggelen, 2016). Subsequently, more ad-
vanced positioning algorithms have been developed to ex-
ploit the raw GNSS data. However, studies have also revealed
several issues with these smartphone GNSS data, includ-
ing weak resistance to multipath interference, the frequent
occurrences of cycle slips, and the unreliability of second-
frequency observations (Zhang et al., 2018; Li and Geng,
2019). These issues are attributed to the passive patch anten-
nas and low-cost GNSS chips commonly employed in smart-
phones and thus make it challenging to use smartphone data
for tropospheric monitoring.

Currently, research in relation to smartphone-based GNSS
observations focuses mainly on the analysis of data qual-
ity and the development of advanced positioning algorithms
(Paziewski, 2020; Zangenehnejad and Gao, 2021). However,
the subject of smartphone-based tropospheric monitoring re-

mains relatively unexplored. Tagliaferro et al. (2019) pre-
sented initial results of ZTD estimation using a Nexus 9
tablet and a Xiaomi 8 smartphone. They employed the SEID
method to recover dual-frequency observations and achieved
an accuracy of about 5 mm for ZTD estimation compared to
those derived from a nearby geodetic-grade receiver. Ben-
venuto et al. (2021) also explored ZTD estimation with orig-
inal dual-frequency GNSS data from a Xiaomi 8 smartphone
and publicly available software. They reported an accuracy
of several centimeters. In another study, Stauffer et al. (2023)
tested relative ZTD estimation using 2 weeks of data col-
lected by a Google Pixel 4XL device and demonstrated that
an accuracy of better than 10 mm could be achieved. How-
ever, it is worth noting that these studies only used a few
dedicated smartphone GNSS data sets, and the potential of
harnessing massive smartphone GNSS observations remains
largely uncharted. One of the main challenges has been how
to collect the data at scale, apart from developing dedicated
methods to select GNSS data of sufficient quality and utiliz-
ing a suitable approach to process such diverse observations.

Crowdsourcing has proven to be a valuable tool for data
collection in scientific research (Clery, 2011; See et al.,
2022). Its effectiveness is well demonstrated in applications
such as earthquake early warning using crowdsourced smart-
phone acceleration measurements (Kong et al., 2016; Allen
et al., 2020). However, the use of crowdsourced smartphone
GNSS data for tropospheric monitoring has remained unex-
plored until now. Prior research by Marques et al. (2021)
and Lehtola et al. (2022) introduced a method for jointly
estimating station positions and tropospheric delays using
a crowdsourced smartphone network, yet their studies were
limited to simulated GNSS data. To take advantage of the
raw GNSS data API for Android smartphones and explore
the potential of crowdsourced smartphone data for atmo-
spheric monitoring, the Chair of Space Geodesy at ETH
Zurich, in collaboration with the International Institute for
Applied Systems Analysis (IIASA), launched the Applica-
tion of Machine Learning Technology for GNSS IoT Data
Fusion (CAMALIOT) crowdsourcing campaign in March
2022. A dedicated Android smartphone application, here-
after referred to as the CAMALIOT app, has been developed
and can be freely downloaded from the Google Play store.
This app allows users to collect raw GNSS data for their own
purposes and additionally lets them voluntarily upload the
data to the CAMALIOT server. As a result of the conducted
crowdsourcing campaign, around 12 000 volunteers world-
wide contributed over 5 TB of raw GNSS observations (See
et al., 2023; Soja et al., 2023). An overview of the software
architecture deployed on the CAMALIOT server, designed
and implemented to handle collection and retention of the
GNSS community data at scale, is given by Kłopotek et al.
(2024).

In this study, we focus on the determination of high-
precision tropospheric delays using the smartphone GNSS
data collected during the CAMALIOT crowdsourcing cam-
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Figure 1. Flowchart of the data processing pipeline for crowd-
sourced smartphone GNSS data.

paign. The method concerning selection of suitable crowd-
sourced data as well as PPP-based ZTD estimation is given
in Sect. 2. A dedicated smartphone data collection experi-
ment conducted on the rooftop of the ETH campus and an
overview of the crowdsourced data from Germany are de-
scribed in Sect. 3. Subsequently, a detailed analysis of the
data quality and an evaluation of smartphone-based ZTD es-
timation are provided in Sect. 4. Conclusions and an outlook
are given in Sect. 5.

2 Methodology

This section is dedicated to the established processing
pipeline for crowdsourced smartphone GNSS data. An
overview of the described approach is depicted in Fig. 1. At
a high level, the developed pipeline consists of two steps,
where the first step is to select high-quality smartphone data
in an automatic manner and the second step concerns the
estimation of tropospheric delays using the data selected in
step 1.

2.1 Data selection

While the crowdsourcing of data offers researchers the op-
portunity to access numerous and widespread observations
at a relatively low cost, it has some limitations, with data
quality being the primary concern. A substantial portion of
the smartphone GNSS data collected during the CAMALIOT
crowdsourcing campaign was low-quality and could not be
utilized for atmospheric monitoring (See et al., 2023), even
though the CAMALIOT app provides guidance for GNSS
data collection. For example, users were advised to place
their smartphones in a stationary position with an open-sky
view. However, it should be emphasized that there is a clear
trade-off between simplifying data collection efforts and the
desire to collect high-quality data. It means that users gen-
erally collected data regardless of observation environments,

and instances where smartphones were placed outdoors with
an unobstructed view were rare. Consequently, data selection
and quality control are essential for preprocessing the exten-
sive volume of crowdsourced data. By excluding low-quality
data, considerable computational resources can be saved dur-
ing the subsequent data analysis.

To enable automatic data selection, a set of data quality in-
dicators, e.g., carrier-to-noise density ratio (C/N0), position
dilution of precision (PDOP), and observation noise, were
initially extracted from the raw GNSS observations stored
in the Receiver Independent Exchange (RINEX) files. Then,
a machine learning (ML)-based classifier was trained us-
ing a subset of the data that had already been manually la-
beled. During the crowdsourcing campaign, the developed
ML-based classifier could automatically label incoming data
as either “good” or “bad”. Therefore, smartphone data char-
acterized by low quality were excluded from further process-
ing. The developed ML-based classifier was characterized by
precision and recall scores of 0.96 and 0.97, respectively. Fi-
nally, around 0.7 % of the data were classified as good. De-
tailed information on the training procedures and the perfor-
mance evaluation of the ML-based classifier is described in
Appendix A.

2.2 Estimation of zenith total delays

In this study, PPP is employed to estimate zenith total delays
from raw GNSS data. PPP is a technique for determining the
coordinates and other parameters of interest for a single re-
ceiver using high-precision satellite orbit and clock products
(Zumberge et al., 1997; Kouba and Héroux, 2001). It is pre-
ferred over relative positioning because it does not require
a reference station, especially considering that the crowd-
sourced data can be distributed across wide geographical ar-
eas and a suitable reference station cannot always be avail-
able. The fundamental observation equations for the GNSS
pseudorange and carrier phase measurements are presented
below:

P = ρ+ c · (dr− ds)+mfh ·Zh+mfw ·Zw+ θ

L= ρ+ c · (dr− ds)+mfh ·Zh+mfw ·Zw+ λ ·N + ε, (1)

where P and L are the ionosphere-free (IF) combinations of
pseudorange and carrier phase measurements, expressed in
units of meters; the geometric distance between the satellite
and the station antenna phase center is denoted by ρ; the re-
ceiver and satellite clock biases are denoted by dr and ds,
respectively; the zenith hydrostatic delay (ZHD) and zenith
wet delay (ZWD) are represented by Zh and Zw, and their
sum is the so-called ZTD; the mapping functions for ZHD
and ZWD are denoted by mfh and mfw, respectively; the
unknown ambiguity is N and its corresponding wavelength
is λ; and the observation noises of the ionosphere-free com-
binations of pseudorange and carrier phase measurements are
denoted by θ and ε, respectively.
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Commonly, dual-frequency observations are needed to
form ionosphere-free combinations and thus eliminate iono-
spheric delays. However, this remains a challenge for smart-
phone GNSS data. On the one hand, there are a limited
number of smartphone models capable of recording dual-
frequency observations. On the other hand, both the quantity
and quality of observations on the second frequency cannot
always be ensured for smartphones (Wang et al., 2020; Stauf-
fer et al., 2023). Consequently, smartphone GNSS data usu-
ally cannot support IF-PPP, especially when data are crowd-
sourced from less favorable environments. To address this
issue, we employed the SEID method to interpolate iono-
spheric delays at the smartphone locations using the sur-
rounding geodetic GNSS stations. This allows us to re-
cover the second-frequency observations and use them in the
GNSS analysis. The accuracy of this ionospheric delay in-
terpolation method is typically at the level of a few millime-
ters (Deng et al., 2009), especially during the inactive periods
of the ionosphere. Global ionosphere maps (GIMs) (Schaer,
1999) were not used due to their limited precision.

The GNSS data were processed in static mode using our
in-house software PPPx to derive ZTD estimates. The de-
tails of the PPP processing strategy are outlined in Table 1.
Note that receiver phase center variation (PCV) corrections
were not applied for smartphone GNSS observations due to
the absence of smartphone GNSS antenna models. While
GNSS data collected by smartphones are typically sam-
pled at a 1 Hz rate, we decided to down-sample the data to
30 s intervals in order to enhance computational efficiency
as such a sampling rate is still adequate for tropospheric
monitoring purposes. Note that we utilized an elevation-
dependent weighting scheme for the smartphone data pro-
cessing. Although C/N0-dependent weighting has proven to
be advantageous in improving kinematic positioning preci-
sion (Zhang et al., 2018), our investigations revealed that
C/N0-dependent weighting tends to introduce artifacts in
ZTD estimates, and thus elevation-dependent weighting was
used in this study.

3 Data

In this study, two data sets were utilized to investigate PPP-
based ZTD estimation using smartphones: (i) GNSS ob-
servations collected with a Google Pixel 4XL smartphone
during a dedicated experiment located on the ETH campus
rooftop and (ii) high-quality smartphone data crowdsourced
from Germany. The subsequent subsections are dedicated to
the characteristics of the acquired data sets and the descrip-
tion of the external data used for validation of the acquired
smartphone-based ZTD estimates.

3.1 ETH rooftop experiment

Crowdsourced data are often not collected in favorable obser-
vation environments, and the availability of nearby geodetic-
grade stations for ZTD evaluation cannot always be guaran-
teed. To explore the potential of smartphone GNSS data col-
lected in open-sky environments for tropospheric monitor-
ing, a Google Pixel 4XL smartphone was employed to collect
24 h of data on 18 May 2023. The smartphone was placed on
the rooftop of the HPV building at the ETH Hönggerberg
campus (Fig. 2). It was capable of tracking GPS, Galileo,
GLONASS, and Beidou signals (Stauffer et al., 2023). The
CAMALIOT app (See et al., 2023) was used to record raw
GNSS data outputted by the embedded GNSS chip and an-
tenna. The data were then converted to RINEX files within
the app so that they could be used for further analysis. It
is worth mentioning that the CAMALIOT app was opti-
mized for RINEX conversion, with a focus on ensuring re-
ceiver clock consistency between the pseudorange and car-
rier phase measurements (Wang et al., 2021; Zangenehne-
jad et al., 2023). In addition, a patch antenna (ANN-MB-
00), connected to a u-blox ZED-F9P receiver, was placed
approximately 2 m away from the smartphone. This antenna–
receiver combination represents a typical low-cost GNSS de-
vice (Hohensinn et al., 2022) and is suitable for performance
comparison. The u-blox ZED-F9P receiver can track dual-
frequency data from the GPS, Galileo, and GLONASS con-
stellations. For ZTD determination, the geodetic-grade sta-
tion ETH2, located on the same rooftop (as shown in Fig. 2),
served as the benchmark.

Although the Pixel 4XL can record L5 and E5a mea-
surements for GPS and Galileo, respectively, the quality of
these measurements is lower compared to those on the L1
and E1 frequency (Stauffer et al., 2023). To enable high-
precision PPP processing for the Pixel 4XL, the original L5
and E5a measurements were not used. Instead, seven stations
(Fig. 3) from the Automated GNSS Network for Switzerland
(AGNES), situated at a distance of around 50 km from the
smartphone, were employed to interpolate ionospheric de-
lays and recover the measurements on the second frequency
(Deng et al., 2009).

3.2 Crowdsourced smartphone GNSS data

Smartphone GNSS data from Germany were used in this
study to demonstrate the feasibility of ZTD determination
based on the crowdsourced observations. From March 2022
to mid-May 2022, more than 20 000 RINEX files were col-
lected from Germany, comprising 21.0 % of the total obser-
vation files collected worldwide. Most of the data were col-
lected during the daytime or in the late evening. Figure 4 pro-
vides an overview of the data quality, focusing on three im-
portant quality indicators: C/N0, observation duration, and
the presence of dual-frequency data. Generally, higher C/N0
values correspond to better data quality, and longer obser-
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Table 1. Summary of the GNSS data processing strategy for PPP.

Item Description

Observations Ionosphere-free pseudorange and carrier phase measurements: GPS L1/L2, GLONASS L1/L2, Galileo E1/E5a,
and BeiDou B1I/B3I

Elevation mask 7°

Weighting Elevation-dependent: 4sin(e)2 for elevations lower than 30°; otherwise unit

Station position Static

Receiver clock Individual clock parameters for each GNSS constellation

Troposphere Saastamoinen and GPT/GMF as a priori model (Saastamoinen, 1972; Böhm et al., 2006, 2007); remaining
zenith wet delays are estimated as random walk parameters with a process noise of 10−9 m2 s−1

Phase ambiguities Float

Products Precise satellite orbit and clock products from Center for Orbit Determination in Europe (Schaer et al., 2021)

Antenna model IGS atx files (Rothacher and Schmid, 2010) for satellites; no correction applied for smartphones

Phase wind-up Corrected (Wu et al., 1992)

Tides Solid Earth tides, ocean tidal loading, and pole tide (Petit and Luzum, 2010)

Figure 2. Configuration of the GNSS data collection experiment carried out on the rooftop of the ETH campus. The Pixel 4XL smartphone
was shielded by a weather-resistant radome. A u-blox device was employed for performance comparison, while the geodetic-grade station
ETH2 served as the benchmark for ZTD estimation. The insert in the upper-right corner displays the Pixel 4XL under the radome.

vation duration favors the ZTD estimation. The mean C/N0
value is 27.1 dB-Hz, indicating that a significant fraction of
the data were collected indoors. On average, the observation
duration amounts to 3.5 h. Interestingly, C/N0 tends to be
lower for longer observation sessions, suggesting that longer
data collection sessions are more likely to be conducted in-
doors. If we establish a criterion where C/N0 is greater than
35 dB-Hz and the observation duration exceeds 0.5 h, only

2.8 % of the data meet the requirements and hold the poten-
tial for ZTD estimation. Note that this criterion is empiri-
cally determined to show the data quality distribution and
was not applied for practical data selection. Although more
than 94.6 % of the data included multi-GNSS observations,
only 12.7 % of the data contained dual-frequency measure-
ments. Moreover, there were typically only two to five mea-
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Figure 3. Distribution of AGNES stations utilized for the computa-
tion of ionospheric delays. The seven AGNES stations are indicated
by red circles, while the red star denotes the location of the Pixel
4XL smartphone.

Figure 4. The distribution of C/N0 and observation duration of
the crowdsourced GNSS data in Germany. Each dot represents a
RINEX file containing GNSS observations from a single session.
Grey dots indicate files with single-frequency observations only,
while red dots represent files with dual-frequency observations. The
horizontal dashed line denotes the C/N0 threshold of 35 dB-Hz,
while the vertical line denotes the observation duration threshold
of 0.5 h.

surements available per epoch on the L5 and E5a frequency,
which is insufficient for PPP processing.

As previously mentioned, to select high-quality data for
tropospheric monitoring, the crowdsourced smartphone data
initially went through a classification process utilizing the
established ML-based model (Fig. 1). In this stage, the ML
model identified 80 observation sessions from 20 users as
good. Those 80 sessions were then processed with PPP for
a positioning test, with ionospheric delays being interpo-
lated using the surrounding satellite positioning service of the
German National Survey (SAPOS) stations. Only data col-
lected in static scenarios, exhibiting reasonable positioning
precision, were further analyzed for ZTD estimation. Finally,
20 sessions from 10 smartphone users showed high-precision
positioning results and were therefore employed for ZTD es-
timation. Figure 5 shows the distribution of these 10 smart-

Figure 5. Distribution of selected high-quality crowdsourced smart-
phone data in Germany. The red dots represent smartphone loca-
tions, while the black dots denote the employed SAPOS stations for
the computation of ionospheric delays.

phones in Germany and the corresponding SAPOS stations
utilized for ionospheric delay interpolation. To distinguish
between these 20 observation sessions, each smartphone was
designated a unique character (A–J), and individual data col-
lection sessions for the same smartphone were identified by
assigned numbers.

Given the arbitrary distribution of the crowdsourced data,
nearby geodetic-grade stations that could serve as ZTD
references were not always available. To address this is-
sue, we employed ERA5 products, publicly available from
the European Centre for Medium-Range Weather Forecasts
(ECMWF), to compute ZTDs at the smartphone locations.
We acquired ERA5 hourly data on 37 pressure levels for Ger-
many, with a spatial resolution of 0.25 by 0.25°. In addition,
we leveraged an ML-based tropospheric delay product, pro-
vided by the Chair of Space Geodesy at ETH Zurich via its
Geodetic Prediction Center (Soja et al., 2022), as an addi-
tional reference. It is worth noting that this ML-based prod-
uct has been reported to achieve a global accuracy of around
8 mm when compared to the ZTDs derived from GNSS ob-
servations (Crocetti et al., 2024).

4 Results and discussion

The results of the ETH rooftop experiment are first presented
in this section, focusing on data quality analysis and ZTD es-
timation. The ZTDs derived from the crowdsourced data in
Germany are then introduced, complemented by their valida-
tion based on external reference ZTD products.

4.1 ETH rooftop experiment analysis

In this subsection, the GNSS data quality for the Pixel 4XL
smartphone, u-blox, and ETH2 is first presented. Then, the
ZTD estimates derived from the Pixel 4XL and u-blox are
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evaluated using ZTDs from ETH2 as references. Note that
the Pixel 4XL and u-blox are abbreviated as PIXL and
UBLX, respectively, in the following text.

4.1.1 Data quality analysis

High-quality GNSS observations and the number of avail-
able measurements per epoch are essential factors for de-
riving accurate ZTD estimates. The observation environment
on the rooftop of the ETH campus can be considered favor-
able, and therefore, one anticipates high-quality data from
PIXL. As indicated in Table 2, the mean C/N0 for PIXL is
41.9 dB-Hz, significantly exceeding the values characteriz-
ing most of the crowdsourced smartphone data. Neverthe-
less, it remains approximately 3 dB-Hz lower than the values
recorded by ETH2 and UBLX, which can be explained by the
polarization mismatch between the linearly polarized smart-
phone GNSS antenna and the right-hand circular polariza-
tion of the GNSS signals (Zhang et al., 2013). Importantly,
no significant differences are observed in satellite tracking
performance among the three different devices, with roughly
nine GPS, seven Galileo, and seven GLONASS satellites us-
able at each epoch. It is worth noting that the UBLX can-
not track Beidou signals, and only three Beidou satellites
were observed by PIXL. Consequently, observations from
Beidou satellites were excluded from the ZTD estimation
for this data set. With observations from GPS, Galileo, and
GLONASS, the mean PDOP values are 1.02, 1.11, and 1.07
for ETH2, UBLX, and PIXL, respectively.

Observation noise serves as a straightforward metric of
data quality. We calculated observation noises using time-
differenced pseudorange and carrier phase measurements
(Colosimo et al., 2011). ETH2 and UBLX exhibited sim-
ilar pseudorange noises amounting to 0.17 and 0.24 m, re-
spectively. In contrast, PIXL exhibited a considerably higher
pseudorange noise of 3.52 m. However, the noise level of car-
rier phase measurements was consistent among these three
devices, with 0.003, 0.004, and 0.004 m for ETH2, UBLX,
and PIXL, respectively. This observation aligns with findings
from other studies, suggesting that smartphones can provide
precise carrier phase measurements but tend to deliver less
accurate pseudorange measurements (Zhang et al., 2018; Li
and Geng, 2019). This is a promising feature for smartphone-
based ZTD estimation, as carrier phase measurements are
crucial for high-precision demanding applications.

4.1.2 Evaluation of zenith total delays

We processed multi-GNSS data from PIXL, UBLX, and
ETH2 using PPP in static mode, as detailed in Table 1. Note
that only GPS, Galileo, and GLONASS observations were
utilized, as UBLX lacked the capability to track Beidou sig-
nals. The ZTDs derived from ETH2 were used as a bench-
mark. Typically, ZTDs derived from geodetic-grade receivers
can achieve a high level of accuracy, often within a few mil-

Figure 6. ZTD estimation using GNSS data collected on the rooftop
of the ETH campus. ZTDs derived from ETH2, UBLX, and PIXL
are represented by black, blue, and red lines, respectively. The bias
and rms of the ZTD estimates with respect to ETH2 are provided in
the bottom-right corner for UBLX and PIXL. Time is expressed as
GPS time (GPST).

limeters (Li et al., 2015; Wilgan et al., 2022). As shown in
Fig. 6, the ZTDs derived from UBLX exhibit good agree-
ment with those from ETH2, with an rms value of 1.9 mm.
This is noteworthy, given that UBLX is a low-cost device.
Although antenna PCV errors were not corrected for UBLX,
the ZTD bias is only −1.4 mm. In contrast, the ZTDs de-
rived from PIXL show a much larger bias of approximately
6.0 mm. This bias is most likely attributed to the inferior data
quality from the smartphones and the uncorrected PCV er-
rors, considering the similar elevation-dependent patterns of
PCV and ZTD. Currently, there is no available antenna PCV
information for smartphones. However, there is potential for
smartphone manufacturers to publish such information for
each smartphone model using the GnssAntennaInfo API pro-
vided by the Android 11 system (Google, 2023). Based on
the ZTD estimates for the entire 24 h period, the resulting
rms value is 6.5 mm, which can be considered sufficiently
accurate for tropospheric monitoring. The largest deviation
from the reference time series (ETH2) is observed around
12:00 (GPST), which can be explained by the increased in-
terpolation error of ionospheric delays near local noon.

In contrast to Continuously Operating Reference Stations
(CORS), crowdsourced smartphone GNSS data are typically
characterized by a short observation period, often spanning
only a few hours or even minutes. A certain observing time
span is necessary to accurately separate ZTDs from other
solve-for parameters, particularly the up component of sta-
tion coordinates and receiver clock bias, during the parameter
estimation process. To assess the impact of observation time
span on ZTD estimation precision, we divided the 24 h data
collected with PIXL into various time spans, including 5, 10,
15, 20, 30, and 45 min, as well as 1, 1.5, 2, and 3 h. For each
time span, we corrected the ZTD estimates for the 6.0 mm
bias and then computed the mean accuracy in comparison to
the reference ZTD estimates acquired with ETH2. The re-
sults are shown in Fig. 7. It is evident that the mean ZTD
estimation accuracy improves with longer observation dura-
tion. Interestingly, the benefits of extending the observation
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Table 2. Data quality statistics for the GNSS observations collected by ETH2, u-blox, and Pixel 4XL.

Device C/N0 (dB-Hz) PDOP Pseudorange noise (m) Carrier phase noise (m)

ETH2 44.2 1.02 0.17 0.003
UBLX 44.6 1.11 0.24 0.004
PIXL 41.9 1.07 3.52 0.004

Figure 7. ZTD estimation accuracy using the PIXL data with vary-
ing observation time span. The black dots depict the mean error of
the ZTD estimates with respect to ETH2. The 1σ uncertainty is in-
dicated by the error bar edges. Note that the ZTD estimates were
based on multi-GNSS observations (GPS+Galileo+GLONASS)
and the bias with respect to ETH2 was corrected.

time span become less pronounced as the duration increases.
This suggests that more GNSS observations have the great-
est impact on ZTD estimation when the overall observation
session is short. Notably, the mean accuracy is better than
10 mm when the time span is longer than 30 min. This is a
promising finding, as collecting 30 min of GNSS data in an
open-sky environment is very feasible within the common
smartphone battery life. Thus, a 30 min observation duration
represents a reasonable trade-off between ZTD estimation
accuracy and data collection efforts if the smartphone em-
ployed can track multi-GNSS signals.

To further investigate the influence of multi-GNSS obser-
vations on smartphone-based ZTD estimation with short ob-
servation time spans, we conducted an analysis in relation
to three scenarios: GPS-only solutions, GPS+Galileo so-
lutions, and GPS+Galileo+GLONASS solutions. The re-
sults are summarized in Fig. 8. Incorporating Galileo obser-
vations tends to improve the accuracy of the ZTD estimates,
especially for short observation sessions. For instance, when
the observation session spans 30 min, the accuracy improves
from 13.4 to 9.5 mm compared to the case where only GPS
observations are utilized. On the other hand, the impact of
GLONASS observations on ZTD estimation is less evident.
Adding GLONASS does not always improve the ZTD es-
timation accuracy. This variability may be attributed to the
inferior quality of the GLONASS observations collected by
smartphones, as suggested in previous studies (Wang et al.,
2023; Tao et al., 2023). Overall, the results indicate the ad-
vantages of smartphones capable of tracking multi-GNSS

Figure 8. ZTD estimation error using the PIXL data with differ-
ent GNSS constellation combinations and varying observation time
spans. The bars depict the mean error of the ZTD estimates with
respect to ETH2. The 1σ uncertainty is represented by the error bar
edges. Note that the bias with respect to ETH2 was corrected.

data for ZTD determination, especially when observation
sessions are short. Encouragingly, 94.6 % of crowdsourced
smartphone data contain multi-GNSS observations. It is also
worth noting that, when using 24 h of the PIXL data, there is
no obvious difference (approximately 0.1 mm) between the
ZTDs derived from GPS-only and multi-GNSS data (cf. Wil-
gan et al., 2022).

4.2 Crowdsourced data analysis

In this section, the data quality and the ZTD estimation per-
formance of the crowdsourced smartphone data from Ger-
many are presented.

4.2.1 Data quality analysis

Analyzing the quality of the crowdsourced smartphone data
is beneficial for discovering the relationship between quality
indicators and the accuracy of ZTD estimation. Figure 9 ex-
hibits three important quality indicators, namely observation
duration, C/N0, and PDOP, for each of the selected obser-
vation sessions (Fig. 5). As discussed in Sect. 4.1.2, longer
observation sessions are statistically linked to more accurate
ZTD estimates. Notably, a 30 min duration represents a rea-
sonable trade-off between the observation time span and the
ZTD estimation accuracy. The average observation duration
among the 20 selected sessions is 1.4 h, with 85 % of them
exceeding 30 min. It is intriguing to observe that the observa-
tion duration exhibits a user-dependent pattern, meaning that
the same user tends to collect data for similar periods of time.
For example, the three longest observation sessions (H2, H3,
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Figure 9. Data quality indicators for selected crowdsourced smart-
phone GNSS data from Germany. The letters are used to indicate
different users, and the numbers represent the different observation
sessions from the same user.

and H4) were recorded by the same user and spanned be-
tween 4 and 5 h. In contrast, the shortest session, G1, spans
a mere 16 min but records GNSS observations with a high
mean C/N0 value of 43.6 dB-Hz. The mean C/N0 across all
sessions is 40.0 dB-Hz. However, it is important to note that
C/N0 values are device-specific (Bilich et al., 2007), mak-
ing direct comparisons between different smartphones rather
difficult. In general, higher C/N0 values indicate favorable
data collection conditions, and data with C/N0 values ex-
ceeding 35 dB-Hz are likely to be collected in open-sky en-
vironments. The PDOP value, on the other hand, is a di-
rect metric concerning the quantity of available satellites and
their relative locations in the local sky. A lower PDOP value
is associated with more visible GNSS satellites and a better
geometric distribution. In our case, the mean PDOP across
all sessions is 1.3, indicating good observation conditions
overall. There is no noticeable correlation among observa-
tion duration, PDOP, and C/N0, reflecting the high variabil-
ity and complexity of crowdsourced smartphone data. It is
worth mentioning that across the selected data sets, the noise
level of carrier phase measurements is around 4 mm, which
is a promising factor for obtaining accurate ZTD estimates.

4.2.2 Evaluation of zenith total delays

Figure 10 presents the ZTD estimation errors for the 20 se-
lected high-quality data sets (Fig. 5) in comparison with
ERA5 and the aforementioned ML-based ZTD products. The
mean rms values, calculated based on all considered sessions,
are 26.9 and 26.4 mm when ERA5- and ML-based ZTDs are

used as benchmarks, respectively. Notably, there is no dis-
cernible distinction in the error patterns between the top and
bottom panels of Fig. 10, indicating good agreement between
the ERA5-based ZTDs and those derived from the ML-based
products. Despite the data being crowdsourced, seven data
sets achieve an accuracy of better than 10 mm regarding ZTD
estimation. These high-performing observation sessions are
D1, D2, G1, H2, H3, I1, and J1, with mean rms values of
6.3 and 3.9 mm when compared with ERA5 and ML-based
products, respectively. It is also interesting to note that ZTD
estimation accuracy tends to be user-dependent, with data
from certain users consistently yielding more accurate re-
sults, as exemplified by user H. This could have been useful
feedback for CAMALIOT app users, potentially motivating
them to contribute more high-quality data during the crowd-
sourcing campaign. When analyzing the ZTD estimation er-
ror (Fig. 10) and the data quality (Fig. 9) together, data with
lower PDOP values are more promising to yield more accu-
rate ZTD estimates. This trend is especially noticeable in the
data from users D–J, where the mean PDOP value for all the
sessions that they uploaded is 1.11, and the mean rms val-
ues for the ZTD estimates are 13.5 and 12.3 mm when com-
pared to ERA5 and ML, respectively. Furthermore, longer
observation duration and higher C/N0 tend to contribute to
improved accuracy of ZTD estimates. For example, observa-
tion sessions H2, H3, and H4 span over 4 h each, resulting in
a mean rms of around 6 mm. Another interesting example is
session G1, which lasted only 16 min but had a mean C/N0
value of 43.6 dB-Hz, leading to a ZTD estimation accuracy
of 5.8 and 0.3 mm in comparison with the ERA5 and ML-
based products, respectively. This highlights the potential of
smartphone data collected in open-sky environments, even
with a short observation duration, to make a contribution to
tropospheric monitoring. It does not conflict with the finding
summarized in Fig. 7. Smartphone GNSS data characterized
by a short time span could still yield accurate ZTD estimates,
albeit with a smaller probability.

Figure 11 shows the ZTD estimates derived from session
H2, alongside the ZTD time series derived from the ERA5
and ML-based products. This observation session is char-
acterized by a duration of 5.2 h and observations for 27.5
GNSS satellites on average, including 8.9 GPS, 4.8 Galileo,
6.0 GLONASS, and 7.8 Beidou satellites. The mean C/N0 is
39.3 dB-Hz, indicating that these measurements were likely
collected in open-sky conditions. It is worth noting that the
original smartphone observations are limited to a single fre-
quency. A noticeable ascending trend, approximately 10 mm
over 5 h, can be observed in all three ZTD time series. The
ZTDs derived from smartphone data exhibit closer agree-
ment with those from ERA5, with an rms of 2.7 mm. A
slightly larger bias is observed between the smartphone-
based ZTDs and the ML-based ZTD product, with a bias of
6.4 mm. However, it cannot be concluded that the ML-based
ZTDs are inferior to the other two. This is primarily because
the bias between the smartphone-based ZTDs and the ERA5-
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Figure 10. ZTD estimation errors using the crowdsourced smart-
phone data in Germany. Panel (a) shows the statistics where ERA5-
based ZTDs are used as the benchmark, while (b) uses ML-based
ZTD time series as the reference. In both cases, the mean rms error
is denoted in the upper-right corner. The orange horizontal lines de-
note a threshold of 10 mm. The cyan line represents the number of
ZTD samples used for statistics.

Figure 11. ZTD estimates from one crowdsourced smartphone
GNSS data set (H2) in Germany. The ZTDs derived from ERA5,
an ML-based ZTD product, and smartphone GNSS data are repre-
sented by blue, green, and red lines, respectively. The bias and rms
of the smartphone-based ZTDs with respect to ERA5- and the ML-
based ZTDs are listed in the bottom-right corner.

or ML-based ZTDs could be offset or magnified by the bias
resulting from uncorrected PCV errors for the smartphone
during PPP processing. Nevertheless, it demonstrates that
ZTD estimation with an accuracy better than 10 mm can be
achieved with crowdsourced smartphone GNSS data, under-
lining their potential for accurate tropospheric monitoring.

5 Conclusions

Crowdsourced smartphone GNSS data have the potential
to densify existing geodetic-grade GNSS networks, provid-
ing valuable observation sources for GNSS meteorology.
This study demonstrates high-precision ZTD estimation us-
ing crowdsourced smartphone GNSS data. We harnessed

GNSS data collected in Germany during the CAMALIOT
crowdsourcing campaign to demonstrate the feasibility of
smartphone-based ZTD estimation and investigate the qual-
ity of the ZTD estimates that such GNSS data can provide.
The dedicated data processing pipeline was introduced, in-
cluding data selection and ZTD estimation using PPP. Iono-
spheric delays at smartphone locations were interpolated us-
ing data from surrounding geodetic-grade GNSS stations and
then the second-frequency observations were recovered us-
ing the SEID method for ionosphere-free PPP. This approach
overcomes the issue concerning the limited availability and
poor quality of usable dual-frequency data from most smart-
phones.

To validate our data processing method and to gain in-
sights into smartphone-based ZTD estimation, a dedicated
24 h data collection experiment was conducted on the rooftop
of the ETH campus. The performance of a Google Pixel 4XL
smartphone was evaluated alongside a u-blox GNSS receiver
in terms of ZTD estimation. Compared to the ZTDs derived
from a geodetic-grade receiver located on the same rooftop,
a ZTD estimation accuracy of 6.5 mm was achieved for the
smartphone data when incorporating external ionospheric in-
formation. The u-blox receiver, with its own dual-frequency
observations, reached an accuracy of 1.9 mm. Based on the
performed analysis, it was observed that multi-GNSS ob-
servations, especially from Galileo, improved the ZTD es-
timation accuracy for data sets characterized by short time
spans. Our investigation also demonstrated that a 30 min ob-
servation duration served as a reasonable trade-off between
the data collection effort and the ZTD estimation accuracy.
With 30 min of multi-GNSS observations from the Pixel 4XL
smartphone, we can achieve a mean ZTD estimation error
of less than 10 mm. This finding can serve as a valuable in-
sight concerning future smartphone GNSS data crowdsourc-
ing campaigns.

A total of 20 high-quality data sets crowdsourced from
volunteers in Germany were selected and processed with the
same method to obtain ZTD estimates. Compared to the ZTD
benchmarks derived from ERA5 data and an ML-based ZTD
product, it was shown that a mean accuracy of about 26 mm
could be achieved. A comprehensive analysis of data quality
indicators and ZTD estimation accuracy indicates that data
sets with smaller PDOP values tend to yield more accurate
ZTD estimates. Moreover, longer observation durations and
higher C/N0 values can also be helpful in identifying data
sets that can result in accurate ZTD estimates.

While we have demonstrated that high-precision ZTD de-
termination can be achieved with crowdsourced smartphone
GNSS data, certain limitations remain. Our current method
relies on the interpolation of ionospheric delays from sur-
rounding geodetic-grade stations, and we have primarily ex-
plored smartphone data collected in static scenarios. Future
research could explore the use of original dual-frequency ob-
servations from capable smartphones and data collected on
kinematic platforms, such as vehicles. Additionally, antenna
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PCV corrections were not applied for smartphone GNSS data
processing in this study. The potential benefit of antenna cal-
ibration for ZTD estimation could also be investigated in fu-
ture studies. The latest version of the CAMALIOT app al-
lows users to record environmental sensor measurements,
such as air pressure, which could further contribute to me-
teorological applications. In conclusion, this study demon-
strates that, with careful selection and processing, crowd-
sourced smartphone GNSS data can produce high-precision
ZTD estimates and potentially benefit tropospheric monitor-
ing and weather forecasting, especially as embedded GNSS
antennas and chips continue to improve in the future.

Appendix A: ML-based smartphone data selection

We employed the random forest model to develop a classi-
fier for smartphone data from the CAMALIOT crowdsourc-
ing campaign. A subset of the crowdsourced data served for
training and testing the model. Given the potential fluctua-
tion in data quality during an observation session, we seg-
mented the original GNSS measurements into hourly RINEX
files. Only segments labeled as good were spliced to pro-
duce a consolidated RINEX file. If any hourly segments were
labeled good, the entire original file was regarded as good
and the consolidated file would be used for further process-
ing. We then extracted a set of epoch-wise quality indicators
from each hourly segment, and their time series were visu-
alized for manual labeling (e.g., Fig. A1). The correspond-
ing mean and standard deviation (SD) values were calcu-
lated and utilized as input features for the ML-based classi-
fier (Table A1). Note that a threshold-based classifier would
be overly intricate considering the high complexity among
different quality indicators. Nonetheless, we initiated the la-
beling process by applying threshold criteria to flag blatant
low-quality segments. Specifically, segments with a mean
C/N0 below 30 dB-Hz or carrier phase noise exceeding 0.1 m
were labeled bad. The remaining data underwent manual la-
beling based on our expertise with high-quality smartphone
data collected in open-sky environments. Finally, the train-
ing data set comprised 1700 good segments and 3400 ran-
domly sampled bad segments. We evaluated the developed
ML-based classifier on a test data set, consisting of 425 good
segments and 1792 bad segments. The classifier exhibited
precision and recall scores of 0.96 and 0.97, respectively (Ta-
ble A2), meeting the requirements for the CAMALIOT cam-
paign’s operational data classification task.

Table A1. Input features for training and testing the ML-based
smartphone data classifier.

Features

Number of epochs
Mean number of visible satellites
Mean PDOP and its SD
Mean C/N0 and its SD
Percentage of available carrier phase observations
Mean carrier phase noise and its SD
SPP precisions in the east, north, and up components

Table A2. Evaluation of the developed ML model for crowdsourced
smartphone data classification on a test data set. TP: true positive,
TN: true negative, FP: false positive, FN: false negative, precision=

TP
TP+FP , recall= TP

TP+FN , F1= 2 · precision·recall
precision+recall .

TP TN FP FN Precision Recall F1

410 1775 17 15 0.96 0.97 0.96
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Figure A1. Visualization of several epoch-wise quality indicators for manual labeling of crowdsourced smartphone data.

Code and data availability. The GNSS data collected on a rooftop
of the ETH campus are available from https://doi.org/10.3929/ethz-
b-000676086 (Pan, 2024a). The crowdsourced smartphone data
currently cannot be shared due to privacy concerns. The ERA5
grids and the ML-based tropospheric delay products can be
accessed from https://doi.org/10.24381/cds.bd0915c6 (Hersbach
et al., 2023) and https://gpc.ethz.ch/Troposphere/ (Crocetti, 2024),
respectively. The PPPx software can be downloaded from https:
//github.com/YuanxinPan/PPPx_bin (last access: 17 July 2024;
https://doi.org/10.5281/zenodo.12759170, Pan, 2024b).
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