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Abstract. Ice clouds are a crucial component of the Earth’s
weather system, and their representation remains a principal
challenge for current weather and climate models. Several
past and future satellite missions were explicitly designed to
provide observations offering new insights into cloud pro-
cesses, but these specialized cloud sensors are limited in
their spatial and temporal coverage. Geostationary satellites
have been observing clouds for several decades and can ide-
ally complement the sparse measurements from specialized
cloud sensors. However, the geostationary observations that
are continuously and globally available over the full observa-
tion record are restricted to a small number of wavelengths,
which limits the information they can provide on clouds.

The Chalmers Cloud Ice Climatology (CCIC) is a novel
cloud-property dataset that aims to provide an improved cli-
mate record of ice hydrometeor concentrations by apply-
ing state-of-the-art machine-learning techniques to retrieve
ice cloud properties from globally gridded, single-channel
geostationary observations that are readily available from
1980 onwards. CCIC offers a novel perspective on the record
of geostationary IR observations by providing spatially and
temporally continuous retrievals of the vertically integrated
and vertically resolved concentrations of frozen hydromete-
ors, typically referred to as ice water path (IWP) and ice wa-
ter content (IWC). In addition to that, CCIC provides 2D and
3D cloud masks and a 3D cloud classification.

A fully convolutional quantile regression neural network
constitutes the core of the CCIC retrieval, providing proba-
bilistic estimates of IWP and IWC. The network is trained
against CloudSat retrievals using 3.5 years of global colloca-
tions. Assessed on a held-out test dataset, the CCIC-provided

IWP and IWC estimates achieve correlations exceeding 0.7
and 0.6, respectively, and biases better than −5 % and −2 %
demonstrating considerable skill in estimating both IWP and
IWC. In addition, CCIC is extensively validated against both
in situ and remote sensing measurements from two flight
campaign series and a ground-based radar. The results of
this independent validation confirm the ability of CCIC to
retrieve IWP and IWC. CCIC thus ideally complements tem-
porally and spatially more limited measurements from ded-
icated cloud sensors by providing spatially and temporally
continuous estimates of ice cloud properties. The CCIC net-
work and its associated software are made accessible to the
scientific community.

1 Introduction

The representation of clouds and convection in weather
and climate models is recognized as a critical factor lim-
iting the accuracy of forecasts of future weather and cli-
mate (Bony et al., 2015; Brunet et al., 2010). Moreover,
the latest decadal survey of the National Academy of Sci-
ence (National Academies of Sciences, Engineering, and
Medicine, 2018) identified the question “Why do convective
storms, heavy precipitation, and clouds occur exactly when
and where they do?” as a key scientific question for the up-
coming decade.

Several upcoming satellite missions and sensors were
designed to provide new observations to improve the
understanding of cloud processes and their represen-
tation in numerical models. The EarthCARE mission
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(Illingworth et al., 2015) will continue the combined radar–
lidar observations from CloudSat (Stephens et al., 2002) and
CALIPSO (Winker et al., 2010) and be the first space-borne
sensor to measure vertical velocities of hydrometeors. In a
similar vein, the Investigation of Convective Updrafts (IN-
CUS) and NASA’s Atmosphere Observation System (AOS)
will provide measurements of the evolution of convective
storms by means of a constellation of space-borne radars.
Furthermore, sub-millimeter wave observations from the up-
coming Ice Cloud Imager (ICI) on board the next generation
of European polar-orbiting operational weather satellites will
improve space-borne measurements of ice hydrometeor con-
centrations (Eriksson et al., 2020) by providing observations
at sub-millimeter wavelengths.

While these and other future satellite missions will pro-
vide crucial, novel observations to further the understanding
of convection and clouds, it will take several years before
these observations are available and the observational record
is sufficiently extensive to derive reliable results. The study
of cloud processes on seasonal to annual scales will therefore
depend on existing observations for the foreseeable future.
While a variety of cloud products have been produced us-
ing a range of different satellite observations, many of them
come with significant limitations that restrict their ability to
help with studies of storm evolution or validate numerical
models. Most cloud products that are based on sensors in
low earth orbit, such as the MODIS Cloud Properties prod-
uct (Platnick et al., 2015; Foster et al., 2021), provide only
a limited of number of observations per day and thus can
provide only very limited information on the evolution of
individual cloud systems. Similarly, products derived from
single sensors either are typically restricted in their spatial
coverage (e.g., CLAAS-3; Benas et al., 2023) or have very
high revisit times (Stephens et al., 2002; Winker et al., 2010).
Moreover, while considerable effort has been devoted to rec-
onciling currently available cloud datasets (Stubenrauch et
al., 2024), significant differences remain between them, par-
ticularly in estimates of column-integrated ice concentrations
(Eliasson et al., 2011; Duncan and Eriksson, 2018).

More specifically, Duncan and Eriksson (2018) showed
that estimates of the zonal mean ice water path, i.e., the
column-integrated concentration of frozen ice hydromete-
ors, differ by up to a factor of 5 between currently avail-
able datasets. The principal reasons for these discrepancies
are differences in the sensitivity of the underlying sensors to
ice particles of different sizes and uncertain assumptions on
the microphysical properties of the observed clouds. More-
over, it is not always clearly defined whether the estimates
provided by a product include all frozen hydrometeors or are
limited to either suspended or precipitating particles.

Of the currently available cloud datasets providing global
estimates of the ice water path, those derived from combined
radar–lidar observations from the CloudSat and CALIOP
satellites have to be considered the most accurate due to
their ability to resolve the vertical structure of clouds and

the combination of active measurements at microwave, IR,
and visible wavelengths. However, due to the thin swath of
these observations, their revisit time is on the order of a
few weeks. Moreover, due to a technical failure, observa-
tions have been limited to daytime measurements since April
2011, and day- and nighttime measurements are only avail-
able between 2006 and 2011. Although global estimates of
water paths are also provided by the MODIS, ISCCP-H se-
ries (Young et al., 2018), and PATMOS-x (Foster et al., 2023)
products, which can be used to estimate the ice water path
using provided cloud-phase information, these estimates are
all limited to daytime observations. Furthermore, we were
not able to find validation results for the ice water path es-
timates provided by the MODIS, ISCCP-H, and PATMOS-x
datasets, thus making it difficult for users to gauge their ac-
curacy.

The Chalmers Cloud Ice Climatology (CCIC) aims to
address the above-listed shortcomings of the observational
record of satellite-derived ice water path estimates by using
state-of-the-art neural-network-based retrieval techniques to
retrieve ice water path from the full available record of geo-
stationary IR observations. The CCIC retrieval is trained to
reproduce, and is thus calibrated to, combined radar–lidar es-
timates of frozen hydrometeor concentrations from the A-
Train. CCIC provides estimates of the column-integrated
concentrations of both suspended and precipitating ice par-
ticles, which we will refer to as the total ice water path
(TIWP) to stress the inclusion of all ice particles in the es-
timates. CCIC is motivated by the findings from Pfreund-
schuh et al. (2022c) and Amell et al. (2022), which showed
that neural-network-based retrievals that leverage the spatial
structure of satellite observations can achieve considerably
higher accuracy than traditional retrieval methods. CCIC pro-
vides estimates of TIWP and several other cloud properties
from a single IR window channel centered around 11 µm.
Although these observations primarily provide information
on the temperature of the atmosphere at the cloud top, the
11 µm channel provides the best availability among currently
available gridded geostationary observation datasets (Knapp
et al., 2011) and thus allows producing a long time series of
spatially and temporally continuous TIWP measurements al-
beit limited to latitudes within −60 to 60° N. The primary
aim of CCIC is to provide an updated, comprehensive, ex-
tensively validated, and easily accessible record of TIWP es-
timates that can both provide context for more accurate but
generally more sparse measurements from upcoming cloud
sensors and serve for the validation of kilometer-scale mod-
els resolving convective storms (Prein et al., 2015).

In this preliminary article, we present the neural-network-
based retrieval algorithm underpinning CCIC and validate it
against independent measurements of hydrometeor concen-
trations. This work constitutes the first step towards produc-
ing an updated climate record of TIWP estimates, and we
plan to follow this up with the production and publication of
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TIWP estimates for the full record of available geostationary
IR observations.

The remainder of this article is organized as follows. Sec-
tion 2 describes the dataset that was created for the training
of the deep neural network used by CCIC and introduces the
reference measurements used to validate the retrieval. Sec-
tion 3 establishes the nominal accuracy of the retrieval by
evaluating it on a held-out test dataset, while Sect. 4 assesses
the retrieval against independent in situ and remote sens-
ing measurements of hydrometeor concentrations. Finally,
Sect. 5 discusses the validation results and potential appli-
cations of CCIC, and Sect. 6 summarizes the principal con-
clusions from this study.

2 Methods and data

The CCIC retrieval is based on a convolutional neural net-
work (CNN) that leverages quantile regression (Pfreund-
schuh et al., 2018) to provide probabilistic estimates of TIWP
as well as additional cloud properties. The following sub-
sections describe the implementation and training of the
neural-network-based retrieval. Following this, the indepen-
dent measurements used to validate the CCIC retrieval are
presented.

2.1 The CCIC retrieval

In order to allow the application of the retrieval to the ex-
tensive historical record of geostationary IR observations,
CCIC was designed to use 11 µm IR brightness temperatures
as the only retrieval input. The retrieval does not ingest any
ancillary data to make the estimates independent from other
datasets. As mentioned in the Introduction, TIWP constitutes
the primary retrieval target of CCIC. However, it is accompa-
nied by the vertically resolved concentration of ice hydrom-
eteors, referred to as “total ice water content” (TIWC). Anal-
ogously to TIWP, the name TIWC was chosen to emphasize
that the estimates of total mass of frozen hydrometeors are
not restricted to a single species. Additional, secondary re-
trieval targets provided by CCIC are a vertically resolved and
a vertically integrated cloud mask. Table 1 summarizes the
CCIC retrieval targets.

2.1.1 Input data

The CCIC retrieval ingests geostationary IR input data from
two distinct datasets in order to maximize the spatiotemporal
coverage and resolution of the CCIC data record. The first
dataset is the GridSat-B1 product version 2 (GridSat; Knapp
et al., 2011; Knapp and NOAA CDR Program, 2014), which
covers the time from 1980 until the present at a temporal
resolution of 3 h and a spatial resolution of 0.07°. The sec-
ond dataset is the NOAA Climate Prediction Center glob-
ally merged IR product version 1 (CPCIR; Janowiak et al.,
2001, 2017), which is available only from the year 2000, with

some data from 1998, but offers higher temporal and spatial
resolutions of 30 min and 0.036°, respectively. Both datasets
provide merged and gridded IR brightness temperatures from
the channels closest to 11 µm from the global constellation
of historical and current geostationary meteorological satel-
lites. Knapp et al. (2011) and references therein detail that
both datasets are provided after an intersatellite normaliza-
tion, i.e., viewing angle and parallax corrections, and Grid-
Sat, in addition, employs a temporal calibration against High-
resolution Infrared Radiation Sounder (HIRS) near-11 µm
channel data, targeting long historical analyses. The IR ra-
diances are used as input to the CCIC network without dis-
cerning between the datasets. The characteristics of the two
datasets are summarized in Table 2.

2.1.2 Training data

The reference data for the CCIC retrieval targets are de-
rived from two CloudSat products: the level 2 cloud sce-
nario classification version R05 (2B-CLDCLASS; Sassen
and Wang, 2008) and the level 2 CloudSat and CALIPSO
ice cloud property version R05 (2C-ICE; Deng et al.,
2010, 2013b, 2015). The 2B-CLDCLASS product assigns
each CloudSat radar bin one of nine different cloud classes
(Table 1). This choice of reference data over similar products,
e.g., DARDAR-cloud (Delanoë and Hogan, 2010), which can
be regarded as the alternative to 2C-ICE, was motivated by
the 2C-ICE product yielding smaller biases against in situ
measurements (Deng et al., 2013a). We acknowledge that
the referenced validation study was performed using now-
outdated versions of the retrievals; however, we were not
able to find more recent validation studies involving these
two products.

The 2B-CLDCLASS and 2C-ICE granules were both col-
located with the input data and used to extract the follow-
ing information for each profile: TIWP, TIWC, a horizontal
cloud mask indicating the presence of a cloud anywhere in
the vertical profile, and vertically resolved cloud classifica-
tion following the 2B-CLDCLASS product. Although there
is redundancy in these variables, as TIWC integrates into
TIWP and the 2D cloud mask can, in principle, be derived
from the vertically resolved cloud classification, they were
kept separate.

Despite the vertical information in the 2B-CLDCLASS
and 2C-ICE products being provided in bins of 240 m, the
reference data were regridded to a uniform altitude grid
with a vertical resolution of 1 km relative to the surface of
the digital elevation model provided in these products. The
cloud class profiles were downsampled by a factor of 4 by
randomly picking one bin in contiguous sets of four 2B-
CLDCLASS height bins, followed by nearest-neighbor in-
terpolation to the target altitude level. The random subsam-
pling was performed to retain the uncertainty introduced by
the subsampling of the vertical resolution of the reference
data. For the regridding of TIWC, the vertical profiles were
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Table 1. CCIC retrieval targets. CCIC provides probabilistic estimates of the cloud properties listed in this table. Due to storage limitations
only the statistics listed under “Retrieval output” are actually retained as output. The cloud classification is based on the nine cloud classes
from the CloudSat 2B-CLDCLASS product (no cloud; cirrus, Ci; altostratus, As; altocumulus, Ac; stratus, St; stratocumulus, Sc; cumulus,
Cu; nimbostratus, Ns; and deep convection, DC).

Target Retrieved quantity Retrieval output Vertical levels

TIWP p(TIWP | TB,11 µm) Expected value, credible interval (CI) bounds 1
TIWC p(TIWC | TB,11 µm) Expected value 20
Cloud mask P (Cloud anywhere in column | TB,11 µm) P (Cloud anywhere in column | TB,11 µm) 1
Cloud class P (Cloud class | TB,11 µm) P (Cloud in parcel | TB,11 µm), most likely cloud type 20

Table 2. Spatiotemporal resolution and coverage of the input data
products.

CPCIR GridSat

Spatial resolution 0.036° 0.07°
Temporal resolution 30 min 180 min
Temporal coverage 2000–present 1980–present
Spatial coverage 60° S–60° N 70° S–70° N

first smoothed with a Gaussian filter with a full width at half
maximum of approximately 1 km. Afterwards, the smoothed
values were linearly interpolated to the target altitude levels.
Finally, TIWC values were scaled to ensure that the regrid-
ded profiles integrate to the same value as the corresponding
TIWP.

The vertically subsampled reference data were collocated
with the input data by binning the profiles with respect to
the input data grid and then randomly sampling one profile
from the multiple profiles collocated with each input pixel.
Randomly choosing a profile retains the uncertainty due to
the coarser resolution of the input observations, which is re-
quired for this uncertainty to be included in the uncertainty
estimates provided by the probabilistic regression retrieval.
An additional representation of reference TIWP was pre-
pared by taking the average per input-data pixel. This alter-
native representation was included as a sanity check. While
retrievals of the footprint-averaged TIWP are consistent with
those based on the randomly sampled profile in terms of the
posterior mean, the predicted retrieval uncertainties will re-
fer to the footprint-averaged reference data and thus exhibit
statistics that vary with the footprint size of the observations.
Since it provides essentially the same information as the ran-
domly sampled TIWP, it is not discussed further here. For
the temporal collocation, the reference data were assigned to
the closest input data with a maximum difference of 15 min
between the profile observation time and the reference time
of the gridded IR data.

CloudSat measurements are available from mid-2006 on-
wards but are limited to daylight observations from April
2011 due to a battery anomaly (Nayak et al., 2012). Con-
sequently and for simplicity, only CloudSat data before 2011

were considered in order to minimize the risk of introducing
a diurnal bias. Data in 2010 were assigned to a held-out test
set, and all data for the other 3.5 years were used for training,
with collocations in the first day of each month allocated to
a validation set that was used to monitor training progress.

The collocated geostationary input observations and
CloudSat–CALIPSO-based reference data are used to gen-
erate the training dataset, which consists of scenes with a
horizontal extent of 384× 384 px of input observations. The
scene size of 384 px was chosen as it allows for the extrac-
tion of randomly rotated center crops of size 256× 256 px,
which is ultimately for training and inference. The extent
of 256× 256 px was chosen as it results in scenes exceed-
ing 900 km in zonal and meridional extent and thus should
contain information on the mesoscale and, to some extent,
also the synoptic-scale context of the retrieval. Scenes are
extracted by randomly selecting a pixel with valid reference
data as the center point for the scene. Then, a random zonal
shift of up to 50 px east or west is applied to the scene so that
the relative position of the CloudSat swath within the scene is
randomized. This process was repeated until all pixels with
valid reference data were included in at least one training
scene. Scenes with less than 20 % of valid reference data pix-
els were discarded. Figure 1 shows that there is a clear differ-
ence in the spatial distributions of the collocations between
the two IR data products, which is a result of the fixed over-
pass times of CloudSat and the coarser temporal resolution of
the GridSat data. An additional CPCIR training and valida-
tion dataset was prepared at a coarser resolution: the CPCIR
data were preprocessed by subsampling every 2 px, thus ap-
proximately matching the GridSat resolution, and then pro-
cessed in the same way as the other two datasets. This aimed
to mitigate any potential underfit for GridSat given the imbal-
anced data. Table 3 shows the sizes of the training, validation,
and test datasets. All codes required to generate the training
datasets are made available through the code repository ac-
companying this article (Amell and Pfreundschuh, 2023).

The distributions of the target variables (Appendix A)
show marginal differences when collocated with GridSat
or CPCIR. It is assumed that these differences come from
the available collocations for each product (see Fig. 1) and
are deemed negligible. The distributions of both TIWP and
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Figure 1. Spatial distributions of the pixels with valid reference values in the training set, binned on a 2.5°× 2.5° grid. Panel (b) also displays
the approximate spatial coverage of three campaigns and the ground-based cloud radar site used in the validation of CCIC.

Table 3. Total number of scenes and pixels with valid profiles for each input dataset in the database.

Product Scenes Pixels with reference data

Training Validation Test Training Validation Test

CPCIR 3.8× 105 1.5× 104 1.2× 105 1.6× 108 6.5× 106 5.1× 107

GridSat 4.1× 104 1.6× 103 1.3× 104 1.7× 107 6.9× 105 5.4× 106

CPCIR (coarse) 1.9× 105 7.7× 103 0 7.9× 107 3.1× 106 0

TIWC are heavily right-skewed, spanning several orders of
magnitude. Atmospheric states without ice masses are pre-
dominant, although nearly half of the pixels are cloudy; be-
sides cloud-free scenarios, the three most frequent clouds in
the training are altostratus, nimbostratus, and cirrus, in this
order (Table A1).

2.1.3 Neural network architecture

Figure 2 illustrates the architecture of the CNN used for the
CCIC retrieval. The model consists of convolutional encoder
and decoder modules that are shared between all retrieval tar-
gets and a separate head for every retrieval target. The convo-
lutional blocks used in the encoder and decoder of the CNN
are similar to those of the ConvNeXt architecture (Liu et al.,
2022) with layer normalization (Ba et al., 2016) arranged
in an asymmetric encoder–decoder, U-net-like architecture
(Ronneberger et al., 2015). The network heads each consist
of several blocks of 1× 1 convolutions, normalization lay-
ers, and activation functions, and they map the shared fea-
tures extracted by the encoder and decoder to the output of
each variable. The basic architecture is grounded in previous
retrievals (Amell et al., 2022; Pfreundschuh et al., 2022c, a),
and since it provides good results, no extensive tuning of the
model architecture or hyperparameters was performed.

Because of the very limited information content of the
input observations, the mapping from IR brightness tem-
peratures to hydrometeor concentrations can be expected to
exhibit significant retrieval uncertainty. The retrieval uncer-
tainty, which is referred to in the machine-learning commu-
nity as “aleatoric uncertainty”, can be quantified using quan-
tile regression neural networks (QRNNs; Pfreundschuh et al.,
2018), making the resulting retrieval equivalent to a tradi-
tional Bayesian retrieval. Since QRNNs provide a piecewise

linear estimate of the cumulative distribution function (CDF)
of the marginal distribution of every output variable, no as-
sumptions are required regarding the functional form of the
distributions. The approach can thus represent non-Gaussian
retrieval uncertainties while simultaneously leveraging the
predictive power of deep, convolutional neural networks.

2.1.4 Training

The CCIC retrieval was trained using multitask supervised
learning; i.e., the losses from all retrieval targets were opti-
mized simultaneously. Since the CCIC retrieval targets com-
prise both continuous and categorical variables, the network
was trained to minimize a mixed loss, defined as the sum
of the cross-entropy averages for the categorical variables
and the multiple quantile regression loss averages used in
QRNNs for the continuous output variables. No scaling was
applied in the total loss function for the different targets. The
loss functions for each class of variables are given by

Lcategorical =−
1
N

N∑
i=1

log

(
expy(c)i∑C
j=1 expy(j)i

)
(1)

and

Lcontinuous =
1

N |T |

N∑
i=1

∑
τ∈T

(
xi − x̂

(τ )
i

)(
τ − I

(
xi ≤ x̂

(τ )
i

))
. (2)

Here, N indicates the number of reference values; y(j)i the
output value for class j , with class c being the reference
class; T a set of predefined quantiles and |T | its cardinal-
ity; xi the reference value; x̂(τ )i the predicted quantile at level
τ ; and I the indicator function.
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Figure 2. The artificial neural network used in CCIC. The input is the brightness temperatures TB,11 µm normalized with TB,11 µm,min= 170 K
and TB,11 µm,max= 310 K. The number of output neurons for each head matches the number of quantiles or classes needed for each variable.
The network contains 4.3× 107 learnable parameters. Symbols: || is depthwise concatenation, [: nc] is slicing and keeping the first nc
channels, and + is depthwise addition.

The continuous variables TIWP and TIWC span over sev-
eral orders of magnitude, where each order can be consid-
ered to contain significant information. The training applied
the log-linear transform

f (x)= log(x)I(x < 1)+ (x− 1)I(x ≥ 1) (3)

on the reference values, with TIWP and TIWC expressed in
kg m−2 and g m−3, respectively, to address this challenge.
Since the log transform is defined only for strictly positive
values, TIWP and TIWC values below a clear-sky threshold t
are replaced with random values from a log-uniform distribu-
tion in [a,b]: for TIWP (in kg m−2), t = 10−3, a = 10−6, and
b = 10−4; for TIWC (in g m−3), t = 10−7, a = 10−10, and
b = 10−8. This treatment of small and zero values ensures
that the quantiles of the posterior distribution are well cali-
brated. Since the predicted quantiles are invariant to strictly
monotonically increasing transformations, the transforma-
tion does not change the statistical properties of the resulting
prediction.

The QRNN retrievals use different quantile lev-
els for TIWP and TIWC. For TIWP, the net-
work outputs a quantile-parameterized distribu-
tion (QPD) with 64 quantile levels, given by
TTIWP = {0.001,11TIWP,21TIWP, . . .,621TIWP,0.999},
where 1TIWP = 1/63. For TIWC, the QPD at each al-
titude level is given by the 16 quantile levels TTIWC =

{0.01,0.05,11TIWC,21TIWC, . . .,131TIWC,0.95,0.99},

with 1TIWC = 1/15. This arrangement of the quantile levels
was found to produce better retrievals than strictly equally
spaced levels. Any quantile between the levels TTIWP or
TTIWC can be obtained with a linear interpolation of the
QPD.

The CCIC neural network (NN) was trained on four
NVIDIA Tesla V100 SXM2 32 GB GPUs for about 80
epochs using a cosine-annealing learning rate schedule
(Loshchilov and Hutter, 2016), with one epoch taking about
280 min. Monitoring of the validation loss during training
showed no overfitting, and the training losses converged.
Missing pixels in the input are replaced by a constant spe-
cial value, while missing reference data are masked out and
simply ignored in the loss calculation. Random rotations and
flips, followed by random cropping of the input image to
256× 256 px, were used to augment the training data. Ap-
pendix B provides additional details on the training.

2.2 Validation data

The CCIC retrievals are trained to reproduce the data from
the CloudSat 2B-CLDCLASS and 2C-ICE datasets, which
are themselves derived from remote sensing observations.
Since these datasets are used as the ground truth during train-
ing, their errors will be reproduced by CCIC. It is therefore
essential to compare the CCIC results to independent and
ideally more direct measurements of ice cloud properties.

Atmos. Meas. Tech., 17, 4337–4368, 2024 https://doi.org/10.5194/amt-17-4337-2024
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While the most direct measurements of frozen hydromete-
ors are arguably in situ measurements, these are inherently
sparse and typically only provide estimates of the TIWC at
a certain altitude in the atmosphere rather than the TIWP,
which would require measuring ice hydrometeor concentra-
tions over the full height of the atmosphere.

In addition to in situ measurements of frozen hydromete-
ors, we also make use of airborne and ground-based cloud
radar observations. Although these measurements will likely
be affected by similar uncertainties as the CloudSat-derived
reference data, these data allow the validation of the CCIC re-
trieval outside the limited temporal sampling of the CloudSat
observations. To compare radar observations from the differ-
ent flight campaigns and the ground-based radar in a consis-
tent manner, we have developed an additional retrieval that
retrieves TIWC estimates from radar observations. These re-
trievals allow us to control the microphysical assumptions
used in the retrieval, which constitute a major source of un-
certainty in the resulting TIWC estimates. We run the re-
trieval for multiple assumed ice particle habits, and for each
campaign we use the results that yield the best consistency
with the in situ measurements. The implementation of the
retrieval is described in detail in Appendix C.

2.2.1 HAIC-HIWC

A series of international field campaigns took place between
January 2014 and August 2018 to collect in situ measure-
ments of hydrometeors and other cloud properties: the High
Altitude Ice Crystals (HAIC; Dezitter et al., 2013), the High
Ice Water Content (HIWC; Strapp et al., 2016a), and the
HIWC radar (Ratvasky et al., 2019) projects. These cam-
paigns, referred to as HAIC-HIWC, involved measurements
of deep convective systems, including tropical storms, us-
ing probes and radar instruments mounted on research air-
craft. The hydrometeor total water content (TWC) was one
of the properties measured with probes during these cam-
paigns. This property directly correlates with the TIWC at
low temperatures, which is where most of the measurements
were performed.

The IKP-2 probe (Strapp et al., 2016b; Davison et al.,
2016) was specifically developed to measure TWC in HAIC-
HIWC. All openly available HAIC-HIWC TWC data mea-
sured with this probe were collocated with TIWC CCIC re-
trievals by averaging them in 4D bins, defined by the GridSat
or CPCIR grid; 1 km altitude bins centered at the CCIC alti-
tude levels; and 30 min temporal bins centered on the GridSat
or CPCIR timestamps. Figure 3 presents the spatial coverage
of the collocations obtained with this method.

In addition to the in situ measurements collected during
all flights of the HAIC-HIWC campaigns, the first campaign
in Darwin, Australia, also included 95 GHz cloud radar mea-
surements from the Radar Airborne System Tool for Atmo-
sphere (RASTA) radar flown on board the Falcon 20 of the
Service des Avions Français Instrumentés pour la Recherche

Figure 3. Spatial coverage of in situ measurements of TWC col-
lected during the different HAIC-HIWC campaigns and collo-
cated with CCIC retrievals. Flights during January and February
2014 were performed over Darwin, Australia, and the surrounding
oceans. Flights during May 2015 were performed out of Cayenne,
French Guyana. Flights during August 2015 were performed out of
Fort Lauderdale, USA. Flights in August 2018 were based out of
Fort Lauderdale, Palmdale on the west coast of the USA, and Kona
in Hawaii. The map background is based on NASA Visible Earth
imagery.

en Environnement (SAFIRE) that are publicly available.
Since these observations allow for a more complete charac-
terization of the vertical structure of the observed clouds than
the in situ measurements alone, they are used here as an ad-
ditional source of validation data.

2.2.2 OLYMPEX

The Olympic Mountain Experiment (OLYMPEX; Houze et
al., 2017) was carried out between late fall 2015 and early
spring 2016 with the principal aim to investigate the effect
of the Olympic mountains on precipitation. As part of the
campaign, 94 GHz cloud radar observations were performed
by the NASA Cloud Radar System (CRS; Li et al., 2004)
on board the NASA ER-2 aircraft. In addition to this, in
situ measurements of concentrations of frozen hydrometeors
were performed by the University of North Dakota (UND)
Cessna Citation aircraft.

We use both radar retrievals of TIWC from the NASA CRS
radar as well as the in situ measurements from the UND Ci-
tation aircraft to validate the CCIC retrievals. The flight paths
of the two aircraft are displayed in Fig. 4. The airborne mea-
surements are collocated with CCIC retrievals by downsam-
pling them to the spatial resolution of the CPCIR and GridSat
observations following the method from Sect. 2.2.1.

2.2.3 Cloudnet

The Aerosol, Clouds and Trace Gases Research Infrastruc-
ture (ACTRIS) Cloudnet data portal curates and provides
access to ground-based remote sensing measurements of
clouds. In contrast to flight campaigns, measurements from
permanent, ground-based radars allow for the evaluation of
CCIC over annual and seasonal timescales. For this study we
use 1 year (2019) of radar measurements (Delanoë and Haef-
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Figure 4. Flight paths of the UND Citation and NASA ER-2 aircraft
during the OLYMPEX campaign over the Olympic Peninsula in the
pacific northwest region of the USA. The map background is based
on NASA Visible Earth imagery.

felin, 2023) from the 95 GHz Bistatic Radar System for At-
mospheric Studies (BASTA; Delanoë et al., 2016) from the
site in Palaiseau, France. This Cloudnet site was chosen as it
presented one of the most complete W-band cloud radar data
records, in particular for 2019, for the latitudes covered by
the CCIC retrievals.

3 Retrieval characterization

This section evaluates the accuracy of the CCIC retrieval
against held-out test data derived from CloudSat observa-
tions.

3.1 Case study

To provide an overview of the capabilities and retrieval tar-
gets of CCIC, a case study of a midlatitude cyclone over the
west coast of North America on 3 January 2019 is shown in
Fig. 5. The case was chosen as it coincides with an overpass
of CloudSat over the cyclone and thus allows the CCIC re-
trievals to be compared to the corresponding CloudSat mea-
surements.

Multiple cloud systems associated with fronts generated
by the cyclone can be identified easily even in the IR obser-
vations. Compared to the IR input observations, the TIWP
field exhibits significantly lower spatial variability, which
is expected due to the smoothing effect of retrieval uncer-
tainty on the retrieved posterior mean. Nonetheless, the over-
all spatial structure of the cloud systems is well reproduced
in the TIWP field. It is notable that the distribution of TIWP
within the clouds does not seem to exhibit a direct relation-
ship with the corresponding brightness temperatures, indicat-
ing that the retrieval leverages spatial context to infer the re-
trieved TIWP. The contour lines showing the dominant cloud

types clearly distinguish stratiform and convective regions of
the observed cloud systems whose locations are consistent
with the corresponding cloud-forming processes. In particu-
lar, stratiform clouds precede the leading warm front of the
cyclone, whereas the convective clouds align with the cold
and the occluded front. Interestingly, there is also a region of
clouds in the southwest corner of the domain, where CCIC
identifies St but retrieves no TIWP. This indicates that the
retrieval also has some capability to distinguish the cloud
phase.

Compared to the 2C-ICE retrieval along the CloudSat
ground track, the CCIC TIWP retrieval exhibits less spatial
variability but in general agrees with the 2C-ICE results. The
reduced spatial resolution of the CCIC retrieval is even more
apparent in the comparison of the retrieved TIWC. Nonethe-
less, to first order, the vertical structure of the cloud systems
is reproduced correctly by the CCIC TIWC retrieval. In par-
ticular, the retrieval correctly reproduces the higher and less-
dense clouds associated with the warm front and the lower
and denser clouds of the occluded front.

The 3D cloud classification shows general agreement with
the classes identified by 2B-CLDCLASS except for the re-
gion between 2100 and 2250 km along the transect. In this
region, the full cloud system is classified as Ns, whereas
CloudSat detects only a low-level Ns cloud covered by non-
convective higher-level clouds. The inability of the CCIC re-
trievals to resolve the vertically heterogeneous structure of
the clouds is certainly due to the limited information con-
tent in the IR input observations, which are primarily related
to the cloud top temperature. However, an additional factor
contributing to the differences between the cloud type classi-
fication of CloudSat and CCIC may be that the CCIC cloud-
type estimates are from 21:00 UTC, while the CloudSat over-
pass was close to 21:15 UTC. Since the cloud system can be
expected to move to the east, the relative position of Cloud-
Sat ground track at 21:15 UTC may be shifted slightly to
the west, where the cloud cover is more heterogeneous. The
cloud classification also fails to reproduce the small-scale
variability in the CloudSat-based classification. Nonetheless,
it is notable that the retrieval can reproduce much of the ver-
tical structure of the observed cloud system.

3.2 Accuracy on test set

The following subsections quantitatively assess the accuracy
of the CCIC retrieval on the independent test dataset, which
consists of all CloudSat collocations from the year 2010.

3.2.1 Hydrometeor concentrations

Conditional distributions of the retrieved posterior mean of
the TIWP conditioned on the reference TIWP value for the
test dataset are shown in Fig. 6. The logarithmic shading of
the distributions reveals a large spread around the diagonal
indicative of considerable retrieval uncertainty. Nonetheless,
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Figure 5. Retrieved and reference cloud properties from a CloudSat overpass over a midlatitude cyclone over the North American west coast
on 3 January 2019. Panel (a) shows the CPCIR input observations. Panel (b) displays a map of the retrieved TIWP over the region as well as
the dominant cloud type, which is defined as the most frequent non-clear cloud class (as defined in panels g and h) in the atmospheric column.
Panel (c) shows the retrieved and reference TIWP along the CloudSat ground track marked by the blue line in panel (a). Panel (d) shows the
TIWC from 2C-ICE along the CloudSat ground track. Panel (e) shows the corresponding retrieved TIWC. Panel (f) shows the retrieved 3D
cloud mask. Panel (g) shows the cloud classification from the 2B-CLDCLASS product. Panel (h) shows the corresponding retrieved cloud
classes.

with values of −3.33 % and −4.28 %, the overall retrieval
biases are small and the correlations of 0.75 and 0.74 for the
CPCIR and GridSat input data, respectively, indicate good
sensitivity to TIWP. For either input dataset, the conditional
mean of TIWP is biased high up to 1 kg m−2, above which it
is increasingly biased low.

In addition to the posterior mean estimate of TIWP, CCIC
provides a random sample from the posterior distribution to-
gether with a 90 % credible interval (CI). The advantage of
random samples from the retrieval posterior distribution is
that they provide a better representation of extreme values
than estimates relying on the posterior mean. To illustrate
this, Fig. 7 shows the zonal distributions of reference and
retrieved TIWP values. The retrieval accurately reproduces
the zonal variations in the observed TIWP values in terms of
both the mean and the distribution of extreme values.

The spatial distributions of mean retrieved and reference
ice water path (IWP) concentrations from the test dataset
are shown in Fig. 8. The distributions of the retrieved TIWP
agree well with the distribution of the 2C-ICE measurements.
Due to the low number of available 2C-ICE measurements in
each 0.5° box, the relative bias field is noisy. The only re-
gion where the retrievals exhibit noticeable relative biases is
the southeast Pacific dry zone. This is likely caused by the
low number of ice clouds in this region in combination with
increased relative retrieval uncertainties for low and mixed-
phase clouds. Overall, for 90 % of all assessed 5° boxes the

biases remain within ±26.54 % (±55.78 %) for the CPCIR-
based (GridSat-based) retrievals.

Conditional distributions of the retrieved posterior mean
TIWC conditioned on reference TIWC at all altitudes are
shown in Fig. 9. The distributions exhibit an even larger
spread than for the TIWP (Fig. 6), which is expected con-
sidering the larger number of degrees of freedom compared
to TIWP. Nonetheless, the retrieval achieves low biases and a
correlation coefficient exceeding 0.6, thus demonstrating sig-
nificant skill in reproducing even the vertical distribution of
hydrometeors.

Zonal means of all retrieved and reference TIWC esti-
mates are displayed in Fig. 10. Although both retrievals ex-
hibit a tendency to underestimate the TIWC at cloud top and
overestimate it at cloud base, the spatial distribution of TIWC
is represented well. In particular, the retrievals correctly rep-
resent the double-peak structure caused by the seasonal vari-
ability in the Intertropical Convergence Zone (ITCZ) as well
as the asymmetry of the TIWC distribution in the ITCZ and
the storm tracks.

3.2.2 Consistency of retrieved TIWP and TIWC
profiles

Since TIWC is retrieved on evenly spaced altitude levels,
the differences in the relative retrieval biases between TIWP
(Fig. 6) and TIWC (Fig. 9) indicate small, systematic differ-
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Figure 6. Conditional distributions of retrieved TIWP conditioned on the 2C-ICE-based reference TIWP for the test samples from the year
2010. Panel (a) shows the distribution for the CPCIR input observations; panel (b) shows the corresponding distributions for the GridSat
dataset. The displayed bias and correlation coefficients are computed using all test samples including those outside the range of the scatter
plot.

Figure 7. Zonal distributions of retrieved TIWP and 2C-ICE-based reference TIWP for the test dataset. Filled contours in the background
shows the conditional probability density function (PDF) of the reference data. Drawn on top are contour lines of the PDF of random samples
of the retrieved posterior distribution of TIWP. The contour levels were chosen so that they correspond to the boundaries between the contour
levels of the reference data PDF. Line plots show the zonal mean of reference and retrieved TIWP.

ences between the retrieved TIWP and the column-integrated
retrieved TIWC. When the retrieved TIWP and the column-
integrated retrieved TIWC are compared directly, their linear
correlation is 1.0 and the overall bias at most 2.52 %. Com-
pared to the reference TIWP, the integrated retrieved TIWC
yields slightly smaller biases (−0.72 % and−1.90 % for CP-
CIR and GridSat, respectively) but similar correlation val-
ues. However, since these differences are on the order of a
few percent, they can be considered negligible compared to
uncertainties in the reference data.

3.2.3 Cloud detection and classification

CCIC provides probabilistic 2D and 3D cloud masks. The
2D cloud mask corresponds to an estimated probability of
a cloud being detected by the 2B-CLDCLASS product any-

where in the atmospheric column. The 3D cloud mask clas-
sifies all levels in the atmosphere into non-cloudy or any
of the eight cloud types distinguished by the CloudSat 2B-
CLDCLASS product.

Figure 11 assesses CCIC’s skill in detecting clouds in
2D and 3D. The plots display the precision and recall (PR)
curves for both input data types. These curves display the
trade-off between the precision, i.e., the fraction of correctly
identified clouds and the total number of cloud detections,
and the recall, i.e., the fraction of correctly identified clouds
and the total number of actual clouds, as the probability
threshold above which a cloud is counted as detected is var-
ied. The circular markers show the precision and recall for
the optimal probability threshold that was determined as the
point on the PR curve that is closest (in terms of Euclidean
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Figure 8. Spatial distribution of retrieved TIWP and 2C-ICE-based reference TIWP for the CPCIR and GridSat test datasets over the domain
covered by CCIC. Panels (a) and (b) show the retrieved TIWP aggregated to a resolution of 5°. Panels (c) and (d) show the corresponding
distributions of the reference TIWP measurements. Panels (e) and (f) show the relative biases.

Figure 9. Conditional distributions of retrieved TIWC conditioned on 2C-ICE-based reference TIWC from the test dataset. Panel (a) shows
the distribution for the CPCIR input observations; panel (b) shows the corresponding distributions for the GridSat dataset. The displayed
bias and correlation coefficients are computed using all test samples including those outside the range of the scatter plot.

distance) to the point representing a precision and recall of
1. In order to avoid leakage of information from the test
data, the optimal decision thresholds were determined using
PR curves calculated on the validation data. The correspond-
ing probability thresholds and precision and recall values are
listed in Table 4.

For the detection of clouds in 2D the retrieval achieves a
precision and recall in excess of 0.8, indicating good detec-
tion skill. For 3D, the detection accuracy decreases, yielding
a precision of 0.67 and a recall of around 0.74. Again, the
decrease in accuracy for the vertically resolved retrievals is
expected due to the higher number of degrees of freedom
of the vertically resolved retrieval targets. Nonetheless, these

precision and recall values still indicate notable skill in re-
producing the horizontal and vertical distribution of clouds
in the atmosphere.

The ability of the retrieval to differentiate between the
cloud types of the 2B-CLDCLASS product is assessed in
Fig. 12, which shows the confusion matrices for each of the
two input datasets. The confusion matrix has been normal-
ized to show the conditional probabilities of the retrieved
classes given the reference class. High values in the bot-
tom row indicate that all cloud classes have a relatively high
chance to be missed. Nonetheless, for all cloud classes ex-
cept the Cu and the St class, the highest probability is located
on the diagonal, indicating the retrieval is able to identify
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Figure 10. Zonally averaged distributions of retrieved TIWC and 2C-ICE-based reference TIWC for the CPCIR and GridSat test datasets
over the domain covered by CCIC. Panels (a) and (c) show the retrieved and reference TIWC for the CPCIR observations aggregated to a
resolution of 2.5°. Panel (e) show the truncated relative bias of the retrievals. Panels (b), (d), and (f) show the corresponding distributions of
the GridSat-based retrieval.

Table 4. Optimal probability thresholds determined with the validation set and corresponding precision and recall for the detection of clouds
in 2D and 3D for the test set.

2D cloud mask 3D cloud mask

Input data type Prob. threshold Precision Recall Prob. threshold Precision Recall

CPCIR 0.448 0.824 0.872 0.360 0.671 0.739
GridSat 0.440 0.820 0.878 0.364 0.670 0.737

those clouds. However, the retrieval is incapable of distin-
guishing St from Sc clouds and is more likely to designate
an St cloud as Sc than correctly detecting it. The same is true
for Cu clouds, which the retrieval is likely to misclassify as
Sc, Ns, or DC. It is worth noting, however, that both the St
and Sc classes are very rare in the reference data distribution
and thus highly unlikely a priori. The imbalanced a priori
will lead to biases towards the more likely cloud classes in
the conditional distributions.

While the confusion matrix shown in Fig. 12 suggests high
uncertainties for the classification of the 1 km vertical levels
used by CCIC, the results from the case study shown in Fig. 5
indicate that the retrieval can nonetheless successfully iden-
tify the dominant cloud systems in the scene and their verti-
cal extent. To assess the ability of the retrieval to distinguish

different cloud systems on larger scales, Fig. 13 shows the
frequency of occurrence of the different retrieved and refer-
ence cloud types by altitude and latitude band. As these re-
sults show, the spatial distribution of the cloud types agrees
well with the reference distributions for all cloud types ex-
cept St, which is never detected. These results confirm that
the retrieval has certain skill in distinguishing different cloud
systems and their vertical extent despite uncertainties in the
classification of individual layers.

4 Validation

The evaluation of the retrieval accuracy on the test data pre-
sented in the previous section showed that the CCIC re-
trieval is able to reproduce the CloudSat reference measure-
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Figure 11. Precision–recall curves for the detection of clouds in 2D
and 3D with respect to the 2B-CLDCLASS-based reference data for
the test dataset. Panel (a) shows the precision and recall for both in-
put data types for the detection of cloudy columns. Panel (b) shows
the corresponding precision and recall for the 3D cloud mask. Cir-
cular markers indicate the PR values with the optimal probability
threshold in Table 4.

ments well. However, the scientifically more relevant ques-
tion is whether the retrieval can provide reliable estimates
even in comparison to independent measurements. If CCIC
can reliably characterize distributions of frozen hydromete-
ors even outside the temporally and spatially limited sam-
pling of the CloudSat reference measurements, CCIC would
be able complement the CloudSat data record by providing
spatially and temporally continuous measurements around
much of the globe, albeit at reduced resolution and accuracy.
To investigate this question, this section compares CCIC re-
trievals to measurements of cloud hydrometeors from sev-
eral flight campaigns and ground-based cloud radar measure-
ments.

4.1 HAIC-HIWC

4.1.1 Case study

A case study comparing airborne radar and in situ mea-
surements from the Darwin campaign of the HAIC-HIWC
project and CCIC retrievals is shown in Fig. 14. The flight
probed the anvil and core of a deep convective system in the
Gulf of Carpentaria. In the beginning of the flight, the air-
craft passed through low-level clouds while still close to Dar-
win. The aircraft entered the anvil of the system at around
21:00 UTC and then passed through the core of the system
several times. Overall, both CCIC retrievals capture the hor-
izontal and vertical extent of the observed cloud fairly well.
However, the CPCIR-based retrieval overestimates the hori-
zontal extent of the anvil cloud. A potential explanation for
this is that during the time of the campaign, the CPCIR in-
put data around Darwin are missing at the full hour, and the
results at 21:00 UTC are thus linearly interpolated between
the results at 20:30 and 21:30 UTC. In contrast to that, the
GridSat-based retrieval, which has valid input observations

at 21:00 UTC, reproduces the horizontal extent of the anvil
cloud more accurately.

The CCIC retrievals are not able to capture the internal
structure of the clouds and slightly underestimate the vari-
ability in the magnitude of the TIWC between the anvil and
the core of the convective system. To a certain extent this is
expected considering the very limited information provided
by the single-channel IR observations used as input from the
retrieval. Nonetheless, it is notable that the CCIC retrieval, at
least to first order, yields estimates of TIWC that are consis-
tent with both the radar and the in situ measurements.

4.1.2 HAIC-HIWC: aggregated data

For a broader comparison of the CCIC retrievals and the
campaign measurements, Fig. 15 shows the distributions of
retrieved TIWC conditioned on in situ measurements from
all HAIC-HIWC campaigns. The CCIC retrievals exhibit
a tendency to overestimate TIWC at concentrations below
0.1 g m−3 and underestimate it above 1 g m−3. Overall, how-
ever, the CCIC-retrieved TIWC is reasonably well correlated
with the HAIC-HIWC in situ measurements across all cam-
paigns of the project.

Scatter plots of CCIC-retrieved TIWC and TIWP con-
ditioned on reference retrievals from the RASTA airborne
cloud radar used during the Darwin campaign are shown
in Fig. 16. The radar retrievals for the HAIC-HIWC cam-
paign use the large-column aggregate particle model, which
yielded the best agreement with collocated in situ measure-
ments (see Appendix C). With respect to TIWC, the overes-
timation and underestimation tendencies are consistent with
the validation against the in situ measurements, and the re-
trieved values also are reasonably well correlated against the
reference values. In terms of TIWP, the CCIC retrievals are
biased high for reference values below 1 kg m−2, but the
overall bias remains comparably low. With values of 0.66
and 0.62 for the CPCIR and GridSat-based retrievals, respec-
tively, the correlations are higher than for the TIWC esti-
mates.

4.2 OLYMPEX

A case study depicting CCIC retrieval results together with
in situ measurements and TIWC derived from radar observa-
tions from the NASA CRS is shown in Fig. 17. The depicted
flight is the one that allowed for the largest number of col-
locations between radar retrievals from the NASA CRS sys-
tem on the ER-2 aircraft and the in situ probes on the UND
Citation aircraft. During the flight the two aircraft profiled
a prefrontal storm over the Olympic Peninsula. The radar
retrievals show the vertical extent of cloud extending up to
8 km and decreasing down to 3 km towards the end of the
flight leg. The CCIC retrievals from the CPCIR observations
capture the overall shape of the cloud system but overesti-
mate its vertical extent. The GridSat-based retrieval is even
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Figure 12. Confusion matrix for the 3D cloud classification. Each matrix shows the conditional probability of the retrieved class given a
certain true class. Cloud classes use the acronyms from Table 1.

Figure 13. Spatial distribution of retrieved cloud classes and 2B-CLDCLASS-based reference cloud classes for the test samples from the
year 2010. Each row of panels shows the distribution of one of the eight cloud classes distinguished by the 2B-CLDCLASS product. The
first column shows the results retrieved from CPCIR observations, while the second column shows the corresponding reference distribution.
Columns three and four show the corresponding results for retrievals based on GridSat observations.
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Figure 14. In situ measurements and retrieval results for flight 10 of the Darwin HAIC-HIWC campaign on 29 January 2014. Panel (a) shows
the CPCIR 11 µm brightness temperatures. Panel (b) shows the corresponding CCIC TIWP field. Panel (c) shows the TIWC retrieved from
the RASTA cloud radar using the large-column aggregate as ice particle shape. Circular markers show the 5 min average TWC measured in
situ from the IKP-2 probe. Panels (d) and (e) show the TIWC retrieved from CPCIR and Gridsat observations and interpolated to the flight
path.

less successful in reproducing the extent of the cloud. This is
likely due to the lower temporal resolution of the input data,
which required interpolation between the available results at
15:00 and 18:00 UTC.

The radar observed broken clouds from about 16:25 to
16:28 UTC, while the in situ measurements exhibit spatially
more continuous hydrometeor concentrations. The broken
clouds observed by the radar indicate high spatial and tem-
poral variability in the cloud field that is too high for the
CCIC retrievals to resolve, thus leading to the overestima-
tion of the vertical extent of the cloud system. It should also
be noted that the in situ measurements indicate the presence
hydrometeors even where no cloud is observed in the radar
measurements, providing further evidence that deviation be-
tween radar, in situ, and CCIC measurements is, at least in
part, due to the variability in the cloud field.

Scatter plots of the conditional distribution of retrieved
TIWC conditioned on reference TWC and TIWC are dis-
played in Fig. 18. Compared to the in situ measurements,
the CPCIR CCIC results are biased high and exhibit rela-
tively low correlation of 0.36. With a value 0.65, the correla-
tions are significantly higher for the GridSat retrievals. Since
all other comparisons showed a high degree of similarity be-
tween the CPCIR and GridSat-based results, the higher cor-
relation is probably due to the spatial and temporal sampling

of the collocations used for the validation of the GridSat-
based results. The GridSat-based retrievals also exhibit a
weaker bias in the TIWC estimates. The correlations with
respect to the airborne radar measurements are significantly
higher with values of 0.6 for the CPCIR-based retrievals and
0.73 for the GridSat-based retrievals. The biases with respect
to the radar measurements are similar to those observed for
the in situ measurements. The radar results shown here were
obtained with the large-plate aggregate particle model. Al-
though the few available collocations between radar and in
situ measurements showed the best agreement for the eight-
column aggregate particle model, the large-plate aggregate
led to better agreement between the biases between radar es-
timate and CCIC and in situ measurements and CCIC.

The conditional distributions show that the CCIC retrievals
severely overestimate TIWC for low reference concentra-
tions in some cases. The temperature contours indicate that
these cases of overestimation are associated with compara-
bly high temperatures and thus correspond to estimates lower
down in the atmosphere, where the input observations pro-
vide little information to guide the retrieval. Moreover, the
limited vertical resolution and lack of input data constraining
the thermal structure of the atmosphere may lead to TIWC
being retrieved close to and even below the freezing level.

https://doi.org/10.5194/amt-17-4337-2024 Atmos. Meas. Tech., 17, 4337–4368, 2024



4352 A. Amell et al.: CCIC

Figure 15. Distributions of retrieved TIWC conditioned on refer-
ence TIWC from the in situ measurements for each of the HAIC-
HIWC campaigns presented in Fig. 3. The left column contains CP-
CIR retrievals and the right column GridSat retrievals; the first num-
ber in the box indicates the correlation and the second the bias. The
displayed bias and correlation coefficients are computed using all
test samples including those outside the range of the scatter plot.

Finally, scatter plots showing the distributions of retrieved
TIWP conditioned on the radar-retrieved TIWP are shown
in Fig. 19. Although the spread in the distributions TIWP
is reduced compared to the radar-measured TIWC, the cor-
relation with the reference measurements decreases for the

CPCIR retrievals. The reduction in correlation for the TIWP
retrievals is somewhat surprising considering that TIWP
should be easier to retrieve due to the lower number of as-
sociated degrees of freedom. What may contribute to the re-
duced correlation, however, is the relatively low sensitivity of
the radar retrievals, which is evident in the lack of reference
measurements of TIWP values below 10−2 kg m2.

4.3 Cloudnet

Figure 20 compares CCIC retrievals with TIWC and TIWP
estimates derived from the Cloudnet ground-based cloud
radar in Palaiseau. The conditional distributions of collocated
TIWP and TIWC exhibit a similar spread to the flight cam-
paigns but with slightly lower correlations. The CCIC re-
trievals overestimate hydrometeor concentrations by 30 % to
40 % compared to radar retrievals using the large-plate ag-
gregate particle model.

Figure 21 shows diurnal cycles of TIWP retrieved from the
ground-based radar and the CCIC retrievals. Calculated over
the full year 2019, the CCIC retrievals reproduce the TIWP
peak in the morning but underestimate the reduction in TIWP
occurring around 15 h. The CCIC retrievals capture most of
the seasonal variation in the diurnal cycle. The exception is
the summer months, during which the CCIC results capture
the general shape of the diurnal cycle but underestimate the
magnitude of the variation. Nonetheless, as shown in Table 5,
the correlation of the retrieved diurnal cycles and those de-
rived from radar simulations using the large-plate aggregate
particle model exceeds 0.7 during all seasons. Due to their
lower temporal resolution, the GridSat-based results gener-
ally exhibit weaker variations than the CPCIR retrievals but
yield higher correlations compared to the reference diurnal
cycles calculated at 3h resolution.

Overall, it is notable that the CCIC retrievals manage to
reproduce the diurnal and seasonal variation relatively well,
as presented in Table 5: the linear correlation between re-
trievals from CCIC and the Cloudnet radar used is at least
0.74 for any of the assessed 3-month periods. It is important
to note that CloudSat measurements are essentially limited to
two discrete local overpass times due to the sun-synchronous
orbit of the satellite. Therefore, they cannot resolve the diur-
nal cycle of cloud properties. The good agreement with the
ground-based measurements shows that, despite being based
on CloudSat measurements, the CCIC retrieval can repro-
duce diurnal variations in TIWP. The CCIC retrievals thus
have the potential to provide an important novel perspective
on ice clouds in the atmosphere.

5 Discussion

This study introduced the CCIC ice cloud retrieval that pro-
duces estimates of TIWP, TIWC, and cloud coverage from
single-channel geostationary IR observations. The input data
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Figure 16. Distributions of retrieved TIWC (a, b) and TIWP (c, d) conditioned on reference values from airborne radar retrievals during the
Darwin HAIC-HIWC campaign (January–February 2014) obtained with the large-column aggregate particle model. The displayed bias and
correlation coefficients are computed using all test samples including those outside the range of the scatter plots.

Table 5. Relative bias and linear correlation coefficient of the diurnal cycles retrieved using CCIC compared to those derived from the
Cloudnet ground-based cloud radar in Palaiseau using the large-plate aggregate particle model.

CPCIR GridSat

Time period Bias [%] Correlation coefficient Bias [%] Correlation coefficient

All year 27.43 0.86 34.59 0.97

DJF 37.97 0.92 23.58 0.97
MAM 53.04 0.81 73.47 0.92
JJA 45.76 0.74 30.92 0.96
SON −0.66 0.84 25.79 0.92

were deliberately restricted to a single channel of geosta-
tionary observations so that the retrieval could be applied to
the entire historical record of geostationary satellite observa-
tions. To demonstrate the soundness of the concept and its
implementation, we have presented a thorough assessment
and validation of the neural-network-based retrieval.

5.1 Retrieval accuracy

The assessment of the retrieval accuracy on the held-out test
dataset (Sect. 3) showed that the CCIC retrieval can reliably
reproduce the CloudSat 2C-ICE estimates, although individ-
ual retrievals may exhibit considerable uncertainty. CCIC can

even reproduce the vertical distribution of ice hydromete-
ors despite its input being limited to a single channel of IR
observations. This is certainly notable, especially since it is
commonly understood in the remote sensing community that
broader spectral coverage is required to reproduce the verti-
cal structure of clouds.

This study further validated the retrieval against measure-
ments from two flight campaign series and a ground-based
cloud radar. The CCIC retrievals generally agree with the
radar measurements and most in situ measurements. The bi-
ases with respect to in situ measurements were within or
close to 50 % for both flight campaign series, which is an en-
couraging result considering that biases in combined radar–
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Figure 17. Collocated in situ, radar, and CCIC measurements of ice hydrometeors from a flight on 4 December 2015 during the OLYMPEX
campaign. Panel (a) shows the CPCIR input data for the CCIC retrieval over the Olympic Peninsula. White pixels mark missing values in
the input data. Panel (b) shows the corresponding retrieved TIWP. Panel (c) shows the TIWC retrieved from the NASA CRS on the ER-2
aircraft using the large-plate aggregate ice particle model. Scatter points show collocated Nevzorov probe measurements of TWC from the
UND Citation aircraft within 5 km and 15 min of the radar observations. Panel (d) shows TIWC along the flight path derived from CPCIR
input data. Panel (e) shows the TIWC derived from GridSat observations.

lidar retrievals, which are taken as reference estimates here,
can be up to 59 % for comparisons against in situ measure-
ments (Deng et al., 2013a). The lowest sensitivity was found
for the CPCIR-based retrievals for the OLYMPEX campaign
where the correlation with the in situ measurements was only
0.36. The likely reason for this is that the in situ measure-
ments from the UND Citation aircraft mostly sampled alti-
tudes close to the cloud base where the retrieval uncertain-
ties are highest. This is confirmed by the much better correla-
tion coefficient found for the comparison to the radar-derived
TIWC measurements. The otherwise good agreement be-
tween in situ measurements and CCIC TIWC retrievals con-
firms the ability of the retrieval to resolve the vertical distri-
bution of ice hydrometeors in the atmosphere.

The validation data covered the time range 2014–2020 and
climatic regimes from the tropics to the midlatitudes. The
fact that the CCIC retrieval yields reliable results even far
outside of the period used for training the retrieval (2006–
2009) constitutes preliminary evidence that the retrieval re-
sults are stable in time. Moreover, CCIC exhibits comparable
sensitivity (measured in terms of correlation with the cam-
paign measurements) and biases for both tropical and mid-
latitude cloud regimes, indicating robustness of the retrieval
across climate zones. In general, the CCIC retrievals tend to

overestimate in situ and radar measurements. This is con-
sistent with a similar tendency to overestimate hydrometeor
concentrations measured in situ found for the 2C-ICE prod-
uct (Deng et al., 2010, 2013b), which is used as reference
data to train the CCIC retrieval.

Overall, the validation results are very encouraging and in-
dicate that CCIC provides reliable results that constrain not
only the integrated density of frozen hydrometeors but also
their vertical distribution. Moreover, good agreement with
the diurnal cycles derived from the ground-based radar shows
that CCIC complements currently available A-Train-based
measurements by providing retrievals outside their limited
spatial and temporal coverage.

CCIC’s objective is to improve the observational cli-
mate record of ice hydrometeor concentrations using modern
deep-learning techniques. We aim to produce a full climate
record of cloud retrievals but acknowledge that the long-term
stability of these deep-learning-based retrievals remains an
open question, which we aim to address in a follow-up study.
Because of the exploratory character of CCIC (and the lim-
ited funding available for the project), there is likely room to
improve the retrieval further. Although based on the state-of-
the-art ConvNeXt architecture, the employed neural network
architecture has yet to be optimized exhaustively. Further po-
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Figure 18. Distributions of retrieved TIWC conditioned on reference TIWC measurements during the OLYMPEX campaign. Contour lines
show the mean of the ERA5-derived ambient temperature for the retrieval results in each bin. The displayed bias and correlation coefficients
are computed using all test samples including those outside the range of the scatter plots.

Figure 19. Distributions of retrieved TIWP conditioned on cloud-radar-derived reference TIWP measurements during the OLYMPEX cam-
paign. The displayed bias and correlation coefficients are computed using all test samples including those outside the range of the scatter
plots.

tential opportunities for improving the retrieval are unsuper-
vised pre-training and incorporating the temporal evolution
into the retrieval.

5.2 Limitations

Since CCIC uses the 2C-ICE and 2B-CLDCLASS prod-
ucts as reference data, it will directly inherit their charac-
teristics. In particular this means that CCIC is based on the

same microphysical assumptions as these two products and
will therefore reproduce their errors. The 2C-ICE product
uses a modified gamma particle size distribution (PSD) with
a habit mixture of randomly oriented particles to retrieve
TIWC from combined CloudSat and CALIPSO measure-
ments (Deng et al., 2010); however, since it does not provide
detailed information regarding the properties of the particles,
it is not possible for us to assess the impact of those assump-
tion. Nonetheless, our validation showed that the resulting
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Figure 20. Conditional distributions of retrieved TIWP (a, c) and TIWC (b, d) retrievals conditioned on reference measurements from the
ground-based cloud radar in Palaiseau. The first row shows the results for the CPCIR-based CCIC retrievals. The second row shows the
results for the GridSat-based CCIC retrieval. The displayed bias and correlation coefficients are computed using all test samples including
those outside the range of the scatter plots.

CCIC estimates agree reasonably well with in situ measure-
ments, thus instilling confidence in the reliability of both the
reference data and the CCIC retrievals.

A principal difficulty of measuring concentrations of hy-
drometeors in the atmosphere is establishing a ground truth.
In situ measurements are difficult to conduct and are there-
fore rare. Furthermore, available measurements have to be
collocated with satellite-based retrievals, whose measure-
ments typically extend over significantly larger measurement
volumes. Since both flight campaigns considered here com-
prised a relatively large number of flight hours, we were able
to average the campaign measurements to the native resolu-
tion of the satellite retrievals. While this yielded fairly good
agreement, we note that, despite the averaging, the measure-
ment volumes are likely to remain vastly different, which will
contribute to the error between retrieval and validation data.

Quantitative estimates of hydrometeor concentrations de-
rived from radar measurements exhibit significant uncer-
tainty due to their sensitivity to the assumed microphysical
properties, which are difficult to constrain a priori. The ap-
proach taken here was to perform multiple radar retrievals
with different assumptions on the particle shape and con-
strain the results through comparison with the in situ mea-
surements. This worked well for the HAIC-HIWC campaign,

for which the best agreement between radar and in situ mea-
surements was found for the large-column aggregate parti-
cle model, but led to inconsistencies in the biases between
CCIC and the OLYMPEX campaign in situ measurements
and radar retrievals. For OLYMPEX we therefore chose the
large-plate aggregate as the most suitable particle model and
used the same for the Palaiseau results, where it led to fairly
good agreement between radar and CCIC retrievals. While
the results are reasonably consistent, we note that microphys-
ical assumptions constitute a major uncertainty for the radar
retrievals used in this study.

Since CCIC was designed to be applied to geostation-
ary observations, its retrievals are currently limited to the
range −60° N (−70° N) to 60° N (70° N) for the CPCIR-
based (GridSat-based) retrievals. We are confident that the
approach could also be applied to high-latitude and po-
lar regions using observations from polar-orbiting satel-
lites such as those used by the PATMOS-x dataset. While
cloud retrievals of low clouds over snow-covered surfaces
present specific technical difficulties, the machine-learning-
based approach could benefit from improved spectral infor-
mation provided by advanced very high-resolution radiome-
ter (AVHRR)-type sensors and the increased coverage of
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Figure 21. Diurnal cycles of TIWP retrieved from CCIC and the
Cloudnet ground-based cloud radar in Palaiseau. Panel (a) shows
the diurnal cycles in absolute TIWP values. Black lines show the
retrieved diurnal cycles for the three different particle models used
in the radar retrievals. Panel (b) shows diurnal cycles normalized by
the mean TIWP. Panels (c)–(f) show seasonal diurnal cycles.

CloudSat–CALIPSO observations in high-latitude and polar
regions.

5.3 Applications

Given that CCIC uses only single-channel IR observations
as retrieval input, an important question to answer is whether
CCIC’s retrievals add new information that cannot be read-
ily obtained from the input data. To address this question,
the following subsections discuss two possible applications
where the CCIC retrievals may provide an advantage over
the original IR brightness temperatures.

5.3.1 Cloud tracking

A common application of IR observations from geostation-
ary satellites is the tracking of convective cloud systems.
Tracking algorithms typically use IR brightness temperatures

to identify cold clouds (Feng et al., 2021; Esmaili et al.,
2016; Fiolleau and Roca, 2013). The issue with this is that
IR brightness temperatures reflect the location of the cloud
top with respect to the thermal structure of the atmosphere
rather than the processes forming the cloud. Since the CCIC
retrievals can reproduce the vertical structure of clouds and
identify different cloud types, the CCIC results may provide
a better way to identify and track cloud systems. While the
most natural way of tracking cloud systems would be using
the cloud detection outputs provided by CCIC, this approach
has the disadvantage of not having a direct correspondence
in the output fields from climate models, which is often de-
sired to allow comparison of model- and observation-derived
tracking databases. However, it seems reasonable to assume
that also the TIWP field provides a more direct signal to track
clouds than the IR brightness temperatures.

The global mesoscale convective system database by Feng
et al. (2021), for example, uses a threshold of 225 K to iden-
tify a deep convective core and tracks the surrounding cold
cloud shield consisting of surrounding pixels with brightness
temperatures below 241 K. The ability of the raw IR bright-
ness temperatures and the CCIC-retrieved TIWP fields to
identify convective clouds and associated cloud shields can
be assessed with the test data used in Sect. 3. To this end,
we classify an atmospheric column associated with a pixel
of CPCIR observations as cloudy and convective based on
the corresponding cloud scenario from the 2B-CLDCLASS
product. A pixel is classified as cloudy if the corresponding
column contains a cloud at least at one level. Similarly, it
is classified as convective if it contains a Cu, Nb, or deep
convective cloud anywhere in the column. Figure 22 shows
precision–recall curves for the detection of clouds and the
detection of convective pixels using different brightness tem-
perature and TIWP thresholds.

The TIWP offers slightly better detection skill for detect-
ing clouds; however, this is mostly limited to the region
where the precision is around 0.8. For comparison, the global
database by Feng et al. (2021) uses a threshold of 241 K
to identify cold cloud shields. Since this value is relatively
low and unlikely to be produced by anything other than a
cloud, the threshold achieves a precision very close to 1
but only a very low recall, indicating that it misses a large
number of clouds. Larger differences between the bright-
ness temperatures and TIWP are found for the identification
of convective cores. Here the TIWP offers a significant ad-
vantage compared to the brightness temperature threshold of
225 K used by Feng et al. (2021). A detection threshold of
TIWP> 0.18 kg m−2 yields slightly higher precision and a
recall that is more than 2 times as high as when brightness
temperatures are used.

A comparison of the identified clouds for the case study
depicting the midlatitude cyclone shown in Fig. 5 is pre-
sented in Fig. 23. As these results show, the brightness tem-
perature thresholds fail to identify any of the convective
clouds identified by CloudSat. Moreover, the identified cloud

https://doi.org/10.5194/amt-17-4337-2024 Atmos. Meas. Tech., 17, 4337–4368, 2024



4358 A. Amell et al.: CCIC

Figure 22. Precision–recall curves for the detection of clouds and convection using IR brightness temperatures and CCIC TIWP estimates
for the test set. Panel (a) assesses the ability of the two quantities to identify cloudy 2B-CLDCLASS columns. The blue stars mark resulting
performance of the 241 K threshold used by Feng et al. (2021) to identify cold cloud shields for the CPCIR and GridSat datasets. The pink
stars mark the optimal decision threshold determined as the points closest (in terms of Euclidean distance) to a precision and recall of 1. The
corresponding threshold values are 0.009 kg m−2 for the CPCIR dataset and 0.012 kg m−2 for GridSat. Additional markers show precision
and recall for selected, additional TIWP detection thresholds. Panel (b) shows the same results for the detection of convective clouds (Cu,
Nb, or deep convection) anywhere in the column. The blue stars mark the classification accuracy of the 225 K threshold used by Feng et al.
(2021) to identify convective cores. The optimal threshold values for CPCIR and GridSat datasets are 0.18 and 0.16 kg m−2, respectively.

field is discontinuous and fails to reproduce the structure of
the cyclone. The TIWP-based classification identifies clouds
more reliably and better reproduces the structure of the cy-
clone but overestimates the extent of the convective clouds
associated with the cold front. Overall, the TIWP-based clas-
sification provides a better representation of the cloud sys-
tems associated with the cyclone that is in fairly good agree-
ment with the general understanding of cloud processes oc-
curring in frontal zones. Moreover, we note that the overesti-
mation of convective regions may be balanced by choosing a
higher detection threshold that would achieve a lower recall
but higher precision, as exemplified by the dashed and dotted
contours in Fig. 23.

Since the issues of brightness-temperature-based cloud
tracking are well known, Feng et al. (2021) and most other
cloud-tracking approaches incorporate additional data such
as precipitation estimates. Nonetheless, the results shown in
Fig. 23 indicate that the features identified in brightness tem-
perature fields may not provide a good representation of ac-
tual cloud systems. The retrieved TIWP fields directly esti-
mate the concentration of ice particles in clouds and there-
fore provide a more direct signal to identify clouds than the
IR brightness temperatures. Furthermore, high TIWP values
are likely more directly related to convection than high cloud
tops alone. This reasoning together with the results shown
in Fig. 23 suggests that cloud tracking on TIWP likely pro-
vides a better representation of actual cloud systems than
brightness-temperature-based tracking.

5.3.2 Climate studies and model assessment

Compared to raw brightness temperatures, TIWP has the ad-
vantage of being directly comparable to physical quantities
represented in weather and high-resolution climate models.
This should, at least in principle, simplify the identification
of shortcomings in the representation of clouds.

Furthermore, the presented validation results show that
CCIC can reliably characterize the spatial and temporal dis-
tribution of TIWP. This is in contrast to most other available
observational TIWP datasets, which in most cases have much
more limited spatial and temporal coverage and cannot con-
strain the full diurnal cycle of TIWP. Therefore, we see great
potential for the CCIC data to provide novel insights into
cloud processes. Finally, the CCIC data are provided at the
same temporal resolution and coverage as many commonly
used gridded precipitation products. The combination with
precipitation estimates, in particular, may help to better con-
strain cloud and precipitation processes in models.

5.4 Data dissemination

With the conclusion of this validation study, we plan to be-
gin the processing of the CCIC climate data record with the
aim of publishing data records for the full temporal extent
of the CPCIR and GridSat dataset. However, we will likely
not be able to publish vertically resolved retrieval targets
due to storage restrictions. To make these retrievals avail-
able for interested researchers, we publish the CCIC retrieval
as a Python software package (Amell and Pfreundschuh,
2023). The software package provides a simple command
line interface that will allow users to run the retrievals on
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Figure 23. Cloud and convective regions as identified in brightness temperatures and TIWP for the midlatitude cyclone shown in Fig. 5.
Panel (a) shows the identified regions based on the brightness temperature thresholds used in Feng et al. (2021) together with classes
identified along the CloudSat overpass. Panel (b) shows the corresponding regions identified based on TIWP. Solid lines show regions
resulting from the optimal detection thresholds identified in Fig. 22. Dashed and dotted lines show convective regions identified for higher
detection thresholds of TIWP> 0.5 kg m−2 and TIWP> 1.0 kg m−2, respectively.

their own hardware: a high-level description is provided in
Appendix D. Information on how to access the latest pro-
cessed climate data record is available through the software
package repository at https://github.com/see-geo/ccic (last
access: 19 April 2024).

6 Conclusions

This study presented and evaluated the CCIC hydrometeor
retrieval, which aims to provide a new climate record of
ice clouds based on the long record of geostationary IR
observations. CCIC leverages novel deep-learning-based re-
trieval techniques to provide accurate estimates of concen-
trations of frozen hydrometeors and related cloud properties
with spatially and temporally continuous coverage between
70° S and 70° N. The retrieval has been thoroughly character-
ized using 1 year of collocations with CloudSat 2C-ICE and
2B-CLDCLASS measurements and validated against inde-
pendent measurements of TIWC and TIWP from two flight
campaign series and a ground-based cloud radar. Albeit not
achieving equally high spatial resolution as the CloudSat ref-
erence measurements, the retrieval provides reasonable ac-
curacy in comparison with CloudSat and is consistent with
the field campaign and ground-based radar measurements.
Retrieval biases were found to be within ±60 % for a large
number of in situ measurements in both tropical and midlati-
tude regimes. The CCIC retrievals are capable of reproducing
the diurnal cycle of TIWP as measured by a ground-based
radar, which shows that CCIC retrieval ideally complements
currently available measurements from CloudSat and the A-
Train, which are much more limited in the spatial and tem-
poral coverage.

An important question that remains to be answered is the
stability of the climate record across the full range of the

input datasets, which we will address in a follow-up study.
Nonetheless, the validation experiments presented here cover
a long time range outside the time period that has been used
for the training of the retrieval, which provides preliminary
evidence of the stability of the retrieval. This makes us confi-
dent that the CCIC climate record will be a valuable addition
to the currently available record of ice cloud properties and
hopefully help to improve the understanding of cloud pro-
cesses in the atmosphere.

Appendix A: Training set distributions

The probability distribution functions (PDFs) of brightness
temperature, TIWP, and TIWC in the training set are given
in Figs. A1, A2, and A3, respectively. Table A1 shows the
frequencies of cloud classes and cloudy reference profiles.

Figure A1. Distribution of the brightness temperature closest to
11 µm in the training set.
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Figure A2. TIWP distributions in the training set. Probabilities of TIWP< 10−6 kg m−2 for CPCIR and GridSat: 53.6 % and 50.8 %, re-
spectively. Clear-sky threshold explained in Sect. 2.1.4.

Figure A3. TIWC distributions in the training set at the different altitudes. Probabilities of TIWC< 10−8 g m−3 for CPCIR and GridSat for
all altitude levels: 84.3 % and 83.3 %, respectively. Clear-sky threshold explained in Sect. 2.1.4.
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Table A1. Cloud class frequencies, in percent, from all levels in the
training set and total fraction of cloudy profiles, defined as a profile
with at least one cloudy level.

Cloud class GridSat CPCIR

No cloud 91.7 92.2
Cirrus 1.4 1.5
Altostratus 2.2 2.0
Altocumulus 0.6 0.6
Stratus 0.03 0.03
Stratocumulus 0.9 0.9
Cumulus 0.3 0.3
Nimbostratus 2.0 1.5
Deep convection 0.9 0.9

Cloudy profile∗ 46.7 44.3

∗ According to the 2D cloud mask.

Appendix B: Training settings

Table B1 shows training choices not mentioned in Sect. 2.1.4.
Any parameter not specified corresponds to the default val-
ues in PyTorch 1.13.0 (Paszke et al., 2019b).

Table B1. Training choices not mentioned in text.

Parameter Value

Batch size 4
Optimizer AdamW, learning rate 5 × 10−4

Scheduler Cosine annealing, Tmax = 20

Appendix C: Radar retrievals

In order to compare CCIC retrievals with observations from
airborne and ground-based cloud radar observations in a con-
sistent manner, we have developed a radar-based TIWC re-
trieval based on the retrievals used in Pfreundschuh et al.
(2022b). The input of the retrieval is range-resolved radar re-
flectivity measurements from which hydrometeor concentra-
tions are derived using the optimal estimation method (OEM;
Rodgers, 2000). The retrieval is implemented using the At-
mospheric Radiative Transfer Simulator (ARTS; Buehler et
al., 2018).

C1 Forward model

The ARTS-based radar forward model calculates polarized
single-scattering radar reflectivities taking into account ab-
sorption from gases and particles. Gaseous absorption is
modeled in the same way as described in Pfreundschuh et
al. (2022b). Particle size distributions of frozen hydrometeors
are represented using the single-moment parametrizations by

Field et al. (2007). For liquid hydrometeors the parametriza-
tion by Abel and Boutle (2012) is used. The forward model
assumes hydrometeors below the freezing level to be liquid
and frozen above. The model will thus misrepresent melting
particles and liquid particles in convective cores, which will
incur an error in the retrieved hydrometeor concentrations.

Particle single-scattering properties are taken from the
ARTS single-scattering database (SSDB; Eriksson et al.,
2018). Since the assumed shape of ice particles represents
a major source of uncertainty for radar-based retrievals of ice
concentrations, we have selected a set of three particles that
aim to capture the range of scattering properties in the ARTS
SSDB. The particle models used are the eight-column ag-
gregate, large-plate aggregate, and large-column aggregate,
which are also used in the retrievals presented in Pfreund-
schuh et al. (2022b).

Atmospheric temperature, humidity, and liquid cloud wa-
ter content are taken from ERA5 (Hersbach et al., 2020).

C2 HAIC-HIWC

During the Darwin leg of the HAIC-HIWC campaign, the
RASTA (Radar Airborne System Tool for Atmosphere) was
flown on board the F20 aircraft of the Service des Avions
Français Instrumentés pour la Recherche en Environnement
(SAFIRE) research aircraft. The RASTA system comprises
multiple radar beams and measures Doppler spectra of radar
reflectivity. For the retrievals used here, only total reflectiv-
ity from the zenith and azimuth beams was used in the re-
trieval. Input observations were resampled to a temporal res-
olution of 30 s and a vertical resolution of 100 m. The re-
trievals for the zenith and azimuth beams are performed in-
dependently. The retrievals used the PSD parametrization for
tropical regimes by Field et al. (2007).

The radar retrievals from the HAIC-HIWC campaign are
evaluated against in situ measurements in Fig. C1. The in
situ measurements were performed by the same aircraft. The
radar-retrieved TIWC at the aircraft position was obtained by
linear interpolation between the TIWC retrieved 250 m above
and 250 m below the aircraft. The radar retrievals are highly
correlated with the in situ measurements for all particle mod-
els. The eight-column aggregate and large-plate aggregate
models underestimate the TWC measured in situ. The large-
column aggregate slightly overestimates the in situ measure-
ments but yields results closest to the in situ measurements.
The mean profiles of the logarithmic ratio of retrieved and
in situ TWC indicate that the large-column aggregate and to
a lesser degree also the large-plate aggregate yield relatively
higher TIWC at lower altitudes.
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Table C1. Correlation and mean bias for different particle shapes
assumed in the radar retrievals from the HAIC-HIWC campaign.

Particle Bias [%] Correlation

Eight-column aggregate −76.63 0.92
Large-plate aggregate −42.36 0.91
Large-column aggregate 9.066 0.88

Figure C1. Comparison of radar retrievals and in situ measurements. Panel (a) displays the relation between retrieved TIWC and in situ
measurements collocated at the spatial and temporal resolution of the CPCIR-based CCIC retrievals. Panel (b) displays the mean profiles of
the logarithmic ratio of retrieved and in situ TIWC with respect to the atmospheric temperature.

Table C1 lists the correlation and mean biases of the radar
retrieval and the in situ measurements. The retrieval bias is
largest for the eight-column aggregate, which underestimates
the mean TIWC by a factor of 4. For the large-plate aggregate
the mean TIWC is underestimated by a factor of 2. The large-
column aggregate yields the best agreement with the in situ
measurements.

C3 OLYMPEX

During the OLYMPEX campaign, W-band cloud radar ob-
servations were conducted by the cloud radar system (CRS)
on board the NASA ER-2 aircraft. The retrievals used the
PSD parametrization for midlatitude regimes by Field et al.
(2007). Figure C2 shows scatter plots of our CRS TIWC re-
trievals and collocated in situ measurements from the UND
Citation aircraft. To collocate the radar and in situ measure-
ments, both were mapped to the spatial and temporal resolu-
tion of the CCIC CPCIR retrieval.

Table C2 lists the mean bias of the radar retrieval and its
correlation with the in situ measurements. The eight-column
aggregate yields the best agreement with the in situ measure-
ments. The large-plate and the large-column aggregate parti-
cle models overestimate the in situ measurements by 118 %
and 344 %, respectively. Despite being lower than for the
HAIC-HIWC, the retrieved TIWC remains well correlated
with correlations between 0.73 and 0.74 for all particles.

Table C2. Correlation and mean bias for different particle shapes
assumed in the radar retrievals from the OLYMPEX campaign.

Particle Bias [%] Correlation

Eight-column aggregate −8.1 0.74
Large-plate aggregate 118.14 0.74
Large-column aggregate 344.32 0.73

For the OLYMPEX campaign, the eight-column aggre-
gate yields the best agreement with the in situ measurements.
The large-plate and the large-column aggregate models both
overestimate the TIWC. However, compared to the CCIC re-
trievals, the large-plate aggregate was found to yield biases
that were more consistent with the biases between CCIC re-
trieval and in situ measurements. Since most collocations be-
tween the CRS radar and the UND in situ measurements stem
from a single flight, we suspect that the inconsistency of the
results in Fig. C2 and the comparison to the CCIC retrievals
is due to the limited number of collocations of radar retrievals
and in situ measurements and therefore choose the results ob-
tained with the large-plate aggregate as the reference results
for the OLYMPEX campaign.

C4 Cloudnet Palaiseau

The retrievals for the ground-based W-band cloud radar at the
Cloudnet site in Palaiseau use the same retrieval framework
as for the airborne radars. Radar reflectivities were averaged
over 30 s and sampled at 4 min intervals. Retrievals were run
for every day of the year 2019.

No in situ measurements were available to validate the
ground-based radar retrievals. However, since retrievals with
the large-plate aggregate were found to be consistent with
CCIC and in situ retrievals for the OLYMPEX campaign,
we chose the large-plate aggregate as the reference particle
model.
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Figure C2. Same as Fig. C1 but for the measurements from the OLYMPEX campaign.

Appendix D: The CCIC software package

The NN developed and trained for CCIC is publicly avail-
able through the CCIC software package (Amell and Pfre-
undschuh, 2023), which facilitates running the retrievals on
any modern computer. Given the fully convolutional NN na-
ture of the CCIC NN, retrievals for small regions of interest
(ROIs) are possible. The retrieval for large areas is imple-
mented by dividing the input image in tiles that partly over-
lap, running the retrieval for each of these tiled areas, and fi-
nally aggregating the retrievals with a weighted average with
weights inversely proportional to the distance to the center
of each tile. This implementation aims to reduce the mem-
ory footprint of the inference and minimizes any CNN edge
effects.

The software enables the user to choose, among others, a
ROI, the variables of interest, and a CI complementing the
TIWP expected value. The infamous quantile crossing prob-
lem (lack of monotonicity in the QPD) was detected in the
retrieval of continuous variables, but, as discussed in Ap-
pendix E, it was deemed negligible for the default setting of
a 90 % CI. Input data with invalid pixels are supported, since
the CCIC NN likely leverages contextual information to pro-
vide a retrieval. Finally, the CCIC software package saves the
retrievals either as compressed netCDF files or as Zarr files.
The latter file format facilitates distributed access as well as
significantly reduces the file size through a custom compres-
sion algorithm. Regardless of the file format used, the cli-
mate and forecast (CF) conventions (Eaton et al., 2022) are
followed.

Appendix E: Is quantile crossing a problem for CCIC?

One of the properties that any cumulative distribution func-
tion (CDF) must have is to be a right-continuous monotone
increasing function. With the formulation of QRNNs used,
there is the possibility that the QPDs obtained violate this
statistical property: for example, the quantile xτi at level τi
being larger than the quantile xτi+1 at level τi+1 > τi , yet this
would imply that τi+1 < τi . This is an infamous problem re-
ferred to as quantile crossing and arises from quantile regres-
sion itself. Depending on the formulation of the problem, it
cannot be avoided: a minimal example is doing linear quan-
tile regression for two levels for a cloud of points in R2. In
this case, the lines obtained will extremely likely cross on the
real line. Therefore, quantile crossing can require additional
analysis or caution when drawing conclusions.

Inference with the GridSat training data for June 2006 is
used here to analyze the presence and implications of quan-
tile crossing for the retrievals offered by the CCIC software
package, using a 90 % CI. The Spearman correlation coef-
ficient ρS ∈ [−1,+1] measures the monotonic relationship
between two variables, with ±1 indicating a perfect mono-
tonic relationship. Consequently, it can be used to assess the
deviation of a QPD from a monotone function, i.e., the pres-
ence and magnitude of quantile crossing by computing ρS
between the estimated quantiles and the quantile levels. This
correlation results in ρS ≥ 99.8 % for TIWP and ρS ≥ 80.6 %
for TIWC for all retrievals; these results are consistent with
the argument that the retrieval of TIWC is more difficult.
These high ρS values indicate that the QPDs are generally
close to being perfect monotonic functions, but not all of
them. However, these last QPDs can be considered to be rel-
atively rare, as the median of the distributions of ρS for any
of the three variables is practically 1.
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Figure E1. QPDs with the worst ρS (99.8 % for TIWP and 80.6 %
for TIWC), where the vertical lines indicate the expected value of
the corresponding distribution. Note the different abscissa axes and
that the plot limits were deliberately selected to draw attention to
the crossing quantiles.

There are numerous approaches to address quantile cross-
ing. An option is to process the QPD with a linear isotonic
regression of the quantiles xτ by solving

minimize
∑
τi∈T

(
x
(c)
τi − xτi

)2

subject to x
(c)
τi ≤ x

(c)
τj ∀τi ≤ τj

(E1)

and obtaining quantiles x(c)τ that are monotonic. The idea
behind this approach is to have a simple, computationally
friendly method that respects as much as possible the QPD
given by the network. Figure E1 shows the QPDs with the
worst ρS for the “tiwp” and “tiwc” variables, as well as the
corrected QPDs (CQPDs) through a linear isotonic regres-
sion. At least three things can be spotted in Fig. E1: the
highly nonlinear shape of the QPDs, the quantile levels with
crossing quantiles, and that the QPD and CQPD expected
values are virtually identical. Intuitively, nearby quantile lev-
els have higher odds of experiencing quantile crossing than
distant levels. Consequently, a large CI is more robust: all
quantiles defining the 90 % CI for the retrievals analyzed do
not cross.

Computing the signed relative percent difference between
a scalar x derived from the QPD and the analogous value
derived from the CQPD, referred as x(c), enables comparison
among different orders of magnitude. In this analysis their
mean is used as a reference, i.e.,

d1(x,x
(c))=

x− x(c)(
|x| + |x(c)|

)
/2
, (E2)

with d1(0,0)= 0, and therefore ranges from −2 to +2. The
distribution of d1 values for all TIWP and TIWC variables re-
sembles a delta function, with 99 % of the values being zero

and the quantiles defining the 99.9 % equal-tailed distribu-
tion for TIWP-derived ρS being −0.0011 and 0.0151. Con-
sequently, there may be instances of quantile crossing, but
its impact on the variables reported by the CCIC software
package is negligible when contrasted with enforcing mono-
tonicity of the QPDs through linear isotonic regression.

Code and data availability. The code used to pro-
duce the results in this paper is publicly available at
https://doi.org/10.5281/zenodo.8278127 from Amell and Pfre-
undschuh (2023) and allows replicating the training database,
which is not published due to its size but can be provided upon
request. Similarly, all data sources used in this study are publicly
available: CloudSat 2B-CLDCLASS and 2C-ICE products can be
downloaded from the CloudSat Data Processing Center (https:
//www.cloudsat.cira.colostate.edu, last access: 21 August 2023;
https://www.cloudsat.cira.colostate.edu/data-products/2c-ice,
Deng et al., 2023; https://www.cloudsat.cira.colostate.edu/
data-products/2b-cldclass, Sassen and Wang, 2023); CPCIR
data can be downloaded from NASA’s Goddard Earth Sci-
ences Data and Information Services Center (GES DISC)
at https://doi.org/10.5067/P4HZB9N27EKU (Janowiak et al.,
2017); GridSat can be downloaded from NOAA’s National
Climatic Data Center at https://doi.org//10.7289/V59P2ZKR
(Knapp and NOAA CDR Program, 2014); HAIC-HIWC data
can be downloaded from the UCAR/NCAR Earth Observing
Laboratory data archive (https://doi.org/10.5065/D6WW7GDS,
Strapp, 2016b; https://doi.org/10.26023/72PW-V4FB-E0C,
SAFIRE, 2016; https://doi.org/10.5065/D61N7ZV7, Strapp,
2016a; https://doi.org/10.5065/D6RN36KJ, Strapp, 2017;
https://doi.org/10.26023/8V5Y-GB2E-CX07, Strapp, 2019;
https://doi.org/10.26023/KJDH-MXGE-HK0V, Bennett,
2019); the OLYMPEX radar observations are available at
https://doi.org/10.5067/GPMGV/OLYMPEX/CRS/DATA101
from Heymsfield and Lin (2017) and the in situ measurements at
https://doi.org/10.5067/GPMGV/OLYMPEX/MULTIPLE/DATA201
from Poellot et al. (2017); ERA5 can be downloaded
from the Copernicus Climate Change Service Climate
Data Store (CDS) at https://doi.org/10.24381/cds.bd0915c6
(Hersbach et al., 2023); and the Cloudnet data can be
downloaded from the ACTRIS Cloudnet data portal (https:
//cloudnet.fmi.fi/file/ec16dad5-3047-4a29-a437-91fc6d55607e,
Delanoë and Haeffelin, 2023).
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